

Intestinal toxicity of the new type A trichothecenes, NX and 3ANX

Alix Pierron, Manon Neves, Sylvie Puel, Yannick Lippi, Laura Soler-Vasco, J. David Miller, Isabelle P. Oswald

► To cite this version:

Alix Pierron, Manon Neves, Sylvie Puel, Yannick Lippi, Laura Soler-Vasco, et al.. Intestinal toxicity of the new type A trichothecenes, NX and 3ANX. Chemosphere, 2022, 288 (1), 10.1016/j.chemosphere.2021.132415. hal-03367020

HAL Id: hal-03367020 https://hal.science/hal-03367020v1

Submitted on 1 Jun2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Intestinal toxicity of the new type A trichothecenes, NX and 3ANX
2	
3	Alix Pierron ^{1*} , Manon Neves ^{1*} , Sylvie Puel ¹ , Yannick Lippi ¹ , Laura Soler ¹ , J. David Miller ² and Isabelle
4	P. Oswald ¹
5	¹ Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan,
6	Toulouse, France
7	² Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6,
8	Canada
9	*These authors contributed equally to this work
10	
11	
10	
12	
13	
14	
15	
15	
16	
17	Corresponding Author:
18	Isabelle P. Oswald PhD
19	INRA, UMR-1331, Toxalim, 180 chemin de Tournefeuille, 31027 Toulouse cedex 3, France
20	Phone +33 582066366
21	E-Mail: Isabelle.Oswald@inrae.fr
22	

1 Intestinal toxicity of the new discovered type A trichothecenes, NX and 3ANX

2

3 Highlights:

- Differential cytotoxicity in human Caco-2 cells: NX=DON>3ANX
- Number of differentially expressed genes in intestinal explant NX>>DON>3ANX
- NX, 3ANX and DON modulate pathways mainly related to inflammation and immune response

1	Intestinal toxicity of the new discovered type A trichothecenes, NX and 3ANX
2	
3	Graphical abstract:
4	
5	
	() (
c	Intestinal explant Mistopathology Genes expression Genes expression Genes expression Genes expression

23 Abstract

NX and its acetylated form 3ANX are two new type A trichothecenes produced by Fusarium 24 graminearum whose toxicity is poorly documented. The aim of this study was to obtain a general view 25 26 of the intestinal toxicity of these toxins. Deoxynivalenol (DON), which differs from NX by the keto group at C8, served as a benchmark. The viability of human intestinal Caco-2 cells decreased after 24 h 27 of exposure to 3 µM NX (-21.4%), 3 µM DON (-20.2%) or 10 µM 3ANX (-17.4%). Histological 28 observations in porcine jejunal explants exposed for 4 h to 10 µM of the different toxins showed 29 interstitial edema and cellular debris. Explants exposed to NX also displayed cell vacuolization, a broken 30 epithelial barrier and high loss of villi. Whole transcriptome profiling revealed that NX, DON and 3ANX 31 modulated 369, 146 and 55 genes, respectively. Functional analyses indicated that the three toxins 32 33 regulate the same gene networks and signaling pathways mainly; cell proliferation, differentiation, apoptosis and growth, and particularly immune and pro-inflammatory responses. Greater transcriptional 34 impacts were observed with NX than with DON. In conclusion, our data revealed that the three toxins 35 have similar impacts on the intestine but of different magnitude: NX > DON >> 3ANX. NX and 3ANX 36 37 should consequently be included in overall risk analysis linked to the presence of trichothecenes in our 38 diet.

39

40 Keywords: deoxynivalenol, gut, *Fusarium graminearum*, explant, transcriptome

41 **1. Introduction**

42 Mycotoxins are toxic secondary metabolites produced by various filamentous fungi including 43 *Aspergillus, Penicillium* and *Fusarium*. A number of compounds –notably *Fusarium graminearum* 44 metabolites deoxynivalenol (DON) and zearalenone– are common contaminants of wheat and corn in 45 temperate regions worldwide (Miller 2016). In Europe, Asia and North America, exposure to the *F*. 46 *graminearum* trichothecene DON plus its two acetylates and its glucosides derivatives can approach or 47 exceed tolerable daily intakes, especially in children (JEFCA, 2011; Knutsen et al., 2017; Vin et al., 48 2020).

There have been changes in the distribution and genetics of F. graminearum populations in different 49 50 parts of the world including the appearance of two new chemotypes (Crippin et al., 2019). Gale et al. (2010) discovered a population of F. graminearum in the Midwest United States that was genotyped as 51 3ADON but did not produce 3ADON, 15ADON, DON, fusarenone X, or nivalenol. Closer investigation 52 53 of these strains determined that this population produced new trichothecenes, one of which was similar to 3ADON but lacked C-8 keto oxygen. This compound was given the trivial name 3ANX (also called 54 55 NX-2) and its deacetylated form, NX (also called NX-3) (Aitken et al., 2019; Varga et al., 2015). This population has subsequently been detected elsewhere around the Great Lakes. Working with a 56 57 population collected in an area of more than 20,000 km² in southern Ontario, Crippin et al. found another 58 new population within the 15ADON genotype that produced both 15ADON and 3ANX (Crippin et al., 59 2020, 2019). Analyses of grain samples that contained high amounts of DON also revealed NX at 1-7% 60 of the DON concentration (Crippin et al., 2020).

61 DON is one of the most widely studied mycotoxins and has many effects including on protein synthesis, 62 immune system function, impact on the intestine and interactions with several appetite suppression 63 systems. It is regulated based on the basis of its anorexic effect (JEFCA, 2011; Knutsen et al., 2017; 64 Pestka, 2010). DON interacts with the peptidyl transferase region of the 60S ribosomal subunit. It triggers ribotoxic stress resulting in the activation of mitogen-activated protein kinases (MAPKs) and 65 causes apoptosis and inflammation (Garreau de Loubresse et al., 2014; Payros et al., 2016; Pestka, 66 2010). Oxidative stress is also known to play a role in DON-induced toxicity (Da Silva et al., 2018; You 67 et al., 2021). In humans, acute exposure to DON is associated with vomiting and bloody diarrhea (Ruan 68

et al., 2020) while chronic exposure leads to reduced food consumption and reduced weight gain, neuroendocrine changes as well as alteration of immune functions (Payros et al., 2016; Pestka, 2010; Robert
et al., 2017). In contrast, toxicological characterization of NX and 3ANX is limited but the few data
available suggest similarities with DON. Like DON, NX is cytotoxic to mammalian cancer and noncancer cell lines, inhibits protein synthesis, increases the intracellular concentration of ROS and has a
pro-inflammatory effect (Varga et al., 2018, 2015; Woelflingseder et al., 2020, 2018).

The intestine is the first barrier against food born chemical contaminants, including mycotoxins (Pierron et al., 2016c). The gastrointestinal tract is particularly impacted by DON, as this mycotoxin alters intestinal morphology, impairs barrier function and nutrient absorption (Ghareeb et al., 2015; Pierron et al., 2016a; Pinton and Oswald, 2014). DON also triggers intestinal inflammation, which could increase susceptibility to intestinal inflammatory diseases (Maresca et al., 2008; Payros et al., 2020; Pestka, 2010).

This paper had two objectives. The first one was to obtain a general view of the toxicological alterations of the intestine induced by the new toxins NX and 3ANX in comparison to the one of DON. This was possible thanks to the use of the Caco-2 cell line and intestinal porcine explants. The second objective was to rank these three toxins for their intestinal toxicity based on cytotoxicity, histopathological analysis and whole transcriptome profiling. These data will increase our understanding the toxicity of the new toxins NX and 3ANX and benefit the safety assessment of mycotoxin as agricultural contaminants.

88

89 2. Material and Methods

90 2.1. Toxins

Deoxynivalenol (DON) was purchased from Sigma-Aldrich (St. Quentin Fallavier, France). 3ANX
(type-A trichothecene 7a-hydroxy, 15-deacetylcalonectrin) and NX (deacetylated product 7a-hydroxy,
3, 15-dideacetylcalonectrin) were produced following the methods described in Aitken et al. (2019).
The three toxins were dissolved in purified water and were aliquoted at a stock concentration of 5 mM
at -20°C. The chemical structure of the three toxins is displayed in Suppl. Fig.1.

97 2.2. Caco-2 cell culture and viability assay

Caco-2 cells obtained from Sigma-Aldrich (passage 69-71, Acc n°86010202) were cultured as 98 99 previously described (Luo et al., 2021). Briefly, Caco-2 cells were cultured in 75-cm² culture flasks in 100 Dulbecco's Modified Eagle Medium (Gibco, Life Technologies, Courtaboeuf, France) enriched with 1% L-glutamine (862 mg/L) and supplemented with 10% of heat inactivated fetal bovine serum 101 (Eurobio, Courtaboeuf, France), 0.5% of Gentamycin (Eurobio) and 1% of MEM non-essential amino 102 103 acids (L-alanine (890 mg/L), L-asparagine (1500 mg/L), L-aspartic acid (1330 mg/L), L-glycine (750 mg/L), L-serine (1050 mg/L), L-proline (1150 mg/L) and L-glutamic acid (1470 mg/L)) (M7145, 104 Sigma-Aldrich). Cells were maintained at 37 °C in 5% CO₂ atmosphere and 90% relative humidity and 105 passaged by trypsinization (0.5% trypsin in 0.5 mM EDTA, Eurobio) when they reached 80% of 106 107 confluency. Cell viability was assayed with the CellTiter-Glo Luminescent Cell Viability Assay 108 (Promega, Charbonnières-les-Bains, France) according to manufacturer's instructions. Cells were seeded at a density of 1.56×10^5 cells/cm² in 96-well microtiter white plates with clear bottom (Greiner). 109 Cells were grown for 24 h and exposed to DON, NX or 3ANX at different concentrations (0.03-100 110 111 μM), for 24 or 48 h. Luminescence was measured with a spectrophotometer (TECAN Spark, Männedorf, Switzerland). 112

113

114 2.3. Jejunum explant culture

115 A total of 11 4-week-old crossbred castrated male piglets were used. The experiment was conducted under the guidelines of the French Ministry of Agriculture for animal research. All animal 116 117 experimentation procedures were approved by the Ethics Committee of Pharmacology-Toxicology of Toulouse-Midi-Pyrénées in animal experimentation (Toxcométhique) (N°: TOXCOM/0163/PP) in 118 119 accordance with the European Directive on the protection of animals used for scientific purposes 120 (Directive 2010/63/EU). Jejunal explants were obtained as previously described (García et al., 2018). The explants were incubated 30 minutes in complete control medium, William's Medium E (Sigma-121 Aldrich), Glucose 4.5 g/L (Sigma-Aldrich), ITS (Insulin Transferrin Sodium selenite) 1X (Sigma-122 Aldrich), Alanyl-Glutamine 30 mM (Sigma-Aldrich), Penicillin-Streptomycin 1% and Gentamycin 123 0.5% (Eurobio). Then, treated in complete medium with toxins, for 4 h at 39 °C with 10 µM of DON, 124

NX or 3ANX, conditions already described (Alassane-Kpembi et al., 2017; Pinton et al., 2012). After
incubation, the explants were fixed in formalin or snap frozen in liquid nitrogen and stored at -80 °C.

128 2.4. Histological analysis

Explants fixed with 10% formalin (Sigma-Aldrich) for 24 h were dehydrated and embedded in paraffin
wax (Labonord, Templemars, France) using standard histological procedures. Sections (5-µm-thick)
were stained with hematoxylin and eosin (Sigma-Aldrich) for histopathological assessment as
previously described (Alassane-Kpembi et al., 2017). Histological observation and pictures of the
explants were acquired using optical microscopy (NIKON 90i Fluorescence microscope, NIS Elements
Ar software).

135

136 2.5. RNA Extraction and Real- time Quantitative PCR (RT- q-PCR)

RNA was extracted as previously described (Pierron et al., 2016c). Briefly, jejunal explants were 137 homogenized in tubes containing plastic beads (MT Biomedicals, Illkirch, France) in 1 mL ExtractAll 138 139 (Eurobio) using Precellys Evolution tissue homogenizer (Bertin Technologies, Montigny- le-140 Bretonneux, France). Total RNA was extracted following the manufacturer's recommendations and the concentration and quality of the RNA were assessed using both a Dropsense 96 UV/VIS droplet reader 141 142 (Trinean, Belgium) and an Agilent 2100 Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA, 143 USA). Their mean (\pm SD) RNA Integrity Number (RIN) was 6.45 \pm 0.26. Two µg of total RNA were reverse transcribed using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, 144 Courtaboeuf, France). Primers (Table 1) were designed using the PrimerQuest tool (Integrated DNA 145 Technologies, San Diego, CA, USA) and purchased from Sigma. Real-time PCR assays were performed 146 147 in duplicate on 5 ng cDNA (5 µL volume reaction per well) in 384-well plates using Power SYBR® 148 Green PCR Master Mix and the Viia7 Real Time PCR System (Applied Biosystems) for data acquisition. 149 Data were analyzed with LinRegPCR software (version 2016.0) and N0 values (starting concentrations) were normalized using hydroxymethylbilane synthase (HMBS) and Beta-2-Microglobulin (B2M) as 150 151 housekeeping genes. Data are presented in log2 fold change.

153 2.6. Microarray gene expression studies

Gene expression profiles of the 24 samples (5 replicates per treatment group) were performed at the GeT- TRiX facility (GénoToul, Génopole Toulouse Midi-Pyrénées) using Agilent Sureprint G3 Porcinet 60K_DEC2011 microarrays (8x60K, design 037880) following the manufacturer's instructions, as previously described (Pierron et al. 2016c), Microarray data and experimental details are available in NCBI's Gene Expression Omnibus (Edgar et al., 2002) accessible through GEO Series accession number GSE152763 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152763).

Functional analysis of the differentially expressed (DE) genes was performed using the Ingenuity
Pathway Analysis tool (QIAGEN, Valencia, CA, USA). Only pathways that presented a P value < 0.05
or a -log P value exceeding 1.30 based on Fisher's exact test are shown.

163

164 2.7. Statistical analysis

For cell viability and q-PCR analyses, data are presented as the mean ± standard error of the mean (SEM) 165 and analyzed using Kolmogorov-Smirnov normality test. Analysis of variance (ANOVA) followed by 166 167 Bonferroni's multiple comparisons test were performed after log transformation of the cell viability results and a paired t-test of the q-PCR data was performed; a p-value < 0.05 was considered significant. 168 169 The microarray data were analyzed using the Bioconductor packages in R and the limma lmFit function 170 as mentioned in GEO accession GSE152763 and as previously described (Alassane-Kpembi et al., 171 2017). Data were log2 transformed and normalized using the quantile method, then a correction for multiple testing (False Discovery Rate, FDR) using the Benjamini-Hochberg procedure was applied. 172 Probes with adjusted p values $FDR \le 0.05$ were considered to be differentially expressed between 173 conditions. After hierarchical clustering of the samples, a 1-Pearson correlation coefficient as distance 174 175 and Ward's criterion for agglomeration were used for the differentially expressed probes.

176

177 **3. Results**

178 3.1. Cytotoxicity of NX and 3ANX in human intestinal epithelial cells

179 The effects of NX and 3ANX were first compared on proliferating human Caco-2 cells. As shown in Fig. 1, the cell viability measured by ATP quantification decreased significantly from 3 µM and 10 µM 180 181 with NX and 3ANX, respectively. The longer the exposure to the toxins, the higher the cytotoxicity, with a greater decrease in cell viability (Fig. 1A and 1B). After both 24 h and 48 h of exposure, DON 182 and NX displayed similar cytotoxicity. DON induced a decrease in cell viability starting at 1 µM and 183 significantly different from the control starting at 3 µM; with 3ANX cell viability started to significantly 184 185 differ from the control at 10 µM. In conclusion, these data showed that the cytotoxicity of NX for the viability of intestinal cells resembled that of DON whereas 3ANX was less cytotoxic. 186

187

188 3.2 Histological alteration induced by NX and 3ANX in intestinal explants

A more complex model was used to complete the analysis. Experiments were performed on whole intestinal tissue, using porcine jejunal explants, a model developed to assess short-term effect of mycotoxins (Alassane-Kpembi et al., 2017; García et al., 2018; Pierron et al., 2016b).

192 The intestinal effects of NX, 3ANX and DON were first compared with histological evaluation (Fig. 2).

193 In comparison to the control, the toxin treated groups (Fig. 2B-D) displayed some interstitial edema and

194 cell debris. Explants treated with DON (Fig. 2C) displayed some loss of villi, and those treated with NX

displayed cell vacuolization, a broken epithelial barrier with atrophy and notable loss of villi (Fig. 2B).

196 3ANX-treated explants displayed some cell vacuolization, lymphatic vessel dilation but generally a

197 continuous epithelial barrier (Fig. 2D). In conclusion, histological observations indicated that NX caused

198 greater histological changes to intestinal explants than DON; 3ANX being the least potent.

199

3.3 Gene expression profile of intestinal explants exposed to NX, 3ANX and DON

A genome wide transcriptomic approach was used to investigate the effects of these new mycotoxins on the intestine at greater depth. Exposure to 10 μ M DON, NX and 3ANX resulted in clear modification of the transcriptomic profile of intestinal explants (Fig. 3). The Venn diagram (Fig. 3A) shows that NX induced more differentially expressed genes than DON and 3ANX, with a total of 369 genes (770 probes) modulated by NX, 146 genes (315 probes) modulated by DON, and only 55 genes (105 probes) modulated by 3ANX. Principal component analysis of differentially expressed probes separated NX,

DON, 3ANX groups from controls (Fig. 3B). Supervised hierarchical clustering analysis (Fig. 3C) 207 208 identified two clusters: cluster 1, which included the great majority of 338 genes (736 probes), grouped 209 genes that were up-regulated in response to the toxins, while cluster 2 containing 40 genes (56 probes) 210 grouped genes that were down-regulated in response to DON, NX or 3ANX.

In conclusion, the overall gene expression profile indicated that the three toxins target the intestine and 211 that NX has more impact on intestinal gene expression than DON, 3ANX being the toxin with the least 212 213 impact.

214

233

3.4 Canonical pathways targeted by NX, 3ANX and DON 215

To further investigate the functional analysis of the differentially expressed genes, we focused on the 216 217 top genes and pathways modulated by each toxin. The complete list of probes modulated by each toxin 218 is provided in Suppl. Table 1, while Fig. 4 summarizes the top genes and the top pathways modulated 219 by NX, 3ANX and DON.

220 The genes most differentially expressed by NX were involved in inflammation [Interleukin 1 beta (IL-221 1B), C-X-C motif chemokine ligand 2 (CXCL2 and GROB), interleukin 22 (IL-22), chemokine ligand 222 20 (CCL20), interleukin 1 alpha (IL-1A), bradykinin receptor B1 (BDKRB1), selectin E (SELE), tumor 223 necrosis factor alpha-induced protein 3 (TNFAIP3), colony stimulating factor 2 (CSF2), prostaglandin-224 endoperoxide synthase 2 (PTGS2), chemokine (C-C motif) ligand 4 (CCL4)]; immune response [FOS 225 Like 1 (FOSL1), Cluster of Differentiation 83 (CD83)]; cell proliferation/differentiation/apoptosis and growth [neuron-derived orphan receptor 1 (NOR-1), growth arrest and DNA damage inducible beta 226 (GADD45B), immediate early response 2 (IER2) and 3 (IER3)] (Fig. 4B). The expression level of the 227 228 majority of these genes was higher upon NX exposure than in the DON and 3ANX treatments. Of note, 229 functional analysis of the 369 genes modulated by NX was pretty similar to the one including only the 230 231 genes specifically impacted by this toxin (and not modulated by DON or 3ANX, Suppl. Table 2). Exposure to DON also resulted in increased expression of genes involved in inflammation [IL-1B, IL-231 22, CCL20, IL-1A, SELE, TNFAIP3, PTGS2, IL-8]; immune response [FOSL1, CD83, bradykinin 232 receptor B2 (BDKRB2), CCR7]; cell proliferation/differentiation/apoptosis and growth [NOR-1,

neuregulin 1 (NRG1), calcitonin receptor-stimulating peptide 2 (CRSP-2), ERRF1, AREG, 234

chromosome 8 open reading frame 4 (CH004), cell migration inducing hyaluronidase 1 (KIAA1199),
Rho family GTPase 1 (RND1)].

237 Genes involved in the same pathways were also overexpressed upon exposure to 3ANX; inflammation 238 [IL-1B, IL-22, IL-1A, TNFAIP3, PTGS2)-, NF-kB inhibitor alpha (NFKBIA), C2 calcium dependent domain containing 4A (C2C4A), phorbol-12-myristate-13-acetate-induced-protein 1 (PMAIP1)]; 239 240 immune response [CD83, BDKRB2]; cell proliferation/differentiation/apoptosis and growth [NOR-1, 241 neuregulin 1 (NRG1), ERBB receptor feedback inhibitor 1 (ERRF1), amphiregulin (AREG), IER3, cysteine and serine rich nuclear protein 1 (CSRNP1), Sprouty RTK antagonist 2 (SPRY2), interferon 242 related development regulator 1 (IFRD1), polo-like kinase 2 (PLK2), baculoviral IAP repeat containing 243 3 (BIRC3)]. Over expression of genes involved in inflammation (IL-1A, IL-1B, IL-22, TNFAIP3) and 244 245 in development/apoptosis (NOR-1) upon NX, 3ANX or DON treatment was confirmed by q-PCR 246 analysis using different biological replicates (Suppl. Fig. 2).

Functional analysis also indicated that the same canonical pathways were modulated by the three toxins
(Fig. 4C). TNF receptor-2 (TNFR2), mainly involved in T-reg activity, and TNF receptor-1 (TNFR1)
mainly triggering pro-inflammatory activity, as well as several interleukin signaling pathways such as
IL-10, IL-17 or IL-6 signaling pathways were among the top canonical pathways targeted by NX, 3ANX
and DON. Most of these pathways are involved in the activation of NF-κB and the C-Fos and C-Jun
complex (also named AP1).

253 The first four pathways modulated by NX were further analyzed at gene level (Fig. 5, 6 and Suppl. Fig. 3, 4). The TNRF2 signaling pathway includes 23 genes, of which 14 were modulated by NX with a high 254 log₂FC, ranging from 0.40 to 1.9 (Fig 5). Among these 14 genes, nine were modulated by DON and six 255 by 3ANX, but with a lower log₂FC. Of note, DON and 3ANX did not regulate genes that were not 256 257 targeted by NX, confirming that NX had a greater impact on the TNRF2 signaling pathway than DON 258 and 3ANX. Analysis of this pathway also showed that five of the NX specific genes (NFkBD, KFkBB, 259 NFkB1, NFkB, TRFA1) belong to signaling pathways regulated by DON and 3ANX. Findings for the 260 IL-10, IL-17 and TNFR1 signaling pathways were similar, with more genes modulated by NX; and with 261 a higher level of up regulation compared to that of DON and 3ANX. As already observed for the TNFR2 pathway, no genes were significantly modulated by DON and/or 3ANX and not modulated by NX inthe IL-10, Il-17 and TNFR1 signaling pathways (Fig. 6 and Suppl. Fig. 3, 4).

Of note, the cholecystokinin/gastrin-mediated signaling pathway implicated in the well-known anorexic effect of DON was among the top 20 pathways regulated by DON and 3ANX. This pathway was also highly regulated by NX (-log (p-value) of 5.15, nb of DEG = 10).

Taken together, these results show that more genes in the intestine are modulated by NX than by DON
or 3ANX, but that all three toxins modulate the same signaling pathways, particularly inflammatory and
immune responses.

270

271 4. Discussion

Some populations of *F. graminearum* have been shown to produce the new type A trichothecenes 3ANX
and NX, that can occur in *Fusarium*-damaged grains, and prior to this study, available toxicology data
were limited. The present study investigated the intestinal toxicity of these newly discovered toxins,
using both human intestinal epithelial cells and porcine jejunal explants. DON was included in the study
due to its structural similarity with NX and 3ANX.

The effects of NX and 3ANX were first assessed in the well-known human Caco-2 cell model. This 277 278 enterocyte-like model has the same properties as small intestinal enterocytes and is often used to assess 279 the toxicity of mycotoxins (Alassane-Kpembi et al., 2013; Luo et al., 2021; Sambruy et al., 2001). The cell viability was assessed through the measurement of ATP content. As already described, 48 h 280 exposure to DON decreased ATP content by almost 50%; which is some how a smaller effect than that 281 the one observed with other viability test (Luo et al. 2021). The equal cytotoxicity of NX and DON 282 observed in this cell line resembled that previously reported in HT29 and HCEC-1CT cells (Varga et 283 284 al., 2018). An equal effect of NX and DON on protein synthesis inhibition was also observed (Varga et 285 al., 2015). By contrast, 3ANX was less cytotoxic than NX or DON for Caco-2 cells.

The impact of NX and 3ANX was further assessed on intestinal tissue. Due to the difficulties in accessing human intestinal samples, the study was performed on porcine intestinal explants. Pig is a good model for extrapolation to humans, as their digestive physiology is very similar to that of humans (Swindle et al., 2012) and the intestinal explant model has already been used to analyze the intestinal

toxicity of trichothecenes (Alassane-Kpembi et al., 2017; Lucioli et al., 2013; Pierron et al., 2016b). 290 291 This first assessment of the effect of NX-toxins on tissue morphology revealed intestinal damage 292 including cell vacuolization, cellular debris, a broken epithelial barrier with high atrophy rates and loss 293 of villi. Compared to DON, whose intestinal toxicity is well documented (Bracarense et al., 2020; Pierron et al., 2016), NX was found to be more toxic and 3ANX to be less toxic. The modification and 294 295 degradation of the intestinal tissues can be due to all the up-regulation of inflammatory genes caused 296 by the toxins as shown by the genome wide analysis (Chen et al., 2018). Given the similarity with what 297 is known for DON, we hypothesize that the damage to intestinal morphology has an impact on barrier 298 function and intestinal absorption (Maresca et al., 2002; Pierron et al., 2016a).

299 Genome wide analysis confirmed the intestinal impact of the three toxins as well as their potency. The 300 effect of DON has already been described in explant genomic studies but this is the first genome wide 301 analysis performed for NX and 3ANX toxins (Alassane-Kpembi et al., 2018, 2017; Pierron et al., 2016b). Our data show that the three toxins targeted genes implicated in inflammation, immune 302 303 response, cell proliferation, differentiation, apoptosis, and growth. Several of these genes are linked to 304 NF-kB activity (Hayden and Ghosh, 2014). Using human intestinal cells, Marko's group recently 305 demonstrated that NX activates NF-kB as well as the transcript level of some NF-kB dependent inflammatory cytokines, namely IL8, IL6, IL1beta, and TNFA (Woelflingseder et al., 2020). Our data 306 307 extend these results to several other genes, notably BCL10, BMP2, CD40, IL1A, IL1R1, PELI1, RELA, 308 TANK, TNF, TNFAIP3.

Transcriptome analysis also showed that NX activates TNFR1, TNFR2 and IL-10 signaling pathways.
TNFR1 promotes inflammation through increased production of cytokines such as TNF, IL1B and IL6.
By contrast, TNFR2 targets anti-inflammatory effects and promotes stability of regulatory T cells (Treg)
lymphocytes (Yang et al., 2018). The anti-inflammatory effect of the IL-10 signaling pathway has also
been reported. Thus, the well-known DON paradox, i.e. being both an immunostimulator and an
immunosuppressor (Pestka, 2008), may also apply to NX toxins.

Cytotoxicity experiments, histological evaluation, and transcriptional analysis demonstrated reduced toxicity of acetylated NX. To the best of our knowledge, the toxicity of 3ANX has only been studied in *in vitro* translation and was reported to be less potent than NX and DON (Varga et al. 2015). Acetylation is known to reduce the cytotoxicity of trichothecenes. Indeed, 3ADON form of DON, was shown to be
less cytotoxic than DON in intestinal proliferating intestinal cells of both human and porcine origin
(Alassane-Kpembi et al., 2015, 2013; Payros et al., 2016; Pinton et al., 2012) and to cause milder
intestinal histological alteration than DON (Pinton et al., 2012). Similarly, in human Caco-2 cells and
in mice splenocytes, 3ADON triggered a lower inflammatory response than DON (Kadota et al., 2013;
Wu et al., 2014).

Although type A and type B trichothecenes have the same biochemical and cellular targets, substantial differences in the spectrum of toxic effects have been observed *in vivo*. Indeed, the tolerable daily intake of type A trichothecene is lower than that of type B ones (Li et al., 2011; Ohta et al., 1977; SCF, 2002). In jejunal explants, histological and transcriptomic analysis showed that type A trichothecene, NX, is more toxic than its type B counterpart, DON. Although these results need to be confirmed *in vitro*, as the two toxins only differ in the lack of the reactive C8 ketone group, we can hypothesize that this group is involved in the increased toxicity of type A trichothecene.

331

332 5. Conclusion

NX has recently been shown to occur in Fusarium infected grains in US and Canada albeit at lower 333 concentrations, but few people are searching for it using authentic standards or suitable analytical 334 335 methods. OECD noted the need for continuous monitoring of populations of toxigenic fungi to monitor 336 genetic changes (Hornok 2011). The present study provides a comprehensive view of the toxicological alterations to the intestine caused by the newly discovered toxin, NX, and its acetylated derivative. Using 337 cytotoxicity analysis, histopathological investigations and whole transcriptome profiling, we determined 338 the intestinal toxicity of NX. 3ANX and DON and ranked them in decreasing order: NX>DON>>3ANX. 339 340 Given the high toxicity of NX, it is important to include this new toxin in the screening of grain samples 341 as well as in the comprehensive risk analysis linked to the presence of trichothecenes in our diet.

342

343

345 Acknowledgement/Funding

346 We thank Alex Aitken for preparing the pure 3ANX and NX and Ms Goodfellow for the English

- 347 correction. This research was supported in part by the ANR grant "Newmyco" (ANR-15-CE21-0010),
- 348 the ANR grant "EmergingMyco" (ANR-18-CE34-0014) and the Ontario Ministry of Food and
- 349 Agriculture (FS2015-2617 / SF6115).
- 350

351 References

- Aitken, A., Miller, J.D., McMullin, D.R., 2019. Isolation, chemical characterization and hydrolysis of the
 trichothecene 7a-hydroxy, 15-deacetylcalonectrin (3ANX) from *Fusarium graminearum* DAOMC 242077.
 Tetrahedron Lett. 60, 852-856. https://doi.org10.1016/j.tetlet.2019.02.025
- Alassane-Kpembi, I., Gerez, J.R., Cossalter, A.-M., Neves, M., Laffitte, J., Naylies, C., Lippi, Y., Kolf-Clauw, M.,
- Bracarense, A.P.L., Pinton, P., Oswald, I.P., 2017. Intestinal toxicity of the type B trichothecene mycotoxin
- fusarenon-X: whole transcriptome profiling reveals new signaling pathways. Sci. Rep. 7, 7530.
 https://doi.org/10.1038/s41598-017-07155-2
- Alassane-Kpembi, I., Kolf-Clauw, M., Gauthier, T., Abrami, R., Abiola, F.A., Oswald, I.P., Puel, O., 2013. New
 insights into mycotoxin mixtures: The toxicity of low doses of Type B trichothecenes on intestinal epithelial
- 361 cells is synergistic. Toxicol Appl Pharmacol 272, 191–198. https://doi.org/ 10.1016/j.taap.2013.05.023
- Alassane-Kpembi, I., Pinton, P., Hupé, J.-F., Neves, M., Lippi, Y., Combes, S., Castex, M., Oswald, I.P., 2018.
 Saccharomyces cerevisiae Boulardii Reduces the Deoxynivalenol-Induced Alteration of the Intestinal
 Transcriptome. Toxins (Basel). 10. https://doi.org/10.3390/toxins10050199
- Alassane-Kpembi, I., Puel, O., Oswald, I.P., 2015. Toxicological interactions between the mycotoxins
 deoxynivalenol, nivalenol and their acetylated derivatives in intestinal epithelial cells. Arch. Toxicol. 89,
 1337–1346. https://doi.org/10.1007/s00204-014-1309-4
- 368 Bracarense, A.P.F.L., Pierron, A., Pinton, P., Gerez, J.R., Schatzmayr, G., Moll, W.-D., Zhou, T., Oswald, I.P.,
- 369 2020. Reduced toxicity of 3-epi-deoxynivalenol and de-epoxy-deoxynivalenol through deoxynivalenol
 370 bacterial biotransformation: *In vivo* analysis in piglets. Food Chem. Toxicol. 140, 111241.
 371 https://doi.org/10.1016/j.fct.2020.111241
- Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., Zhao, L., 2018. Inflammatory responses
 and inflammation-associated diseases in organs. Oncotarget 9, 7204–7218.
 https://doi.org/10.18632/oncotarget.23208
- 375 Crippin, T., Limay-Rios, V., Renaud, J., Schaafsma, A., Sumarah, M., Miller, J., 2020. *Fusarium graminearum*376 populations from corn and wheat in Ontario, Canada. World Mycotoxin J 13, 355–366.
 377 https://doi.org/10.3920/WMJ2019.2532
- 378 Crippin, T., Renaud, J.B., Sumarah, M.W., Miller, J.D., 2019. Comparing genotype and chemotype of *Fusarium*379 graminearum from cereals in Ontario, Canada. PLoS One 14, e0216735.
 380 https://doi.org/10.1371/journal.pone.0216735

- 381 Da Silva, E.O., Bracarense, A.P.F.L., Oswald, I.P., 2018. Mycotoxins and oxidative stress: Where are we? World
 382 Mycotoxin J. 11, 113–133. https://doi.org/10.3920/WMJ2017.2267
- Edgar, R., Domrachev, M., Lash, A.E., 2002. Gene Expression Omnibus: NCBI gene expression and hybridization
 array data repository. Nucleic Acids Res. 30, 207–210. https://doi.org/10.1093/nar/30.1.207
- 385 Gale, L.R., Ward, T.J., Kistler, H.C., 2010. A subset of the newly discovered Northland population of *Fusarium*
- *graminearum* from the U.S. does not produce the B-type trichothecenes DON, 15ADON, 3ADON or NIV,
 in: Proceedings of the National *Fusarium* Head Blight Forum. pp. 48–49.
- 388 García, G.R., Payros, D., Pinton, P., Dogi, C.A., Laffitte, J., Neves, M., González Pereyra, M.L., Cavaglieri, L.R.,
- Oswald, I.P., 2018. Intestinal toxicity of deoxynivalenol is limited by *Lactobacillus rhamnosus* RC007 in
 pig jejunum explants. Arch. Toxicol. 92, 983–993. https://doi.org/10.1007/s00204-017-2083-x
- 391 Garreau de Loubresse, N., Prokhorova, I., Holtkamp, W., Rodnina, M. V, Yusupova, G., Yusupov, M., 2014.
- 392 Structural basis for the inhibition of the eukaryotic ribosome. Nature 513, 517–522.
 393 https://doi.org/10.1038/nature13737
- Ghareeb, K., Awad, W.A., Böhm, J., Zebeli, Q., 2015. Impacts of the feed contaminant deoxynivalenol on the
 intestine of monogastric animals: poultry and swine. J. Appl. Toxicol. 35, 327–337.
 https://doi.org/10.1002/jat.3083
- Hayden, M.S., Ghosh, S., 2014. Regulation of NF-κB by TNF family cytokines. Semin. Immunol. 26, 253–266.
 https://doi.org/10.1016/j.smim.2014.05.004
- JEFCA, 2011. Deoxynivalenol. 72nd Joint FAO/WHO Expert Committee on Food Additives and Contaminants.
 World Heal. Organ. WHO Food A. 791p.
- 401 Kadota, T., Furusawa, H., Hirano, S., Tajima, O., Kamata, Y., Sugita-Konishi, Y., 2013. Comparative study of 402 deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol on intestinal transport and IL-8 403 the Caco-2. Toxicol. Vitr. 27, secretion in human cell line 1888–1895. 404 https://doi.org/https://doi.org/10.1016/j.tiv.2013.06.003
- 405 Knutsen, H.K., Alexander, J., Barregård, L., Bignami, M., Brüschweiler, B., Ceccatelli, S., Cottrill, B., Dinovi,
- 406 M., Grasl-Kraupp, B., Hogstrand, C., Hoogenboom, L.R., Nebbia, C.S., Oswald, I.P., Petersen, A., Rose,
- 407 M., Roudot, A.-C., Schwerdtle, T., Vleminckx, C., Vollmer, G., Wallace, H., De Saeger, S., Eriksen, G.S.,
- 408 Farmer, P., Fremy, J.-M., Gong, Y.Y., Meyer, K., Naegeli, H., Parent-Massin, D., Rietjens, I., van Egmond,
- 409 H., Altieri, A., Eskola, M., Gergelova, P., Ramos Bordajandi, L., Benkova, B., Dörr, B., Gkrillas, A.,
- 410 Gustavsson, N., van Manen, M., Edler, L., 2017. Risks to human and animal health related to the presence

- 411 of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 15, e04718.
 412 https://doi.org/10.2903/j.efsa.2017.4718
- Li, Y., Wang, Z., Beier, R.C., Shen, J., De Smet, D., De Saeger, S., Zhang, S., 2011. T-2 toxin, a trichothecene
 mycotoxin: review of toxicity, metabolism, and analytical methods. J. Agric. Food Chem. 59, 3441–3453.
 https://doi.org/10.1021/jf200767q
- 416 Lucioli, J., Pinton, P., Callu, P., Laffitte, J., Grosjean, F., Kolf-Clauw, M., Oswald, I.P., Bracarense, A.P.F.R.L.,
- 417 2013. The food contaminant deoxynivalenol activates the mitogen activated protein kinases in the intestine:
- 418 interest of *ex vivo* models as an alternative to *in vivo* experiments. Toxicon 66, 31–36.
 419 https://doi.org/10.1016/j.toxicon.2013.01.024
- Luo, S., Terciolo, C., Neves, M., Puel, S., Naylies, C., Lippi, Y., Pinton, P., Oswald, I.P., 2021. Comparative
 sensitivity of proliferative and differentiated intestinal epithelial cells to the food contaminant,
 deoxynivalenol. Environ. Pollut. 277, 116818. https://doi.org/10.1016/j.envpol.2021.116818
- 423 Maresca, M., Mahfoud, R., Garmy, N., Fantini, J., 2002. The mycotoxin deoxynivalenol affects nutrient absorption
 424 in human intestinal epithelial cells. J. Nutr. 132, 2723–2731. https://doi.org/10.1093/jn/132.9.2723
- 425 Maresca, M., Yahi, N., Younès-Sakr, L., Boyron, M., Caporiccio, B., Fantini, J., 2008. Both direct and indirect
- 426 effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal
- 427 epithelium: stimulation of interleukin-8 secretion, potentiation of interleukin-1 beta effect and increase in the

428 transepithe. Toxicol. Appl. Pharmacol. 228, 84–92. https://doi.org/10.1016/j.taap.2007.11.013

- 429 Miller, J.D., 2016. Mycotoxins in food and feed: a challenge for the 21*st* century. Li D-W Biol. microfungi.
 430 Springer Int. Publ. Switz. 469–493
- 431 Ohta, M., Ishii, K., Ueno, Y., 1977. Metabolism of trichothecene mycotoxins. I. Microsomal deacetylation of T-2
- toxin in animal tissues. J. Biochem. 82, 1591–1598. https://doi.org/10.1093/oxfordjournals.jbchem.a131854
- Payros, D., Alassane-Kpembi, I., Pierron, A., Loiseau, N., Pinton, P., Oswald, I.P., 2016. Toxicology of
 deoxynivalenol and its acetylated and modified forms. Arch. Toxicol. 90. https://doi.org/10.1007/s00204016-1826-4
- Payros, D., Ménard, S., Laffitte, J., Neves, M., Tremblay-franco, M., Luo, S., 2020. The food contaminant ,
 deoxynivalenol , modulates the Thelper / Treg balance and increases inflammatory bowel diseases. 90, 29312957. https://doi.org/10.1007/s00204-020-02817-z
- Pestka, J J, 2010. Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch.
 Toxicol. 84, 663–679. https://doi.org/10.1007/s00204-010-0579-8

- 441 Pestka, J J, 2010. Deoxynivalenol-induced proinflammatory gene expression: mechanisms and pathological
 442 sequelae. Toxins (Basel) 2, 1300–1317. https://doi.org/10.3390/toxins2061300toxins-02-01300 [pii]
- Pestka, J J., 2008. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit. Contam.
 Part A, 25, 1128–1140. https://doi.org/10.1080/02652030802056626
- Pierron, A., Alassane-Kpembi, I., Oswald, I.P., 2016a. Impact of two mycotoxins deoxynivalenol and fumonisin
 on pig intestinal health. Porc. Health. Manag. 2, 21. https://doi.org/10.1186/s40813-016-0041-2
- 447 Pierron, A., Mimoun, S., Murate, L.S., Loiseau, N., Lippi, Y., Bracarense, A.P.F.L., Schatzmayr, G., He, J.W.,
- Zhou, T., Moll, W.D., Oswald, I.P., 2016b. Microbial biotransformation of DON: Molecular basis for
 reduced toxicity. Sci. Rep. 6. https://doi.org/10.1038/srep29105
- 450 Pierron, A., Mimoun, S., Murate, L.S., Loiseau, N., Lippi, Y., Bracarense, A.-P.F.L., Liaubet, L., Schatzmayr, G.,
- Berthiller, F., Moll, W.-D., Oswald, I.P., 2016c. Intestinal toxicity of the masked mycotoxin deoxynivalenol3-β-D-glucoside. Arch. Toxicol. 90. https://doi.org/10.1007/s00204-015-1592-8
- 453 Pinton, P., Oswald, I.P., 2014. Effect of deoxynivalenol and other type B trichothecenes on the intestine: a review.
 454 Toxins (Basel). 6, 1615–1643. https://doi.org/10.3390/toxins6051615
- 455 Pinton, P., Tsybulskyy, D., Lucioli, J., Laffitte, J., Callu, P., Lyazhri, F., Grosjean, F., Bracarense, A.P., Kolf-
- 456 clauw, M., Oswald, I.P., 2012. Toxicity of deoxynivalenol and its acetylated derivatives on the intestine:
- 457 Differential effects on morphology, barrier function, tight junction proteins, and mitogen-activated protein
 458 kinases. Toxicol. Sci. 130, 180–190. https://doi.org/10.1093/toxsci/kfs239
- 459 Robert, H., Payros, D., Pinton, P., Théodorou, V., Mercier-Bonin, M., Oswald, I.P., 2017. Impact of mycotoxins
- 460 on the intestine: are mucus and microbiota new targets? J. Toxicol. Environ. Health. B. Crit. Rev. 20, 249–
 461 275. https://doi.org/10.1080/10937404.2017.1326071
- 462 Ruan, F., Chen, J.G., Chen, L., Lin, X.T., Zhou, Y., Zhu, K.J., Guo, Y.T., Tan, A.J., 2020. Food Poisoning Caused
 463 by Deoxynivalenol at a School in Zhuhai, Guangdong, China, in 2019. Foodborne Pathog. Dis. 17, 429–
 464 433. https://doi.org/10.1089/fpd.2019.2710
- Sambruy, Y., Ferruzza, S., Ranaldi, G., De Angelis, I., 2001. Intestinal cell culture models: applications in
 toxicology and pharmacology. Cell Biol. Toxicol. 17, 301–317. https://doi.org/10.1023/a:1012533316609
- 467 SCF, 2002. Opinion of the Scientific Committee on Food on *Fusarium* toxins. Part 6: group evaluation of T-2
- toxin, HT-2 toxin, nivalenol and deoxynivalenol European Commission.
- 469 Swindle, M.M., Makin, A., Herron, A.J., Clubb, F.J.J., Frazier, K.S., 2012. Swine as models in biomedical research
- 470 and toxicology testing. Vet. Pathol. 49, 344–356. https://doi.org/10.1177/0300985811402846

- 471 Varga, E., Wiesenberger, G., Hametner, C., Ward, T.J., Dong, Y., Schofbeck, D., McCormick, S., Broz, K.,
- 472 Stuckler, R., Schuhmacher, R., Krska, R., Kistler, H.C., Berthiller, F., Adam, G., 2015. New tricks of an old
- 473 enemy: isolates of *Fusarium graminearum* produce a type A trichothecene mycotoxin. Environ. Microbiol.

474 17, 2588–2600. https://doi.org/10.1111/1462-2920.12718

- 475 Varga, E., Wiesenberger, G., Woelflingseder, L., Twaruschek, K., Hametner, C., Vaclavikova, M., Malachova,
- 476 A., Marko, D., Berthiller, F., Adam, G., 2018. Less-toxic rearrangement products of NX-toxins are formed
- 477 during storage and food processing. Toxicol. Lett. 284, 205–212.
 478 https://doi.org/10.1016/j.toxlet.2017.12.016
- 479 Vin, K., Rivière, G., Leconte, S., Cravedi, J.-P., Fremy, J.M., Oswald, I.P., Roudot, A.-C., Vasseur, P., Jean, J.,
- 480 Hulin, M., Sirot, V., 2020. Dietary exposure to mycotoxins in the French infant total diet study. Food Chem.

481 Toxicol. 140, 111301. https://doi.org/10.1016/j.fct.2020.111301

- 482 Woelflingseder, L., Del Favero, G., Blazevic, T., Heiss, E.H., Haider, M., Warth, B., Adam, G., Marko, D., 2018.
- 483 Impact of glutathione modulation on the toxicity of the *Fusarium* mycotoxins deoxynivalenol (DON), NX-
- 484 3 and butenolide in human liver cells. Toxicol. Lett. 299, 104–117.
 485 https://doi.org/10.1016/j.toxlet.2018.09.007
- Woelflingseder, L., Gruber, N., Adam, G., Marko, D., 2020. Pro-Inflammatory Effects of NX-3 Toxin Are
 Comparable to Deoxynivalenol and not Modulated by the Co-Occurring Pro-Oxidant Aurofusarin.
 Microorganisms. 8, 603. https://doi.org/10.3390/microorganisms8040603
- 489 Wu, W., He, K., Zhou, H.-R., Berthiller, F., Adam, G., Sugita-Konishi, Y., Watanabe, M., Krantis, A., Durst, T.,
- 490 Zhang, H., Pestka, J.J., 2014. Effects of oral exposure to naturally-occurring and synthetic deoxynivalenol
- 491 congeners on proinflammatory cytokine and chemokine mRNA expression in the mouse. Toxicol. Appl.

492 Pharmacol. 278, 107–115. https://doi.org/10.1016/j.taap.2014.04.016

- Yang, S., Wang, J., Brand, D.D., Zheng, S.G., 2018. Role of TNF-TNF Receptor 2 Signal in Regulatory T Cells
 and Its Therapeutic Implications. Front. Immunol. 9, 784. https://doi.org/10.3389/fimmu.2018.00784
- 495 You, L., Zhao, Y., Kuca, K., Wang, X., Oleksak, P., Chrienova, Z., Nepovimova, E., Jaćević, V., Wu, Q., Wu, W.,
- 496 2021. Hypoxia, oxidative stress, and immune evasion: a trinity of the trichothecenes T-2 toxin and
 497 deoxynivalenol (DON). Arch. Toxicol. 95, 1899-1915. https://doi.org/10.1007/s00204-021-03030-2

499 Figures

500 Table 1- Primer sequences used for RT-qPCR analysis (F: Forward; R: Reverse)

Gene symbol	Gene name	Primer sequence	References
HMBS	Hydroxymethylbilane synthase	F: AGGATGGGCAACTCTACCTG	ENSSSCT00015080370.1
		R: GATGGTGGCCTGCATAGTCT	(this paper)
B2M	Beta-2-Microglobulin	F : CTGCTCTCACTGTCTGG	ENSSSCT00000005170.1
		R : TTCAGGTAATTTGGCTTTCC	(this paper)
IL1B	Interleukin 1 beta	F: ATGCTGAAGGCTCTCCACCTC	NM_214055
		R: TTGTTGCTATCATCTCCTTGCAC	(Bracarense et al., 2020)
NOR-1	Neuron-derived orphan receptor 1	F: CGCCCAGAGATCTTGATTA	ENSSSCG00065057668
		R: GGCTGTGAGAAGGTTGTA	(this paper)
IL22	Interleukin 22	F: CCCAACTCTGATAGATTCCAC	ENSSSCT0000000520.3
		R: GCTGGTCATCACCCTTAAT	(this paper)
IL1A	Interleukin 1 alpha	F: GCCAATGACACAGAAGAAGA	NM_214029
		R: ATGCACTGGTGGTTGATG	(this paper)
TNFAIP3	Tumor necrosis factor, alpha-	F: CAACTGGTGTCGAGAAGTGAGG	ENSSSCG0000004154
	induced protein 3 (A20)	R: TCCCCATTCGTTTTCAGTGC	(this paper)

502

505Proliferative Caco-2 cells were incubated with increasing concentrations of diluent, NX, DON or 3ANX for 24 h506(A) or 48 h (B). Cell viability was evaluated via the CellTiter-Glo Luminescent Cell Viability Assay by507measurement of ATP content and is expressed as the % of control cells (dashed line). Results are expressed as the508mean \pm SEM of 3 independent experiments. Within a panel, means with different letters are statically different, p509< 0.05 (control being considered as "a").</td>

510

513 Fig. 2. Toxicity of NX, DON and 3ANX in porcine jejunal explants: histological analysis.

Porcine jejunal explants from one representative animal exposed for 4 h to diluent (A), 10 µM NX (B), 10 µM
DON (C) or 10 µM 3ANX (D) and stained with hematoxylin and eosin. *Bar* 100 µm. Control explants: villi with
a continuous epithelial barrier (A); NX treated explants: interstitial edema, degradation of epithelial cells, loss of
villi and presence of cellular debris (B); DON treated explants: interstitial edema, shortened villi and cell debris
(C); 3ANX treated explants: lymphatic vessel dilation and some cell debris with a continuous epithelial barrier
(D).

Fig. 3. Gene expression profile of intestinal explants exposed to NX and 3ANX in comparison to DON.
Jejunal explants from 5 animals were exposed for 4 h to diluent (purple), 10 μM NX (dark blue), 3ANX (light

- 526 blue) or 10 µM DON (grey) and gene expression was analyzed with a 60 K microarray. (A) Venn diagram 527 illustrating the overlaps between probes significantly up- or down-regulated (False Discovery Rate (FDR) p-value 528 \leq 0.05, Fold Change (FC) \geq 1) in response to NX, 3ANX or DON (upper panel). Number of differentialy expressed 529 genes in intestinal explants upon exposure to NX, 3ANX and DON (lower panel). (B) Principal component 530 analysis of differential probes between NX, DON, 3ANX and control (with Benjamini-Hochberg (BH) adjusted 531 p-value < 0.05). (C) Heat map representing differentially expressed probes in NX, DON, 3ANX and control explants. Red and green indicate values above and below the mean (average Z-score), respectively. Black indicates 532 533 values close to the mean.
- 534
- 535

Fig. 4. Comparative analysis of genes and signaling pathways in intestinal explants exposed to NX, 3ANX and DON. Jejunal explants from 5 animals were exposed for 4 h to diluent, 10 μ M NX (dark blue), 10 μ M DON (grey) or 10 μ M 3ANX (light blue). (A) Venn diagram of the number of differentially expressed genes (DEG) in each treatment. (B) Top 20 DEG for each toxin. The closed and open bars indicated up-regulated and downregulated genes respectively. (C) Top 20 specific canonical pathways significantly modulated by each toxin. The pathways analysis was done using the ingenuity Pathway analysis (IPA) software (Qiagen).

543 DEG in black bars and canonical pathway in black fonts are common for NX, DON and 3ANX.

545 Fig. 5. Differential expression patterns of genes in the TNFR2 signaling pathway in the intestinal tissues

546 exposed to NX, 3ANX or DON

- 547 The pathways analysis was done using the ingenuity Pathway analysis (IPA) software (Qiagen).
- 548 Illustration: Expression patterns of genes of the TNFR2 signaling pathway in the jejunal explant exposed to NX.
- 549 Table: Comparison of probe expression of the genes involved in the TNFR2 signaling pathway in jejunal explants
- 550 exposed to NX, DON or 3ANX.
- 551 Red nodes (in the scheme) and red cells (in the table) represent up-regulated genes; darker colors indicate higher
- 552 gene expression in the differential expression analysis. Uncolored nodes represent genes involved in the signaling
- 553 pathways that were not differentially expressed by the treatment in the microarray analysis.

		NX		DON		3ANX		
Symbol	Probe Differentially Expressed	log₂ FoldChange	adjusted p value	log₂ FoldChange	adjusted p value	log₂ FoldChange	adjusted p value	
ARG2	ARG2	0.64	2.01E-03	0.49	3.10E-02			
c-Fos	FOS	1.25	2.06E-05	0.82	1.53E-03	0.66	2.03E-02	
c-Jun	JUN	0.88	2.23E-05	0.67	1.25E-03	0.53	1.42E-02	
HMOX1	HMOX1	0.61	4.03E-02					
ΙκΒΡΝ	NFKBIE	1.07	2.06E-05	0.87	3.76E-03	0.70	1.42E-02	
ΙκΒΡΝ	NKKBIA	1.47	8.37E-05	0.93	7.08E-03	0.88	2.60E-02	
lκB*	NFKBID	0.79	2.67E-03					
ΙκΒΡΝ	NFKBIB	0.50	7.19E-03					
IL-1#	IL-1B	2.31	2.22E-04	2.17	2.07E-03	1.70	1.83E-02	
IL-1#	IL-1A	2.13	9.30E-05	1.76	1.53E-03	1.39	2.03E-02	
IL1R	IL-1RA	0.55	1.13E-02	0.56	2.04E-02			
IL-10	IL10	1.27	5.26E-03	0.70	4.04E-02			
IL-4Rα	IL4R	0.47	2.44E-02					
NF-κB ^{PN}	NFkB1	0.98	1.92E-02					
NF-κB ^{ΡΝ}	NFkB2	0.57	6.69E-03	0.48	4.55E-02			
NF-κB ^{PN}	RELA	0.40	1.67E-02					
SOCS3	SOCS3	1.06	4.51E-04	0.68	2.90E-02	0.79	2.60E-02	
TNF	TNF	1.34	1.71E-03	1.04	2.40E-02			

555 Fig. 6. Differential expression patterns of genes of the IL-10 signaling pathway in the intestinal tissue

556 exposed to NX, 3ANX or DON

- 557 The pathways analysis was done using the ingenuity Pathway analysis (IPA) software (Qiagen).
- 558 Illustration: Expression patterns of genes of the IL-10 signaling pathway in the jejunal explant exposed to NX.
- 559 Table: Comparison of probe expression of the genes involved in the IL-10 signaling pathway in jejunal explants
- 560 exposed to NX, DON or 3ANX. Red nodes (in the scheme) and red cells (in the table) represent up-regulated

- 561 genes; darker colors indicate higher gene expression in the differential expression analysis. Uncolored nodes
- represent genes involved in the signaling pathways that were not differentially expressed by the treatment in the
- 563 microarray analysis.

1 Intestinal toxicity of the new discovered type A trichothecenes, NX and 3ANX

2

3 CRediT author statement

Alix Pierron: Validation, Formal analysis, Investigation, Writing-original draft, Vizualization. Manon
Neves: Validation, Formal analysis, Investigation, Writing-original draft. Sylvie Puel: Validation,
Formal analysis, Investigation. Yannick Lippi: Validation, Formal Analysis, Ressources, Data
Curation. Laura Soler: Writing-review & editing. J. David Miller: Ressources, Conceptualization,
Funding acquisition. Isabelle P. Oswald: Conceptualization, Supervision, Writing-review & editing,
Funding acquisition.

1 Supplementary Figures

3 Suppl. Fig. 1. Chemical structures of the three studied toxins

4

5

6 Suppl. Fig. 2. Differentially expressed genes (DEG) induced by the three treatments compared to the control

7 confirmed by q-PCR.

8 q-PCR of confirmation of representative genes from the same top 20 found in 6 different animals. Results are

9 expressed as mean + SEM of 6 animals, p < 0.05, p < 0.01, p < 0.01 indicate significant differences from

10 the control condition.

IL-17A Signaling in Fibroblats

13 Suppl. Fig. 3. Differential expression patterns of genes of the IL-17A signaling in the fibroblast pathway in

14 the intestinal tissue exposed to NX, 3ANX or DON

- 15 The pathways analysis was done using the ingenuity Pathway analysis (IPA) software (Qiagen).
- 16 Illustration: Expression patterns of genes of the IL-17A signaling pathway in the jejunal explant exposed to NX.
- 17 Table: Comparison of probe expression of the genes involved in the IL-17A signaling pathway in jejunal explants
- 18 exposed to NX, DON or 3ANX.

- 19 Red nodes (in the scheme) and red cells (in the table) represent up-regulated genes; darker colors indicate higher
- 20 gene expression in the differential expression analysis. Uncolored nodes represent genes involved in the signaling
- 21 pathways that were not differentially expressed (DE) by the treatment in the microarray analysis.

TNFR1 Signaling

		NX	C DON 3ANX			IX	
Symbol	Probe Differentially Expressed	log₂ FoldChange	adjusted p value	log₂ FoldChange	adjusted p value	log₂ FoldChange	adjusted p value
A20	TNFAIP3	1.90	3.29E-05	1.57	1.25E-03	1.19	1.42E-02
c-Fos	FOS	1.25	2.06E-05	0.82	1.53E-03	0.66	2.03E-02
c-Jun	JUN	0.88	2.23E-05	0.67	1.25E-03	0.53	1.42E-02
cIAP	BIRC3	1.30	6.33E-04	0.90	2.30E-02	0.84	4.10E-02
CYCS	CYCS	0.38	3.50E-03				
IKB ^{PN}	NFKBIE	1.07	2.06E-05	0.87	3.76E-03	0.70	1.42E-02
ΙκΒΡΝ	NKKBIA	1.47	8.37E-05	0.93	7.08E-03	0.88	2.60E-02
IκB*	NFKBID	0.79	2.67E-03				
ΙκΒΡΝ	NFKBIB	0.50	7.19E-03				
NF-κB ^{PN}	NFkB1	0.98	1.92E-02				
NF-κB ^{PN}	NFkB2	0.57	6.69E-03	0.48	4.55E-02		
NF-κB ^{PN}	RELA	0.40	1.67E-02				
TANK	TANK	0.45	3.76E-02	0.50	3.49E-02		
TNF	TNF	1.34	1.71E-03	1.04	2.40E-02		

24

25

26 Suppl. Fig. 4. Differential expression patterns of genes of the TNFR1 signaling pathway in the intestinal

27 tissue exposed to NX, 3ANX or DON

- 28 The pathways analysis was done using the ingenuity Pathway analysis (IPA) software (Qiagen).
- 29 Illustration: Expression patterns of genes of the TNFR1 signaling pathway in the jejunal explant exposed to NX.

- 30 Table: Comparison of probe expression of the genes involved in the TNFR1 signaling pathway in jejunal explants
- 31 exposed to NX, DON or 3ANX.
- 32 Red nodes (in the scheme) and red cells (in the table) represent up-regulated genes; darker colors indicate higher
- 33 gene expression in the differential expression analysis. Uncolored nodes represent genes involved in the signaling
- 34 pathway that were not differentially expressed (DE) by the treatment in the microarray analysis.

36 Supp. Table 1. Differentially expressed genes by NX, DON or 3ANX in treated porcine jejunal explants.

37 Gene expression is expressed in log₂FoldChange (log₂FC).

		N	х	DC	N	3A	NX
ProbeName	GeneName	log₂FC	adjusted p value	log₂FC	adjusted p value	log₂FC	adjusted p value
gi 47523493 ref NM_214209.1	ACP5	-0.31689	0.04704		•		
A_72_P261392	ADAMTS1	0.99358	0.00493	0.87503	0.02574		
011747	ADAMTS1	1.19254	0.00624	1.03439	0.03578		
A_72_P146551	ADM	0.70269	0.00637				
gi 47523021 ref NM_214107.1	ADM	0.72557	0.00680				
O11846	ADM	0.66835	0.02190				
A_72_P150916	AEN	0.43914	0.03674				
A_72_P419794	AEN	0.48594	0.04899				
0702	AKIRIN2	0.30619	0.00711	0.26840	0.03781		
gi 40800179 gb CK452965.1 CK452965	ALOX12			0.44803	0.04510		
A_72_P190756	AP1S2	-0.25139	0.03564				
A_72_P172586	APTX	-0.21563	0.04149				
A_72_P302799	AREG	1.23468	0.00276	1.19568	0.00731	1.09576	0.03228
gi 47523807 ref NM_214376.1	AREG	1.10434	0.00772	1.10452	0.01647		
O10697	AREG	1.17529	0.00809	1.11434	0.02431		
A_72_P440121	AREG	1.09004	0.01030	1.09468	0.02017		
A_72_P709160	ARG2	0.64231	0.00201	0.49173	0.03098		
A_72_P502486	ARID4B	0.34720	0.01571				
O10416	ARID4B	0.34058	0.03002				
A_72_P543827	ARID4B	0.32120	0.03422				
A_72_P132351	ARL5B	0.42734	0.00745				
O9433	ATF3	1.33408	0.00004	1.01442	0.00129	0.77323	0.02027
gi 94438909 gb EB684318.1 EB684318	ATF3	1.53013	0.00010	1.09288	0.00395		
A_72_P306548	ATF3	0.74609	0.00028	0.50951	0.01410	0.47627	0.04594
A_72_P118076	ATPG	-0.23605	0.04416				
A_72_P299914	B2R	0.90192	0.01179	1.06278	0.00719	0.90629	0.04718
0321	B3GNT2	0.26313	0.02631				
A_72_P137761	BACH1	0.35831	0.01672				
A_72_P334003	BACH2	0.70614	0.04293				
A_72_P490512	BAG3	0.66349	0.00347	0.75236	0.00352	0.69785	0.01727
A_72_P335878	BAG3	0.75918	0.00417	0.83194	0.00458	0.73415	0.02818
O2952	BAG3	0.72007	0.00551	0.76911	0.00715	0.68812	0.03480
gi 115550655 dbj AK232485.1	BAG3	0.71776	0.01116	0.77625	0.01350		
A_72_P544072	BAG3	0.65722	0.02570	0.76190	0.01790		
A_72_P332493	BAZ1A	0.56699	0.00443				
A_72_P055921	BAZ1A	0.71791	0.00473				
A_72_P106291	BAZ1A	0.26346	0.02906				
A_72_P082851	BAZ1A	0.30563	0.03040				

O4691	BAZ1A	0.53683	0.03294				
A_72_P643895	BCAS2	0.57142	0.00157				
A_72_P466148	BCAS2	0.52503	0.00688				
A_72_P147081	BCAS2	0.51102	0.00886				
A_72_P573529	BCAS2	0.52312	0.00893				
A_72_P556970	BCAS2	0.45570	0.00995				
A_72_P617083	BCAS2	0.52086	0.01172				
A_72_P560099	BCAS2	0.47292	0.01741				
A_72_P576749	BCAS2	0.50030	0.01839				
A_72_P568274	BCAS2	0.48033	0.02703				
A_72_P567679	BCAS2	0.45534	0.03009				
A_72_P592659	BCAS2	0.45783	0.03294				
A_72_P006241	BCL10	0.40767	0.01072				
A_72_P223297	BCL10	0.43412	0.03039				
A_72_P606828	BCL10	0.41886	0.04681				
A_72_P441349	BCL2A1	1.02188	0.00350	1.02957	0.00717		
A_72_P339363	BCL2A1	0.96553	0.00452	1.00321	0.00719		
A_72_P364933	BCL2L11	0.46682	0.01109				
O9714	BCL2L11	0.40461	0.02544				
A_72_P075251	BCL3	0.48285	0.00087				
gi 115546038 dbj AK237480.1	BCL3	0.44157	0.00136				
O13403	BCL3	0.42895	0.00680				
A_72_P245182	BCL6	0.60662	0.01931				
A_72_P774251	BCR	0.43998	0.00333	0.41518	0.01100		
A_72_P107331	BCR	0.35888	0.02677	0.36967	0.04155		
A_72_P077316	BDKRB1	1.92120	0.00587				
A_72_P366043	BHLHE40	0.53111	0.01093				
gi 47523443 ref NM_214181.1	BIRC3	1.29679	0.00063	0.90002	0.02302		
A_72_P088296	BIRC3	1.18174	0.00066	0.83327	0.02097	0.84230	0.04104
A_72_P289744	BIRC3	1.00134	0.00128	0.69900	0.03677		
A_72_P692939	BIRC3	0.73344	0.00837	0.64115	0.04340		
A_72_P164316	BMP2	0.53850	0.00298	0.60411	0.00335	0.55554	0.01727
gi 49618793 gb AY669080.1	BMP2	0.52901	0.01072	0.56014	0.01527	0.57157	0.02867
A_72_P423809	BMP2	0.48660	0.01477	0.51062	0.02040	0.53728	0.03233
A_72_P764290	BTG1	0.51619	0.00884				
A_72_P155226	BTG1	0.56111	0.01318				
A_72_P733718	BTG1	0.47248	0.01768				
A_72_P035836	BTG1	0.48047	0.03894				
O10201	BTG1	0.47452	0.04923				
gi 90236399 gb BX666261.2 BX666261	BTG2	1.21348	0.00003	0.86573	0.00153	0.67896	0.02050
A_72_P428459	BTG2	1.21974	0.00008	0.83451	0.00395		
O12642	BTG2	1.18443	0.00009	0.78663	0.00604		
A_72_P232792	BTG2	1.59729	0.00009	0.94635	0.01403		
A_72_P165281	BTG3	0.62530	0.00138				
A_72_P650696	BTG3	0.55078	0.00338				
gi 115546516 dbj AK234353.1	BTG3	0.60872	0.00443				

010241	BTC3	0.57802	0 00800				
A 72 P636792	BTG3	0.57802	0.00899				
010585	C11orf96	0.87936	0.00826				
A 72 P428974	C11orf96	0 72846	0.03009				
A 72 P125559	C2C4A	1 40211	0.00041	0 82833	0 04689	0 92561	0 04718
A 72 P399928	CA051	0.32763	0.03760	0.02000	0.01000	0.02001	0.01710
A 72 P178171	CALCB	0.67939	0.00700	0 86078	0 01825		
A 72 P297794	CCAR1	-0.26810	0.04084	0.00070	0.01020		
A 72 P084111	CCD27	0.54122	0.00267				
01138	CCL 20	2 03856	0.00207	1 88070	0 00464		
A 72 P177441	CCL 20	1 98370	0.00124	1 90173	0.00461		
ail66793464/refINM_001024589.1	CCL 20	1.00070	0.00133	1 01350	0.00464		
01021		1.57127	0.00171	1.91339	0.00404		
cil57527007/rofINIM_001000570_1		1.01050	0.00979				
		1.10377	0.01275				
		1.39777	0.02021				
01753		1.91327	0.00267				
		1.74567	0.00397				
gi 47523285 ret NM_213779.1	CCL4	1.16626	0.01600				
A_72_P441594	CCL8	0.94729	0.00164				
A_72_P308453	CCL8	0.94680	0.00169				
gi 29283639 gb CB477253.1 CB477253	CCL8	0.89559	0.00257				
O4738	CCR4	0.30164	0.03944				
A_72_P223792	CCR7	1.31149	0.00066	1.16495	0.00395		
gi 93205063 ref NM_001001532.2	CCR7	1.27001	0.00071	1.12743	0.00426		
A_72_P232617	CD274	0.97140	0.00252	0.83787	0.01620		
gi 68534987 ref NM_001025221.1	CD274	0.92748	0.00338	0.85700	0.01350		
A_72_P088376	CD40	0.96885	0.00222				
A_72_P294444	CD40	0.96777	0.00252				
A_72_P124966	CD40	0.91524	0.00378				
gi 47523465 ref NM_214194.1	CD40	0.57133	0.00528				
A_72_P544217	CD40	0.75258	0.02272				
A_72_P430119	CD83	1.77695	0.00018	1.39920	0.00363	1.08865	0.04104
gi 14659173 gb BI184764.1 BI184764	CD83	1.37460	0.00019	0.94949	0.00876		
A_72_P476163	CD83	1.29124	0.00094	1.09841	0.00715		
A_72_P184011	CD93	-0.30463	0.00688				
gi 115554622 dbj AK237033.1	CD93	-0.30984	0.02100				
A_72_P715228	CDKN1A	0.78609	0.00336	0.60602	0.04426		
gi 115552646 dbj AK232851.1	CDKN1A	0.80307	0.00369	0.63504	0.04155		
A_72_P152936	CDKN1A	0.72213	0.00853				
A_72_P672137	СЕВРВ	0.80605	0.00009	0.62512	0.00214	0.62745	0.01421
A_72_P642520	СЕВРВ	0.82575	0.00025	0.63669	0.00486	0.66667	0.01421
A_72_P213602	СЕВРВ	0.74651	0.00042	0.63290	0.00395	0.58941	0.02027
gi 91176937 gb DQ450678.1	СЕВРВ	0.43183	0.00466	0.36510	0.03294		
A_72_P345453	CEBPD	0.70762	0.00128				
gi 115549724 dbj AK232003.1	CEBPD	0.55403	0.00663				
A_72_P474198	CEBPD	0.77439	0.01248				

A_72_P432669	CH004	1.51881	0.00019	1.11320	0.00572		
A_72_P403958	CHAC1	-0.50034	0.01671	-0.48169	0.04155		
gi 59817661 gb DN123382.1 DN123382	CLEC2B	0.83644	0.01940				
A_72_P444117	COL7A1	-0.29439	0.03944				
O14540	COQ10B	0.72678	0.00128				
A_72_P507873	COQ10B	0.62256	0.01030				
A_72_P419329	COQ10B	0.70300	0.01477				
gi 115553222 dbj AK233020.1	CREM	1.01059	0.00171	0.80807	0.01903		
A_72_P256457	CREM	0.81229	0.00360	0.78071	0.01078		
A_72_P081476	CREM	0.95586	0.00397	0.80956	0.02798		
A_72_P280584	CRISPLD1	0.52111	0.00410	0.42791	0.03578	0.60556	0.01421
A_72_P626294	CRK	0.33733	0.00624				
A_72_P142901	CRP	0.32308	0.01754				
A_72_P088266	CRSP-2	1.33406	0.01390	1.27600	0.03760		
gi 50979294 ref NM_213747.1	CRSP3	1.41680	0.01672				
O8368	CRY2	0.49740	0.00184	0.36206	0.04019		
O8310	CSF2	1.74436	0.00248				
A_72_P077726	CSF2	1.85024	0.00318				
gi 47523043 ref NM_214118.1	CSF2	1.59961	0.00468				
A_72_P351818	CSRNP1	1.29776	0.00008	0.88717	0.00376	0.87513	0.01486
A_72_P197257	CSRNP1	0.29999	0.03934				
O14671	CTGF	0.61533	0.03700				
A_72_P732383	CXCL2	2.31338	0.00303				
A_72_P146411	CXCL2	2.18761	0.00352				
gi 49274638 ref NM_001001861.1	CXCL2	2.13582	0.00587				
gi 115546718 dbj AK237564.1	CXCR2	0.57978	0.00942	0.74217	0.00363		
A_72_P214947	CXCR2	0.51270	0.02848	0.72863	0.00458		
A_72_P661857	CXCR4	0.60344	0.04293	0.77347	0.01620		
gi 47523297 ref NM_213773.1	CXCR4			0.71714	0.00831		
A_72_P599748	CXCR4			0.77174	0.01082		
A_72_P088501	CXCR4			0.69152	0.01620		
A_72_P654023	CYCS	0.38299	0.00350				
A_72_P621955	CYCS	0.31279	0.01538				
A_72_P555705	CYCS	0.32545	0.01625				
A_72_P485031	CYCS	0.31301	0.01768				
A_72_P681213	CYCS	0.29022	0.02715				
A_72_P319303	CYR61	0.85404	0.00133	0.67663	0.01633		
A_72_P688281	CYR61	0.76734	0.00360				
A_72_P580852	CYR61	0.69026	0.01778				
A_72_P552021	CYR61	0.59643	0.04394				
A_72_P016206	DAAM2	-0.28327	0.04648				
A_72_P318768	DCUN1D3	1.02351	0.00126	0.78598	0.01831		
A_72_P157561	DDIT3	0.63223	0.00198				
O11871	DDIT3	0.50821	0.00729	0.47428	0.02479		
A_72_P440751	DDIT3	0.60084	0.02082				
gi 74252282 gb BW956728.1 BW956728	DDX3X	0.41790	0.02336				

	1		i			1	
A_72_P751172	DLGAP4	0.20426	0.01668				
O12662	DLL4	0.40020	0.03323				
A_72_P260797	DNAJB1	0.56097	0.00183	0.59929	0.00314	0.46610	0.03480
O11858	DNAJB1	0.55500	0.00281	0.59566	0.00376		
A_72_P268464	DNJB1	0.53391	0.00514	0.59275	0.00486		
A_72_P043881	DPF3	0.25438	0.02772				
A_72_P162971	DUSP1	0.88288	0.00002	0.66892	0.00125	0.51996	0.01421
gi 115553169 dbj AK232967.1	DUSP1	0.81423	0.00007	0.65537	0.00125	0.57474	0.01421
O14753	DUSP1	0.73253	0.00009	0.63314	0.00125	0.51869	0.01421
O6367	DUSP2	0.85687	0.02087				
A_72_P254842	DUSP8	0.83189	0.03559				
A_72_P277959	DYN2	0.43390	0.00761				
gi 47523097 ref NM_213882.1	EDN1	1.06570	0.00338				
O9936	EDN1	0.94447	0.00587				
A_72_P077871	EDN1	0.97078	0.00899				
A_72_P403598	EGLN3	-0.44330	0.01963				
O11761	EGR1	1.65996	0.00021				
A_72_P305874	EGR1	0.98197	0.00052				
A_72_P006186	EGR1	0.59214	0.00063				
gi 6272255 emb AJ238156.1	EGR1	0.79250	0.00092				
O11014	EGR2	0.73373	0.00298	0.54980	0.04741		
A_72_P316053	EGR4	1.41814	0.00346				
O10439	EIF1	0.35702	0.03760				
O13124	ELF3	0.53501	0.03009	0.55129	0.04629		
O13548	ELL	0.69034	0.00478				
A_72_P071596	ELL	0.66064	0.01747				
O12374	ELMSAN1	0.32799	0.03685				
A_72_P379428	ELMSAN1	0.35860	0.03735				
A_72_P311268	ENC1	0.72952	0.00341	0.56390	0.04470		
O8120	ENC1	0.52018	0.03631				
A_72_P330808	ERRFI	1.32648	0.00073	1.19094	0.00395	1.09572	0.02027
A_72_P292674	ETS2	0.45290	0.04149	0.60319	0.01206	0.59858	0.02818
A_72_P033811	ETS2	0.37974	0.04352				
A_72_P155751	ETV3	0.67966	0.01891	0.76196	0.01698		
gi 115547087 dbj AK231142.1	EVI2A			0.62747	0.01667		
A_72_P442325	EVI2A			0.52349	0.03677		
A_72_P177461	F3	0.69553	0.01495				
A_72_P056786	F3	0.67246	0.02095				
gi 47523273 ref NM_213785.1	F3	0.68138	0.03615				
O9106	FBXO33	0.37299	0.00797				
A_72_P619435	FBXO33	0.36693	0.00808				
A_72_P419204	FBXO33	0.33728	0.04411				
O9934	FILIP1L	0.47301	0.00129	0.45572	0.00376		
A_72_P599488	FILIP1L	0.44868	0.00679	0.54694	0.00376		
A_72_P487105	FILIP1L	0.51157	0.01216	0.55338	0.01481		
A_72_P500905	FIrt3	0.40454	0.03118				

A_72_P251687	FOLR1	-0.29025	0.03330				
A_72_P596714	FOS	1.24367	0.00001	0.79707	0.00125	0.65189	0.01421
A_72_P441284	FOS	1.17260	0.00001	0.79009	0.00125	0.62258	0.01421
gi 115553196 dbj AK232994.1	FOS	1.20079	0.00001	0.74271	0.00151	0.64634	0.01421
O9115	FOS	1.24825	0.00002	0.81971	0.00153	0.62193	0.02601
A_72_P205307	FOS	1.22874	0.00002	0.79425	0.00214	0.66060	0.02027
A_72_P670145	FOS	1.08221	0.00002	0.74590	0.00153	0.57380	0.02477
A_72_P414133	FOSB	0.64977	0.01004				
O10489	FOSL1	2.60400	0.00116	1.73501	0.04544		
gi 115551839 dbj AK236246.1	FOSL1	2.59398	0.00143				
A_72_P092156	FOXF2	-0.28064	0.04416				
A_72_P102521	FOXL1	-0.32878	0.03767				
A_72_P441344	FOXO1	0.34521	0.03039				
O2815	FRMD4B	0.73433	0.00250				
O8249	GABPB1	0.40487	0.04191				
gi 113205835 ref NM_001044599.1	GADD45A	0.83336	0.00427	0.84548	0.00823		
A_72_P146986	GADD45A	0.88431	0.00558	0.87578	0.01337		
O13891	GADD45A	0.81626	0.00587	0.88221	0.00708		
O14595	GADD45B	1.89865	0.00008	1.05018	0.01903		
A_72_P376518	GADD45B	1.62950	0.00014	0.91782	0.02835		
gi 115548802 dbj AK231760.1	GADD45B	1.57069	0.00018	0.86836	0.04019		
A_72_P011276	GADD45G	1.24836	0.00008	0.99790	0.00153	0.77733	0.02184
O14936	GADD45G	1.17161	0.00029	0.84053	0.00993		
A_72_P123751	GATA3	0.35417	0.03987				
gi 37798789 gb CF794226.1 CF794226	GEM	1.33658	0.00174				
A_72_P176381	GEM	1.34219	0.00338				
A_72_P473706	GEM	1.21442	0.00663				
O9699	GPR108	0.26348	0.02962				
gi 115547203 dbj AK234576.1	GPR183	0.87244	0.01990	1.00391	0.01544		
A_72_P479120	GPR65	0.80388	0.00053	0.72142	0.00363	0.57638	0.03480
1001448237	GPR65	0.67005	0.00908	0.59527	0.04155		
A_72_P453564	GRAP2	0.25143	0.03518				
A_72_P318383	GRID1	-0.26863	0.04727				
A_72_P401158	GRK5	-0.26946	0.04055				
O8155	GROB	2.05129	0.01790				
gi 74253411 gb BW984099.1 BW984099	GROB	2.03828	0.01941				
A_72_P616389	GTF2B	0.37400	0.02934				
A_72_P475836	GTF2B	0.31899	0.03009				
A_72_P063756	GTF2B	0.34092	0.04305				
A_72_P544402	H2B2F	0.37924	0.01606				
CUST_342_PI427286967	H3F3A	0.46776	0.00080	0.40979	0.00492		
A_72_P730568	H3F3A	0.44945	0.00097	0.40534	0.00462		
A_72_P742844	НЗҒЗА	0.57324	0.00129				
A_72_P755406	НЗҒЗА	0.51973	0.00138	0.45702	0.00773		
A_72_P724897	H3F3A	0.49783	0.00164	0.43342	0.01027		
A_72_P736180	H3F3A	0.48055	0.00172	0.39559	0.01633		

A_72_P767776	H3F3A	0.48586	0.00174	0.39150	0.01861		
A_72_P757782	H3F3A	0.50822	0.00174	0.46353	0.00760		
A_72_P712893	H3F3A	0.47327	0.00186				
A_72_P750814	H3F3A	0.55071	0.00198	0.40075	0.04177		
A_72_P759235	H3F3A	0.46242	0.00426				
A_72_P744632	H3F3A	0.38084	0.00458	0.36658	0.01350		
A_72_P749783	H3F3A	0.40778	0.00461	0.38419	0.01576		
A_72_P726973	H3F3A	0.49254	0.00528				
A_72_P727673	H3F3A	0.44128	0.00587	0.40416	0.02311		
A_72_P796104	H3F3A	0.43060	0.00859	0.44462	0.01489		
A_72_P753356	H3F3A	0.37544	0.00938	0.35003	0.03163		
A_72_P727423	H3F3A	0.41598	0.01025	0.39316	0.03098		
A_72_P751440	H3F3A	0.49457	0.01085				
A_72_P760267	H3F3A	0.38529	0.01093	0.37564	0.02635		
A_72_P795731	H3F3A	0.35609	0.01544	0.37501	0.02059		
A_72_P735853	H3F3A	0.40874	0.01881				
A_72_P764258	H3F3A	0.37490	0.02095	0.37985	0.03784		
A_72_P749936	H3F3A	0.33772	0.03222				
A_72_P722438	H3F3A	0.37903	0.03425	0.39773	0.04689		
A_72_P721303	H3F3A	0.36338	0.03649				
A_72_P067831	H3F3A	0.29345	0.04648	0.34263	0.03317		
A_72_P177111	H4	0.39173	0.03009				
O4561	HAT1	0.43357	0.00492				
A_72_P178751	HBEGF	1.00144	0.00562				
A_72_P035756	HBEGF	0.75735	0.01389				
O9806	HBEGF	0.72422	0.01567				
A_72_P396743	HERC4	0.35318	0.01390				
gi 115550991 dbj AK238852.1	HES1	0.73372	0.00008	0.60130	0.00125	0.43330	0.02601
O14723	HES1	0.56744	0.00023	0.42284	0.00575		
A_72_P292644	HEY1	0.45626	0.01859				
A_72_P285829	HINT3	0.34965	0.01705				
gi 74379699 gb AJ962883.1 AJ962883	HIVEP1	0.63256	0.01170				
A_72_P002006	HIVEP1	0.59833	0.01501				
A_72_P069996	HMGXB4	0.21699	0.02800				
O13963	HMOX1	0.61423	0.04030				
OTTSUST0000000528	HS71B	0.47844	0.01882	0.47741	0.03771		
A_72_P176131	HSP70	0.57989	0.04149	0.74049	0.01620		
A_72_P088236	HSP70.2	0.38517	0.03118	0.45163	0.02039		
gi 115552968 dbj AK239554.1	HSPA8	0.29018	0.02801				
A_72_P061586	HSPA8	0.32422	0.02939				
A_72_P223937	ICAM-1	1.25124	0.00052	0.76106	0.04760		
gi 55742637 ref NM_213816.1	ICAM-1	1.25366	0.00137				
A_72_P287144	ICOSLG	0.47551	0.02343				
O8846	ID3	0.38409	0.00688	0.38835	0.01410		
A_72_P225977	ID3	0.39687	0.01052	0.34967	0.04847		
A_72_P066206	IER2	1.42903	0.00001	0.96198	0.00125	0.64191	0.03024

A_72_P025361	IER3	1.74904	0.00027	0.99543	0.04533	1.14026	0.03867
OTTSUST0000000991	IER3	1.60684	0.00080				
A_72_P100451	IER3	1.53593	0.00105				
O4815	IER3	0.92908	0.00617				
A_72_P241737	IER5L	0.41284	0.02800				
A_72_P394573	IFFO2	0.44781	0.00401				
gi 55926204 ref NM_001007519.1	IFRD1	1.25768	0.00020	0.98839	0.00376	0.87825	0.02184
A_72_P035786	IFRD1	1.27032	0.00025	0.94753	0.00629	0.84571	0.03241
A_72_P696532	IFRD1	0.86193	0.00052	0.67207	0.00846		
A_72_P108141	IFRD1	0.36457	0.01210				
A_72_P440601	IL10	1.12291	0.00048	0.69527	0.04040		
012249	IL10	1.25214	0.00174				
gi 47524185 ref NM_214041.1	IL10	1.23096	0.00178				
A_72_P185331	IL10	1.26888	0.00526				
O5504	IL17A	0.72100	0.04142				
O1485	IL1A	2.13115	0.00009	1.75567	0.00153	1.38824	0.02027
gi 47522877 ref NM_214029.1	IL1A	1.95213	0.00017	1.57900	0.00295	1.27041	0.02818
A_72_P444799	IL1A	1.94651	0.00027	1.58071	0.00376		
A_72_P165276	IL1A	1.72265	0.00029	1.44210	0.00363	1.09154	0.04755
gi 47522925 ref NM_214055.1	IL1B	2.30756	0.00022	2.10615	0.00153	1.70428	0.01832
A_72_P441479	IL1B	2.23477	0.00053	2.16472	0.00207	1.58976	0.03586
O8281	IL1B	1.70209	0.00267	1.67923	0.00618		
A_72_P776040	IL1RA	0.55009	0.01126	0.55781	0.02040		
A_72_P186321	IL22	1.98914	0.00020	2.21342	0.00125	1.96000	0.01421
gi 60678608 gb AY937228.1	IL22	2.02454	0.00035	2.22139	0.00125	1.97003	0.01421
gi 55742621 ref NM_214123.1	IL4	0.77789	0.00026	0.68694	0.00214		
A_72_P146761	IL4	0.79162	0.00171	0.55064	0.04846		
A_72_P088511	IL4R	0.46923	0.00421				
A_72_P003526	IL4R	0.46996	0.02437				
gi 47523123 ref NM_213867.1	IL8	1.21275	0.02143				
A_72_P413808	IL8	1.22310	0.02677				
A_72_P232367	IL8	1.18632	0.03115				
CUST_130_PI427286967	IL8	1.13596	0.03503	1.19907	0.04629		
O311	IL8	1.17052	0.03521				
A_72_P442262	INHBA			0.60202	0.03578	0.69658	0.02900
A_72_P442208	INSIG1	0.56179	0.03700	0.59845	0.04630		
A_72_P452692	INTS6	0.43796	0.00421				
A_72_P751922	INTS6	0.38378	0.01268				
A_72_P392088	IPCEF1	0.44786	0.01216				
A_72_P429909	IRAK2	0.65359	0.00157	0.66768	0.00352	0.50415	0.04718
A_72_P516237	IRAK2	0.52911	0.00267	0.51002	0.00725		
gi 115550602 dbj AK232432.1	IRF1	1.06996	0.00042				
A_72_P177721	IRF1	1.04562	0.00070				
A_72_P174061	IRF1	0.61713	0.00142				
A_72_P536281	IRF1	0.96135	0.00169				
A_72_P341728	JMJD1C	0.39018	0.03564				

A 72 P178031	JUN	0.88017	0.00002	0.64178	0.00125	0.52486	0.01421
 gi 47523101 ref NM_213880.1	JUN	0.86262	0.00002	0.67173	0.00125	0.53193	0.01421
A 72 P569634	JUN	0.69362	0.00069	0.54806	0.00999		
 O12244	JUN	0.53194	0.00450				
gi 112744780 gb DB789103.1 DB78	JUNB	1.05860	0.00017	0.66986	0.01534		
011588	JUNB	0.81885	0.00171				
gi 26017440 gb CA779483.1 CA779483	JUND	0.60596	0.00008	0.51778	0.00125	0.36281	0.02818
A 72 P641915	JUND	0.52609	0.00030	0.40236	0.00625		
A_72_P435164	KBTBD2	0.23982	0.03086				
012836	KDM6B	0.74429	0.00394				
A 72 P314703	KIAA1199	-1.40188	0.00013	-1.13631	0.00214		
A 72 P428929	KLF10	1.62275	0.00008	0.99439	0.00993		
A_72_P567184	KLF10	0.95159	0.00012	0.57792	0.01534		
010208	KLF10	1.56707	0.00013	0.97653	0.01350		
A 72 P665999	KLF10	0.60580	0.00129	0.44985	0.02439		
A 72 P184666	KLF10	0.62449	0.01778				
 O11677	KLF2	0.51435	0.01519				
A 72 P441164	KLF2	0.47310	0.01556				
A 72 P584261	KLF4	0.58307	0.00531				
– – A 72 P584816	KLF4	0.57844	0.00587				
A 72 P577783	KLF4	0.53329	0.00761				
A 72 P672762	KLF4	0.37166	0.02631				
 gi 72535179 ref NM_001031782.1	KLF4	0.38921	0.03564				
A 72 P303164	KLF4	0.34645	0.04229				
 gi 110007346 gb DQ682407.1	KLF5	0.29498	0.03425				
A 72 P217292	KLF6	0.63847	0.00245				
A_72_P251132	KLF6	0.69972	0.00269				
A 72 P607553	KLF6	0.59070	0.00406				
O8141	KLF6	0.55574	0.00663	0.47354	0.04155		
A 72 P262797	KLF6	0.53776	0.00679	0.45301	0.04557		
A_72_P118106	KLF6	0.53287	0.01556				
A_72_P088486	KLF7	0.45096	0.02366				
A_72_P634101	KLF7	0.35284	0.03564				
A_72_P008541	KLF7	0.41244	0.03564				
O8199	KLF7	0.33777	0.04826				
gi 47523857 ref NM_214402.1	LIF	1.25003	0.02017				
O4949	LITAF	0.34991	0.04777				
A_72_P158981	LITAF	0.33532	0.04879				
A_72_P548861	LMNA	0.27141	0.03157				
A_72_P302689	LMNA	0.20745	0.04826				
A_72_P068316	LOC100050031	0.55010	0.01159	0.57269	0.01766		
A_72_P241047	LOC100151774	-0.22043	0.03346				
A_72_P222172	LOC100151957	0.42223	0.00772	0.36208	0.04557		
A_72_P246487	LOC100152725	0.27951	0.01171	0.28715	0.01927		
A_72_P038896	LOC100153143	-0.29645	0.02851				
A_72_P033861	LOC100153522	-0.21155	0.01990				

A_72_P014381	LOC100153947	-0.24516	0.01901				
A_72_P372593	LOC100155620	0.49754	0.04202				
A_72_P169591	LOC100156540	-0.32558	0.03987				
A_72_P246752	LOC100156697	0.40535	0.00232				
A_72_P008201	LOC100157062	1.23638	0.03201				
A_72_P157521	LOC100157454	-0.35922	0.00300	-0.31062	0.01831	- 0.34014	0.02518
A_72_P199902	LOC100158011	-0.28919	0.01859				
A_72_P299199	LOC100158021	-0.26649	0.02252				
A_72_P363083	LOC101909268	-0.31908	0.02156				
A_72_P297519	LOC102167231	0.33560	0.04100				
A_72_P317548	LOC461758	0.29930	0.01339				
gi 72535195 ref NM_001031791.1	LOC595121	0.32655	0.00528				
A_72_P242237	LOC595121	0.43304	0.01571				
A_72_P165711	LOC595121	0.24963	0.04826				
A_72_P039421	LOC735483	0.76482	0.00777				
A_72_P054436	LOC781336	0.30327	0.03086				
O7967	LONRF1	0.35687	0.01941				
O907	M3K8	0.49810	0.01323				
A_72_P260627	M3K8	0.76110	0.01403				
A_72_P022356	MARCH3	0.82237	0.02824				
O8831	MARCKSL1	0.94375	0.01806				
O5799	MAX	-0.24008	0.02659				
O9280	MBTPS1	-0.23398	0.04509				
A_72_P423944	MCL1	0.53749	0.00041	0.32650	0.04040		
A_72_P226568	MCL1	0.59694	0.00119	0.49495	0.01041		
A_72_P475140	MCL1	0.59332	0.00269	0.46665	0.03262		
A_72_P554706	MCL1	0.58224	0.00520				
A_72_P592644	MCL1	0.49884	0.01802				
gi 47523779 ref NM_214361.1	MCL1	0.46857	0.04051				
A_72_P039326	MED20	0.35444	0.01596				
A_72_P356133	MEFV	0.60802	0.04218				
A_72_P442223	MEST	0.86279	0.00531	0.88630	0.00941		
O12643	MEST	0.53867	0.03614	0.63099	0.02427		
A_72_P517687	MEST			0.49414	0.04592		
A_72_P636782	MEX3C	0.48510	0.04017				
A_72_P339208	MGEA5	-0.24863	0.04652				
A_72_P140941	MIDN	0.35346	0.00127				
A_72_P413508	MMP1	-0.42537	0.01662				
O12996	MOB3C	0.69031	0.00318				
011111	MT2A	0.48649	0.02135				
gi 1827468 dbj AB000794.1	MT2A	0.45138	0.03793				
A_72_P592239	MYC	1.11774	0.01093				
A_72_P557580	MYC	1.11512	0.01123				
A_72_P165831	MYC	1.04809	0.01318				
O12961	MYC	1.02145	0.01668				
gi 52346219 ref NM_001005154.1	MYC	1.01145	0.02437				

A 72 P191761	N4BP2I 1	0.31551	0 03944					
ail77404427/refINM_001031793.2		0.73709	0.00044					
A 72 P035446		0.69252	0.00440					
A 72 P440276		0.63130	0.03040					
A 72 P229097	NCOA7	0.67073	0.00040					
A 72 P092651		0.68831	0.00040					
A 72 P003616		0.55844	0.02407	0 54067	0.00611			
09539		0.56643	0.00222	0.52950	0.02439			
A 72 P678820	NEDD9	0.57962	0.00038	0.47255	0.00462	0 44473	0 02027	
A 72 P552156	NEDD9	0.60090	0.00643	0.55754	0.02302	0.11170	0.02021	
A 72 P670582	NEDD9	0.53813	0.00040	0 51634	0.02002	0 63742	0 01556	
A 72 P243527		0.54593	0.00121	0.49237	0.04470	0.007 42	0.01000	
A 72 P006571	NEAC1	0.51329	0.00281	0.40201	0.04470			
010462	NEIL 3	0.85226	0.00201			0 69479	0.03867	
A 72 P487453	NEIL3	0.80820	0.00102	0 65308	0 02685	0.00475	0.03024	
A 72 P314698	NEIL 3	0.46030	0.00200	0.00000	0.02000	0.55080	0.01727	
A 72 P278054	NEKB1	0.40000	0.01013			0.00000	0.01727	
012055		0.04024	0.01596					
A 72 P146316	NEKB1	0.87769	0.01705					
ail115312275lrefINM_001048232.11	NEKB1	0.98035	0.01925					
gi[115554668]dbi]AK237079 1]	NEKB2	0.56478	0.00612					
A 72 P291514	NEKB2	0 57162	0.00669	0 48112	0 04551			
09695	NFKB2	0 46657	0.02177	0.40112	0.04001			
A 72 P342398	NEKBIA	1 47442	0.00008	0 92852	0 00708	0 88148	0 02601	
A 72 P600868	NEKBIA	1.39572	0.00023	0 79849	0.03953	0.00140	0.02001	
012168		1 37711	0.00020	0.86079	0.02835			
A 72 P165846	NEKBIA	1.26628	0.00033	0.83918	0.01888			
gil52346211/refINM_001005150.11	NEKBIA	1.30937	0.00041	0.84487	0.02690			
A 72 P209997	NFKBIA	1.35137	0.00051	0.82801	0.04470			
07164	NEKBIB	0.50110	0.00719					
A 72 P132521	NFKBIB	0.47091	0.00899					
011433	NFKBID	0.78652	0.00267					
A 72 P118631	NFKBIE	1.06870	0.00002	0.72752	0.00136	0.69727	0.01421	
09827	NFKBIE	1.05142	0.00013	0.80980	0.00337	0.66752	0.02818	
A 72 P508686	NFKBIE	1.02231	0.00036	0.86742	0.00376			
A 72 P542623	NFKBIE	0.59545	0.00342					
gi 74255355 gb BW978515.1 BW978515	NFKBIE	0.51261	0.00560	0.45655	0.02672			
A 72 P333618	NFKBIZ	1.01379	0.00177					
05248	NGDN	0.32220	0.01656					
A 72 P072231	NHP2L1	0.30483	0.01941					
ail11501414lablBF441322 1lBF441322	NINJ1	0.50919	0.00338	0.40006	0.03852			
A 72 P593734	NKRF	0.40460	0.00624	0.33375	0.04793			
A 72 P413628	NOR-1	1.13965	0.00002	0.93349	0.00125	0.68307	0.01421	
A 72 P637266	NOR-1	2.28485	0.00008	1.94037	0.00125	1.60255	0.01421	
A 72 P574174	NOR-1	2.21614	0.00008	1.90213	0.00125	1.54299	0.01421	
A 72 P302674	NOR-1	2.26291	0.00009	1.95770	0.00125	1.53824	0.01727	
	•	-				-		

gi 47523565 ref NM_214247.1	NOR-1	2.27227	0.00013	1.93882	0.00153	1.50671	0.02184
gi 18534829 gb BM484501.1 BM484501	NR4A1	1.13292	0.00008	0.97916	0.00125	0.74381	0.01727
O8955	NR4A1	1.12570	0.00026	0.73845	0.01667		
gi 15038571 gb BI345282.1 BI345282	NR4A2	1.07338	0.00016	0.89626	0.00207	0.64399	0.04104
A_72_P408573	NR4A2	0.87637	0.00017	0.75419	0.00178	0.63182	0.01727
O12486	NR4A2	1.04157	0.00018	0.95232	0.00141	0.66505	0.03283
A_72_P008081	Nr4a3	1.06577	0.00008	0.77617	0.00334	0.60465	0.03586
A_72_P296444	NRG1	1.06701	0.00409	1.39801	0.00153	1.18291	0.01486
gi 59811438 gb DN117178.1 DN117178	NRG1	1.03116	0.00587	1.44940	0.00136	1.21368	0.01421
A_72_P205272	NUAK2	0.88842	0.00046	0.79688	0.00337		
A_72_P259537	NUAK2	0.89512	0.00248	0.80053	0.01247		
A_72_P487508	NUDT18	0.29815	0.04143				
A_72_P499549	NUP153	0.51316	0.01915				
gi 115550157 dbj AK235636.1	ODC1	0.41800	0.01593	0.42281	0.02891		
CUST_500_PI427286967	ODC1	0.38482	0.02156	0.43881	0.01730		
O9222	OTUD1	0.92661	0.00296				
A_72_P323578	PARD6B	0.43090	0.03040				
A_72_P348738	PARP16	0.47493	0.04912				
A_72_P036711	PARPT	0.74555	0.00164	0.59519	0.01855		
A_72_P228302	PDE12			0.22652	0.04868		
A_72_P560384	PDE4B	0.68009	0.00886				
A_72_P440971	PDE4B	0.69408	0.01407	0.68779	0.02985		
A_72_P058356	PDE4B	0.54735	0.04575				
A_72_P443195	PDK4	0.36326	0.01922				
A_72_P188651	PELI1	0.46013	0.04411				
O12878	PER1	0.39906	0.01399				
O12205	PFKFB3	0.94840	0.00109				
O12014	PHACTR1	0.48883	0.00679	0.50361	0.01206		
A_72_P337823	PHACTR1			0.49551	0.01620		
A_72_P050676	PHF11	0.30753	0.02909				
O9244	PHLDA1	0.67181	0.02991				
A_72_P319533	PHLDA2	0.75259	0.00145	0.71588	0.00462	0.62956	0.02818
A_72_P193412	PIM1	0.65190	0.00301				
A_72_P691414	PINX1	0.32046	0.00269				
A_72_P427479	PLEKHA8	-0.22360	0.03844				
A_72_P088596	PLIN2	0.56024	0.03676				
A_72_P268494	PLK2	1.01320	0.00179	0.83018	0.01739	0.87194	0.02818
O10770	PLK2	0.94220	0.00298	0.82390	0.01706	0.83846	0.03283
A_72_P303319	PMAIP1	1.07435	0.00018	1.06970	0.00125	0.77695	0.01727
gi 47523385 ref NM_214147.1	PMAIP1	1.10143	0.00021	1.06006	0.00125	0.84014	0.01539
A_72_P444508	PMAIP1	0.70663	0.00250	0.75479	0.00372		
A_72_P195002	PNRC1	0.58386	0.00145				
A_72_P675044	PNRC1	0.58609	0.00548				
A_72_P593749	PNRC1	0.61944	0.00595				
A_72_P596979	PNRC1	0.56186	0.00622				
A_72_P705135	PNRC1	0.44649	0.01915				

1	1	1				1	
A_72_P500305	PNRC1	0.48185	0.02852				
O13367	PPP1R10	0.50767	0.00587				
A_72_P404043	PPP1R15A	1.16503	0.00017	0.92028	0.00346	0.74616	0.03024
A_72_P108796	PPP2R2A	0.31872	0.02032	0.35031	0.02059		
A_72_P128051	PRDM1	0.67287	0.00385	0.76044	0.00376	0.68729	0.02027
A_72_P491930	PRDM1	0.53024	0.02751	0.72422	0.00575	0.59765	0.04755
07626	PRDM1	0.46795	0.03009	0.69190	0.00376	0.56006	0.03586
A_72_P031371	PRDM1			0.65454	0.00458		
A_72_P322513	PROCR	1.09643	0.00680				
A_72_P591519	PROCR	0.94389	0.01013				
A_72_P336123	PROCR	0.94535	0.02057				
A_72_P416293	PRR2	0.41663	0.00663				
gi 115553405 dbj AK236608.1	PRR2	0.22466	0.04826				
gi 47523707 ref NM_214321.1	PTGS2	1.73925	0.00473	1.54475	0.02357	1.65776	0.03233
O10093	PTGS2	1.68564	0.00587	1.47037	0.03262	1.56090	0.04455
A_72_P443218	PTGS2	1.69918	0.00617	1.50607	0.03055	1.57212	0.04718
A_72_P302784	PTGS2	1.74707	0.00637	1.49761	0.03934	1.65435	0.04104
A_72_P506963	PTPN2	0.25467	0.04899				
A_72_P055491	PTPRA	-0.21623	0.02817				
A_72_P022341	PUR1	0.43653	0.04879				
A_72_P490030	R3HCC1L	0.37828	0.00137	0.30363	0.01576		
A_72_P190496	RAB21	0.33461	0.02265				
O9083	RABAC1	-0.23133	0.02380				
A_72_P190776	RABGEF1	0.33489	0.02787				
A_72_P069541	RASGEF1B	0.52265	0.00157	0.45561	0.00962		
A_72_P404973	RCAN1	1.35514	0.03697				
A_72_P337088	REL	0.82855	0.01297				
O9322	RELA	0.39878	0.01672				
O3543	RGS1	0.93674	0.00303	1.03990	0.00357		
A_72_P413538	RGS1	0.99759	0.00303	1.08480	0.00376		
gi 5823136 gb AF139837.1 AF139837	RGS1	1.00520	0.00328	0.99618	0.00725		
A_72_P165546	RGS16	0.62993	0.03164				
gi 113205849 ref NM_001044600.1	RGS2	1.00033	0.00012	0.81164	0.00207		
A_72_P088221	RGS2	0.93965	0.00042	0.80293	0.00376		
A_72_P057121	RGS2	0.84487	0.00046	0.72772	0.00376		
A_72_P175291	RHOB	0.53369	0.00035	0.42016	0.00572		
A_72_P630896	RHOB	0.62382	0.00053	0.43519	0.01971		
A_72_P624308	RHOB	0.49769	0.00062	0.35506	0.01831		
A 72 P336448	RHOB	0.60570	0.00109	0.46852	0.01620		
 gi 115548954 dbj AK235357.1	RHOB	0.64610	0.00133	0.46087	0.03338		
A 72 P566619	RHOB	0.67206	0.00163	0.50190	0.02955		
A 72 P506395	RHOB	0.60518	0.00269	0.44895	0.04630		
A 72 P643885	RHOB	0.51760	0.01004				
A 72 P620824	RHOB	0.47536	0.01508				
A 72 P623634	RHOB	0.41238	0.02677				
07861	RIOK2			0.28289	0.02374		
•	•	•	I			•	

	1	1				1	
A_72_P247442	RIPK2	0.60401	0.02154				
A_72_P032256	RLF	0.34205	0.02726				
gi 15036106 gb Bl342817.1 Bl342817	RND1	1.18775	0.00023	0.98925	0.00326		
O8646	RND1	1.15985	0.00129	1.09728	0.00426		
A_72_P035816	RND3	0.81142	0.00023	0.61037	0.00545		
O12382	RND3	0.64794	0.00066	0.47136	0.01706	0.49793	0.02818
A_72_P306333	RND3	0.74171	0.00156				
A_72_P367373	RNF19B	0.47575	0.01959				
A_72_P157941	RNF6	0.62076	0.03009				
O11805	RRAD	1.90518	0.00335				
A_72_P141121	RRAD	1.75513	0.00360				
A_72_P109831	RRAD	1.87482	0.00719				
O14634	SAG			0.35650	0.03098		
O11453	SCLT1	0.36489	0.04727				
A_72_P440056	SELE	1.88201	0.00171	1.40014	0.03262		
gi 47523601 ref NM_214268.1	SELE	1.78274	0.00337				
O3768	SELE	1.81640	0.00354				
A_72_P035596	SELE	1.79641	0.00447				
A_72_P203022	SERTAD3	0.47042	0.00066				
O10149	SGK1	0.52171	0.00089				
A_72_P236482	SGK1	0.50913	0.00210	0.38774	0.03301		
A_72_P153871	SH2B2	0.33074	0.00624				
A_72_P262117	SH2D2A	0.47942	0.01217	0.43612	0.04557		
O5944	SH2D2A	0.44933	0.03714				
O9514	SH3BP2	0.34033	0.00688				
O12507	SIK3	0.28670	0.03589				
O1571	SKIL	0.58837	0.00037	0.45890	0.00629		
O11118	SLC25A33	0.41032	0.01741	0.40991	0.03455		
A_72_P150231	SLC25A33	0.46955	0.02994				
A_72_P020856	SLC30A9	-0.20783	0.04787				
CUST_166_PI427286967	SLC35B2	0.43445	0.01925				
A_72_P303729	SLC35B2	0.41451	0.03226				
A_72_P495085	SLC46A2	0.39939	0.02734				
A_72_P146611	SMAD3	0.34529	0.04265				
A_72_P089786	SMNDC1	0.39508	0.00859				
A_72_P004801	SMOX			0.44993	0.01825	0.52860	0.01727
O12282	SMOX					0.51606	0.03586
O11214	SNAI1	0.81281	0.00137	0.72428	0.00708		
A_72_P290864	SNIP1	0.29500	0.03692				
A_72_P257347	SNRK	0.28545	0.03157				
09277	SOCS3	1.00610	0.00031	0.63281	0.02633	0.70514	0.02818
A_72_P367438	SOCS3	1.05650	0.00045	0.68393	0.02898	0.79249	0.02601
 A_72_P319193	SOX17	0.43883	0.01887				
013061	SOX4	0.47205	0.00157	0.45298	0.00462	0.44697	0.01727
A_72_P404508	SOX4	0.40943	0.04923				
gi 47523169 ref NM_213843.1	SOX9	0.47315	0.00027	0.36436	0.00535	0.31351	0.03480
	•						

A_72_P146931	SOX9	0.59814	0.01066				
A_72_P288694	SPRY1	0.46094	0.03330				
012145	SPRY2	0.86613	0.00531	0.85401	0.01330	0.86175	0.02818
A_72_P373863	SPSB1	0.41905	0.01738				
A_72_P060256	SPTY2D1	0.36828	0.01046	0.33526	0.04019		
A_72_P021496	SPTY2D1	0.38019	0.03425				
A_72_P286564	ST17A	0.38966	0.02800				
A_72_P305704	STAT4	0.47076	0.01464	0.45724	0.03541		
A_72_P189401	STX11	1.15361	0.00138				
A_72_P503867	STX11	1.63026	0.00153				
O640	STX11	1.46313	0.00338				
A_72_P378508	SYS1	0.32530	0.02939				
A_72_P709805	TAGAP	0.28207	0.03357				
gi 115552257 dbj AK230566.1	TANK	0.42691	0.02103	0.42120	0.04470		
A_72_P080821	TANK	0.44974	0.03760	0.50417	0.03492		
A_72_P340593	TBC1D4	0.59580	0.04899	0.68246	0.03999		
A_72_P433344	TBC1D4			0.45187	0.03897		
07931	TBPL1	0.31865	0.00909				
A_72_P589634	твхз	0.41738	0.00269	0.44432	0.00376	0.47842	0.01421
A_72_P499269	ТВХ3	0.49372	0.00337	0.45546	0.01350	0.49285	0.02027
A_72_P041196	ТВХ3	0.45926	0.01390	0.51942	0.01206	0.47936	0.04228
A_72_P637494	ТВХ3	0.42986	0.03944	0.51503	0.02302		
O11729	ТВХЗ			0.33673	0.01693		
A_72_P488239	ТВХ3			0.28893	0.04791		
A_72_P142606	TCAM1	0.42112	0.02801				
A_72_P117871	TIMP1	0.68111	0.01941				
A_72_P223927	TIMP1	0.92588	0.02994				
O10493	TIMP1	0.92456	0.03236				
A_72_P106826	TNAP2	1.06555	0.00679				
OTTSUST0000000652	TNF	1.34317	0.00171	1.04074	0.02397		
O8075	TNF	1.14766	0.00203	0.85699	0.03677		
A_72_P211447	TNF	1.08579	0.00210	0.81516	0.03650		
A_72_P146356	TNF	1.00045	0.00289	0.84452	0.02059		
A_72_P538206	TNF	0.51634	0.00454	0.48757	0.01542		
gi 84124390 gb CV870430.1 CV870430	TNFAIP2	0.83717	0.01803				
A_72_P100136	TNFAIP3	1.90124	0.00003	1.57326	0.00125	1.19255	0.01421
A_72_P374863	TNFAIP3	1.71729	0.00008	1.36365	0.00153	1.04109	0.02421
A_72_P320813	TNFAIP3	1.70328	0.00008	1.31977	0.00207	1.04936	0.02477
gi 74259135 gb BW982295.1 BW982295	TNFAIP3	1.81444	0.00009	1.39371	0.00245	1.00266	0.04718
A_72_P063236	TNFRSF12A	0.77660	0.00826				
gi 52351393 gb AY609823.1	TNFRSF12A	0.69418	0.01756				
O6355	TNFRSF12A	0.68521	0.03521				
gi 40426989 gb BP436922.1 BP436922	TNFSF15	0.47084	0.03009	0.48133	0.04839		
O3158	TNN	-0.69988	0.03955				
A_72_P195417	TNR18			0.59065	0.04923		
A_72_P131876	TNRC6B	-0.24349	0.03462				

1								
	O14192	TOPORS	0.38483	0.00350				
	A_72_P162066	TOPORS	0.35598	0.04058				
	A_72_P115716	TR10D	0.44969	0.03119				
	A_72_P420514	TRA2B	0.31333	0.00610				
	A_72_P328513	TRA2B	0.26996	0.03118				
	A_72_P088081	TRA2B	0.32925	0.04191				
	A_72_P569614	TRA2B	0.27146	0.04923				
	gi 15032692 gb BI339409.1 BI339409	TRAF1	0.47569	0.03595				
	A_72_P317388	TSC22D1	0.38476	0.04493	0.43288	0.04040		
	A_72_P486304	TSC22D2	0.49493	0.00384	0.46695	0.01337		
	A_72_P401653	TSC22D2	0.59927	0.01022				
	A_72_P003771	TTI2	0.28597	0.03564				
	O9185	TUBB4B	0.22100	0.04293				
	A_72_P612897	TXNIP	0.43647	0.00500				
	A_72_P562489	TXNIP	0.38026	0.00638	0.33537	0.03279		
	A_72_P146541	TXNIP	0.42651	0.00713				
	A_72_P574349	TXNIP	0.39771	0.01247				
	A 72 P673176	TXNIP	0.34213	0.01754				
	A_72_P585156	TXNIP	0.30837	0.04084				
	A 72 P657299	UAP1	0.46639	0.03767				
	O5637	UBALD1	0.43480	0.00826				
	A_72_P073056	UBALD1	0.38104	0.01280				
	A_72_P529525	UBB	0.35386	0.02484				
	A_72_P326078	UBB	0.36203	0.03700				
	O10707	UBC	0.37911	0.02136	0.38181	0.04011		
	A_72_P114776	UBIQ	-0.26851	0.04416				
	A_72_P094676	UGCG	0.37484	0.01778				
	A_72_P174051	UPP1	-0.29693	0.04293				
	A_72_P245402	USP54	0.44296	0.01213	0.40712	0.04267		
	A_72_P575659	V1AR	0.52417	0.04512				
	gi 47522703 ref NM_213891.1	VCAM1	0.94470	0.02544				
	O11774	VCAM1	0.53664	0.02693				
	A_72_P293294	VWF	-0.33329	0.03767				
	A_72_P007731	ZBTB10	1.00901	0.00053				
	A_72_P024886	ZBTB10	1.09931	0.00171				
	A_72_P128421	ZBTB10	0.96869	0.00292				
	A_72_P553876	ZBTB10	0.88486	0.01474				
	A_72_P473857	ZBTB10	0.71432	0.04293				
	A_72_P257407	ZBTB11	0.54671	0.00277				
	O10928	ZBTB2	0.54359	0.00030	0.44135	0.00395		
	A_72_P296334	ZBTB2	0.84136	0.00042	0.58096	0.01739		
	A_72_P659488	ZFAND5	0.77357	0.00017	0.67289	0.00154	0.63957	0.01421
	A_72_P638042	ZFAND5	0.73815	0.00044	0.66754	0.00314	0.56831	0.02184
	A_72_P599678	ZFAND5	0.51157	0.00109	0.37203	0.02427		
	A_72_P660923	ZFAND5	0.69831	0.00127	0.67262	0.00376	0.57343	0.02818
ļ	A_72_P369638	ZFAND5	0.51066	0.00129	0.45113	0.00708		

A 72 P653310	ZFAND5	0.57310	0.00171				
A 72 P563124	ZFAND5	0.58742	0.00267				
 A 72 P570994	ZFAND5	0.56233	0.00338				
 A 72 P539158	ZFAND5	0.62096	0.00341	0.60775	0.00862		
A 72 P582317	ZFAND5	0.47273	0.00414				
 A 72 P584076	ZFAND5	0.56564	0.00436				
 A 72 P592919	ZFAND5	0.57438	0.00663				
 A 72 P602666	ZFP36L1	0.47556	0.01201				
 A 72 P585515	ZFP36L1	0.49397	0.02566				
 A 72 P530580	ZIC4	0.77454	0.00008				
A 72 P193062	ZNF295	0.53661	0.00521	0.44751	0.03929		
A 72 P021206	ZNF441	0.32988	0.03330				
 O4628	ZNF622	0.34851	0.01928				
A 72 P371233	ZNF622	0.36306	0.04017				
A 72 P194697	ZRANB2	-0.29659	0.02925				
05694	ZSWIM6	0.37509	0.00442				
A 72 P294394	ZSWM4	0.41928	0.03767				
A 72 P122192	ZXDC	0.27904	0.02920				
 A 72 P234322		0.78673	0.00091	0.65205	0.00839		
A 72 P228962		0.38356	0.00157				
 A_72_P184106		0.93677	0.00191				
A 72 P343913		0.97822	0.00232				
 A_72_P010216		0.93497	0.00298				
A 72 P208722		0.50100	0.00409	0.46577	0.01544		
 A_72_P366288		0.78195	0.00528				
A_72_P338613		0.42702	0.00658	0.36329	0.04155		
 A_72_P008841		0.80056	0.00679	0.74547	0.02357		
A_72_P224472		1.54421	0.00761	1.38634	0.03423	1.51223	0.03916
A_72_P234402		0.52246	0.00809				
A_72_P266732		-0.34279	0.00916				
A_72_P178526		0.64833	0.01004	0.87568	0.00276	0.66997	0.03480
A_72_P128976		0.61492	0.01059				
A_72_P265047		0.33355	0.01126				
A_72_P094051		-0.71071	0.01158				
A_72_P311448		0.62012	0.01249				
A_72_P420899		-0.39593	0.01477				
A_72_P415453		-0.25478	0.01606				
A_72_P367953		-0.37201	0.01637				
A_72_P113766		-0.33669	0.01754				
A_72_P144291		0.59722	0.01920				
A_72_P192327		-0.30864	0.01941				
A_72_P201592		0.77570	0.02271				
A_72_P081221		-0.82082	0.02428				
A_72_P344708		0.42555	0.02555				
A_72_P139876		0.33801	0.02787				
A 72 P252477		-0.24706	0.02962			- 0.28985	0.04063
	1						

L					
	A_72_P327633	0.60906	0.03194		
	A_72_P386583	-0.28397	0.03425		
	A_72_P339938	0.26629	0.03425		
	A_72_P022856	-0.35812	0.03463		
	O3515	-0.31184	0.03496		
	A_72_P159811	0.25273	0.03632	0.33503	0.01036
	A_72_P318278	0.27188	0.03887		
	A_72_P215157	0.62709	0.04149		
	A_72_P011986	0.54486	0.04512		
	A_72_P008286	-0.23293	0.04559		
	A_72_P060236	0.43802	0.04601		
	A_72_P429984	0.37181	0.04727		
	A_72_P363878	-0.29433	0.04826		
	A_72_P364133	0.46421	0.04899		
	A_72_P020476	-0.28177	0.04974		
	A_72_P023291			-0.34222	0.01790
	A_72_P276809			0.70701	0.02431
	A_72_P000156			0.30039	0.03784

- 41 Supp. Table 2. Comparative analysis of signaling pathways modulated by NX. Jejunal explants from 5
- 42 animals were exposed for 4 h to diluent, 10 µM NX. Comparative analysis of the top 20 specific canonical
- 43 pathways from the specific 231 DEG only modulated by NX (black fonts) and the 369 DEG modulated by NX
- 44 (including the ones also modulated by DON and/or 3ANX).
- 45

Inconvity Cononical Pathwaya	-log (p-value)					
ingenuity Canonical Pathways	DEG NX only	DEG NX				
IL-17A Signaling in Fibroblasts	9.09E00	1.68E01				
TWEAK Signaling	7.67E00	1.20E01				
Small Cell Lung Cancer Signaling	5.84E00	9.53E00				
HER-2 Signaling in Breast Cancer	5.46E00	2.18E01				
Hepatic Fibrosis / Hepatic Stellate Cell Activation	5.24E00	1.37E01				
TNFR2 Signaling	5.19E00	1.80E01				
Role of IL-17A in Arthritis	5.1E00	1.23E01				
4-1BB Signaling in T Lymphocytes	5.06E00	9.40E00				
Hepatic Fibrosis Signaling Pathway	4.91E00	1.40E01				
Death Receptor Signaling	4.79E00	1.05E01				
Induction of Apoptosis by HIV1	4.76E00	1.03E01				
CD40 Signaling	4.69E00	1.26E01				
April Mediated Signaling	4.59E00	9.94E00				
Apoptosis Signaling	4.57E00	9.94E00				
B Cell Activating Factor Signaling	4.54E00	9.70E00				
Role of IL-17F in Allergic Inflammatory Airway Diseases	4.44E00	5.75E00				
iNOS Signaling	4.35E00	1.06E01				
Angiopoietin Signaling	4.34E00	5.97E00				
TNFR1 Signaling	4.14E00	1.43E01				
Lymphotoxin β Receptor Signaling	4.02E00	6.15E00				