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Abstract
Due to the growing the penetration of electric vehicles (EV), road networks
(RNs) and power networks (PNs) more rely on the normal functioning of
each other. However, only a few of studies have discussed the potential neg-
ative consequences of adopting EVs during disaster. Moreover, the negative
impact of EVs on the interdependent traffic-power systems has been rarely
considered during restoration period. In this study, restoration plans for in-
dependent RNs and PNs, and interdependent traffic-power systems are inves-
tigated, respectively. For the restoring the traffic-power systems, a two-stage
mixed integer optimization model is proposed to provide system optimal re-
configuration and operational solutions after disruptions. The objective of
this model is to minimize the total system performance loss cost. The total
system performance loss cost is quantified by cumulative unsatisfied gasoline
vehicles (GVs) and EVs traffic demand for RNs, and shedded load cost for
PNs. In tactical level, reconfiguration solutions (i.e., links reversing for RNs
and line switching for PNs) are determined. In the operational level, the in-
tegrated system optimal dynamic traffic assignment and optimal power flow
problem is solved to obtain the optimal traffic-power flow. In this model,
RNs and PNs are coupled through EVs and the coordinately allocated spa-
tiotemporal charging demand. A partial highway network in North Carolina
(NC), USA and modified IEEE-14 bus system are used to illustrate the de-
veloped methods. The results show the added value of coordinately planing
restoration for traffic-power systems. When EV penetration increases from
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0% to 100%, the total performance loss costs increase 46.7%. This result also
hints that more FCSs should be deployed in this area.
Keywords: Reconfiguration, Restoration, Rraffic-power systems, Optimal
traffic-power flow, Electric vehicles, Fast-charging stations, Spatiotemporal
charging demand

Nomenclature

Indices

a index of links

t index of periods

s index of destinations

e index of energy levels for EVs

c index of EV classes

The transportation network sets

A set of arcs

N set of nodes

A(i)(B(i)) set of links whose tail(head) node is i

AR set of source arcs

AS set of sink arcs

AG set of general arcs

AC set of charging arcs

T set of periods

Ec set of energy levels for the EVs belonging to class c

C set of electric vehicle classes

Parameters
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ϕ time value

peva charging power of charging link a

NCa(t) number of chargers at charging link a during period t

δ period length

La physical length of link a

kjam/qmax/vf jam density/ maximum flow/ free-flow speed

w backward shock-wave speed, w = qmax · vf/(qmax − kjam · vf )

αt
a average charging speed for charging link a during period t, αt

a =
peva /(η · vf )

Ifa(t) inflow capacity of link a during period t

Ofa(t) outflow capacity of link a during period t

DGs
a(t) cumulative gasoline vehicle travel demand between the entry of

origin link a and destination s at the end of period t

DEs,e
a,c(t) cumulative c class EV travel demand of between the entry of

origin link a and destination s with energy level e at the end of
period t

νa free-flow travel time on link a, νa = La/(δ · vf )

βa travel time required by the backward shock wave from the exit
to the entry of link a, βa = La/(δ · w)

Nh number of links that can be reversed during restoration

Variables

Ua(t) cumulative number of vehicles that enter link a by the end of
period t

Va(t) cumulative number of vehicles that leave link a by the end of
period t
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UGs
a(t) cumulative number of GVs that enter link a to destination s by

the end of period t

V Gs
a(t) cumulative number of GVs that leave link a to destination s by

the end of period t

UEs,e
a,c(t) cumulative number of EVs of class c with energy level e that

enter link a to destination s by the end of period t under scenario
o

V Es,e
a,c(t) cumulative number of EVs of class c with energy level e that

leave link a to destination s by the end of period t

xs,e
a,c(t) occupancy of EVs of class c with energy level e at charging link

a during period t

x̂s,e
a,c(t) occupancy of EVs of class c with the updated energy level e at

charging link a during period t

hi,j binary variable that is equal to 1 if the direction of road a is
reversed, being 0 otherwise

The power network sets

PN set of buses

PL set of transmission lines

P̃L set of damaged transmission lines

Γ(j) successor set of bus j

Parameters

pramp
j ramp limits of generators at bus j

cbj load shedding cost for the base load at bus j

cdcj load shedding cost for the EV charging load at bus j

pg
j
/pgj lower/upper limit of power generation at bus j

pbj,t base power demand at bus j during period t
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Nu number of lines that can be switched off during restoration

Variables

pgj,t power generation at bus j during period t

pdcj,t charging load at bus j during period t

Pi,j,t power flow from buses i to j during period t

ui,j binary variable that is equal to 1 if line (i, j) is switched in,
being 0 otherwise

LSdc
j,t binary variable that is equal to 1 if the load of the attached

FCSs is shedded at bus j during period t, being 0 otherwise

LSb
j,t base load shedding at bus j during period t

EVs

Parameters

Lmax
c mileage of c class EV

Ec the maximum energy level of c class EV

eta average energy consumption efficiency for EVs

1. Introduction

High-impact and low-probability (HILP) incidents usually cause severe
negative consequences on road networks (RNs) and power networks (PNs).
2003 North America blackout caused 50 million customers affected by this
outages [1]. 65% of New Jersey’s customers were experienced the disconnec-
tions from the power systems during Hurricane Sandy in 2012 [2]. In July
2021, heavy rainfall and floods hit Henan, China [3]. This HILP event dev-
astated the local critical infrastructures, including the transportation and
the power systems. The estimated direct economic loss is on the order of
RMB 88.5 billion. This has highlighted an urgent need for strengthen the
resilience of the RNs and PNs against such HILP incidents. The concept of
resilience is defined in various explanations [4, 5, 6], however, many of them
share the general idea that resilience is the ability of a system to prepare
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for, absorb, recover from, and adapt to disturbances[7]. Restoration as one
of the most effective manners to enhance the system resilience after disrup-
tions has received increasing attention. A large body of work have been done
to investigate the optimal restoration after disruptions for RNs and PNs,
sparately.

For PNs, reconfiguration as an effective strategy to restore the service and
to enhance the system resilience against emergencies has been intensively in-
vestigated in the literature [8, 9, 10]. Generally, maximizing the network
resilience/minimizing system performance loss and minimizing the number
of line switches/minimizing restoration cost are included in the objectives of
these models. For example, Sekhavatmanesh and Cherkaoui [11] developed
the concept of multiagent automation in smart grids, which was applied to
restore a maximum of loads with minimum switching operations service after
disruptions; Sabouhi et. al [12] presented an operational network reconfig-
uration strategy during a high wind event to maximize network resilience
and minimize the number of line switches. Sometimes, islanding or not after
disruptive events are also treated differently. Agrawal et. al [13] developed
a self-healing algorithm to restore maximum priority loads by reconfigur-
ing network without intentional islanding during blackouts. Guimaraes et.
al [14] proposed a three-stage algorithm for the dynamic reconfiguration of
distribution networks with islanding. The three stages include calculating
the network reconfiguration solutions in each hour, reducing the number of
configurations and generating the optimal sequence of topologies. Li et. al
[15] presented a concept of fully decentralized multi-agent system to build a
restoration service framework for distribution network. Based on this con-
cept, a network reconfiguration algorithm is proposed for restore service,
where reconfiguration with intentional islanding was considered. Except re-
configuration, other corrective actions, such as generator re-dispatch, control
of distributed energy storage systems (ESSs), and on-load tap changers, also
can be considered as supplementary strategies to enhance the resilience of the
power systems. Liberati et. al [16] proposed control system optimizes grid
operations through network reconfiguration, control of distributed energy
storage systems, and on-load tap changers. Sekhavatmanesh and Cherkaoui
[17] developed an analytical and global optimization model to find the most
efficient restoration plan minimizing the number of de-energized nodes with
the minimum number of corrective actions. The considered corrective actions
included network reconfiguration, the tap setting modification of voltage reg-
ulation devices, the nodal load-rejection, and the active/reactive power dis-
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patch of distribution generators. Zhang et. al [18] introduced two-stage
stochastic models to deal with the uncertainty in generation and demand
during the recovery process. Switching transmission lines and generator re-
dispatch strategies were used to maximize load shed recovery in the bulk
transmission network. Nazemi and Dehghanian [19] introduced a framework
for modeling and characterization of seismic hazards, vulnerability assess-
ment of electric systems to the earthquake. The generation re-dispatch strat-
egy and corrective network topology control were considered to maximize the
load outage recovery after disasters.

For the RNs, short-term and long-term recovery periods usually are in-
vestigated separately. For short-term recovery period, reconfiguring network
topology and controlling traffic lights are frequently discussed manner to in-
crease the resilience of RNs after disruptive events. Wang and Wang [20]
developed an integrated reconfiguration strategy that reconfigures both the
supply and demand sides of transportation systems. The traffic demand was
reconfigured using a heterogeneous fleet of vehicles and the network topology
was reconfigured through a heterogeneous contraflow control. Later on, they
further presented a framework [21] for resilience analysis including measure-
ment and improvement. Two strategies were used to maximize the system
resilience. They were integrated reconfiguration of both traffic supply and de-
mand by reducing traffic demand through combining different traffic modes
and a contraflow control. Chiou [22] proposed a period-dependent traffic re-
sponsive signal control model to enhance resilience of urban RNs. Koutsoukos
et. al [23] developed a modeling and simulation integration platform for ex-
perimentation and evaluation of resilient transportation systems. Resilient
traffic signal control in the presence of denial-of-service attacks was studied
in the case studies. For long-term recovery period, scheduling repair crew, al-
locating resources and determining restoration priority of components in the
RNs are generally the main focuses. Wu et. al [24] proposed a methodology
to assess the resilience of transportation networks and a restoration priority
measure to support post-earthquake restoration of damaged bridges. Zhao
and Zhang [25] proposed a bi-objective bi-level optimization framework to
determine an optimal transportation network restoration plan. The lower-
level problem uses elastic user equilibrium to model the imbalance between
demand and supply. The upper-level problem, formulated as bi-objective
mathematical programming, determines optimal resource allocation for road-
way restoration.

In recent years, treating the independent RNs and PNs as a whole and
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the problems how to model and operate them together have gained much
of attention [26, 27]. However, only a few studies have investigated the
problem of how to restore them after disruptions to minimize the whole sys-
tem performance loss subjecting to physical constraints from both networks.
Moreover, most of these studies only focused on minimizing the performance
loss of PNs and only considered the constraints of RNs. Their topics gener-
ally are about how to route and schedule of mobile energy storage systems
(MESSs)/mobile energy sources [28, 29, 30, 31], sometimes coordinating with
repair crews [29, 30, 31] and line switch strategies [29, 30]. One of the key
issues of restoring traffic-power networks is to figure out and properly model
the objects that connect and make influence on the both networks. Wang
et. al [32] considered the PNs and urban RNs coupled through traffic lights
and mobile emergency resources (i.e., mobile sources and repair crews). The
availability of mobile emergency resources relates to their dispatch in the
RNs, while the effect of traffic lights is also considered. They developed a
service restoration method to maximize the efficiency of both PNs restoration
and RNs. Yao et. al [33] proposed a rolling integrated service restoration
strategy to minimize the total system cost by coordinating the scheduling
of MESS fleets, resource dispatching of microgrids, and network reconfigura-
tion of PNs. The integrated strategy takes into account damage and repair
to both the roads in RNs and the branches in PNs. Li et. al [34] presented
an optimization model for joint post-disaster DS restoration, considering co-
ordinated dispatching with electric buses. By assuming that the PN can rent
some electric buses. Idle buses are placed at designated areas and feed power
back to the grid via charging equipment in case of need. The schedule of the
remaining buses should meet the passenger transport demand. The objective
was to maximize the total benefits and minimize the bus rental cost.

Different from the existing work, this paper consider that the RNs and
PNs are coupled through electric vehicles (EVs) and their charging demand.
This is because EVs and fast-charging stations (FCSs) are being increasingly
deployed around the world [35]. It makes PNs and RNs inevitably accelerate
the coupling together. On the other hand, EVs probably threatened by out-
ages in FCSs because of the natural disaster have raised a few of researchers’
concerns [36, 37]. However, this problem and its solution approaches have
not been solidly investigated yet, especially in the context of enhancing the
resilience of the interdependent traffic-power networks. In this paper, we
focus on the problem of how to jointly reconfigure and operate the traffic-
power networks so that the total system performance loss can be minimized
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for short-term recovery period. Specifically, road links in RNs and lines in
PNs may be damaged simultaneously after a natural disaster or a malicious
attack. In RNs, vehicles in RNs may need to bypass and the RNs’ perfor-
mance therefore decrease. Due to the extra distance, both the number of
EVs and the amount of charging demand for each EV may increase in FCSs.
Such charging demand can become a burden for PNs during the restoration
after the disruptive event. On the other hand, the PNs may need to shed
the EV charging load due to the reduced flow and generation capacity af-
ter the disruptions. Consequently, the unavailability of the service in FCSs
can further influence the charging demand patterns and decrease the perfor-
mance of the RNs. To fill the above mentioned research gaps, in this paper,
we develop a two-stage mixed integer optimization model to minimize the
system performance loss after disruptions. In the first stage, reconfigura-
tion solutions over the whole studied horizon for the traffic-power systems
are provided to enhance the system resilience after a disruptive event. In
the second stage, an integrated traffic-power systems model is developed to
model the dynamic interaction between RNs and PNs through EVs and spa-
tial and temporal charging demand. The results show the added value of
coordinately reconfiguring traffic-power systems and managing EV charging
demand.

The main contributions of this paper are summarized as follows:
1. To best our knowledge, it is the first work that consider the negative

impact of EVs and interdependent traffic-power systems in terms of restora-
tion and network topology control.

2. The strategies of link directions reversing in the RN and line switching
in the PN are mathematically formulated in an independent traffic-power
system model, and in independent RN and PN models, respectively.

3. For the interdependent traffic-power systems, a two-stage mixed inte-
ger optimization model is presented to minimize the system performance loss
after disruptions. The tactical level problem is formulated as an integrated
system optimal dynamic traffic assignment and DC power flow problem con-
sidering EVs. The optimal topology of traffic-power systems are served as
the operational level problem.

4. Different response source levels, EV penetration levels and decision-
making environments are compared in the case study.

The remainder of the article is structured as follows. Section 2 formulated
the reconfiguration problems in independent RN and PN models, as well as
in the interdependent traffic-power system model. Section 3 illustrates a
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case study to show the application of the proposed models and compares the
solutions under different response resource levels, EV penetration levels and
decision-making environments. Finally, Section 4 provides some concluding
remarks and future research directions.

2. Reconfiguring infrastructures

In this section, reconfiguration problem in independent RNs, independent
PNs and interdependent traffic-power systems are formulated.

2.1. Reconfiguring electrified highway networks
In this subsection, we first present an electrified traffic system model

considering the critical characteristics of EVs and FCSs, which is based on
link transmission model. Then, reconfiguration problem after disruption is
formulated based on this electrified traffic model.

2.1.1. Electrified traffic model with EVs and FCSs
In this model we assume that the electricity consumed by an EV is linearly

related to the distance traveled. The electricity amount charged by an EV is
linearly related to the charging time. All EV batteries have the same energy
consumption efficiency, similar to Ref. [? ].

A RN with multiple sources (origins) and sinks (destinations) is denoted
as G(N ,A), where N and A are the sets of nodes and links, respectively.
Links in the RN are classified into four types: source AR, sink AS, general
AG and charging AC links. Nodes are classified into two types: source-sink
NSR and general NG nodes. Within the RN, each source-sink node attaches
only one source and one sink link. All charging, source and sink links are
dummy with lengths 0. All source and sink links are with infinite outflow,
inflow and storage capacities. For SO-DTA problems, the outflow capacity of
all sink links are assumed to be 0, which means that all vehicles are collected
upon their arrival. The time horizon H is discretized into a finite set of
periods T = {t = 1, 2, · · · , T}. T is calculated according to T = H/δ, where
δ is the period length. The period length should be equal to or smaller than
the smallest link travel time so that vehicles take at least one time unit to
traverse a link [38].

A triangular fundamental diagram is used in LTM, which is an approxi-
mation and describes a macroscopic property of roads [38]. The diagram is
defined by three parameters: a jam density (kjam), a maximum flow (qmax)
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and a fixed-free flow speed (vf ). The backward shock-wave speed w can be
obtained by w = qmax · vf/(qmax − kjam · vf ).

Given a certain class of EV denoted as c, its battery capacity is Bc kWh
and the energy consumption efficiency is η kWh/mile, then, the mileage of
this class EV is Lmax

c = Bc/η miles. We discretize its mileage into integer
energy levels (ELs). When this EV has full battery, it has the maximum EL
Ec = Lmax

c /(δ · vf ). Once this EV traveled δ · vf miles, its ELs decrease one
EL, i.e., 1 EL = δ ·vf miles. Assuming there are C EV classes represented as
C = {E1, E2, · · · , EC}. Each element Ec in set C is a set, which contains the
energy levels that EV of class c could have, denoted as Ec = {1, 2, · · · , Ec}.

The LTM updates the traffic flow evolution by calculating the cumulative
number of vehicles at entry and exit of each link in each period.

The Newell’s simplified theory is used in LTM to calculate sending Sa(t)
and receiving Ra(t) capacities of link a:

Sa(t) = min{Ua(t− νa)− Va(t− 1), Ofa(t)} (1a)

Ra(t) = min{Va(t− βa) + La · kjam − Ua(t− 1), Ifa(t)} (1b)
where Ua(t)/Va(t) denotes the cumulative number of vehicles that enter/leave
link a by the end of period t. Ifa(t) and Ofa(t) are the inflow capacity at
the entering point and outflow capacity at the leaving point of link a during
period t. They can be obtained by δ · qmax at the corresponding location
and period. La is the length of link a. νa is the free-flow travel time on link
a and βa is the travel time required by the backward shock wave from the
exit to the entry of link a. They can be obtained by νa = La/(δ · vf ) and
βa = La/(δ · w), respectively.

The inflow and outflow of link a during interval t are constrained by its
corresponding sending and receiving capacities:

Ua(t)− Ua(t− 1) ≤ Ra(t),∀a ∈ A\{AC},∀t (2a)

Va(t)− Va(t− 1) ≤ Sa(t),∀a ∈ A\{AC},∀t (2b)
Substituting Eqs. (1) and (1b) into the system of inequality (2), we obtain

the following system of linear LTM-based flow constraints:

Va(t) ≤ Ua(t− νa), ∀a ∈ A\{AC},∀t (3)

Va(t)− Va(t− 1) ≤ Ofa(t),∀a ∈ A\{AC},∀t (4)
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Ua(t)− Ua(t− 1) ≤ Ifa(t),∀a ∈ A\{AC},∀t (5)
Ua(t)− Va(t− βa) ≤ Lakjam,∀a ∈ A\{AC},∀t (6)

In eLTM-based model, both EVs and conventional vehicles are considered
as follows :

Ua(t) =
∑
s∈NS

UGs
a(t) +

∑
s∈NS

∑
c∈C

∑
e∈Ec

UEs,e
a,c,∀a ∈ A\{AC},∀t (7a)

Va(t) =
∑
s∈NS

V Gs
a(t) +

∑
s∈NS

∑
c∈C

∑
e∈Ec

V Es,e
a,c, ∀a ∈ A\{AC},∀t (7b)

where UEs,e
a,c(t)/V Es,e

a,c(t) denotes the cumulative number of EVs that belong
to type c with EL e that enter/leave link a to destination s by the end of
interval t under scenario o; UGs

a(t)/V Gs
a(t) denotes the cumulative number

of GVs that enter/leave link a to destination s by the end of interval t under
scenario o.

Substituting Eq. (7) into the inequalities in Eqs. (3) - (6), we can have
the following constraints for the mixed traffic of EVs and GVs:∑

s∈NS

[V Gs
a(t)− V Gs

a(t− 1)] +
∑
s∈NS

∑
c∈C

∑
e∈Ec

[V Es,e
a,c(t)− V Es,e

a,c(t− 1)]

≤ Ofa(t),∀a ∈ A\{AC},∀t, s
(8)

∑
s∈NS

[UGs
a(t)− UGs

a(t− 1)] +
∑
s∈NS

∑
c∈C

∑
e∈Ec

[UEs
a(t)− UEs

a(t− 1)]

≤ Ifa(t),∀a ∈ A\{AC},∀t, s
(9)

∑
s∈NS

∑
c∈C

∑
e∈Ec

[UEs,e
a,c(t)− V Es,e

a,c(t− βa)] +
∑
s∈NS

[UGs
a(t)− V Gs

a(t− βa)]

≤ Lakjam,∀a ∈ A\{AC},∀t, s
(10)

For GVs, the cumulative outflow disaggregated by destinations and sce-
narios should also be constrained by the boundary condition at the inflow.
Hence, we have∑

s∈NS

V Gs
a(t) ≤

∑
s∈NS

UGs
a(t− νa),∀a ∈ A\{AC},∀t (11)

For EVs, the disaggregated cumulative outflow should also be constrained
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by the battery condition at the inflow. Hence, we have

V Es,e
a,c(t) ≤ UEs,e+ρa

a,c (t− νa),∀a ∈ A\{AC}, e ∈ Ec ∩ {e ≤ Ec − ρa},∀s, c, t
(12a)

V Es,e
a,c(t) = 0,∀a ∈ A\{AC}, e ∈ Ec ∩ {e > Ec − ρa},∀s, c, t (12b)

where, ρa is the ELs required to traverse link a and it is calculated by ρa =
La/(δ ·vf ). Eq. (12a) guarantees that outflow should be less than or equal to
the inflow. It also guarantees that the outflow ELs are updated from inflow
after EVs traversed the corresponding links. Eq. (12b) ensures that all EV
ELs should be less than their maximum ELs.

The traffic demand is satisfied by letting the cumulative inflows of source
links equal the cumulative demands:

UGs
a(t) = DGs

a(t),∀a ∈ AR,∀s, t (13a)

UEs,e
a,c(t) = DEs,e

a,c(t),∀a ∈ AR, e ∈ Ec,∀s, c, t (13b)

where DGs
a(t)/DEs,e

a,c(t) represents the cumulative GVs/EVs travel demand
between the entry of origin link a and destination s at the end of period t.

The inflow and outflow of a general node should be restricted by the
following flow conservation constraints:∑

a∈B(i)

V Gs
a(t) =

∑
b∈A(i)

UGs
a(t),∀i ∈ N /{NSR},∀s, t (14a)

∑
a∈B(i)

V Es,e
a,c(t) =

∑
b∈A(i)

UEs,e
a,c(t),∀i ∈ N /{NSR},∀e ∈ Ec,∀s, c, t (14b)

where A(i)/B(i) represents the set of links whose tail/head node is i.
For EVs, the current occupancy on charging link a should be limited by

the maximum number of chargers on this link:∑
s∈NS

∑
c∈C

∑
e∈Ec

[UEs,e
a,c(t)− V Es,e

a,c(t)] ≤ NCa(t),∀a ∈ AC ,∀t (15)

where NCa(t) is the physical number of type a chargers on charging link a
during period t.

The following equations are used to update the current occupancy and
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their ELs on a charging link:

x̂s,e
a,s(t) = xs,e

a,s(t− 1) + [UEs,e
a,c(t− 1)− UEs,e

a,c(t− 2)]−
[V Es,e

a,c(t− 1)− V Es,e
a,c(t− 2)],∀a ∈ AC ,∀e ∈ Ec,∀s, c, t

(16)

where x̂s,e
a,s(t) and xs,e

a,s(t) are the number of EVs before and after their ELs
have been updated on charging link a.

Based on the obtained occupancies, the following equations are used to
model their charging process where ELs of EVs linearly increase with time
on charging links:

xs,Ec
a,c (t) =

αt
a∑

l=0

x̂s,Ec−l
a,c (t),∀a ∈ AC , ∀s, c, t (17a)

xs,e
a,c(t) = x̂s,e−αt

a
a,c (t), ∀a ∈ AC ,∀e ∈ {αt

a ≤ e < Ec},∀s, c, t (17b)

xs,e
a,c(t) = 0,∀a ∈ AC ,∀e ∈ {e < αt

a}, ∀s, c, t (17c)

where αt
a represents the average charging speed for charging link a during

period t, which translates to how many energy levels can be supplied using
type a charger during a period δ. Assuming the charging power of charging
link a is peva , then, αt

a can be calculated by peva ·δ
η·δ·vf

= peva
η·vf

. Eqs. (17a) and (17c)
constrain the upper and lower boundaries of the updated ELs. Eq. (17b)
describe the process of linear increase in ELs.

Additionally, the outflow disaggregated by each EL on charging link a
should be less than its occupancy, as formulated in Eq. (18):

V Es,e
a,c(t)− V Es,e

a,c(t− 1) ≤ xs,e
a,c(t),∀a ∈ AC ,∀e ∈ Ec,∀s, c, t (18)

The occupancies on charging links are nonnegative, which is formulated
as follows:

xs,e
a,c(t) ≥ 0, x̂s,e

a,c(t) ≥ 0,∀a ∈ AC ,∀e ∈ Ec, ∀s, c, t, (19)

The cumulative flows should be nonnegative and nondecreasing:

V Gs
a(t)− V Gs

a(t− 1) ≥ 0,∀a ∈ A,∀s, t (20a)
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V Es,e
a,c(t)− V Es,e

a,c(t− 1) ≥ 0,∀a ∈ A, ∀e ∈ Ec,∀s, c, t (20b)

UGs
a(t)− UGs

a(t− 1) ≥ 0, ∀a ∈ A,∀s, t (21a)

UEs,e
a,c(t)− UEs,e

a,c(t− 1) ≥ 0,∀a ∈ A,∀e ∈ Ec,∀s, c, t (21b)

The following constraints force the initial cumulative flows to be 0:

UGs
a(0) = V Gs

a(0) = 0,∀a ∈ A,∀s (22a)

UEs,e
a,c(0) = V Es,e

a,c(0) = 0,∀a ∈ A, ∀e ∈ Ec,∀s, c (22b)

2.1.2. Modeling reconfiguration strategy in traffic-power system model
To mitigate the impacts after disruptions, we consider the strategy of con-

traflow to reconfigure the topology of the highway networks. Contraflow can
be easily implemented by reversing the direction of lanes of highway networks.
Fig. 2.1.2 shows how the contraflow assists increasing the throughput of the
network after disruptions. Assuming that there are 20 vehicles per minute
starting from nodes O to D and 10 vehicles per minute from nodes D to O.
Node M serves as transshipment. The number along each link represents
the time required to traverse the link at a free-flow speed. Fig. 1(a) shows
that there are 20 and 40 vehicles arriving at nodes O and D, respectively,
after 6 minutes, when each link works normally. If the link from nodes O
to D fails, the arrivals on node D decrease to 20 vehicles, as shown in Fig.
1(b). However, if we reverse the direction of the link from nodes D to O,
the total number of arrivals can be increased from 40 to 50 vehicles after the
disruption, as shown in Fig. 1(c). This example shows that reconfiguring the
highway network after disruption could effectively reduce the system per-
formance loss. Another example in Ref. [39] can be found illustrating how
contraflow strategy increases the network outbound capacity and mitigates
the congestion.

To model the contraflow strategy, we define that each link in the highway
network has and only has one unique opposite link corresponding to it. For
example, there are two links a1 and a2 from nodes O to D in Fig. 2.1.2.
Their corresponding opposite links are â1 and â2, respectively. Meanwhile,
links a1 and a2 are the opposite links of links â1 and â2. Mathematically, we
use variable ha to denote whether link a is changed to the opposite direction
or not. â represents the unique opposite link of link a. If the direction of the
link is reversed, the outflow capacity, the inflow capacity and the maximum
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Figure 1: Contraflow illustration: (a) Normal condition (b) After disrutption (c) After
reconfiguration

number of vehicles that can be present on that link of direction will be
correspondingly reconfigured. Therefore, Eqs. (8) - (10) are reformulated as
follows:

∑
s∈NS

[V Gs
a(t)− V Gs

a(t− 1)] +
∑
s∈NS

∑
c∈C

∑
e∈Ec

[V Es,e
a,c(t)− V Es,e

a,c(t− 1)]

≤ (1− ha) ·Ofa(t) + hâ ·Ofâ(t),∀a ∈ A\{AC},∀t, s
(23)
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∑
s∈NS

[UGs
a(t)− UGs

a(t− 1)] +
∑
s∈NS

∑
c∈C

∑
e∈Ec

[UEs
a(t)− UEs

a(t− 1)]

≤ (1− ha) · Ifa(t) + hâ · Ifâ(t),∀a ∈ A\{AC},∀t, s
(24)

∑
s∈NS

∑
c∈C

∑
e∈Ec

[UEs,e
a,c(t)− V Es,e

a,c(t− βa)] +
∑
s∈NS

[UGs
a(t)− V Gs

a(t− βa)]

≤ (1− ha)Lakjam + hâLâkjam,∀a ∈ A\{AC},∀t, s
(25)

Eq. (23) states that the outflow on link a are constrained by the status
of links a and â. If ha = 0 and hâ = 0, no link is reversed and the outflow
capacity on the direction of original link a is unchanged, i.e., outflow capacity
of link a; If ha = 1 and hâ = 1, both links are reserved and the outflow
capacity is modified to the outflow capacity of link â; If ha = 1 and hâ = 0,
the direction of link a is reversed and the outflow capacity becomes 0; If
ha = 0 and hâ = 1, the direction of the opposite link â is reversed and
the outflow capacity increase to the sum of outflow capacities of links a
and â. Similarly, we can have Eqs. (24) and (25) to constrain the inflow and
maximum occupancies on the direction of original link a after reconfiguration.

ha, hâ = {0, 1},∀a, â ∈ A\{AC} (26)∑
a

ha ≤ Nh,∀a ∈ A\{AC} (27)

Eq. (26) guarantees that ha and hâ are binary variables. Eq. (27)
constrains the total number of links that can be reversed. This constraint
reflects the limited resources that can be used to emergency response to the
disruption, in practice.

The emergency response problem is formulated as follows:

min
x∈Ψ

PT =
∑
s∈NS

∑
t∈T

∑
a∈AS

[DGs
a(t)− UGs

a(t) +
∑
c∈C

∑
e∈Ec

(DEs,e
a,c(t)− UEs,e

a,c(t))] · ϕ

(28)

where Ω = {x| Subject to constraints (11)-(27)}. ϕ denotes the time value.
The objective of the transportation operator is to minimize the system per-
formance loss cost after disruptions within a certain period. The system
performance loss is measured by the unsatisfied traffic demand. In this pa-
per, it is calculated by the cumulative difference between the target demand
(i.e., DGs

a(t) and DEs,e
a,c(t)) and the number of vehicles arrived at their des-
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tinations (i.e., UGs
a(t) and UEs,e

a,c(t), a ∈ NS). In Eq. (28)The first term is
the cumulative unsatisfied GVs travel demand and the second term is the
cumulative unsatisfied EVs travel demand.

2.2. Reconfiguring power system
We consider a PN GP (PN ,PL), where PN and PL represent the sets of

buses and branches, respectively. P̃L represents the set of damaged trans-
mission lines after a disruption, P̃L ⊂ PL. Γ−(j) and Γ+(j) denote the sets
of predecessors and successors of bus j, respectively.

After the disruption, the objective of independent system operator is to
minimize the cost of shedding unsatisfied load, which is formulated as follows:

minPP =
∑
j

∑
t

cbj · LSb
j,t + cdcj · LSdc

j,t · pdcj (t) (29)

where cbj and cdcj are cost of shedding base load and EV charging load, respec-
tively; LSb

j,t is a continuous variable representing the amount of unsatisfied
base demand at bus j in period t; LSdc

j,t is a binary variable denoting where
the charging demand pdcj (t) at bus j in period t is shedded or not.

The power flow in the transmission systems are subjected to the following
constraints:

pgj,t+
∑

i∈Γ−(j)

Pi,j,t−
∑

k∈Γ+(j)

Pj,k,t = pbj,t−LSb
j,t+(1−LSdc

j,t)·pdcj (t),∀j ∈ PN (30)

− P̄i,j · ui,j ≤ Pi,j,t ≤ P̄i,j · ui,j,∀(i, j) ∈ Pl\{P̃L},∀t (31)

Pi,j,t = 0,∀(i, j) ∈ {P̃L},∀t (32)

Bi,j · (θi,t − θj,t)− Pi,j,t + (1− ui,j) ·Mi,j ≥ 0,∀(i, j) ∈ PL\{P̃L},∀t (33)

Bi,j · (θi,t − θj,t)− Pi,j,t − (1− ui,j) ·Mi,j ≤ 0,∀(i, j) ∈ PL\{P̃L},∀t (34)

−pramp
j ≤ pgj,t − pgj,t−1 ≤ pramp

j ,∀j ∈ PN ,∀t ∈ T (35)

0 ≤ LSb
j,t ≤ pbj,t, ∀j ∈ PN (36)

0 ≤ P g
j,t ≤ p̄gj ,∀j ∈ Pj (37)∑

(i,j)∈PL

(1− ui,j) ≤ Nu (38)
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ui,j = 0, 1,∀(i, j) ∈ PL (39)
LSdc

j,t = {0, 1},∀j ∈ PN (40)
Constraint (30) relaxes the power flow balance constraint at each bus by
allowing to shed unsatisfied demand. Constraint (31) guarantees that the
power flow on transmission lines do not exceed their capacities if they func-
tion. Constraint (32) enforces the amount of power flow on the damaged lines
to be 0. Constraints (33)-(34) denote Kirchhoff’s power flow equations, where
power flow are limited by lines’ susceptance and the phase angle difference
between the two end buses. It is necessary to include the big-M in the equa-
tions. If the constraint is directly written as Bi,j ·(θi,t−θj,t) = Pi,j,t ·(1−ui,j):
when the line’s status is not switched and in service (i.e., ui,j = 1), this equa-
tion works normally; when the line is switched off (i.e., ui,j = 0), the phase
angle between the two end buses of this line will be enforced to be 0, which
is not logical for the power flow in the network. Constraint (35) limits the
generator ramp between two successive periods. Constraint (36) gives the
lower and upper boundaries of the amount of base load that can be shedded
at each bus. Constraint (37) ensures that the flow generated by generators
is within their capacity. Constraint (38) limits the number of lines that can
be switched. Constraints (39) - (40) state ui,j and LSdc

j,t are binary decision
variables.

2.3. Reconfiguring traffic-power system
In this subsection, we assume that the independent transportation net-

work and PN are taken over by an emergency response department. Thus, it
integrally operates and reconfigures the traffic-power networks to minimize
the total system performance loss.

In this situation, the EV charging load pdcj (t) at each bus becomes a
decision variable, which can be calculated by the following equation:

pdcj (t) =
∑

a∈M(j)

∑
s∈NS

∑
c∈C

∑
e∈Ec

peva [UEs,e
a,c(t)− V Es,e

a,c(t)] (41)

where M(j) is a mapping from bus set PN to charging links set AC , which
specifies the connection between buses in a power system and charging links
in a RN.

Since the traffic-power system is integrally operated, the charging loca-
tions and times of EVs can be flexibly arranged to assist minimizing the
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objective. Therefore, it is not necessary to have variable LSdc
j,t anymore to

control whether the EV charging load is shedded or not. Eq. (30) is rewritten
as follows:

pgj,t +
∑

i∈Γ−(j)

Pi,j,t −
∑

k∈Γ+(j)

Pj,k,t = pbj,t − LSb
j,t + pdcj,t,∀j ∈ PN (42)

The whole problem is formulated as follows:

min
z∈Ψ

PI =
∑
s∈NS

∑
t∈T

∑
a∈AS

[DGs
a(t)− UGs

a(t) +
∑
c∈C

∑
e∈Ec

(DEs,e
a,c(t)− UEs,e

a,c(t))] · ϕ+
∑
t∈T

cbj · LSb
j,t

(43)

where Ψ = {z| s.t. (11) - (27), (31) - (39) and (41) - (42)}.
In each time period, there are expected demand E(t) and unsatisfied

demand ∆E(t) in the system. The following equation is employed to measure
the system performance P (t) [1]:

P (t) =
E(t)−∆E(t)

E(t)
(44)

where 0 ≥ ∆E ≥ E. This equation can be understood as the percentage of
demand that can be satisfied in the system in period t.

In the studied traffic-power system, the expected demand includes the all
vehicle types traffic demand over all OD pairs and base electricity demand
over all buses, which is formulated as follows:

E(t) =
∑
s∈NS

∑
a∈AS

[DGs
a(t) +

∑
c∈C

∑
e∈Ec

DEs,e
a,c(t)] · ϕ+

∑
j∈PN

cbj · pbj,t (45)

where time value ϕ and shedding load cost cbj are used so that the system per-
formance of PNs and RNs have the same physical dimension, thus, additiv-
ity. It can be understood as if these demands are satisfied, the corresponding
amount of money can be saved.

The only difference between ∆E and Eq. (43) is without summation over
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time. Eq. (46) is rewritten as follows:

P (t) =

∑
s∈NS

∑
a∈AS

[UGs
a(t) +

∑
c∈C

∑
e∈Ec UEs,e

a,c(t)] · ϕ+
∑

j∈PN
[pbj,t − LSb

j,t] · cbj∑
s∈NS

∑
a∈AS

[DGs
a(t) +

∑
c∈C

∑
e∈Ec DEs,e

a,c(t)] · ϕ+
∑

j∈PN
cbj · pbj,t
(46)

3. Case study

The modified IEEE 14-bus system is used as the PN part in this study. It
is preventive of small-size power systems and the original IEEE 14-bus test
case is a portion of the American electric power system (in the Midwesten
US) [40]. There are 14 buses and 20 transmission lines, and the detailed data
can be found in Ref. [41]. The transportation network part is illustrated by
a partial highway network in North Carolina (NC), U.S., which is shown in
Figure 3. Figure 2(a) shows the locations of EV charging stations within
this area and the geographic data of the highway network are collected from
Google map. This partial highway network is abstracted into an approx-
imated topology network as shown in Figure 2(b). The number along the
link is the link ID. In spite of its relatively small scale, the system is complete
enough to illustrate the proposed models. There are 9 fast-charging stations
in the studied highway network and their connections to the served buses are
listed in Table 1. The data used in this studied is detailed in Appendix A.

The proposed model is illustrated by solving and analyzing the following
hypothetical scenario: it is reported that links 4, 17, 19 in the highway net-
work and lines 2-3, 2-4, 7-8 in the PN are destroyed, and they cannot provide
services normally. The problem that the emergency response department face
is how to reconfigure and operate both the traffic and power systems, so that
their performance loss caused by the disruption can be minimized during the
peak hours (i.e., 17:00-18:59).

All of the experiments have been run on a computer with an Intel Core
i7-8700 3.2-GHz CPU with 32 GB of RAM. All of the problems have been
solved by the commercial software IBM ILOG CPLEX (version 20.1.0.0).

3.1. The impact of the different response resource level
In this subsection, 5 different resource levels are investigated: Nh = Nu =

0, 1, 2, 3, 4, 5. Figure 3.1 shows the system performance level evolution
over the studied time horizon under different resource levels. Time step = 0
denotes the occurrence of the reconfiguration. In this period, it can be found
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Table 1: Connections between charging links and Buses
Charging link Bus NCa(t)

301 2 30
302 3 45
303 4 30
304 5 30
305 6 30
306 7 15
307 8 30
308 9 15

that the system performance levels are different under different resource lev-
els. It is because that once the transmission network topology is reconfigured,
the effects (i.e., the shedded load) are influenced immediately. Whereas, the
effects of reconfiguring highway networks are taken into account in the follow-
ing time steps, since the delay is resulted from the time required from origins
to destinations for vehicles. The performance level denotes the percentage of
the total demand is satisfied. As expected, the system performance increase
with the resource levels. If the response resource level increase from 0 to
2, the system performance can be largely increased from 76.58% to 86.26%.
After that, the marginal economic benefit of additional response resource
reduces as the number of links reversing and lines switching raises. This is
also can be found in Figure 3.1. When the resource level is 2, the nominal
cost of both highway networks and transmission networks reduces largely.
It also shows the effectiveness of reconfiguring network topology during the
restoration period. Table 3.1 shows the reconfiguration solutions of links in
the RNs and that of lines in the PNs. From the third to the fifth columns,
they represent the number of vehicles, GVs and EVs arrived at destinations in
the end of the studied horizon. The last column represents the total charging
demand during the studied horizon. The Third column in Table 3.1 shows
that the optimal set of the switched lines in low resource level scenarios is
not necessarily a subset of the switched lines in high resource level scenarios.
For instance, line 4-7 is switched off when resource level is 1, whereas lines
4-9 and 7-9 are switched off when resource level increase to 2. However, this
is not applied in RNs in this example. There could be two reasons resulted
from the traffic demand distribution: 1) The used gravity model generates
high traffic demand between two cities where their distance is short and pop-
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Table 2: Solutions under different resource levels
Resource

levels ha = 1 ui,j = 0 Vehicles GVs EVs
Charging
demand
(MW)

0 19091 17336 1755 182.8
1 117 4-7 22142 20322 1820 148.8
2 104,117 4-9,7-9 21573 19512 2061 165.68
3 5,104,117 4-7,4-9,6-13 21987 19656 2331 207.68
4 5,26,114,117 4-7,4-9,1-2,9-14 22005 19669 2336 222.88
5 5,25,26,114,117 4-7,4-9,1-2,6-12,13-14 21999.5 19656 2343.5 201.28

ulation is large. This may cause high traffic volume on some certain two-way
road sections; 2) To model the directional differences of traffic volumes, the
direction of traffic demand between two cities is randomly selected. It could
make the bidirectional high traffic volumes become one-way high traffic vol-
umes on some road sections. Therefore, once these links with high traffic
volumes are damaged (e.g., links 17 and 19), they may alway have priorities
to be restored so that the system loss can be minimized. Moreover, when
there are large volume differences between two opposite links, the link ca-
pacity can be greatly improved by reversing the link with less volumes (e.g.,
links 5 and 26). Less nominal cost of system performance loss and higher
resource level do not mean more vehicles can arrive the destinations during
the studied period. For example, Figure 3.1 shows the nominal loss cost of
resource level being 2 is less than that of resource level being 1. However,
Table 3.1 shows that there are also less arrivals when the resource level is
2 than when the resource level is 1. It is because the vehicles arrive their
destinations earlier when the resource level is 2 than when the resource level
is 1. There is a trade-off between the number of arrivals and their travel time
for RNs.

3.2. Different EV penetration levels and decision environments
Without loss of generality, both the maximum number of lines can be

switched and links can be reversed are set to be 3 (i.e., Nu = 3 and Nh = 3).
When RNs and PNs independently optimize their restoration plans, we as-
sume that the operators of RNs share their temporal and spatial charging
demand with the PNs operators first at the beginning of the restoration hori-
zon and they no longer change their plans. This situation can be regarded as
the unmanaged charging demand scenarios from the PNs operator’s perspec-
tive. In this case, the PNs operators have to satisfy all EV charging demand
and only the base electricity load can be shedded when they optimize their
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Table 3: Solutions under different EV penetration levels and decision environments
EV

Penetration Environments ha = 1 ui,j = 0
Total

cost ($)
Cost for
RNs ($)

Cost for
PNs ($) Vehicles GVs EVs

Charging
demand
(MW)

Interdependent 5,104,117 4-7,4-9,6-13 773300 729300 44000 30540 30540 0 0
0% Independent -* 4-9,7-9,13-14 773300 729300 44000 22142 30540 0 0

Interdependent 5,104,117 4-7,4-9,6-13 821260.15 775340.15 45920 26933.5 25346 1587.5 166.425% Independent - 4-7,4-9,9-14 824392.15 770192.15 54200 21987 19656 2331 255.2
Interdependent 5,104,117 4-7,4-9,6-13 894274.2 845226.2 49048 21987 19656 2331 207.6850% Independent - 4-7,4-9,13-14 897389.5 843069.5 54320 21999.5 19656 2343.5 294
Interdependent 11,109,117 4-7,4-9,6-13 994669.5 945509.5 49160 13980 11325 2655 218.475% Independent - 4-7,4-9,13-14 998,262 943462 54800 14430 10437 3105 318
Interdependent 22,102,117 4-7,4-9 1133009 1083849 49160 2822.5 0 2822.5 210100% Independent 117 4-7,4-9,13-14 1134561.5 1081801.5 52760 3272.5 0 3272.5 243.6

* The solution is same to the interdependent environment

restoration plans.
Figure 3.2 shows the traffic-power systems performance evolution over

restoration horizon under different EV penetration levels. Table 3 shows the
benefit of line switching and link reversing in terms of system performance
loss for different EV penetration levels and different decision-making envi-
ronments. As shown in Figure 3.2, the traffic-power system performance
decreases as the EV penetration increases. When EV penetration increase
from 0% to 100%, the nominal total costs of the traffic-power system increases
from $773300 to $1133009, leading to a 46.7% increase in costs. Extra charg-
ing time needed for EVs comparing to GVs and the limited chargers are the
main reasons of this result. When the EV penetration is equal to or less
than 50%, the reconfiguration solutions are stable for both the traffic-power
systems and the independently optimized RNs. In this situation, links 5, 104
and 117 in RNs are reversed. Lines 4-7, 4-9 and 6-13 are always switched
off, when the restoration plans of PNs are coordinately optimized. When
there are no EV in RNs, no matter interdependently or independently plan
the restoration of RNs and PNs, both of them have the same nominal total
system performance costs. When EVs arise in RNs, the nominal total costs
of interdependently planing the traffic-power system are lower than that of
independently planing them. It shows the added values of coordinately opti-
mize the two networks. The total charging demand over the studied horizon
in the last column in Table 3 shows the difference between coordinately man-
aging the EV charging demand and independently managing them from the
perspective of the RNs’ operator. The coordinately scheduled spatiotempo-
ral charging demand is a trade-off between RNs and PNs in terms of their
individual system performance loss.

24



4. Conclusion

In this paper, the mathematic models of independently reconfiguring road
networks (RNs) and power networks (PNs) are proposed to minimize the sys-
tem performance loss during the restoration period. In both networks, system
performance loss was measured by the unsatisfied demand, i.e., cumulative
unsatisfied gasoline vehicles (GVs) and electric vehicles (EVs) traffic demand
for RNs and cumulative shedded electricity load for PNs over the studied pe-
riod. For RNs, the proposed model was to solve the system optimal dynamic
traffic assignment problem considering the characteristics of EVs and fast-
charging stations (FCCSs). These characteristics include driving range (bat-
tery capacity) and state of charge (SoC) of EVs, and physical constraints in
FCSs, such as number of chargers and charging power. Moreover, a two-stage
mixed integer optimization model was proposed to minimize the integrated
system performance loss duration the restoration period. In the tactical level,
reconfiguration solutions for the traffic-power systems are solved to enhance
the system resilience after a disruptive event. In the operational level, an in-
tegrated traffic-power systems model was proposed to describe the dynamic
interdependency between the PNs and RNs networks. The two networks
were coupled through the spatial and temporal EV charging demand, which
is coordinately managed in the proposed model. A partial highway network
in North Carolina (NC), USA and modified IEEE 14-bus system were used
to illustrate the proposed methods. The results showed that: 1) applying
reconfiguration strategies on PNs and RNs during restoration period could
effectively improve the system performance after disruptions; 2) the system
performance loss could be largely mitigated by coordinately reconfiguring
the traffic-power systems and managing EV charging demand, comparing to
independently plan the reconfiguration solutions for PNs and RNs; 3) with
the increasing of EV penetrations, the efficiency of the RNs decreased sig-
nificantly, which hinted that more FCSs needed to be deployed in this area.
The proposed models could be employed to provide effective reconfiguration
solutions (i.e., links reversing in RNs and lines switching in PNs) for traffic-
power systems during restoration period to enhance the system resilience.
Operational solutions (i.e., system optimal dynamic traffic assignment and
optimal power flow distribution) could be served as a benchmark to mange
thee traffic-power flow and EV charging demand.

This work can be extended in several directions: 1) Replacing system
optimal by user equilibrium in dynamic traffic assignment problem is valuble
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but challenging for the traffic-power systems model, although such model
may not be suitable to apply into emergency response problem. It is because
satisfying user equilibrium conditions mean more complicated optimization
model and extremely expensive computational cost. 2) Including mobile
energy storage systems (MESSs) into emergency response strategies could be
an effective way to improve the resilience of RNs. However, how to integrate
MESSs into the traffic-power system model still need more efforts; 3) EVs
are assumed to only replenish batteries in FCSs, in this paper. Bidirectional
transmission electricity service in FCSs can be considered to more efficiently
operate the traffic-power systems and strengthen their resilience.

Appendix A. Data discription

A partial highway network in NC, USA is shown in Figure 3. The used
parameters of this studied network are listed in Tables A.4 and A.5. The node
ID, its corresponding town or city name and its population within this area
are listed in Table A.6. The cities or towns attached source-sink nodes are
those whose population is more than 11000. According to their geographic
distances among these nodes and their population, the gravity model is used
to generate the daily traffic demand. The generic form of gravity model [42]
is usually written as fod = Pα

o P
β
d /D

γ
od, where Po and Pd are the population

sizes of origin a and destination d, Dod is the shortest distance between
them, α, β and γ are fitting parameters. We set α = β = 0.92 and γ = 1, in
this study. To consider the worst-case scenario, the traffic volumes at 17:00
and 18:00 are adopted, which are the peak and account for approximately
15.3% of the daily traffic, in the basic time-of-day patterns [43]. The traffic
volumes usually show the directional differences and it is difficult to get the
applicable statistics for time-of-day travel by direction for each O-D pair [43].
For simplicity, only one direction is randomly selected for each O-D pair and
traffic volumes in the other direction is ignored. The obtained traffic demand
is shown in Table. A.7. According to Ref. [44], the electricity demand in
U.S. has the similar peak hours with traffic volumes and their demand does
not change a lot during this period. For simplicity, it is assumed that the
base load at each bus is constant during this period and follows the standard
test data [41].
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Table A.4: Parameters of the studied highway network
Link ID Start End νa βa ρa Type Lakjam Ifa/Ofa Lanes
1/101 2/1 1/2 5 10 5 G 13910 500 2
2/102 2/3 3/2 3 6 3 G 8346 500 2
3/103 3/8 8/3 4 8 4 G 5564 250 1
4/104 1/5 5/1 3 6 3 G 8346 500 2
5/105 2/5 5/2 3 6 3 G 8346 500 2
6/106 2/6 6/2 3 6 3 G 8346 500 2
7/107 3/4 4/3 1 2 1 G 1391 250 1
8/108 5/6 6/5 1 2 1 G 2782 500 2
9/109 4/6 6/4 3 6 3 G 4173 250 1
10/110 4/7 7/4 2 4 2 G 2782 250 1
11/111 4/8 8/4 3 6 3 G 4173 250 1
12/112 6/7 7/6 5 10 5 G 13910 500 2
13/113 6/7 7/6 5 10 5 G 6955 250 1
14/114 7/8 8/7 2 4 2 G 5564 500 2
15/115 7/8 8/7 2 4 2 G 2782 250 1
16/116 1/10 10/1 4 8 4 G 11128 500 2
17/117 10/14 14/10 3 6 3 G 8346 500 2
18/118 5/15 14/5 5 10 5 G 6955 250 1
19/119 11/14 14/11 2 4 2 G 5564 500 2
20/120 5/9 9/5 2 4 2 G 5564 500 2
21/121 6/9 9/6 2 4 2 G 5564 500 2
22/122 9/11 11/9 2 4 2 G 5564 500 2
23/123 11/9 9/11 2 4 2 G 5564 500 2
24/124 11/12 12/11 4 4 4 G 11128 500 2
25/125 6/12 12/6 4 4 4 G 11128 500 2
26/126 12/13 13/12 3 6 3 G 4173 250 1
27/127 7/13 13/7 2 4 2 G 2782 250 1
29/129 2/201 201/2 0 0 0 S/R inf inf
30/130 10/202 202/10 0 0 0 S/R inf inf
36/136 5/203 203/5 0 0 0 S/R inf inf
31/131 11/204 204/11 0 0 0 S/R inf inf
32/132 12/205 205/12 0 0 0 S/R inf inf
33/133 14/206 206/14 0 0 0 S/R inf inf
34/134 8/207 207/8 0 0 0 S/R inf inf
35/135 3/208 208/3 0 0 0 S/R inf inf
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Table A.5: Parameters of the studied traffic-power system
Parameters Values
vf (m/h) 65

kjam(veh/m) 214
δ (min) 6

qmax (veh/h/lane) 2500
peva (kW) 80

η (kMh/mile) 0.4
ϕ ($/h) 13

C 1
Ec 10

αt
a (ELs/δ) 3

Initial EL of EV 3

Table A.6: Population of the towns and cities
Node ID Name Population Node ID Name Population
1 Zebulon 4526 2 Rocky Mount 56650
3 Tarboro 11255 4 Pinetops 1351
5 & 6 Wilson 49436 7 Farmville 4695
8 Greenville 86142 9 Kenly 1344
10 Raleigh 418099 11 Selma & Smithfield 17901
12 Goldsboro 35609 13 Snow Hill 1611
14 Clayton 16529
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(a) The partial highway network in NC

(b) The approximated topology network

Figure 2: The studied highway network
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Figure 3: System performance evolution over restoration horizon under different resource
level
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Figure 4: Nominal cost for the studied traffic-power systems under different resource level
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Figure 5: The traffic-power systems performance evolution over restoration horizon under
different EV penetration levels
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