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Abstract: We are interested in the quantification of uncertainties in discretized elliptic partial
differential equations with a random coefficient field. In sampling-based approaches, this relies on
solving large numbers of symmetric positive definite (SPD) linear systems with different matrices.
In particular, we consider the case in which these operators are sampled by Markov chain Monte
Carlo, which leads to sequences of correlated matrices. We investigate recycling Krylov subspace
strategies for the iterative solution of sequences of linear systems formed with such matrices. The
linear systems are solved using initialized conjugate gradient (Init-CG) methods, where approxi-
mate eigenvectors of the previously sampled operator are used to set an initial guess, and deflated
conjugate gradient (Def-CG) methods, where the Krylov subspace is augmented with these vectors.
The following aspects of eigenvector approximation, and their effect on deflation and initialization,
are investigated in this context: (i) projection technique, and (ii) refreshing strategy of the eigen-
search space. Our numerical experiments show that, when not using a preconditioner, these aspects
only impact convergence behaviors of Def-CG at the early stages of the sampling sequence. Sec-
ond, unlike sequences with multiple right-hand sides and a constant operator, our experiments
with multiple matrices show that, even for highly correlated matrices, Init-CG does not reproduce
the convergence behavior of Def-CG. Finally, the limits of deflation used as a means to compensate
for the inefficiency of block-Jacobi (bJ) preconditioners are investigated. For small systems, using
a bJ preconditioner while deflating with at least as many approximate eigenvectors as the number
of bJ blocks achieves similar convergence behaviors to PCG with a constant algebraic multigrid
(AMG) preconditioner. For larger systems, although the effect of deflation is improved when using
the right refreshing strategy of the eigen-search space, the combination of deflation with bJ pre-
conditioners does not scale as well as using PCG with a constant AMG preconditioner based on
the median realization of the coefficient field.

Key-words: Deflation, recycling Krylov subspaces, uncertainty quantification, stochastic
PDEs.



Stratégies de recyclage de sous-espaces de Krylov pour des
suites d’équations elliptiques stochastiques échantillonnées

Résumé : Nous nous intéressons à la quantification des incertitudes dans les équations
aux dérivées partielles elliptiques discrétisées avec un champ de coefficients aléatoires. Dans les
approches basées sur l’échantillonnage, celle-ci repose sur la résolution d’un grand nombre de
systèmes linéaires symétriques définis positifs (SPD) avec des matrices différentes. En partic-
ulier, nous considérons le cas où ces opérateurs sont échantillonnés par une méthode de Monte
Carlo par chaînes de Markov, ce qui produit des suites de matrices corrélées. Nous étudions
des stratégies de recyclage de sous-espaces de Krylov pour la résolution itérative de suites de
systèmes linéaires provenant de telles matrices. Les systèmes linéaires sont résolus en utilisant
des méthodes de gradient conjugué initialisé (Init-CG), où les vecteurs propres approximatifs de
l’opérateur précédemment échantillonné sont utilisés pour définir une estimation initiale, et des
méthodes de gradient conjugué déflaté (Def-CG), où le sous-espace de Krylov est augmenté de
ces vecteurs propres. Les aspects suivants de l’approximation des vecteurs propres, et leur effet
sur la déflation et l’initialisation, sont étudiés dans ce contexte : (i) la technique de projection, et
(ii) la stratégie de rafraîchissement de l’espace de recherche des vecteurs propres. Nos expériences
numériques montrent que, lorsqu’on n’utilise pas de préconditionneur, ces aspects n’ont un im-
pact sur les comportements de convergence de Def-CG qu’au début de la suite d’échantillonnage.
Deuxièmement, contrairement aux séquences avec des second-membres multiples et un opérateur
constant, nos expériences avec des matrices multiples montrent que, même pour des matrices
fortement corrélées, Init-CG ne reproduit pas le comportement de convergence de Def-CG. En-
fin, nous étudions les limites de la déflation utilisée comme moyen de compenser l’inefficacité des
préconditionneurs bloc-Jacobi (bJ). Pour les petits systèmes, l’utilisation d’un préconditionneur
bJ tout en déflatant avec au moins autant de vecteurs propres approximatifs que le nombre de
blocs bJ permet d’obtenir des comportements de convergence similaires à ceux de PCG avec un
préconditionneur multigrille algébrique (AMG) constant. Pour les systèmes plus grands, bien que
l’effet de la déflation soit amélioré en utilisant la bonne stratégie de rafraîchissement de l’espace
de recherche des vecteurs propres, la combinaison de la déflation avec les préconditionneurs bJ
ne s’adapte pas aussi bien que l’utilisation du PCG avec un préconditionneur AMG constant
basé sur la réalisation médiane du champ de coefficients.

Mots-clés : Déflation, recyclage de sous-espaces de Krylov, quantification d’incertitudes,
EDP stochastique.
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Recycling Krylov subspaces for stochastic PDEs 5

1 Introduction

We are interested in solving sequences of symmetric positive definite (SPD) linear systems that
arise when sampling discretized elliptic PDEs with uncertain coefficients. For this purpose, we use
Init-CG [2] and Def-(P)CG [19] algorithms, with deflation subspaces spanned by approximate
eigenvectors of the sampled operator. Eigenvector approximations are carried out by projection
techniques with respect to Krylov subspaces of the previous operator in the sampling sequence
augmented with previous eigenvector approximations. Hence, precise eigenvector approximations
serve the purpose of deflation if the next system in the sequence has a matrix with similar
eigenvectors. To improve the effect of this recycling on deflation, we consider sequences in which
the latent random variables of the coefficient field are sampled by Markov chain Monte Carlo
(MCMC), as it introduces a correlation between subsequently sampled operators.

Different technical aspects arise when solving such MCMC-sampled sequences of linear sys-
tems with recycling Krylov subspace strategies. First, eigenvector approximations can be per-
formed using different projection techniques. While some authors favor the use of harmonic
Rayleigh-Ritz (HR) projections for sequences of linear systems with a constant operator [19],
and multiple operators [12], other recycling strategies used for a constant operator are based
on Rayleigh-Ritz (RR) projections [20]. Second, the search space in which the approximate
eigenvectors are sought, i.e., the eigen-search space, may only make use of a fraction of the
matrix-vector products generated by the solver [12, 19], or be refreshed periodically throughout
the linear solve so as to make use of all these products in hope of improving the eigenvector
approximation. This is for instance the case in eigCG [20]. Note that we use the term refresh
rather than restart to clarify that, in such procedures, the linear solver is not restarted. Third,
while Def-(P)CG [19] forces the iterated residual of the linear system to remain orthogonal to
a deflation subspace, this step, which entails an additional computational cost at every iteration,
is sometimes successfully bypassed by using Init-CG methods for sequences of linear systems
with multiple right-hand sides and a fixed operator [3, 20]. However, it is not obvious whether a
similar approach can be adopted for MCMC-sampled sequences with multiple operators.

In this work, we address the aforementioned technical aspects. The problem at hand is stated
in Section 2. Section 3 presents how approximate eigenvectors can be computed to deflate sam-
pled sequences of linear systems and initialize the linear solves. Different refreshing strategies of
the eigen-search space are presented, and their effect on deflation and initialization is investigated
through numerical experiments without preconditioner. The combined action of deflation and
preconditioning is discussed in Section 4, where the use of deflation as a means to compensate
for the inefficiency of constant bJ preconditioners is compared to PCG solves using an algebraic
multigrid (AMG) solver as a constant preconditoner. Finally, conclusions are drawn based on
the results of our numerical experiments.

2 Discretization and sampling of stochastic PDEs

Let (Θ,Σ, µ) be a probability triplet and Ω ⊂ Rd be a bounded open domain for d ∈ {1, 2, 3}.
We want to find u : Ω×Θ→ R, such that

∇ · (a(x; θ)∇u(x; θ)) = −f(x) ∀ x ∈ Ω, (1)

and deterministic boundary conditions for all x ∈ ∂Ω. For almost all θ ∈ Θ, realizations a(·; θ)
of the random coefficient field are strictly positive and bounded above almost everywhere in the
domain Ω. In the present work, we restrict ourselves to the case of random coefficients with log-
normal distributions; denoting g(x; θ) = log a(x; θ) the underlying Gaussian field, the stochastic
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6 Nicolas Venkovic, Paul Mycek, Luc Giraud, Olivier P. Le Maître

discretization of a relies on the Karhunen-Loève [5] expansion of g,

g(x; θ) = E[g(x; θ)] +

∞∑
l=0

√
γlgl(x)ξl(θ), (2)

where (γl, gl) are the eigen-pairs of the covariance function of the Gaussian process. Ordering
the normalized eigen-pairs, γ1 ≥ γ2 ≥ · · · ≥ 0, the KL expansion can be truncated to retain
the first ns > 1 dominant modes. In addition, the random variables ξl are independent and
identically distributed standard Gaussian variables: ξ := (ξ1 · · · ξns

)T ∼ N (0, Ins
). Therefore,

the field a can be sampled by sampling ξ. In the present work, we consider a with unit median
value, E[g(x; θ)] = 0, and two cases. Case 1 corresponds to a 1D stationary coefficient field
with exponential covariance function for g, given by E[g(x)g(y)] = σ2 exp(−|x− y|/L), in which
σ2 = 0.5 and L = 0.05. Case 2 corresponds to a 2D stationary coefficient field with squared
exponential covariance function for g given by E[g(x)g(y)] = σ2 exp(−‖x − y‖2/L2) in which
σ2 = 1 and L = 0.1. For Case 1 we used ns = 1,802 while for Case 2 ns = 176. Figures 1 and 2
report few realizations of a for Case 1 and 2 respectively.

0 0.5 1
x

10−1

100

101

a(x; ξs)

0 0.5 1
x

a(x; ξs+10)

0 0.5 1
x

a(x; ξs+100)

0 0.5 1
x

a(x; ξs+1000)

Figure 1: Realizations of a(x) := exp(g(x)) for Case 1.

Figure 2: Realizations of a(x) for Case 2.

Upon subsequent spatial discretization, the approximation of u reduces to an n-by-n SPD
linear system A(ξ)x(ξ) = b(ξ). In this work, we present and use iterative methods to solve
linear systems Asxs = bs in which As := A(ξs), and so on, where ξ1, ξ2, . . . are samples
of ξ ∼ N (0, Ins). Because these methods are best behaved when As−1 and As are similar,
we consider the case where ξ is sampled by MCMC using a Gaussian proposal distribution
with covariance 2.382Ins

/ns. The similarities between the successive samples of the coefficient
field a(x; ξs) can be appreciated from Figures 1 and 2. As a result, A1,A2, . . . are correlated
matrices, and a reduction of covariance in δAs := As −As−1 is induced, which does not occur

Inria



Recycling Krylov subspaces for stochastic PDEs 7

when sampling by standard Monte Carlo. While δAs is generally not low rank, the improved
similarity between As−1 and As still provides better working conditions for the iterative methods
we design to solve the linear systems Asxs = bs. The coefficient field being lognormal, we refer
to Â := A(0) as the median operator.

3 Deflated Krylov subspace strategies

In case of a spatial discretization using finite elements, As is sparse, and its fast application is
leveraged when searching for an approximation x

(j)
s of xs in the affine subspace x

(0)
s +Kj(As, r

(0)
s ),

where

Kj(As, r
(0)
s ) := Span{r(0)s ,Asr

(0)
s , · · · ,Aj−1

s r(0)s } (3)

is the j-th Krylov subspace of As generated by r
(0)
s := bs − Asx

(0)
s for a given initial guess

x
(0)
s . Then, the orthogonal projection obtained by letting r

(j)
s ⊥ Kj(As, r

(0)
s ), leads to an op-

timal iterate in the sense that ‖x(j)
s − xs‖2As

:= (x
(j)
s − xs)

TAs(x
(j)
s − xs) is minimized by the

approximation over the search space. In this work, As is SPD, and the sequence {x(j)
s }mj=1 of

these optimal iterates is obtained by the CG algorithm, i.e., CG(As, bs, x
(0)
s ).

While the rate of convergence of CG(As, bs, x
(0)
s ) is governed by the distribution of the

eigenvalues of As, it admits the following bound:

‖x(m)
s − xs‖As

≤ 2‖x(0)
s − xs‖As

(√
κ(As)− 1√
κ(As) + 1

)m

(4)

where κ(As) = λn(As)/λ1(As) is the condition number of As with eigenvalues 0 < λ1(As) ≤
· · · ≤ λn(As). While the tightness of this bound also depends on the distribution of the eigenval-
ues, Eq. (4) provides a way to understand the relation between the convergence behavior of CG
and the eigenvalues at both ends of the spectrum Sp(As). In particular, it is understood that
an increase of λ1(At) (or a decrease of λn(As)) results in a decrease of the bound on the rate of
convergence. Also, if the eigenvalue λ1(As) (resp. λn(As)) is moved towards the center of the
spectrum past its closest neighbor, then the upper bound of Eq. (4) is scaled by λ1(As)/λ2(As)
(resp. λn−1(As)/λn(As)). Hence, well separated eigenvalues located at either end of the spec-
trum of As can significantly hinder convergence and, canceling, or at least, attenuating their
effect may result in a substantially faster convergence [4].

If k eigenvectors of As are known, they can be used to force the CG procedure to work with
subspaces which are convenient enough to enable a convergence to xs at a rate bounded as in
Eq. (4), but with a potentially smaller condition number. Let these k eigenvectors be stored by
columns in Us ∈ Rn×k, and paired with the eigenvalues in Λs ⊂ Sp(As). We want {x(j)

s }mj=1

to be such that r
(j)
s ⊥ R(Us), where R(Us) is the range of Us, and r

(j)
s := bs −Ax

(j)
s for all

0 ≤ j ≤ m. SinceR(Us)
⊥ is invariant under the action of As, this is achieved by setting x

(0)
s such

that r
(0)
s ⊥ R(Us) in CG(As, bs, x

(0)
s ), i.e., by letting x

(0)
s := Us(U

T
s AsUs)

−1UT
s bs. Then,

the sequence {x(j)
s }mj=1 converges to xs at a rate bounded by Eq. (4), but where the condition

number is now given by κ = max{Sp(As) \Λs}/min{Sp(As) \Λs}. Essentially, the effect of the
eigenvalues in Λs is canceled at the expense of an initial As-orthogonal projection of the solution
xs onto R(Us), which does not require much computation as long as k � n. The resulting
procedure, referred to as Init-CG, was introduced in [2] motivated by [13, 15, 21], and can lead

RR n° 9425



8 Nicolas Venkovic, Paul Mycek, Luc Giraud, Olivier P. Le Maître

to significantly improved convergence behaviors if a small number of well separated eigenpairs
are properly selected at the end(s) of the spectrum.

In practice, Us is not known. Instead, it is possible to construct Ws ∈ Rn×k, where R(Ws)
somehow approximates the subspace associated with the eigenvalues of interest. If this approx-
imation is good enough, using Ws in place of Us in Init-CG may yield improved convergence
behaviors similar to when using Us, depending on the target accuracy [3]. As the quality of this
approximation deteriorates, the As-invariance of R(Ws) is no longer guaranteed, causing the
residuals r

(j)
s generated by Init-CG to lose their orthogonality with respect to R(Ws), and the

original behavior of CG is recovered. Deflation can be used as a means to circumvent the effects
of this loss of invariance, by forcing the residuals to remain orthogonal to the subspace.

3.1 Deflation
Deflation consists of splitting the approximation space into two complementary subspaces with
a projector such that the projected linear system, referred to as the deflated system, is more
amenable to iterative solving than the original system. Given Ws ∈ Rn×k whose range ap-
proximates the subspace associated with some of the eigenvalues hindering the convergence of
CG(As, bs, x

(0)
s ), we consider the As-orthogonal projector onto R(Ws)

⊥As given by

Πs := In −Ws(W
T
s AsWs)

−1WT
s As (5)

where WT
s AsWs is invertible as Ws is full column rank. The solution xs is then uniquely

decomposed into

xs = (In −Πs)xs + Πsxs, (6)

whose parts respectively lie in R(Ws) and R(Ws)
⊥As . It follows from the definition of Πs in

Eq. (5) that the first projection can be recast in

(In −Πs)xs = Wsµs (7)

where µs is such that WT
s AsWsµs = WT

s bs, and is not difficult to solve for as long as k � n.
From Eq. (5), we have AsΠs = ΠT

s As so that AsΠsxs = ΠT
s Asxs = ΠT

s bs. Because ΠT
s is

also a projector, it is idempotent, and the second part Πsxs of Eq. (6) can be obtained from
solutions x̂s of the so called deflated system given by

ΠT
s Asx̂s = ΠT

s bs. (8)

Although ΠT
s As is semi-positive definite with null space R(Ws), Eq. (8) is still consistent in

that ΠT
s bs ∈ R(ΠT

s As). Actually, Eq. (8) admits infinitely many solutions, all of which are such
that Πsx̂s = Πsxs. Because R(Ws)

⊥ is invariant under the action of the symmetric operator
ΠT

s As, setting x̂
(0)
s such that r̂

(0)
s ⊥ R(Ws) implies that the sequence {x̂(j)

s }mj=1 generated
by CG(ΠT

s As, ΠT
s bs, x̂

(0)
s ) satisfies r̂

(j)
s ⊥ R(Ws) for all 0 ≤ j ≤ m. Moreover, the post-

processed sequence x
(j)
s := Wsµs + Πsx̂

(j)
s converges to xs at a rate bounded as in Eq. (4), but

where the active condition number1 κ is evaluated only over the strictly positive eigenvalues of
ΠT

s As. Then, deflation guarantees a reduction of the active condition number of the system, i.e.,
κ(ΠT

s As) < κ(As). The resulting sequence {x(j)
s }mj=1 can be obtained in different ways, one of

1The active condition number κ is taken as the ratio of the maximum and minimum strictly positive eigenvalues
of the operator.

Inria



Recycling Krylov subspaces for stochastic PDEs 9

which, presented in [19], is here referred to as Def-CG(As, Ws, bs, x
(0)
s ) and given by Algo. 3

when setting M := In. The iterates of this procedure are

x(j)
s ∈ x(0)

s +Kj(As,Ws, r
(0)
s ) (9)

s.t. r(j)s ⊥ Kj(As,Ws, r
(0)
s ) (10)

with r
(0)
s ⊥ R(Ws) and where Kj(As,Ws, r

(0)
s ) := Kj(As, r

(0)
s )⊕R(Ws).

3.2 Recycling strategy

As we intend to solve the sampled linear systems either by Def-CG, or by Init-CG, a procedure
needs to be defined in order to compute Ws+1 prior to solving As+1xs+1 = bs+1. For this, a
key observation is that a basis of Kj(As,Ws, r

(0)
s ) can be recycled from the linear solve of

Asxs = bs. Moreover, different quantities needed to construct projection-based approximations
of the eigenvectors of As in these subspaces, such as the tridiagonalization of As, are readily
accessible byproducts of the linear solver. Therefore, approximate eigenpairs of As can be
promptly generated while solving Asxs = bs. Now, because the operators sampled by MCMC
are correlated, the eigenvectors of As+1 are correlated with those of As. For this reason, we let
the columns of Ws+1 be approximate eigenvectors of As.

All the matrices sampled in this work show greater ratios λ•+1(As)/λ•(As) in the lower end
of the spectrum than in the upper part. Therefore, a more significant decrease of the active
condition number can be expected when deflating a few least dominant (LD) eigenpairs, rather
than as many of the most dominant (MD) ones. Moreover, the LD eigenvectors correspond to low
frequency modes of the sampled operators, as opposed to the MD eigenvectors, which capture
more detailed features of the solution. It was observed that the LD eigenvectors of subsequent
matrices sampled by MCMC are more correlated than the MD ones. For these reasons, we let
the columns of Ws+1 be projection-based approximations of LD eigenvectors of As. Note that
this strategy is analogous to the approach used in [12].

3.3 Projection techniques for the approximation of eigenvectors

We only intend to approximate a small number k � n of the LD eigenvectors of every sampled
operator As. Iterative methods based on projection techniques are well suited for this task [18].
In particular, given a full column rank matrix Vs ∈ Rn×m with k ≤ m < n, we consider both
RR and HR projection techniques with respect to the eigen-search space R(Vs).

RR procedures—perhaps the most commonly used projection-based techniques for eigenvec-
tor computation—are well known to provide optimal eigenvalue approximations at the extremities
of the spectrum [14]. They are defined as follows.

RR projection A RR vector w of As with respect to R(Vs) is such that Asw−ϑw ⊥ R(Vs)
for some ϑ. As the RR vector is recast as w := Vsŵ, the pair (ϑ, ŵ) becomes solution of the
reduced (generalized) eigenvalue problem

VT
s AsVsŵ = ϑVT

s Vsŵ. (11)

HR procedures were introduced as an alternative to RR projections in order to better approx-
imate the interior eigenvalues of Hermitian operators [7, 11]. They are now commonly defined
as follows.

RR n° 9425



10 Nicolas Venkovic, Paul Mycek, Luc Giraud, Olivier P. Le Maître

HR projection A HR vector w of As with respect to R(Vs) is such that Asw − ϑw ⊥
R(AsVs) for some ϑ. As the HR vector is recast as w := Vsŵ, the pair (ϑ, ŵ) becomes solution
of the following reduced generalized eigenvalue problem:

(AsVs)
TAsVsŵ = ϑ(AsVs)

TVsŵ. (12)

In this work, we let the columns of Vs be previous eigenvector approximations, if any, along
with search directions or residuals generated by the linear solve. Approximations of the k LD
eigenvectors of As are formed by, first, solving for the k LD eigenpairs {(ϑi, ŵi)}ki=1 of the
reduced (RR or HR) eigenvalue problem, and then, letting Ws+1 := Vs[ŵ1, . . . , ŵk].

A procedure based on HR projections was favored in [19] to approximate the LD eigenvectors
of SPD matrices. Notwithstanding, whether or not HR vectors better approximate the LD
eigenvectors of an SPD matrix than their RR counterparts remains, to our knowledge, an open
question. Irrespective of which projection technique is used, high-dimensional eigen-search spaces
are generally needed in order to obtain accurate eigenvector approximations. However, since the
computed approximate eigenvectors of As are only used to deflate As+1, the need for highly
accurate approximations is not justified in the context of this study.

3.4 Refreshing the eigen-search space

Although the computed vectors need not be exact eigenvectors of As, the better these vectors
approximate the eigenvectors of As+1, the better the convergence behaviors of Def-CG [6] and
Init-CG [3]. Up to some level, which depends on δAs+1, this may be achieved by increasing the
dimension of the eigen-search space, which might cause memory problems because Vs, which
is dense, needs to be stored in order to compute Ws+1. Moreover, due to the effects of finite
arithmetic, the linear independence of the recycled residuals (or search directions) tends not to
hold anymore as the dimension of the eigen-search space increases. This, in turn, can cause a
loss of rank in the matrices of the reduced eigenvalue problem, eventually leading to spurious
eigenvector approximations [10]. As a means to circumvent these difficulties, the recycled vectors
can be orthogonalized, at a computational cost which increases quadratically with the dimension
of the eigen-search space. An alternative which allows for a better use of computational resources
is to periodically refresh the eigen-search space with updated eigenvector approximations of As,
every time the dimension of the eigen-search space reaches a certain limit. We refer to these
approaches as refreshed methods. To avoid any confusion, note that the linear solve is not
restarted, as opposed to what is done when restarting FOM or GMRES [17].

3.4.1 Thick-refresh

The term thick-restart was first coined in [22] to refer to an explicitly restarted Lanczos pro-
cedure which we summarize as follows. First, a sequence of Lanczos vectors v1, . . . ,vj+1 is
generated, which is used to compute k RR vectors w1, . . . ,wk of As with respect to R(Vs),
where Vs := [v1, . . . ,vj ] and k < j. A restart is then instantiated by setting the new basis
Vs := [w1, . . . ,wk,vj+1], to which new vectors are subsequently appended by an augmented
Krylov subspace method [1, 16] while using a Gram-Schmidt procedure to enforce the orthog-
onality of the whole basis. Every time the basis reaches a certain size spdim, a new set of RR
vectors is computed and a restart is instantiated. As a result, the eigen-search space R(Vs) is
and remains a Krylov subspace of As throughout the procedure. Moreover, this restart strategy
ensures that the growing eigen-search space simultaneously contains growing Krylov subspaces
generated by every single of the most recently computed RR vectors. This property is believed
to explain the effectiveness of the method [8].
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Recycling Krylov subspaces for stochastic PDEs 11

The thick-restart Lanczos method of [22] is a dedicated eigensolver. Here, we merely intend
to make use of all the residuals (or search directions) generated by the linear solver without ap-
plying an augmented Krylov subspace strategy to the eigenvector approximations, as this would
entail an unwanted restart of the linear solver. Therefore, the eigen-search space is simply re-
freshed by appending the residuals (or search directions) of the linear solver to the most recently
computed eigenvector approximations. The resulting strategy, referred to as thick-refresh (TR)
and summarized in Algo. 1, is run concurrently with CG, Def-CG or Init-CG. As a result, the
refreshed eigen-search space does not remain a Krylov subspace, and the convenient property of
thick-restart Lanczos is not satisfied. Nevertheless, this strategy does allow to compute eigen-
vector approximations of As by making use of all the residuals (or search directions) generated
by the linear solver while avoiding the difficulties described in Section 3.4.

1: if s = 1 then
2: Vs := [ ], d := 0
3: else if s > 1 then
4: Vs := Ws, d := k
5: end if
6: for j = 0, 1, . . . do
7: Vs := [Vs, r

(j)
s ], d := d+ 1

8: if d = spdim then
9: Compute the k LD RR (or HR) vectors {wi}ki=1 of As w.r.t. R(Vs)

10: Vs := [w1, . . . ,wk], d := k
11: end if
12: end for
13: Ws+1 := [w1, . . . ,wk]

Algorithm 1: Thick-refresh (TR) of the eigen-search space

3.4.2 Locally optimal thick-refresh

An alternative use of all the information generated by the linear solver is described in Algo. 2,
which we analogously refer to as a locally optimal thick-refresh (LO-TR) of the eigen-search
space. LO-TR essentially works as follows. Every time the eigen-search space R(Vs) reaches a
dimension spdim, it is used to generate eigenvector approximations y1, . . . ,yk, whereas ad-
ditional eigenvector approximations y1, . . . ,yk are computed with respect to R(Vs), where
Vs := Vs[:, 1 : spdim − 1] consists of all but the last column of Vs. All the eigenvector ap-
proximations of As with respect to R([y1,y1, . . . ,yk,yk]) are then used to refresh the eigen-
search space. When applied concurrently with Init-CG using RR projections, this strategy is
equivalent to eigCG [20]. Not only does this method outperform thick-restart Lanczos proce-
dures for eigenvalue approximation, but it was also shown to perform as well as orthogonalized
un-restarted Lanczos procedures under favorable conditions [20].

To the best of our knowledge, among all the refreshing strategies described in this Section,
RR-LO-TR-Init-CG (i.e. eigCG) is the only one documented in the literature.

3.5 Practical considerations
We assume that k � n so that the extra computational cost of Def-CG compared to CG is
mainly due to the computation of Πsr

(j)
s , which can be done at a cost of O(kn) per iteration when

both Ws and AsWs are stored [19]. However, Init-CG, which is CG with a particular initial
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1: if s = 1 then
2: Vs := [ ], d := 0
3: else if s > 1 then
4: Vs := Ws, d := k
5: end if
6: for j = 0, 1, . . . do
7: Vs := [Vs, r

(j)
s ], d := d+ 1

8: if d = spdim then
9: Vs := Vs[:, 1 : spdim− 1] . Vs contains all but the last column of Vs

10: Compute the k LD RR (or HR) vectors {yi}ki=1 of As w.r.t. R(Vs)
11: Compute the k LD RR (or HR) vectors {yi}ki=1 of As w.r.t. R(Vs)
12: Get an orthonormal basis Q := [q1, . . . ,qnvec] of R([y1,y1, . . . ,yk,yk])
13: Compute the RR (or HR) vectors {wi}nveci=1 of As w.r.t. R(Q)
14: Vs := [w1, . . . ,wnvec], d := nvec
15: end if
16: end for
17: Ws+1 := [w1, . . . ,wk]

Algorithm 2: Locally optimal thick-refresh (LO-TR) of the eigen-search space

guess, only requires one extra computation to set x
(0)
s such that r

(0)
s ⊥ R(Ws). Hence, there is

an incentive to investigate whether the convergence behavior of Def-CG can be reproduced by
Init-CG, when applied to sequences of correlated operators.

3.5.1 Assembly of the reduced eigenvalue problem

The assembly of the reduced eigenvalue problem depends on the type of projection (RR or HR)
used, as well as on whether residuals or search directions are stored in Vs. Indeed, although
Algos. 1 and 2 both suggest to extract residuals from the solver run, these vectors can be replaced
by search directions as they both span the same subspace Krylov subspace. Irrespective of which
approach is taken, the matrices AsWs and WT

s AsWs need to be computed prior to assembly.
Then, for RR projections, the cost of assembly is minimized when we extract sequences of

` := spdim − k normalized residuals r
(j)
s /‖r(j)s ‖2, which we store by columns in Rs. Then, we

have Vs = [Ws,Rs] so that Eq. (11) becomes:[
WT

s AsWs WT
s AsRs

RT
s AsWs RT

s AsRs

]
ŵ = ϑ

[
Ik WT

s Rs

RT
s Ws I`

]
ŵ (13)

where RT
s AsRs is tridiagonal with coefficients which can be recovered as a byproduct of the

solver. Computing the product WT
s AsRs can be done column-by-column as the residuals are

being generated by the solver, for a total cost of O(k ` n). The off-diagonal block WT
s Rs vanishes

as a property of Def-CG. For Init-CG, this term vanishes ifR(Ws) is invariant under the action
of As, which would be the case if the columns of Ws were exact eigenvectors of As. Note that
this term is ignored in [20].

When using HR projections, a simpler problem is obtained when extracting sequences of `
search directions p

(j)
s , which we store by columns in Ps. Then, we have Vs = [Ws,Ps] so that

Eq. (12) is recast as:[
(AsWs)

TAsWs (AsWs)
TAsPs

(AsPs)
TAsWs (AsPs)

TAsPs

]
ŵ = ϑ

[
WT

s AsWs WT
s AsPs

PT
s AsWs PT

s AsPs

]
ŵ (14)
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Recycling Krylov subspaces for stochastic PDEs 13

in which the computation of (AsWs)
TAsWs costs O(k2n). The matrices (AsPs)

TAsPs and
PT

s AsPs are tridiagonal and diagonal, respectively, and may be recovered as byproducts of
the solver. Then, by property of Def-CG, WT

s AsPs vanishes, while (AsWs)
TAsPs may be

computed at negligible cost, in the way described by [19]. Otherwise, each of these two products
has an additional cost of O(k ` n).

3.5.2 Refreshing the eigen-search space

Every refresh of the eigen-search space entails a new assembly at a cost comparable to what
is described in Section 3.5.1. Note that the orthogonalization step (line 12) of Algo. 2 can
conveniently be performed between the reduced eigenvectors, as described in [20].

3.6 Numerical results

We consider a 1,000-long sequence of 500-by-500 linear systems obtained by setting u(0) := 0 and
∂xu(1) := 0 with the 1D coefficient fields presented in Fig. 1 and a constant f . These systems are
solved by CG, and the convergence histories of the norm of the iterated residual are presented in
Fig. 3. Because the sampled coefficients are highly heterogeneous, the corresponding operators
are ill-conditioned, and CG systematically converges after more than n iterations. Note that,
while the first linear systems of this particular sampled sequence require more iterations to solve,
this is not generally true of all sequences.

Figure 3: Norm of iterated residuals obtained by CG for a sequence of 1,000 linear systems with
500 degrees of freedom (DoFs). Coefficient field of Case 1. System index s gradually color coded
from first (s = 1, ) to last (s = 1000, ) in sequence.

The same sequence of linear systems is solved by Def-CG and Init-CG using k = 10 RR
eigenvector approximations with and without refreshing the eigen-search space. The resulting
convergence histories are presented in Fig. 4. The results obtained by Def-CG are on the first
row of the graph, and those of Init-CG on the second row. Analogous results obtained using
as many HR eigenvector approximations are presented in Fig. 5. All the eigen-search spaces are
kept at a dimension spdim = 40.

We observe the following. First, despite a high correlation between realizations of the coef-
ficient field—see the similarity between a(x; ξs−10), a(x; ξs) and a(x; ξs+10) in Fig. 1—all the
Init-CG procedures recover the behavior of regular CG once the norm of the iterated residual
reaches a value smaller than 10−1. RR-LO-TR-Init-CG, known as eigCG [20], provides the
best convergence behavior before the norm of the iterated residual reaches this value. Second, all
the Def-CG procedures show significant improvements in their convergence behavior between
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Figure 4: Norm of iterated residuals obtained by Def-CG (top row) and Init-CG (bottom
row) procedures using RR projections for a sequence of 1,000 linear systems with 500 DoFs.
Coefficient field of Case 1. System index s gradually color coded from first (s = 1, ) to last
(s = 1000, ) in sequence.
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Recycling Krylov subspaces for stochastic PDEs 15

Figure 5: Norm of iterated residuals obtained by Def-CG (top row) and Init-CG (bottom row)
procedures using HR projections for a sequence of 1,000 linear systems with 500 DoF. Coefficient
field of Case 1. System index s gradually color coded from first (s = 1, ) to last (s = 1000, )
in sequence.
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the beginning and the end of the sampled sequence. Despite the fact that the operators are dif-
ferent in consecutive linear systems, it does seem that those remain sufficiently correlated so that
the approximated eigenvectors are accurate enough for the deflation to be effective. However, the
convergence behaviors observed toward the end of the sampled sequence, i.e., the black curves,
have a different shape depending on whether RR or HR projections are used—RR projections
showing slightly faster convergence. Third, only one refreshing strategy seems to be effective,
namely, RR-LO-TR-Def-CG.

4 Deflated Krylov subspace strategies with fixed precondi-
tioners

Let M be an SPD preconditioner, constant throughout the sequence, with Cholesky decom-
position LLT . The preconditioned conjugate gradient algorithm (PCG) formally consists of a
transformed sequence of iterates approximating the solution of the split preconditioned system
Ȧsẋs = ḃs where Ȧs := L−1AsL

−T and ḃs := L−1bs so that ẋs = LTxs in which xs is the
solution of the original system Asxs = bs.

4.1 Deflation
Here, we present how preconditioning is combined with deflation to form the Def-PCG algo-
rithm [19] as a means to guide us in the formulation of relevant approximate spectral information.
To do so, we rely on the definition of a projector Π̇s := In − Ẇs(Ẇ

T
s ȦsẆs)

−1ẆT
s Ȧs with a

full column rank matrix Ẇs ∈ Rn×k. Then, ẋs admits the decomposition

ẋs = (In − Π̇s)ẋs + Π̇sẋs. (15)

It follows from the definition of Π̇s that, in Eq. (15), we have

(In − Π̇s)ẋs = Ẇsµ̇s (16)

where µ̇s is such that ẆT
s ȦsẆsµ̇s = ẆT

s ḃs. Meanwhile, Π̇sẋs is equivalently given by Π̇s
ˆ̇xs,

where ˆ̇xs is any of the infinitely many solutions of the preconditioned and deflated system

Π̇
T

s Ȧs
ˆ̇xs = Π̇

T

t ḃs. (17)

Let {ˆ̇x(j)
s }mj=0 be the sequence generated by CG(Π̇

T

s Ȧs, Π̇
T

s ḃs, ˆ̇x
(0)
s ) for some ˆ̇x

(0)
s such that

ˆ̇r
(0)
s := Π̇

T

s Ȧs
ˆ̇x
(0)
s − Π̇

T

s ḃs ⊥ R(Ẇs). Then, the post-processed sequence x
(j)
s := L−T (Ẇsµ̇s +

Π̇s
ˆ̇x
(j)
s ) converges to the solution xs of the original system at a rate bounded as in Eq. (4),

but where the active condition number is evaluated over the strictly positive eigenvalues of
Π̇

T

s Ȧs. In practice, the sequence {x(j)
s }mj=0 is obtained using the Def-PCG algorithm, which is

derived upon specifying Ws := L−TẆs among other changes of variables [19]. Note that one
does not need to know the Cholesky factor L to execute Def-PCG, nor to specify x

(0)
s such that

ˆ̇r
(0)
s ⊥ R(Ẇs), because the latter is implied by r

(0)
s := Asx

(0)
s −bs ⊥ R(Ws). Hence, if an initial

guess x
(0)
s is specified such that r

(0)
s ⊥ R(Ws), then the iterates generated by Def-PCG(As,

M, Ws, bs, x
(0)
s ), see Algo. 3, are given by:

x(j)
s ∈ x(0)

s + L−TKj(Ȧs,Ẇs,L
−1r(0)s ) (18)

s.t. r(j)s ⊥ L−TKj(Ȧs,Ẇs,L
−1r(0)s ) (19)
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Recycling Krylov subspaces for stochastic PDEs 17

where Kj(Ȧs,Ẇs,L
−1r

(0)
s ) = Kj(Ȧs,L

−1r
(0)
s )⊕R(Ẇs).

From hereon, there remains to specify procedures for the computation of Ws. In doing so, our
intent is to decrease the effective condition number κ(Π̇

T

s Ȧs) as much as possible in comparison to
κ(As). However, since Ws = L−TẆs implies Π̇

T

s Ȧs = L−1ΠT
s AsL

−T , two types of approaches
arise. In the first approach, we let the columns of Ws be approximate eigenvectors of As, in
which case it is convenient to think of κ(Π̇

T

s Ȧs) as the effective condition number of an operator
which is deflated prior to be split preconditioned. The second approach consists of letting the
columns of Ẇs be approximate eigenvectors of Ȧs, while still only using Ws in Def-PCG. In
this case, κ(Π̇

T

s Ȧs) is thought of as the effective condition number of an operator which is split
preconditioned prior to be deflated. Note that both approaches are not equivalent. Indeed, if w
is an eigenvector of As, then ẇ := LTw is a right eigenvector of LTAsL

−T , but generally not of
Ȧs. Conversely, if ẇ is an eigenvector of Ȧs, then w := L−T ẇ is a right eigenvector of M−1As,
but generally not of As.

Both approaches were investigated in the work that lead to this study, and no conclusive
observation could be made on which method leads to the best behavior of Def-PCG. However,
the following can be said about the second approach: (i) unlike the first method, it seeks to
approximate eigenvectors which are consistent with the Krylov subspace spanned by the vectors
extracted from Def-PCG; (ii) it yields reduced generalized eigenvalue problems which are less
computationally demanding to assemble. Therefore, we only focus on the second approach, which
corresponds to the approach that was originally proposed in [19].

1: r
(0)
s := bs −Asx

(0)
s . x

(0)
s is set s.t. WT

s r
(0)
s = 0

2: z
(0)
s := M−1r

(0)
s

3: Solve for µ(0)
s in WT

s AsWsµ
(0)
s = WT

s Asz
(0)
s

4: p
(0)
s := z

(0)
s −Wsµ

(0)
s

5: for j = 1, 2, . . . do
6: α

(j−1)
s := r

(j−1)
s

T z
(j−1)
s /p

(j−1)
s

TAsp
(j−1)
s

7: x
(j)
s := x

(j−1)
s + α

(j−1)
s p

(j−1)
s

8: r
(j)
s := r

(j−1)
s − α(j−1)

s Asp
(j−1)
s

9: z
(j)
s := M−1r

(j)
s

10: Solve for µ(j)
s in WT

s AsWsµ
(j)
s = WT

s Asz
(j)
s

11: β
(j−1)
s := r

(j)
s

T z
(j)
s /r

(j−1)
s

T z
(j−1)
s

12: p
(j)
s := β

(j−1)
s p

(j−1)
s + z

(j)
s −Wsµ

(j)
s

13: end for
Algorithm 3: Def-PCG(As, M, Ws, bs, x

(0)
s )

4.2 Projection techniques for the approximation of eigenvectors
Let us extract sequences of preconditioned residuals (or search directions) from the linear solver
and store them by columns in Vs, along with Ws which may be refreshed or not. Then,
setting V̇s := LTVs allows us to construct an eigen-search space R(V̇s) consisting of a Krylov
subspace of Ȧs augmented by R(Ẇs). We then intend to compute approximations {wi}ki=1 of
the k LD right eigenvectors of M−1As, which we store by columns in Ws+1. This is done by
first computing LD approximate eigenvectors ẇi of Ȧs with respect to R(V̇s), before setting
wi := L−T ẇi. As we proceed to do so using RR and HR projections, we note that the Cholesky
factor L is in fact not needed in either of the resulting procedures.
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RR projection Let ẇ be a RR eigenvector approximation of Ȧs with respect to R(V̇s). We
then search for ẇ ∈ R(V̇s) such that Ȧsẇ − ϑẇ ⊥ R(V̇s), for some ϑ. Recasting ẇ as V̇sŵ,
we obtain V̇T

s ȦsV̇sŵ = ϑV̇T
s V̇sŵ, which can be recast as

VT
s AsVsŵ = ϑVT

s MVsŵ. (20)

Then, we have w = L−T V̇sŵ = Vsŵ, so that this procedure is equivalent to searching for
w ∈ R(Vs) such that Asw − ϑMw ⊥ R(Vs). Note that, in practice, M does not need to be
applied to assemble the matrix on the right hand side of Eq. (20), as explained in Section 4.3.

HR projection Alternatively, Saad et al. [19] consider ẇ to be an HR eigenvector approxi-
mation of Ȧs with respect to R(V̇s). Then, ẇ ∈ R(V̇s) is such that Ȧsẇ − ϑẇ ⊥ R(ȦsV̇s)
for some ϑ. Recasting ẇ as V̇sŵ leads to a reduced eigenvalue problem (ȦsV̇s)

T ȦsV̇sŵ =
ϑ(ȦsV̇s)

T V̇sŵ, which can be recast as

(AsVs)
TM−1AsVsŵ = ϑ(AsVs)

TVsŵ. (21)

Then, once again, we have w = Vsŵ so that this procedure is equivalent to searching for
w ∈ R(Vs) such that M−1Asw − ϑw ⊥ R(AsVs).

In summary, Ws+1 is computed by first solving for the k LD eigenpairs {(ϑi, ŵi)}ki=1 of the
reduced (RR or HR) eigenvalue problem, and then, letting Ws+1 := Vs[ŵ1, . . . , ŵk]. Finally, the
refreshing strategies of Section 3.4 are applied similarly using the projection methods described
this Section.

4.3 Practical considerations

Given the poor convergence behaviors of the Init-CG solvers reported in Section 3.6, we only
consider the implementation details of Def-PCG(As, M, Ws, bs, x

(0)
s ). First, both matrices

AsWs and WT
s AsWs are computed prior to the first solver iteration and stored at memory costs

of kn and k2, respectively. Then, the computational cost of assembling the reduced (generalized)
eigenvalue problems is minimized as follows for RR and HR projections.

For RR projections, we extract sequences of normalized preconditioned residuals z
(j)
s /(r

(j)
s

T
z
(j)
s )1/2

which we store by columns in Zs. Then, we have Vs = [Ws,Zs] so that Eq. (20) is recast as:[
WT

s AsWs WT
s AsZs

ZT
s AsWs ZT

s AsZs

]
ŵ = ϑ

[
WT

s MWs WT
s MZs

ZT
s MWs ZT

s MZs

]
ŵ. (22)

Note that, by property of Def-PCG, we have WT
s Mz

(j)
s = WT

s r
(j)
s = 0, and z

(i)
s

T
Mz

(j)
s =

δijr
(i)
s

T
z
(j)
s . Moreover, we have W2 := V1Ŵ1 = Z1Ŵ1 so that WT

2 MW2 = ŴT
1 Ŵ1. There-

fore, as long as the reduced eigenvectors are orthonormal, the generalized eigenvalue problem
simplifies to [

WT
s AsWs WT

s AsZs

ZT
s AsWs ZT

s AsZs

]
ŵ = ϑŵ (23)

for all s, where ZT
s AsZs is tridiagonal and recovered as a byproduct of the solver. The com-

putation of WT
s AsZs does not simplify and entails an additional cost of O(k ` n) every time

a reduced eigenvalue problem is assembled. Note that the time complexity of assembling the
reduced RR eigenvalue problem is not affected by the use of a preconditioner. A more detailed
implementation can be found in [20].
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For HR projections, the most efficient assembly of the reduced generalized eigenvalue problem
is obtained when extracting sequences of search directions p

(j)
s stored by columns in Ps. Then,

we have Vs = [Ws,Ps] so that Eq. (21) is recast as:[
(AsWs)

TM−1AsWs (AsWs)
TM−1AsPs

(AsPs)
TM−1AsWs (AsPs)

TM−1AsPs

]
ŵ = ϑ

[
WT

s AsWs 0k,`

0`,k PT
s AsPs

]
ŵ, (24)

where PT
s AsPs and (AsPs)

TM−1AsPs are diagonal and tridiagonal matrices, respectively,
whose coefficients may be extracted as byproducts of the solver. The off-diagonal block (AsWs)

TM−1AsPs

is assembled in the same fashion as the corresponding block in Eq. (14), see [19]. However,
(AsWs)

TM−1AsWs does not simplify. Therefore, the time complexity of assembling the re-
duced HR generalized eigenvalue value problem is affected by the necessity to perform k pre-
conditioner applications for the computation of (AsWs)

TM−1AsWs. Even though these pre-
conditioner applications can be avoided when using RR projections, this was not pointed out
in [19].

4.4 Numerical results

We first consider a 200-long sequence of 2,000-by-2,000 linear systems obtained by setting u(0) :=
0 and ∂xu(1) := 0 with the 1D coefficient fields presented in Fig. 1 and a constant f . These
systems are solved by PCG while preconditioning with a single V-cycle of an AMG solver [9]
based on the operator Â constructed with the median realization, as well as with HR-Def-PCG
using constant block-Jacobi (bJ) preconditioners with 10, 20 and 30 non-overlapping diagonal
blocks of Â. For each instance of HR-Def-PCG, the number k of approximated eigenvectors
is set equal to the number of blocks, whereas the dimension of the eigen-search space is set to
spdim := 2k. The number of solver iterations to reach a backward error smaller than 10−7 is
presented on the left side of Fig. 6, whereas the right side of Fig. 6 presents the spectra of As, Ȧs

and, for the instances of HR-Def-PCG, of Π̇sȦs, at the end of the sequence, i.e., for s = 200.
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s Ȧs (bJ10)
Ȧs (bJ20)

Π̇
T
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Figure 6: Left side: number of solver iterations needed to reach a backward error smaller than
10−7 using HR-Def-PCG (bJ10, bJ20, bJ30) and PCG (AMG). Right side: original, precon-
ditioned and deflated spectra of As at s = 200. Linear systems with 2,000 DoFs and coefficient
field of Case 1.
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Even though PCG (AMG) uses a constant preconditioner, the resulting spectrum Sp(Ȧs) is
efficiently condensed between 10−1 and 10 for all the realizations, leading to a roughly constant
iteration number for this sequence. On the other hand, the spectra Sp(Ȧs) associated with the
bJ preconditioners mostly consist of two parts: (i) a dense set of eigenvalues ranging from 10−1

to 10, and (ii) a trail of as many eigenvalues as the number of blocks used for the preconditioner,
spread throughout the lower end of the spectrum. The iteration numbers obtained by HR-Def-
PCG (bJ) at s = 1 are the same as what would be obtained using PCG (bJ). As expected, this
number increases with the number of blocks. However, as the k approximate LD eigenvectors
generated throughout the sequence are used for deflation, the iteration numbers of HR-Def-
PCG (bJ) decrease significantly, and most of the trailing eigenvalues of Sp(Ȧs) are “removed” in
Sp(Π̇

T

s Ȧs). Note that the few remaining trailing eigenvalues can be removed by increasing the
number k of approximated eigenvectors, in which case HR-Def-PCG (bJ) slightly outperforms
PCG (AMG). However this is not the case when the number of blocks is increased beyond 20 or
30 because spdim, which must be larger than k, can not be set to values significantly larger than
60 or 70 without potentially causing some loss of rank in the matrices of the reduced generalized
eigenvalue problem.

We now consider a 1,000-long sequence of 4,000-by-4,000 linear systems obtained by setting
u(x) := 0 on the left edge of a 2D square domain Ω := (0, 1)2 and a homogeneous Neumann
boundary condition on the remaining of ∂Ω, with the coefficient fields presented in Fig. 2 and
a constant f . These systems are solved by PCG (AMG) as well as by PCG (bJ), HR-Def-
PCG (bJ) and RR-LO-TR-Def-PCG (bJ) using constant preconditioners with 10, 20 and
30 non-overlapping blocks of Â. Note that HR-Def-PCG and RR-LO-TR-Def-PCG are
considered in particular because thorough details of their implementation can be found in [19]
and [20], respectively, and none of the other attempted methods lead to consistently better
convergence behaviors than these two. For each instance of deflated solver, the number k of
approximated eigenvectors is set equal to the number of blocks, and the dimension of the eigen-
search space is set to spdim := 2k + 10. The convergence histories of PCG (bJ10), HR-
Def-PCG (bJ10) and RR-LO-TR-Def-PCG (bJ10) are presented in Fig. 7. The number of
necessary solver iterations to reach a backward error smaller than 10−7 using PCG (AMG) and
RR-LO-TR-Def-PCG (bJ10, 20, 30) is presented on the left side of Fig. 8 for s ≤ 200, whereas
the right side of Fig. 8 presents the corresponding spectra of As, Ȧs and Π̇sȦs at s = 100.

Figure 7: Norm of iterated residuals obtained by PCG (bJ10), HR-Def-PCG (bJ10) and RR-
LO-TR-PCG (bJ10) for a sequence of 1,000 linear systems with 4,000 DoFs. Coefficient field
of Case 2. System index s gradually color coded from first (s = 1, ) to last (s = 1,000, ) in
sequence.

Unlike the non-preconditioned results of Figs. 4–5, the results of Fig. 7 do not show a signif-
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icant difference between the convergence behavior of the linear systems solved at the beginning
and at the end of the sampled sequence. This could be due to the fact that the 2D coefficient
fields of this example (Fig. 2) are less correlated than the ones used for the 1D example (Fig. 1),
thus making the approximated eigenvectors of the previous operator less likely to result in an ef-
fective deflation of the current linear system. The preconditioned spectra of Fig. 8 are also denser
than those of Fig. 6, due to the fact that the coefficient fields of this example are significantly
smoother than those of Fig. 1. However, despite a smaller correlation between coefficient fields,
and less separated eigenvalues after the application of the bJ preconditioners, the deflated spec-
tra Sp(Π̇

T

s Ȧs) obtained by RR-LO-Def-PCG (bJ) are nearly as condensed as the spectrum of
Ȧs obtained with the constant AMG preconditioner. Consequently, the iteration numbers (left
side of Fig. 8) are also similar to those obtained by PCG (AMG)—for linear systems with 4,000
DoFs.
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Figure 8: Left side: number of solver iterations needed to reach a backward error smaller than
10−7 using RR-LO-TR-Def-PCG (bJ10, bJ20, bJ30) and PCG (AMG). Right side: original,
preconditioned and deflated spectra of As at s = 100. Linear systems with 4,000 DoFs and
coefficient field of Case 2.

Finally, the same sequence of coefficient fields is considered with different spatial discretiza-
tions, along with the same f and boundary conditions, leading to linear systems of size 4,000,
16,000 and 64,000. These linear systems are solved by PCG (AMG), PCG (bJ10), HR-Def-
PCG (bJ10) and RR-LO-TR-Def-PCG (bJ10) using k := 20 approximate eigenvectors with
spdim := 50. The resulting numbers of solver iterations are presented in Fig. 9. We observe that
increasing the number of DoFs results in a more significant degradation of the convergence for
PCG (bJ10) than for PCG (AMG). For small numbers of DoFs, this difference is successfully
compensated by the use of deflation, irrespective of whether the eigen-search space is refreshed
or not. However, as the number of DoFs increases, deflation does not work as well, and the
refreshing of the eigen-search space positively impacts more and more the convergence behavior
of the deflated solver, as shown by the iteration number of RR-LO-TR-Def-PCG compared
to those of HR-Def-PCG.
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Figure 9: Number of solver iterations needed to reach a backward error smaller than 10−7 using
HR-Def-PCG (bJ10), RR-LO-TR-Def-PCG (bJ10) and PCG (AMG, bJ10) for increasing
numbers of DoFs. Coefficient field of Case 2.

5 Conclusion

Recycling Krylov subspace strategies were investigated as a means to accelerate the iterative
solution of SPD linear systems in sequences of discretized elliptic PDEs with random coeffi-
cient fields sampled by MCMC. Every sampled linear system was deflated with LD eigenvector
approximations of the previously sampled operator These approximate eigenvectors were ob-
tained using RR and HR projections with respect to eigen-search spaces spanned by sequences of
matrix-vector products of the previous linear solve along with previous approximate eigenvectors.
Different strategies were investigated to make use of all the matrix-vector products generated by
the solver while keeping the dimension of the eigen-search space to a certain spdim in order to
avoid problems of loss of orthogonality and memory consumption. These strategies were referred
to as refreshing the eigen-search space so as to make clear that the linear solver is not restarted.

For the non-preconditioned cases, both Def-CG and Init-CG were used, and our experi-
ments showed that, even if the coefficient fields are highly correlated, all the strategies based
on Init-CG eventually yield similar convergence behaviors to what is obtained with regular
CG. For small numbers of DoFs, it was observed that the asymptotic convergence behavior of
Def-CG does not depend on the refreshing strategy of the eigen-search space. However, using
eigCG [20] while explicitly orthogonalizing the residual against R(Ws) at each solver iteration
(method referred to as RR-LO-TR-Def-CG), albeit incurring an additional cost of O(k n) per
iteration, allows for a significantly faster transition to better convergence behaviors than all the
other refreshing strategies.

Two types of constant preconditioners were considered based on the operator Â constructed
with the median realization: (i) a single V-cycle of an AMG solver, and (ii) bJ preconditioners
with non-overlapping blocks. While the constant AMG preconditioner efficiently condenses the
spectra of the sampled operators, numerical experiments (not reported here) showed that the
behavior of PCG (AMG) is not significantly improved by deflation. However, the constant
bJ preconditioners tend to segregate the spectrum into two parts, leaving a trail of as many
eigenvalues as the number of bJ blocks spread throughout the lower end of the spectrum. These
eigenvalues being well separated, the bJ preconditioners are well suited for deflation. Both 1D
and 2D examples show that deflating with as many approximate eigenvectors as the number of bJ
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blocks significantly improves the convergence behavior of Def-PCG (bJ) compared to PCG (bJ).
For small numbers of DoFs, the convergence behaviors of Def-PCG (bJ) are comparable to
those of PCG (AMG). However this is only the case for moderate numbers of blocks, say 30
or less. Indeed, by increasing the number of bJ blocks, one needs to increase the number k of
approximated eigenvectors, and thus spdim, which can lead to undefined reduced (generalized)
eigenvalue problems and larger memory requirements. As the number of DoFs increases, Def-
PCG (bJ) does not work as well as PCG (AMG), and the refreshing strategy of the eigen-search
space starts to matter. It is then recommended to use eigCG [20] with explicit orthogonalization
of the iterated residual (i.e., RR-LO-TR-Def-CG) over the recycling strategy of [19] adapted
for multiple operators (i.e., HR-Def-PCG).

As long as constant preconditioners are used, deflation does not seem to allow for significantly
better convergence behaviors than simply using PCG (AMG), particularly for large numbers of
DoFs. However, it should be noted that other classes of elliptic PDEs such as, e.g., the Helmholtz
equation, for which there is no obvious choice of a robust and scalable preconditioner comparable
to AMG for the diffusion equation considered here, may still benefit from deflation techniques
provided that they manage to compensate for a less efficient preconditioning strategy. The
application of recycling Krylov subspace strategies to such equations may be investigated in future
work. Furthermore, deflation may also prove useful in legacy software and/or when problem-
specific, highly tuned preconditioners are used. Besides deflation, a potentially more promising
option to improve the iterative solve of SPD linear systems arising from the discretization of
stochastic elliptic PDEs is to periodically re-define the preconditioner for small groups (clusters)
or subsequences of realizations. This is currently the focus of ongoing work and will be reported
on in future communications.
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