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The generation of user-defined optical temporal waveforms with picosecond resolution is an essential task for many
applications, ranging from telecommunications to laser engineering. Realizing this functionality in an on-chip reconfig-
urable platform remains a significant challenge. Towards this goal, autonomous optimization methods are fundamental
to counter fabrication imperfections and environmental variations, as well as to enable a wider range of accessible wave-
form shapes and durations. In this work, we introduce and demonstrate a self-adjusting on-chip optical pulse-shaper
based on the concept of temporal coherence synthesis. The scheme enables on-the-fly reconfigurability of output optical
waveforms by using an all-optical sampling technique in combination with an evolutionary optimization algorithm.
We further show that particle-swarm optimization can outperform more commonly used algorithms in terms of conver-
gence time. Hence, our system combines all key ingredients for realizing fully on-chip smart optical waveform generators
for next-generation applications in telecommunications, laser engineering, and nonlinear optics. ©2021 Optical Society

of America under the terms of theOSAOpen Access Publishing Agreement

https://doi.org/10.1364/OPTICA.435435

1. INTRODUCTION

The incorporation of machine learning and “smart” optimization
techniques into photonic technologies has enabled widespread
enhancements in device functionalities beyond the capabilities
of traditional optical systems [1]. Recent examples include the
neural-network-enabled reconstruction of optical fields [2],
the control of complex cavity dynamics [3–6], and the tailor-
ing of nonlinear light generation [7,8]. The advantage of using
machine-learning approaches becomes particularly apparent for
the optimization of complex photonic integrated circuits with
many degrees of control—where numerical modeling alongside
fabrication imperfections makes the task increasingly difficult.

An application field that can especially benefit from such
approaches is on-chip optical waveform generation. Optical wave-
form generators (OWGs) are key to boosting optical signal
processing functionalities [9]. In particular, OWGs enable crucial
enhancements in frequency shifting [10], nonlinear conversion
processes [11], and all-optical signal processing [12]. On-chip

OWG implementations are particularly desired, as they offer high
efficiencies, intrinsic environmental stability, and scalability [13–
15]. Nevertheless, to the best of our knowledge, a practical on-chip
scheme that enables reconfigurable customized picosecond wave
shaping in a user-friendly, energy- and cost-efficient fashion has yet
to be demonstrated.

Ideally, an OWG should (i) autonomously output the target
waveform (user-friendliness); (ii) minimize the experimental
requirements for driving the system and reading out (or moni-
toring) the waveform; and (iii) feature long-term reliability, low
losses, fiber connectivity, and maximal functionality. Previously
demonstrated integrated OWGs only featured one or two of
these key features at a time. Moreover, the performance of these
techniques has often been limited in terms of waveform accuracy,
since practical imperfections, such as individual device fidelities
or fabrication tolerances, deteriorate the performances accessible
from those initially designed/simulated for.

In contrast to schemes based on a priori design approaches,
adaptive a posteriori optimization of phase and field amplitudes has

2334-2536/21/101268-09 Journal © 2021Optica PublishingGroup

https://orcid.org/0000-0002-1186-0167
https://orcid.org/0000-0002-8340-7214
https://orcid.org/0000-0002-2691-0307
https://orcid.org/0000-0001-5195-1744
https://orcid.org/0000-0001-7717-1519
mailto:jose.azana@inrs.ca
mailto:roberto.morandotti@inrs.ca
mailto:mario.chemnitz@inrs.ca
https://doi.org/10.1364/OA_License_v1#VOR-OA
https://doi.org/10.1364/OPTICA.435435
https://crossmark.crossref.org/dialog/?doi=10.1364/OPTICA.435435&amp;domain=pdf&amp;date_stamp=2021-09-28


Research Article Vol. 8, No. 10 / October 2021 / Optica 1269

been shown to enable enhanced flexibility and reconfigurability
for optical pulse shaping, as demonstrated in free-space and fiber-
based setups [16–18]. More generally, to fulfill the demands of
out-of-lab applications, artificial neural networks and evolutionary
optimization algorithms have recently found use in ultrafast optics
[1]. Such approaches have brought about important advances in
solving experimental multiparameter problems, such as adaptive
control of nonlinear laser dynamics [3,4,19,20], temporal and
spectral pulse control [21,22], and performance optimization
of nonlinear light generation schemes [7,23]. Commonly, such
experimental schemes use “smart” optimization techniques, such
as genetic algorithms (GAs), running on a central processor that
acquires a measurement of the system output, compares it to a
target functionality, and applies corrective feedback to system
control parameters. Despite the success associated with GAs, other
search algorithms may outperform them on certain tasks. For
example, particle swarm optimization (PSO) [24] offers a prom-
ising alternative, as it is straightforward to implement, demands
fewer computational resources, and has been shown to converge
faster for multidimensional problems [25–27]. Despite these
advantages, PSO use in optics has mainly been confined to inverse
design problems [28–30], while not finding widespread use for
practical photonics system optimization.

Keys for applying autonomous optimization techniques in an
experimental environment are fast, efficient and unambiguous
optical detection methods for the system output. This can be
achieved with classical techniques such as optical spectrum ana-
lyzers in the Fourier domain or full-field (amplitude and phase)
reconstruction methods for the temporal characterization of opti-
cal pulses [31]. However, these also impose stringent experimental

requirements for the measurement equipment and may be unsuit-
able for online optimization tasks or user-friendly stand-alone
operation. Time-lens techniques are available for the straight-
forward measurement of ultrafast temporal pulse profiles in fiber
systems [32]. However, they are difficult to integrate on a single
chip, hard to apply to narrowband picosecond pulses, may still
require broadband (gigahertz) optical detection, and may cause
artifacts (e.g., due to temporal modulations originating from the
time-domain interference of spectral components from the input
pulse with a nonflat phase).

In this work, we demonstrate an autonomous OWG frame-
work that has the potential for full on-chip integrability. Our
approach combines a novel reconfigurable picosecond pulse-
shaping technique with an ultrafast all-optical sampling method
and PSO algorithm for the autoadjustment of the optical system
output. Specifically, for user-defined pulse shaping, we make use
of temporal coherence synthesis (as introduced in Section 2, and
Fig. 1) using a concatenation of thermally tunable, unbalanced
Mach–Zehnder interferometers (UMZIs) on a low-loss silicon-
oxy-nitride chip platform. For self-optimization, we make use of
an all-optical sampling read-out based on seeded four-wave mixing
(FWM), which provides a slowly varying output signal for wave-
form reconstruction with minimal electronic requirements (see
Section 3). In Section 4, we numerically and experimentally show
that the setup, in combination with a PSO algorithm, allows for
excellent, high-accuracy performance, while providing improved
convergence relative to widely adopted GAs. These results also
pave the way for new implementations of smart photonics beyond
the limitations of GAs.

Fig. 1. Operational principle of split-and-delay optical waveform generation. Our framework is based on temporal coherence synthesis in combination
with optical monitoring and autonomous system parameter control. MZI, Mach–Zehnder interferometer; MCU, microcontroller unit; Inset (a) shows a
schematic of the operational principle for the PSO algorithm. The color-coded function (from blue, low cost values, to red, high cost values; see Section 3
for detailed explanation) is an example of a system cost function over a two-dimensional space spanned by two of the system’s adjustable parameters (i.e.,
electrode voltages of our on-chip MZIs). The magenta particles indicate the randomly chosen initial system conditions, i.e., starting positions of the ini-
tial PSO swarm. The black dashed line indicates an individual particle trajectory during the optimization. The yellow particles indicate the final state of
the PSO, with most particles being located in the global minimum of the cost function. The inset (b) shows the operational principle of our optical sam-
pling technique, which mixes the output waveform with a probe (red and green signals, respectively), where the two exhibit slightly different repetition rates.
The repetition offset δf leads to passive scanning of the sampling points over the shaped output pulse (blue points on the lower envelope) at a sampling rate
1T = 1/δf , i.e., much slower than the actual pulse width.
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2. RECONFIGURABLE OPTICAL WAVEFORM
GENERATION USING TEMPORAL COHERENCE
SYNTHESIS

Today, on-chip implementations of OWG techniques employ
Fourier or Taylor synthesis for shaping pulses up to a few hun-
dred picoseconds [13,14]. In those methods, the optical field is
decomposed into spectral components, which are then weighted,
phase-controlled, and interfered in order to prepare a temporal
field with the targeted shape. Current implementations predomi-
nantly rely on the use of predefined amplitude and phase weights
obtained a priori from simulations and encoded into the physical
system via fabrication, making the system performance vulnerable
to imperfections. Moreover, the number of components required
for picosecond pulse shaping (e.g., integrated resonant structures,
amplitude and phase modulators for each incorporated frequency
band) leads to high system complexities, resulting in high insertion
losses, and a large number of free parameters for external control.

A promising alternative, called temporal coherence synthesis, has
recently been demonstrated in free space [33,34]. This concept
builds on cascaded optical splitting and delaying of an input pulse
using unbalanced interferometers with increasing temporal delays.
By controlling the amplitude and phase at each interferometric
stage, the constructive interference at the system output can be
shaped as defined by the user.

Our demonstration scales the initial proof-of-concept by
miniaturizing the components necessary for temporal coherence
synthesis onto a single CMOS-compatible high-index silica chip.
Similar to the scheme depicted in Fig. 1, we use a concatenation of
up to five UMZIs with bit-wise increasing delays1tn = T · 2n−1,
where T = 1 ps, with 1tn thus spanning from 1t1 = 1 ps to
1t5 = 16 ps, in a compact footprint (11.75× 9.00 mm2) [7]. The
platform offers excellent transmission efficiencies, with ultralow
propagation losses (linear loss < 0.06 dB/cm at 1550 nm [35])
and low coupling losses to standard SMF28 fibers (1.4 dB insertion
loss per facet). Each individual on-chip interferometer output is
connected with thermally controllable beam splitters for an ad
hoc adjustment of the amplitude weights (< 100 ms switching
time), which can be addressed directly through a microcontroller
unit (MCU). At each interferometric stage, the incoming optical
field is split at a specific ratio, controlled by thermally tuning the
waveguide coupler at the input, mediated by the MCU. One copy
of the split pulse then propagates through the corresponding delay
section, while the other part propagates through a fixed short
path. Afterwards, the two pulses interfere in another controllable
waveguide coupler to create a new temporal waveform. A particular
advantage of cascading MZIs is that the optical energy does not
leave the coupled waveguide system until the optical pulse reaches
the last coupler. Hence, the device loss, and thus the system’s energy
efficiency, is determined by the coupling coefficients at the last cou-
pler of the setup. It is important to note that our platform does not
presently provide phase control over the individual delays. The
relative phase gained from each active delay is arbitrary, but con-
stant, as it is intrinsic to our on-chip implementation, which lacks
additional heaters on the short path. We discuss the implications of
this on the device performance in Section 4.

The access to amplitude weights in the split-and-delay line
(SDL) device allows for autonomous tailoring of the output
optical waveform towards a target temporal profile (see PSO in
Fig. 1). The system output is monitored by making use of optical
sampling, which enables the unambiguous reconstruction of the

output temporal envelope (see optical sampling in Fig. 1). The
measured waveform can then be compared to the target waveform,
with the difference between the two used to create an electronic
feedback to adjust the amplitude weights of the SDL, as we detail in
the following sections.

3. EXPERIMENTAL METHODS

A. Setup

The experimental setup is divided into two main parts: pulse shap-
ing and optical sampling, as depicted in Fig. 2. The optical shaper
uses a commercial mode-locked fiber laser (Pritel FFL) as the input
source, emitting Gaussian pulses with a duration (full width at
half-maximum, FWHM) of1τFWHM,1 ≈ 22 ps at a repetition rate
of frep,1 = 10 MHz, centered at 1544.6 nm. The pulse processing
is performed by means of the integrated on-chip pulse-splitter, i.e.,
the SDL, as described in Section 2. In order to increase the number
of accessible delay combinations, the pulse propagates through the
sample twice [36], i.e., after the pulse exits the sample, it is reflected
off a fiber mirror and propagates backwards through the chip again.

Waveform sampling is realized using a nonlinear optical
AND gate. The AND gate is based on seeded, degenerate FWM
in a highly nonlinear fiber (HNLF, OFS Fitel Denmark ApS.,
1 km length, 1546 nm zero-dispersion wavelength) [37]. A
second mode-locked fiber laser (Menlo FC1500-250-WG,
frep,2 = 250.27 MHz, 1τFWHM,2 ≈ 4.4 ps after spectral filtering
at 1557.9 nm± 2.4 nm) with a slightly different repetition rate
than the pulse shaper (i.e., frep,2 = n frep,1 + δf ) is used as the sam-
pling probe [38,39]. Both optical sources are coupled to the HNLF
and undergo phase-matched parametric amplification at times
when they temporally overlap. By using locked but asynchronous
repetition rates, the seed (sampling) pulse passively scans the full
duration of the (shaped) pump pulse at a relatively slow repetition
rate, namely, with a sampling period 1T = 1/δ f = 3.7 µs. As
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Fig. 2. Experimental setup for the optical pulse shaping. SDL, split-
and-delay line; MLL, mode-locked laser; PD, photodiode; FM, Faraday
mirror; TBPF, tunable bandpass filter; HNLF, highly nonlinear fiber;
EDFA, erbium-doped fiber amplifier; OFC, optical fiber coupler. Inset
(a) Optical FWM spectrum after HNLF; inset (b) sampling characteriza-
tion: sampled waveform from the oscilloscope after calibration (in blue),
retrieved waveform from the sampling (pink area), and autocorrelation
trace (solid black line, measured with a Femtochrome FR-103XL autocor-
relator). The autocorrelation factor (i.e., 0.707) has been applied to the
presented time axis. Hence, both displayed values show the FWHM pulse
width.
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a result, an optical idler is generated at the corresponding sam-
pling times in another frequency band. This band is spectrally
filtered using a tunable optical bandpass filter (Finisar Waveshaper,
1532.4 nm± 3.8 nm), slightly amplified, and directed to a
fiber-coupled photodiode (Finisar XPDV2120R). A real-time
oscilloscope (Agilent DSO-X 92804A) allowed interfacing and
automatic readout of the photodiode signal. Finally, a numerical
Hilbert transform is used to extract the temporal envelope of the
sampled signal [40]. For additional readout stability, both lasers
are locked to one another (i.e., the input source was used as an
external reference clock to lock the repetition rate of the sam-
pling source) so as to minimize effects caused by any cavity drift
during the experiment, which allowed for reliable and constant
spacing1T of the sampling points over several weeks.

The microsecond sampling period was calibrated to the
picosecond scale by accurately measuring the repetition rate
difference of the lasers used. This calibration factor was con-
firmed by performing an autocorrelation measurement of the
unshaped Gaussian pump pulse. The autocorrelation width
(1τFWHM,1,AC = 21.85 ps) matches the measured envelope width
of our optical sampling scope well (1τFWHM,1,Sampling = 21.26 ps);
see Fig. 2(b). In future implementations, highly nonlinear on-chip
waveguides [35] or shorter HNLFs can be used to reduce system
cost further [37,41].

The asynchronous sampling method offers a few important
advantages for the measurement of output pulses in the picosec-
ond regime. First, the low-repetition idler can be detected with
less-demanding equipment requirements (e.g., detection band-
width) [37] compared to other ultrafast measurement schemes.
For instance, dispersive time-stretch methods are not very effective
for pulse widths >10 ps, as highly dispersive elements are then
required to magnify the input temporal features to the tens of
nanoseconds range for efficient resolution with ultrafast photodi-
odes. Otherwise, direct optical detection methods (e.g., ultrafast
photodetection) are prohibitively expensive and still limited
in temporal resolution, even when considering state-of-the-art
100 GHz bandwidth optoelectronics. Second, the idler power
Pi,N at the sampling point N is directly proportional to the pump
power Pp squared, i.e., Pi,N ∼ γ

2 Ps (t)P 2
p (t − Nτ), with seed

power Ps , nonlinear parameter γ , and temporal resolution τ .
This allows for the direct detection of the square-amplitude profile
of the shaped pump waveform from the idler pulse energy. The
resolution of the system (here τ ≈ 4.3 ps) can be finely adjusted as
the repetition rate difference δf between the two lasers, calculated
as τ = (n frep,1)

−1
· V−1, with stretching factor V = n frep,1/δf .

Hence, the detection method is particularly suitable for unam-
biguously measuring picosecond non-Gaussian pulses, such
as triangular, square, or sawtooth waveforms, which would all
otherwise yield triangular autocorrelation traces with barely dis-
tinguishable features. A single measurement of a waveform took
between 6 s and 10 s, which mainly includes the waiting time
for thermal stabilization of the modified SDL switches (∼2 s),
the acquisition time of the oscilloscope (∼2 s), and the time for
retrieving the waveform envelope.

B. Waveform Optimization Algorithm

The optically sampled waveform was used to autonomously
optimize the OWG output using an evolutionary algorithm.
Commonly, GAs are used to perform a smart search for the most
performant system parameters with respect to minimizing a

given error or cost function [1]. The performance of GAs criti-
cally depends on a reasonable guess of initial parameters, since
ill-defined GA starting conditions will result in a limited explo-
ration of the search space and thus lead to exceptionally long
measurement times. It should be noted that in practice, the mea-
surement time represents one of the main bottlenecks in applying
machine-learning concepts to optical systems. Choosing a good
initial parameter set is particularly difficult in nonintuitive systems
involving many independent degrees of freedom. Other algo-
rithms may therefore be more advantageous to make a complex
system efficiently converge to an output state with respect to a
given target. For our implementation of adaptive optical pulse
shaping, we instead chose a PSO algorithm to determine device
settings (i.e., the voltages for each thermal switch) in order to
obtain a target output waveform. In our system, we expect the PSO
to perform more efficiently, as identifying suitable initial system
settings to obtain specific waveforms, such as triangular pulses, is
exceedingly difficult.

The PSO algorithm, similar to GA, is a nature-inspired,
population-based, metaheuristic optimization algorithm [42].
The PSO starts with an initial population of candidate solutions
(particle swarm of size M) in an N-dimensional search space
(i.e., N is the number of variables per particle to optimize). By
following strict self- and swarm-optimization rules, the PSO sys-
tematically minimizes the particle potential in this space given by a
cost function [see Eq. (S1) in Supplement 1] illustrated in Fig. 1 by
a color map in a simplified 2D parameter space.

In our experiment, we used a swarm size of M = 60 with N = 6
system parameters each (corresponding to six variable couplers
enclosing five delays). Each particle in the swarm represents a set
of six electrode voltage values that control the splitting ratios of
the six on-chip MZIs. Each particle is assigned an initial position
and inertia, represented in the inset of Fig. 1 as magenta-colored
particles and dashed lines, respectively. Relying on simple vector
multiplications, the PSO does not require elaborate operations
such as mutation and crossover, as in the case of a GAs, to explore
the solution space at large. In cases of successful convergence, the
algorithm returns the system parameters that correspond to the
(ideally global) cost function minimum, indicated in the inset of
Fig. 1 with yellow particles. In order to speed up the optimization
progress, we reduced the maximum possible iterations to 60 and
the stall iterations (i.e., number of iterations after which the algo-
rithm stops when not improving) to 12. Other parameters can be
found in Supplement 1 .

The PSO performance critically relies on the selection of a
meaningful cost function fCost. We used the cosine similarity
cos(θ), a measure of similarity between two vectors, A and B, as the
basis of our fCost, which we defined as

fCost = 101−cos θ with cos θ =
A · B

||A|| · ||B ||
=

∑n
i=1 Ai Bi√∑n

i=1 A2
i

√∑n
i=1 B2

i

,

(1)
with Ai and Bi being the discrete time samples for the target and
measured waveforms, respectively. The cosine similarity ranges
from −1 (inverted similarity) to +1 (complete similarity), with
0 corresponding to no correlation between the vectors. By sub-
tracting cos(θ) from unity, i.e., 1− cosθ , the cost function features
a global minimum only for complete similarity and thus allows
the use of optimization algorithms such as the PSO. In order to
increase the convergence speed, we further used the cost function
as a power of ten, i.e., 10 fCost . In this case, the cost function features

https://doi.org/10.6084/m9.figshare.16550382
https://doi.org/10.6084/m9.figshare.16550382
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a minimum at 1 (complete similarity), while no correlation and
dissimilarity yield a value of 10 to 100, respectively. To enable fur-
ther discrimination and comparison in results, we also introduce a
second benchmark dubbed the Q factor (not used inside the algo-
rithm). Here, we define a Q factor with Q = sgn(cos θ) · 10|cosθ |

that reaches 10 in the case of perfect similarity, 0 in the case of
missing correlation, and−10 in the case of dissimilarity. Note that
the Q factor was not used within the optimization process, but it is
helpful for better distinguishing the results in what follows.

For performance comparison we also tested a standard GA (see
Supplement 1 for additional information), which has been used in
a previous demonstration [7]. The GA uses the same cost function
given in Eq. (1). Moreover, we implemented a fully software-based
PSO and GA by modeling the functionality of the programmable
MZI cascade [see Eq. (S2) in Supplement 1], which we later use
to study the practical constraints of our system. Using the model,
we also tested various L1 and L2 distance metrics. We noticed that
such simulations never yielded satisfactory waveforms (independ-
ently of the PSO settings or chosen waveform). We attribute this
to a limited specificity of the distance metrics, leading to a large
ambiguity in fitness values and hence to a “noisy” fitness landscape
(i.e., good and nonideal solutions might be very close in cost value).
Consequently, the experiments have been exclusively performed
based on the cosine similarity [i.e., Eq. (1)].

4. RESULTS

In order to demonstrate the capabilities of our pulse-shaping
approach, we tested four waveforms of particular interest for opti-
cal signal processing [10–12], i.e., positive and negative sawtooth,
triangle, and flattop pulses.

Figure 3 shows the results for both experiment and simulation
for the case of an input pulse with 21 ps duration: The top row
[Figs. 3(a)–3(d)] depicts the simulation results for optimizing only
the amplitude ratios of the switches (similar to the experimental
configuration), the middle row [Figs. 3(e)–3(h)] shows the exper-
imental results, and the bottom row [Figs. 3(i)–3(l)] shows the
results for an ideal configuration, where both the amplitude and
phase settings for each delay can be optimized. In all cases, an ideal
waveform shape was targeted, while no constraints were applied
to the FWHM width of the output (see Supplement 1). Thus, the
algorithm finds the waveform with the lowest cost function value,
corresponding to the best overlap with a given waveform shape.

The experimental data [Figs. 3(e)–3(h)] demonstrate that, by
incorporating the delays from the five interferometers (propagated
through twice), an output pulse duration (FWHM) longer than
45 ps can be achieved (see also Fig. 4 for more details). Both sim-
ulated and measured results [Figs. 3(a)–3(h)] match the targeted
waveforms considerably well in all cases, despite the arbitrary
phase settings for each delay and the access to only amplitude
control. Improvements on the smoothness of the waveforms

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3. Comparison between simulation and experimental results after optimization, from left to right: triangle, positive sawtooth, negative sawtooth,
flattop. Top row (a)–(d), simulation results with amplitude weighting only (similar to the experiment; swarm size 60, maximum iterations 100). Middle row
(e)–(h), experimental results from the temporal shaping using the integrated pulse splitter in combination with the all-optical sampling and PSO algorithm.
Bottom row (i)–(l) simulation results with amplitude splitting and additional phase control per delay. Note that the input waveforms (dashed blue line) for
(a), (e), and (i) are scaled in amplitude for visibility and comparability, and the time axes are equal for the input and output waveforms.
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can be achieved with individual phase control per delay arm, as
demonstrated in the simulation results shown in Figs. 3(i)–3(l).
Nevertheless, amplitude-only temporal processing on each delay
performs surprisingly well, especially considering the low complex-
ity of the circuit. In order to test system performances, we require
the system to only match the shape of a given waveform, without
adding any additional, separate constraints on its duration (the
constrained case is discussed in Fig. 4 for the positive sawtooth and
in Supplement 1 for the flattop). We note that undesired modu-
lations appear in all cases and, as in Figs. 3(b)–3(d), such freedom
may even lead to the issue that the input pulse does not change (i.e.,
no shaping occurs). This is also a result of missing sensitivity in the
cost function. In other words, the cost function does not change
significantly for small deviations between target and waveform.
This weakness is common to all evolutionary algorithms and can
only be overcome using custom fitting methods and more elaborate
cost evaluations.

Although the waveforms from the simulation (Fig. 3, first row)
are similar to those obtained in the experiment, there is a mismatch
in the retrieved optimal settings. For example, for the positive
sawtooth [Figs. 3(b) and 3(f )], similar pulse widths are output
(e.g., τsim = 46.4 ps, τexp = 39.1 ps) at significantly different
switch settings (ratios simulation: [0.71, 0, 0.67, 0, 0.48, 0.69];
ratios experiment: [0.56, 0, 0.12, 0.08, 0.07, 0.76]). This dif-
ference arises from simulation simplifications such as zero phase
settings per delay, and the lack of simulated cross talk between the
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switches. This finding emphasizes the discrepancy between simu-
lated sample design and practical performance that can be caused
by certain shortcomings of the model. Autonomous optimization
approaches, such as ours, enable the mitigation of such design
bottlenecks.

The considerable difference between the best switch settings
returned from simulation versus those returned from experiment
suggests that simulation results cannot be easily transferred to
speed up experimental convergence. In such systems, where sim-
ulated and experimental parameter settings differ significantly,
the PSO is expected to outperform a standard GA. We tested the
potential performance improvement of the PSO in both simula-
tions and experiments. Table 1 summarizes the simulation results
(see also Fig. S1 in Supplement 1). The PSO shows a faster con-
vergence in all tested cases, i.e., it requires fewer populations to be
tested to reach the targeted cost value. For a fair comparison of the
convergence improvement, we chose the optimized cost function
value from our simulations above [i.e., fcost = 1.135; see Fig. 3(b)]
and used it as a threshold to measure the needed populations and
respective runtime for each algorithm. While both PSO runs sur-
passed this threshold with a maximum of 200 tested populations
(i.e., <4 s runtime), the GA with 100 population size required
1200 tests (i.e., ∼22 s runtime), and the GA with a population
size of 20 did not even reach the set cost value within the given
maximum number of iterations. Thus, our simulations indicate
that the PSO seems to converge faster than the GA, even at small
population sizes. This aspect becomes particularly severe in exper-
iments where each tested population requires update/detection
time.

In our measurements, we tested a GA with the optimized set-
tings recently reported in the literature using a similar platform
[26] [i.e., large initial population (500) and low number of itera-
tions (15 generations)]. Here, a large population size was chosen to
specifically enhance the exploration of the solution space. Finally,
our PSO (100 swarm size, 100 iterations, and 20 stall iterations)
reached a Q factor of 9.08 (cost 1.1010) after a total of 9800 tested
populations, while the GA finished with a lower Q factor of 8.68
(cost 1.1527) after a total of 7500 tested populations (see Fig. S2
in Supplement 1). An important difference between both runs
is that the PSO stopped after 20 stall iterations, during which it
achieved no further improvements, basically adding a calculation
overhead of 2000 tested populations. The GA, however, finished
after its maximum number of iterations was reached without any
stall iteration being deposited, indicating low convergence. Hence,
our measurements confirm the trend observed in the simulations:
the PSO indeed converges notably better, thus achieving high

Table 1. Simulation Results for Both PSO and GA in
Comparison

Algorithm

Initial
Population/
Swarm Size Q Factor

Tested
Populations

until
Q = 8.81
( fcost =

1.135) Is
Surpassed

Converted
Runtime (in

seconds)
until

Q = 8.81 Is
Surpassed

PSO 20 9.07 160 3.4
GA 20 8.78 >2000 >39
PSO 100 9.07 200 3.8
GA 100 9.06 1200 21.6
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waveform accuracy (i.e., higher Q factor than the GA) within a
given number of tested populations for which the GA still does not
approach a stable minimum.

The faster convergence is intrinsic to the PSO principle. Since
each particle’s momentum is partially calculated from the swarm
intelligence [42] [i.e., the social adjustment mechanics outlined in
Supplement 1 together with Eq. (S1)], i.e., a smaller swarm size
implies larger deviations from the global optimum and thus a larger
individual inertia, and a faster exploration of the solution space.
In other words, when the swarm’s knowledge is little, individuals
scatter more at a faster pace. However, it should be noted that the
convergence speed is highly problem-dependent, and social- and
self-adjustment weights as well as the neighborhood size of the
swarm may need to be accurately adjusted. A smaller initial swarm
size can also lead to a poor convergence, as there might be too
few particles to explore the full parameter space—a trade-off also
known as exploration vs. exploitation [43]. In any case, the benefit to
the GA remains when no initial parameter estimate exists.

Finally, we demonstrate the versatility and waveform scalability
of our approach in terms of the targeted output pulse duration.
While existing a priori approaches are often tailored towards only
a narrow range of pulse durations, we show the scalability for our
OWG output based on simulations for different input settings (see
Fig. 4). Therefore, we optimized a positive sawtooth waveform
of arbitrary but fixed pulse width in the range from 4–150 ps (see
Supplement 1 for more information on target waveform construc-
tion) using the same PSO settings as for Fig. 3(b) (i.e., without
phase optimization) and three different input pulse durations of 3,
20, and 50 ps. We performed a similar analysis for other waveforms
with similar outcomes (see Supplement 1 Fig. S3 for a flattop
waveform target).

The waveforms returned were evaluated with a least square fit
(via postprocessing) in order to retrieve the output pulse FWHM
width. Figure 4(a) shows the final cost value for each target; three
examples of the returned waveforms are presented in the inset. The
results demonstrate that the relation between target and output
pulse width is close to linear [see Fig. 4(b)] up to a factor of 10 (e.g.,
in the case of a 3 ps input width, one can obtain a 30 ps output)
with a relatively small error [Fig. 4(c)]. Notably, each input pulse
width features an individual target width that best fits the given
waveform, indicated by the lowest cost values in Fig. 4(a) (i.e., at
∼7.3 ps, ∼55.5 ps, ∼94.6 ps target width for 3, 20, and 50 ps
input pulses, respectively). For other target widths, the pulses start
to differ more strongly from the target as the optimized cost func-
tion values increase in Fig. 4(a), and the respective output pulse
widths diverge linearly in Figs. 4(b) and 4(c). Those deviations
are mainly caused by increasingly severe modulations of the pulse
envelope. These modulations appear primarily when the target
waveform is inaccessible for a given input using the provided on-
chip delays, i.e., when the platform’s limits are reached in terms of
(i) resolution (i.e., given by the shortest delay, here 1 ps), (ii) max-
imally achievable delay (here 62 ps, i.e., twice the sum of all delays
due to double propagation), or (iii) possible delay combinations.
Additionally, the shortest delay also limits the minimal input dura-
tion, which should be chosen larger than the minimum resolution
of the MZI cascade in order to undergo significant pulse shaping.
Nevertheless, our results clearly demonstrate the versatility of our
approach, ultimately showing the advantages of simpler optimiza-
tion algorithms applied to dynamical optical systems over ab initio
simulation methods for sample design.

5. CONCLUSION AND OUTLOOK

In conclusion, we demonstrated picosecond pulse shaping by
temporal coherence synthesis on a fiber-coupled, reconfigurable
SDL chip combined with a cost-effective optical readout and an
autonomous optimization technique. The demonstrated device
can achieve arbitrary optical waveform shapes of several tens of
picoseconds with on-the-fly reconfigurability using a potentially
chip-integrable pulse sampling scheme. Notably, our experimental
results demonstrated the shaping of pulses with similar and broader
widths than previously demonstrated using tailored photonic
chips based on Fourier synthesis [13]. Moreover, our simulations
indicate a pulse processing potential of≥100 ps, where previously
demonstrated on-chip implementations become increasingly
complex as they involve a higher number of optical on-chip com-
ponents (incl. multiple microresonators, phase shifters, and beam
combiners [14,15]). Also, contrary to other on-chip approaches,
no high-speed detection equipment or a priori simulations for
weight determination are needed in our approach. In fact, our
sample was not tailored for this specific application, yet could be
made useful through the employed optimization technique. In par-
ticular, our findings are empowered by the PSO algorithm, which
succeeds in reaching performances comparable to other on-chip
systems on a user-friendly platform with significantly fewer optical
components.

The implemented processing platform features low energy
consumption of maximum 1.8 W during operation (∼300 mW
per switch for the largest voltage applied, optical monitoring and
software-based optimization excluded), mainly from the current
that is required to hold the correct splitting weights. In terms of ver-
satility, we envision a more ideal platform design by implementing
each of the bit-wise increasing delays twice, instead of propagat-
ing through the same delay two times, while adding amplitude
and phase control to each delay individually (at the expense of
system complexity). Future improvements might also include
complete on-chip system integration, using, for example, soliton
microcombs [44] as a shaping and sampling source and nonlinear
waveguides for the optical sampling [35,45].

We further showed that the use of the PSO algorithm can be
advantageous for unbiased optimization tasks over simple random
search algorithms and the commonly used GA, both in terms
of convergence speed and achievable accuracy. We emphasize
that convergence within a low number of evaluations is especially
important in experimental demonstrations, since the time-limiting
element is indeed not the computational time for the algorithm,
but the measurement time per parameter setting (i.e., swarm
particle or population member). Thus, the capability of the
PSO to quickly converge a small population might significantly
speed up practical searches for target system outputs, promising
performance boosts for ultrafast photonic applications such as
interruption-free, adaptive generation of laser pulses, or control of
complex cavity dynamics.

We also would like to stress that we do not suggest an exclusive
use of the PSO before the GA. Either can run more efficiently
than the other, depending on the problem at hand [25–27]. Yet,
based on our experiences, we recommend using the PSO in case
of optimization tasks involving many free parameters but lacking
an intuition for a good set of initial parameters. For such unbiased
problems, the PSO seems to converge to a good solution straight-
forwardly without much effort from the user in optimizing the
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algorithm’s control parameter space itself. Future work will be con-
ducted on the convergence speed and performance, also by using
more sophisticated adaptive PSOs, by combining algorithms, such
as for example, the PSO and GA [46] or the inclusion of more
elaborate machine-learning approaches [8].
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