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Transients in pressure-imposed shearing of dense granular suspensions
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Abstract. Granular materials whether dry or immersed in fluid show dilation or compaction depending upon
the initial conditions, solid fraction and normal stress. Here we probe the transient response of a dense granular
suspension subjected to change of applied normal stress under simple shear. In this aim, normal-stress-imposed
discrete element particle simulations are developed considering the contributions arising from the drag induced
on the particles by fluid phase. These pressure-imposed simulations show transient behaviors of dense granular
suspensions such as dilation or compaction before reaching a steady state following the µ(J) rheology. Less
expectedly, the transient behavior, in particular the height of the system as a function of applied strain, can also
be described by assuming that the system follows the steady µ(J) rheology at all times.

1 Introduction

Understanding and predicting the rheology of dense gran-
ular suspensions is highly important to understand the be-
havior of e.g. debris or mud flows [1]. Additionally, it
also finds application in civil, mining and food engineering
sectors while handling concrete, drilling muds, petroleum
extraction and manufacturing of chocolates and other food
products [2]. In the last two decades, there has been sub-
stantial advancement in understanding and modeling the
steady flow of granular suspensions which has led to the
development of µ(J) rheology [3, 4]. For an homogeneous
mixture of non-Brownian and neutrally-buoyant rigid par-
ticles in a viscous fluid, dimensional analysis shows that in
simple shear the rheology is described by a couple of rela-
tions expressing the macroscopic friction µ = τ/Pp (with
τ and Pp respectively the shear stress and the particle pres-
sure in the gradient direction) and the solid fraction φ as a
function of the so-called viscous number J = ηf γ̇/Pp.

µ = µSS(J), φ = φSS(J) (1)

Because φ′SS(J) < 0, the µ(J) rheology captures the
change of volume for the particle phase between two
steady states, that is, dilation (resp. compaction) under
increase (resp. decrease) of J [4], a phenomenon observed
in immersed soils [5, 6] or submarine avalanches [1, 7].
However, the transient behavior of the system during di-
lation or compaction is less characterized, and it is not
known if an extension of the µ(J) rheology to transient
states is needed to capture it. When the system dilates,
the fluid is sucked into the granular packing as a result of
newly created pore spaces. In contrast, during compaction,
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the fluid is expelled out of the void spaces and accordingly
the solid fraction increases [2, 8]. The associated mechan-
ical coupling between the fluid and particle phases happen
before reaching the steady state where the µ(J) rheology
applies.

In this work we start filling this gap with numerical
simulations of a sheared suspension undergoing dilation
or compaction. While there are many numerical studies
regarding the transient response of a sheared granular sus-
pension, all of them address the problem under fixed vol-
ume conditions [9–12]. Conversely, though several ex-
periments [4, 13–15] and particle simulations based on
discrete element method (DEM) [16–20] have employed
pressure-imposed conditions, they have been restricted to
steady state investigations. We therefore developed DEM
simulations of a simple shear of a granular suspension un-
der imposed external particle normal stress Pext. One way
to capture the transient behavior is to impose a step-change
in Jext ≡

ηf γ̇
Pext

, which leads to either dilation or compaction
of the suspension. We show that in this setup, the entire
dynamics of volumetric change can be well described by
the µ(J) rheology, even though this rheology is a priori
only valid in steady state.

2 Numerical method

Using a Discrete Element Method (DEM), we simulate a
monolayer system of N = 1000 spherical particles im-
mersed in a Newtonian fluid with viscosity ηf , subjected
to an homogeneous simple shear at rate γ̇ between two
horizontal walls made of frozen particles, as depicted in
Fig. 1. The choice of the monolayer, instead of a three-
dimensional system, gives us access to larger separations
between the two walls, which limits finite-size effects. Di-
mensions of the system are Lx and h in the horizontal
and vertical directions, respectively, and the simulation

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0

(http://creativecommons.org/licenses/by/4.0/). 

EPJ Web of Conferences 249, 09009 (2021) https://doi.org/10.1051/epjconf/202124909009
Powders and Grains 2021

A video is available at https://doi.org/10.48448/tf0n-t294

https://doi.org/10.48448/tf0n-t294


Figure 1. Our 2D monolayer setup. The system (grey particles)
is sheared at fixed applied vertical pressure Pext between an im-
permeable fixed bottom wall (blue particles) and a permeable top
wall free to move vertically to adjust the system area.

domain is periodic in the horizontal direction. Particles
are bidisperse, with small particles of radius a and large
ones of radius 1.4a, mixed in equal area proportion. Be-
cause of the bidimensional nature of the system, the solid
fraction φ is defined as the area fraction in the plane of
shear, that is φ = Nπā2

p/(Lxh), with āp the average radius
of a particle. Particles interact through the pairwise lu-
brication forces and frictional contact forces, with friction
coefficient µp = 0.5 (details of the interaction model can
be found in [21]). Finally, particles are also coupled to
the fluid via the Stokes drag. The fluid itself is unaffected
by the particles, and follows a purely horizontal velocity
field with x component γ̇y. The dynamics is overdamped
(Reynolds and Stokes numbers are in the vanishing limit),
so that the equation of motion corresponds to mechani-
cal equilibrium on each particle in the bulk [22], which is
solved for the velocities of the particles.

While the lower wall is fixed and not permeable to the
fluid, the upper wall moves horizontally with a velocity
ux = γ̇h and is also free to move vertically with a velocity
uy, according to the value of an imposed external verti-
cal pressure Pext. The vertical motion implies a fluid flow
through the permeable top wall, which imposes a Stokes
drag on the particles making the wall. The vertical velocity
of the wall is then determined at every time step by requir-
ing that the upper wall is under mechanical balance, that
is, imposing that the sum of the force applied by the bulk
particles, the external force, and the Stokes drag from the
background fluid (which is proportional to uy) vanishes.

This setup mimics a constant external normal stress
rheometer [4]. Just like in experiments, the bulk particle
pressure Pp equals the external one Pext (and accordingly
J = Jext) only in steady state. During transients how-
ever, J does not match Jext and moreover is not uniform in
the sample, due to dilation effects as the particle pressure
arises from both the imposed external pressure Pext but
also from the fluid drag. Note that we do not take into ac-
count the fluid flow between pores which generates a drag
on the particle phase during dilation or compaction. In
our setup, dilation can only occur in the vertical direction,
so that the problem can be reduced to a one-dimensional
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Figure 2. Steady state rheology. µSS (left) and φSS (right) as a
function of J. In dashed lines, fits to the functions indicated in
the respective plots. These fits are also shown as µSS − µc and
φc − φSS versus J in the respective insets.

pore flow. This gives rise to a drag on the particle phase
which is proportional to the difference of vertical veloci-
ties between fluid and particle phase, just like the Stokes
drag, only with a smooth φ-dependent hydrodynamic re-
sistance which is not singular at jamming. Hence, for the
sake of simplicity our simulation framework ignores the
φ-dependence of the hydrodynamic resistance of the pore
flow, but does contain the same drag physics. This simpli-
fication does not affect the qualitative features of dilation,
although at a quantitative level it underestimates the drag
of the fluid phase on the particle phase during dilation, that
is, our measured dilation dynamics is faster than it would
be with full pore flow drag.

In steady state, we recover µSS = µc + aJα and φSS =

φc − bJβ, with µc ≈ 0.26, a ≈ 4.9, α ≈ 0.475, φc ≈ 0.809,
b ≈ 0.67 and β ≈ 0.44. These parameters captured the
simulation data as depicted on Fig. 2.

3 Transients following a step in Jext

We follow a systematic protocol to study the transients us-
ing a step in Jext, as illustrated in Fig. 3. The system is
first brought to a steady state under an initial viscous num-
ber Ji (black lines in Fig. 3), and at a strain γ = γs = 50,
Jext is suddenly changed to a value Jf (red lines). It can be
achieved in two ways: either by keeping γ̇ constant while
applying a step-change of Pext, or by keeping Pext constant
while applying a step-change in γ̇, and here we adopted the
former protocol. By dimensional analysis, both the proto-
cols are strictly equivalent. If Jf > Ji, as in Fig. 3, the
system dilates, as illustrated by the increasing height h as
a function of the applied strain after the step in Jext. This
dilation is associated to an instantaneous drop (resp. in-
crease) of the fluid (resp. particle) pressure in the system,
as well as a large pressure gradient, as seen in the differ-
ence between the particle normal stress Pp normalized by
applied pressure Pext measured at the bottom and top walls
in Fig. 3d. Close to the bottom wall, the amplitude of the
stress is reaching values two orders of magnitude above its
steady state value. This value will depend on the sample
height, however. Assuming a uniform dilation (which is
actually not quite the case, see below), and using the Sus-
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Figure 3. Step increase of Jext = ηf γ̇/Pext from steady state at
Jext = Ji = 1 × 10−4 (black curves) to Jext = Jf = 5 × 10−2 (red
curves) at a strain γs = 50. (a) Snapshots of the system at dif-
ferent strain values after the increase of Jext. The voids below
the top wall at γ = 51 and γ = 55 show that dilation occurs ini-
tially below the top wall, and at later strains spreads throughout
the entire height. (b) Applied Jext as a function of strain γ. (c)
Height h as a function of γ, showing the slow dilation of the sys-
tem over more than 100 strain units to reach steady state at Jf .
(d) Dimensionless particle normal stress measured at the bottom
(light colored) and top (dark colored) of the sample, as a function
of γ. In inset, the gardient of Pp as a function of height obtained
at γ − γs = 0.02. (e) Macroscopic friction coefficient at the top
wall as a function of γ.

pension Balance Model [23–25], we expect the amplitude
of the stress overshoot at the bottom of the system to in-
crease roughly quadratically with the system height. The
resulting fluid pressure gradient forces the fluid to perme-
ate down through the particle phase, which in turn dilates.
When dilation ends, Pp/Pext reaches its steady state value
of 1.

Dilation also has a strong effect on the macroscopic
friction coefficient measured on the top wall µwall =

τwall/Pext, with τwall the shear stress on the wall, as shown
in 3e. When Jext is increased, µwall discontinuously in-
creases by roughly two orders of magnitude before reach-
ing its new steady state value µSS(Jf). Hence the suspen-
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Figure 4. Evolution of the top wall height during the transients.
(Top) Simulations starting with two different Ji = 1 × 10−4

(lightly colored lines) & 1.6 × 10−3 (dark colored lines), but same
Jf . (Bottom) Comparison between simulations (solid lines) and
model predictions (dashed lines).

sion transiently appears much more “frictional” than in
steady state, due to dilation.

Interestingly, dilation is not uniform across the height
of the sample, as is evidenced by the snapshots of the sys-
tem at different strains during dilation, as shown in Fig. 3a.
Dilation occurs initially faster close to the top wall than in
the bulk. This non uniform dilation can be related to the
nonlinearity of the particle normal stress gradient, through
the Suspension Balance Model [23–25]: at γs, when the
system is uniform in φ, SBM predicts that ∂tφ(y) ∝ −∂2

yPp,
so that the dilation is uniform if ∂yPp is an affine func-
tion of y. As shown in the inset of Fig. 3d, right after the
change of Jext, we see that this condition is not met. The
stress gradient is superlinear close to the top wall, which
leads to a faster dilation in this region.

Varying Jf , as in Fig. 4(top), we see that dilation takes
place on a strain scale that depends strongly on Jf . Sim-
ulations with larger Jf values take a much larger strain to
reach steady state than simulations with a smaller Jf . This
is not only due to the fact that at larger Jf values the system
dilates by a larger amount, but is also a consequence of the
smaller normal stresses generated by the suspension when
its solid fraction decreases, which in turn lead to lower up-
per wall vertical velocities.

Comparatively, the effect of varying Ji is much more
short-lived, as shown also in Fig. 4(top): for a given Jf ,
two simulations with Ji = 1 × 10−4 and Ji = 1.6 × 10−3

follow the same height evolution after a few strain units at
most, often well before reaching steady state. The early
transients however are very much affected by Ji, and for a
given value of Jf one can observe dilation or compaction
if, respectively, Ji < Jf or Ji > Jf .

3

EPJ Web of Conferences 249, 09009 (2021) https://doi.org/10.1051/epjconf/202124909009
Powders and Grains 2021



We model the dilation with a two-phase model, which
consists of mass and momentum balances together with a
constitutive model. Momentum balance, in the approxi-
mation of the Suspension Balance Model (SBM) [23–25],
relates the particle normal stress along the velocity gra-
dient σp

yy to the local particle phase velocity in the same
direction uy as

∂yσ
p
yy = 6ηfφuy/āp. (2)

Here we did not use the φ-dependent hydrodynamic resis-
tance appearing in the SBM to be consistent with our sim-
ulation choice of a bare Stokes drag. In turn uy is linked to
the dilation through mass conservation

∂tφ + ∂y(uyφ) = 0. (3)

To close the problem, we use the steady µ(J) rheology [4]
as a constitutive model, φ = φSS(J), as fitted from the
steady-state simulations (see Fig. 2). The boundary condi-
tions require vanishing vertical velocity at the bottom wall
uy(0) = 0 = ∂yσ

p
yy(0), and force balance on the top wall,

−Pext − 6πηf āpNwalluy(h)/Lx − σ
p
yy(h) = 0, (4)

with u(h) = ∂th and Nwall the number of particles in the
upper wall.

Altogether, this model gives the predictions shown in
dashed line on Fig. 4(bottom), in good agreement with
DEM results. Thus, in this setup extensions of the µ(J)
rheology to capture transient aspects of the rheology [26]
are not necessary to get a reasonable description of the dy-
namics. This is in contrast with the strong transients ob-
served for the friction coefficient measured at the top wall
µwall: while globally the suspension is far from its steady
state, a model assuming a local steady rheology is able to
capture the dilation accurately. A possible rationalization
of this result is that here dilation (or compaction) occurs
on strain scales typically larger than 1, whereas the typi-
cal strain scale for a system to reach the steady µ(J) rhe-
ology is smaller than 1 (Pailha and Pouliquen estimate is
≈ 0.24 [26]). As a consequence for practical purpose the
suspension can be considered locally in quasi steady state
at all time.

4 Conclusion

We presented simulations of normal-stress controlled
shear of granular suspensions, focusing on the transients
during dilation. In particular, we capture the transient in-
crease of macroscopic friction coefficient measured on the
top wall. While the steady-state rheology is, as expected,
well captured by the µ(J) rheology, the transient dynamics
is also well predicted by assuming that the µ(J) rheology
is locally followed at all time. We suggest that this will be
true whenever dilation takes place over strain scales larger
than 1, which would give the µ(J) rheology a vast do-
main of validity even in unsteady flows. Conversely, more
stringent tests of the transient rheology, possibly showing
limitations of the steady µ(J) and the need to extend it,

should share the characteristics of generating quick vol-
ume changes. We are currently investigating this possibil-
ity with shear protocols differing from step changes in Jext,
and we will report these results in a future article.
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