
HAL Id: hal-03366952
https://hal.science/hal-03366952v1

Preprint submitted on 5 Oct 2021 (v1), last revised 4 Nov 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transient flows and migration in granular suspensions:
key role of Reynolds-like dilatancy

S Athani, B Metzger, Y Forterre, R Mari

To cite this version:
S Athani, B Metzger, Y Forterre, R Mari. Transient flows and migration in granular suspensions: key
role of Reynolds-like dilatancy. 2021. �hal-03366952v1�

https://hal.science/hal-03366952v1
https://hal.archives-ouvertes.fr


Under consideration for publication in J. Fluid Mech. 1

Transient flows and migration in granular
suspensions: key role of Reynolds-like

dilatancy

S. Athani1†, B. Metzger2, Y. Forterre2, and R. Mari1
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We investigate the transient dynamics of a sheared suspension of neutrally buoyant
particles under pressure-imposed conditions, subject to a sudden change in shear rate
or external pressure. Discrete Element Method simulations show that, depending on
the flow parameters (particle and system size, initial volume fraction), the early stress
response of the suspension may strongly differ from the prediction of the Suspension
Balance Model based on the steady-state rheology. We show that a two-phase model
incorporating the Reynolds-like dilatancy law of Pailha & Pouliquen (2009), which
prescribes the dilation rate of the suspension over a strain scale γ0, quantitatively captures
the suspension dilation/compaction over the whole range of parameters investigated.
Together with the Darcy flow induced by the pore pressure gradient during dilation or
compaction, this Reynolds-like dilatancy implies that the early stress response of the
suspension is nonlocal, with a nonlocal length scale ` which scales with the particle
size and diverges algebraically at jamming. In regions affected by `, the stress level is
fixed, not by the steady-state rheology, but by the Darcy fluid pressure gradient resulting
from the dilation/compaction rate. Our results extend the validity of the Reynolds-like
dilatancy flow rule, initially proposed for jammed suspensions, to flowing suspension
below φc, thereby providing a unified framework to describe dilation and shear-induced
migration. They pave the way for understanding more complex unsteady flows of dense
suspensions, such as impacts, transient avalanches or the impulsive response of shear-
thickening suspensions.

1. Introduction

Granular suspensions consisting of rigid particles and fluids are ubiquitous in nature
(landslides including debris flow, mud flow and submarine avalanches) and industrial
applications (among others manufacturing and handling of concrete, drilling slurries or
molten chocolate) (Guazzelli & Pouliquen 2018). In many flow situations, the particle
volume fraction of the suspension is not constant but can evolve both in space and time.
This is observed for instance in volume-imposed configurations with neutrally-buoyant
particles, when shear-induced migration occurs as a result of an in inhomogeneous flow
field, such as in pipe or large gap Couette flows (Morris & Boulay 1999). It is also observed
in pressure imposed configurations, for instance in gravity driven flows with non-buoyant
particles, when an immersed granular avalanches dilates in order to flow (Iverson et al.
2000). For both of these situations, the flow involves local changes of the volume fraction.
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Upon dilation, pore space is created in between the particles, which has to be filled by
the incompressible fluid. The resulting relative motion between the fluid and solid phases
creates a drag on the particles which transiently increases the particle pressure. A similar
scenario, but of opposite sign, occurs upon compaction: this time fluid is expelled out of
the contracting pores, which transiently decreases the particle pressure.

Depending on the scientific community and the flow regime considered, this two-
phase flow coupling has been apprehended in two very different ways. In the suspension
community, transient changes of the particle volume fraction below φc (the critical
volume fraction at which the suspension jams), are usually described using the so-
called Suspension Balance Model (SBM)(Nott & Brady 1994; Morris & Brady 1998;
Morris & Boulay 1999; Nott et al. 2011). In this framework, particle migration is
driven by particle stress gradients arising in inhomogeneous flow field. SBM is built
on phase averaged momentum and mass conservation laws (Jackson 1997) and two
closures: an interphase coupling and a constitutive law for the particle phase stress. In
the Stokes regime, the interphase coupling is usually written as a drag proportional to the
relative phase velocities. The standard choice for the constitutive law is the steady-state
rheological flow rules for the shear and normal particle stresses, which have now been
well characterized and tested (Guazzelli & Pouliquen 2018). These constitutive laws can
be equivalently expressed either as “volume-imposed” or “pressure-imposed” flow rules.
In volume-imposed configurations, dimensional analysis requires that, in steady state,
stresses are viscous and proportional to ηf γ̇, where ηf is the fluid viscosity and γ̇ the
shear rate. The constitutive laws thus resume to the volume fraction dependence of the
shear ηs(φ) and normal ηn(φ) viscosities, where φ is the particle volume fraction. In
pressure-imposed configurations, the dimensionless number controlling the flow is the
viscous number J ≡ ηf γ̇/Pp, where Pp is the particle pressure. The constitutive laws
are then provided by the relations µ(J) and φSS(J), where µ = τ/Pp is the suspension
friction coefficient, with τ the applied shear stress. So far, SBM has been tested and found
to be in reasonable agreement with experimental results on particle migration in wide-
gap Couette (Morris & Boulay 1999; Sarabian et al. 2019), in pipe flows of concentrated
suspensions (Snook et al. 2016), or during resuspension (Acrivos et al. 1993; d’Ambrosio
et al. 2021; Saint-Michel et al. 2019).

In the granular and soil mechanics communities, volumetric changes of the particle
phase are usually studied for packings initially at rest, and prepared very close to, or
even beyond φc. A central concept in this field is the Reynolds dilatancy (Reynolds 1885;
Wood 1990), which stipulates that, in order to deform, an initial dense (resp. loose)
packing must dilate (resp. compact) toward its critical state of volume fraction φc in the
quasistatic regime. In the presence of an interstitial fluid, this change in volume fraction
leads to Darcy back-flow (or negative/positive pore pressure) whose drag on the particles
sets the particle stress. This Darcy-Reynolds coupling between granular dilatancy and
Darcy back-flow is essential for predicting the behavior of soils under drained or undrained
conditions (Wood 1990). It was also shown to have major consequences for the transient
flow of granular suspensions close to jamming, such as for the onset of debris flows and
submarine avalanches (Iverson et al. 2000; Pailha et al. 2008; Rondon et al. 2011; Topin
et al. 2012; Bougouin & Lacaze 2018; Montellà et al. 2021), during impacts (Jerome
et al. 2016), silo discharge (Kulkarni et al. 2010), or when shearing dense clouds of
particles (Metzger & Butler 2012). To model this feedback, Pailha & Pouliquen (2009)
proposed a dilatancy dynamics for φ, which is essentially a relaxation of φ towards its
steady-state law φSS(J) on a typical strain scale γ0 ∼ O(1), extending previous Reynolds
dilatancy laws proposed for dry granular media in the quasi-static regime Roux & Radjai
(1998).
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Figure 1. Gedanken experiment. A suspension of neutrally buoyant particles is homogeneously
sheared under an imposed external pressure Pext and shear rate γ̇. A step change in
Jext = ηf γ̇/Pext is then applied by suddenly varying Pext or γ̇. Upon the step increase in Jext
shown in the Figure, the particle skeleton dilates and yields: a transient fluid Darcy back-flow
(blue arrows), a transient decrease of pore pressure Pf and a transient increase of particle stress
Pp. The red segments highlight the increase of the particle stress.

Interestingly, the theory based on Reynolds dilatancy and the Suspension Balance
Model describe the same type of interplay between dilation (compaction) of the granular
skeleton and fluid interphase drag forces. However, this coupling is treated in very
different ways. In the Suspension Balance Model, the particle stress field is set by the
steady-state rheological flow rules and the migration rate adapts to satisfy the force
balance between this stress field and the interphase drag force. Conversely, in the theory
based on Reynolds dilatancy, the rate of dilation is geometrically imposed by a “dilatancy
angle” (the distance between the actual volume fraction to φSS(J)). In this case, it is
the particle stress field that adapts to this transient kinematically-constrained evolution.
This fundamental difference raises important questions. A particularly pregnant issue is
the origin of the stress levels observed during transient flows: Are the typical pore and
particle pressures set by the steady-state rheology, or by the Darcy back-flow induced by a
geometrically constrained dilation (compaction) of the granular phase? Another question
is whether the concepts of Reynolds dilatancy and shear-induced migration could be
reconciled and described in a unified framework? Clearly, the Suspension Balance Model
cannot be used for very compact granular layers, as above φc, the steady-state rheological
flow rules are not defined. However, whether the Reynolds dilatancy concept applies to
describe migration for systems below φc has never been tested.

In this article, we address the above questions by performing Discrete Element Method
(DEM) simulations in a canonical configuration: a neutrally buoyant sheared suspension
under pressure-imposed conditions, subject to a sudden change in shear rate or external
pressure (i.e. a step change in Jext = ηf γ̇/Pext, see Figure 1). This simple configuration
allows us a detailed characterization of the dilation (compaction) dynamics, while varying
all the relevant control parameters (initial and final Jext, ratio of system size to particle
radius H/a). We then compare these numerical results to the two different continuum
models described above: the Suspension Balance Model based on the steady-state rheolog-
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ical flow rules (from now on simply called steady-state rheology model), and the two phase
model coupling the Darcy drag force and the Reynolds-like dilatancy closure of Pailha
& Pouliquen (2009) (from now on called Darcy-Reynolds model, following Jerome et al.
(2016)).

We find that, while at large strains both continuum models give similar results in
agreement with DEM, at small strains, only the Darcy-Reynolds model can quantitatively
capture the DEM results over the whole range of control parameters. The steady-state
approximation is not only quantitatively poorer, it also provides qualitatively wrong
predictions. Specifically, we show that the Darcy-Reynolds model induces non-locality
in the stress upon dilation (compaction), on a typical length scale ` proportional to
the grain size and diverging at the jamming transition, which the steady-state rheology
model is completely oblivious to. This nonlocality implies that the transient excess of
macroscopic stresses observed during dilation is size-dependent. Systems whose size H
is smaller than ` show smaller level of stresses than expected from the steady-state
rheology. In this case, stresses are set by the Darcy back-flow induced by the volumetric
strain. Conversely, systems much larger than ` show larger stresses, well predicted by
the steady constitutive law. Overall, our results highlights that during transients, stress
levels in granular suspensions, even below φc, are controlled by a Reynolds-like dilation
(compaction) of the granular phase and not by the steady-state rheological flow rules.

The manuscript is organized as follows: After presenting the numerical set-up in § 2,
the DEM results are reported in § 3. We then detail both continuum models in § 4 and
compare them to DEM results in § 5. Conclusions are drawn in § 6.

2. Numerical Setup

Pressure-imposed DEM simulations are developed based on an established DEM code
for volume-imposed simulations presented in detail in (Mari et al. 2014). As depicted in
Fig. 2 (a), we consider a monolayer of neutrally buoyant non-Brownian hard disks (in
gray) immersed in a Newtonian fluid of viscosity ηf , placed between two rigid top and
bottom walls separated by H and built out of frozen particles (in blue). The bottom
wall is not permeable to the fluid nor to the particles, while the top wall is permeable
to the fluid, but not to the particles. Furthermore, the bottom wall is fixed, whereas the
top wall is free to move vertically, subject to an externally applied normal stress Pext,
and follows a prescribed horizontal velocity γ̇H when the suspension is sheared at an
imposed shear rate γ̇. This corresponds to an applied viscous number Jext ≡ ηf γ̇/Pext.
This setup is, in spirit, the two-dimensional equivalent of the pressure-imposed rheometer
of Boyer et al. (2011). We choose a monolayer setup over a three-dimensional one to be
able to reach reasonably large linear extensions, without simulating a prohibitively large
number of particles. The particle size distribution is bidisperse, with a size ratio 1.4,
mixed in equal volume. We use periodic boundary conditions along the horizontal x-
direction, and call lx the system length in this direction. The solid fraction of the system
is then φ ≡ Nπa2/(lxH), with a the mean particle radius. We assume that the system
is in the limit of vanishing Reynolds number, and neglect inertial effects. In this limit,
we thus follow the Stokesian Dynamics approach and do not explicitly simulate the fluid
phase, which only comes in as hydrodynamic interactions acting on the particles (Brady
& Bossis 1988). The dynamics being overdamped, the equation of motion consists of
mechanical force and torque balance on every particle.

The forces acting on bulk particles are contact forces, with a Coulomb frictional
model with friction coefficient µp = 0.5, implemented in a standard Cundall-Strack
manner (Cundall & Strack 1979), and hydrodynamic forces. The particle stiffness is
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Figure 2. a) Pressure-imposed DEM simulations. The system is composed of mobile particles
(in grey) which are immersed in a suspending Newtonian fluid and placed between the top
and bottom walls constructed with frozen particles (in blue). The control parameters are the
external stress Pext on the top-wall and the shear rate γ̇ imposed to the entire system. In this
pressure-imposed configuration, the top wall can move vertically, allowing the volume fraction
to adjust freely owing to the value of the imposed Jext = ηf γ̇/Pext. The fluid is not explicitly
modeled but accounted for through lubrication and drag forces. b) The drag force fD exerted
by the fluid on particle i is proportional to the difference of between the local fluid and particle
velocities. This force ensures that grains are advected by an homogeneous background shear
flow in the x-direction, and models the pore pressure feedback (or interphase drag coupling)
occurring during dilation (compaction) of the granular skeleton in the y-direction.

chosen such that the particle overlap is always smaller than 2 % of their diameter. We
neglect long-range hydrodynamic interactions, which are screened in a dense system, and
consider only the short-ranged pairwise lubrication forces (Mari et al. 2014). Finally, a
Stokes drag is applied to particles, and is assumed proportional to the relative velocity
between a particle and the background fluid velocity evaluated at the center of the
particle, u∞(y) = (γ̇y, 0) if the particle is at height y: for particle i with radius ai
and velocity ui, the drag force is fD = −6πηfai(ui − u∞(yi)), see Figure 2 (b). This
force plays two important roles: first it ensures the granular suspension is advected by
an homogeneous background shear flow in the x-direction. Second, it is used to model,
in the simplest possible way, the pore pressure feedback (or interphase drag coupling)
occurring during dilation (compaction) of the granular phase in the y-direction. Note
that two important simplifications are made. First, we neglect the vertical fluid velocity
component that should arise to satisfy the suspension incompressibility during dilation
(compaction). Second, we do not explicitly simulate the fluid flow between pores, nor do
we use standard mesoscopic models as the empirical hindered settling function proposed
by Richardson & Zaki (1954), which scales as (1 − φ)α, with α > 0 (Davis & Acrivos
1985; Morris & Boulay 1999; Snook et al. 2016).

This choice of interaction between the solid and fluid phases, through a simple Stokes
drag force, retains the minimal physics needed to describe the transient dynamics
considered here: a drag force proportional to the difference of vertical velocities between
fluid and particle phase. Such a choice will prove trivial to model when it comes to the
comparison of our DEM results with continuum modeling. This is an important aspect of
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our approach, as it will allow a much finer testing of the constitutive laws. Indeed, instead
of having to attribute discrepancies between the theoretical model and the numerical
simulations to one of the two closures (the interphase drag and the constitutive law),
which can rapidly prove impossible to disentangle, we know here by construction that
the observed discrepancies are coming from inaccurate constitutive modeling only. The
downside to this modeling choice is that we will not achieve quantitative agreement with
experimental data, but this was already prevented by our choice of a monolayer.

Forces acting on the top wall are the imposed external force Pextlx, the contact and
lubrication forces coming from interaction with the bulk particles, and a viscous drag
proportional to the relative motion of the wall with respect to u∞(H), which reads
−κlx(uwall−u∞(H)), with uwall = (γ̇H, ∂tH) the velocity of the top wall and κ the wall
hydraulic resistance. Except when noted, we take κ as if a Stokes drag was acting on each
particle composing the wall, that is κ = 6πηfNwalla/lx, with Nwall the number of particles
in the top wall. We also performed simulations with κ = 0 which yields similar results.
The vertical motion of the top wall is obtained by writing that the wall is force-free and
its equation of motion is derived in Appendix A.

The simulation protocol is as follows: the suspension is first pre-sheared under con-
stant pressure Pext and constant shear rate γ̇ so that it reaches an initial steady state
characterized by the initial viscous number Ji. We then suddenly impose a step change
in Jext. This can equivalently be done by keeping Pext constant while changing the
imposed shear rate γ̇ (as shown in Figure 1), or by keeping γ̇ constant while changing
the imposed external pressure Pext. Before the system eventually reaches a final steady
state characterized by the viscous number Jf , we systematically investigate the transient
evolution of the system by monitoring the evolution of the top wall vertical position
H, the depth-averaged shear stress τ̄ , and the volume fraction φ and particle vertical
normal stress Pp profiles within the granular layer along the y-direction. Simulations
are performed for both dilation (Jf > Ji) and compaction (Jf < Ji), over a wide range
of viscous number Jext ∈ [10−4 − 10−1], and for three systems sizes differing by their
particle number (N = 1500, 1000 and 600) or corresponding vertical normalized height
(H/a = 140, 68 and 33, respectively, when Jext = 10−4).

3. DEM simulation results

3.1. Macroscopic phenomenology

Figure 3 shows the evolution of the granular layer subject to a step change in Jext
for two cases of dilation (Jf > Ji, blue line) and compaction (Jf < Ji, red line). After
the step, we observe that when Jf > Ji (resp. Jf < Ji), the thickness of the granular
layer H increases (resp. decreases) as a result of the dilation (resp. compaction) of the
granular skeleton. This behavior is expected since the steady-state rheological rule φSS(J)
prescribes that the volume fraction of the suspension must decrease with its viscous
number. Interestingly, the strain scale to reach the new steady state at Jf strongly differs
for dilation and compaction. As seen in Fig. 3a, the volumetric change occurs on a strain
γ of order 1 for compaction, while it takes more than 10 strain units to complete for
dilation. This simply comes from the fact that dilation and compaction are dissymmetric
as they occur under different external values of Jext.

Remarkably, during the transient, both the mean particle pressure P̄p/Pext (averaged
over the whole layer thickness) and the depth-averaged shear stress τ̄ /τSS exhibit a
sudden and large increase (resp. decrease) for dilation (resp. compaction), before relaxing
towards their steady-state value. Understanding what sets the stress levels during these
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Figure 3. Macroscopic response of the granular layer subject to a step increase (in blue)
and a step decrease (in red) in Jext applied at γ = 0. (a) Imposed Jext, (b) evolution of the
layer thickness height H/a, (c) normalized depth-averaged particle pressure P̄p/Pext, and (d)
normalized depth-averaged shear stress τ̄ /τSS at the top wall, where τSS = µ(Jext)Pext when the
system is at steady state, versus strain γ. All results are averaged over 10 different realizations
and were obtained for the system size H/a = 33. Red and blue lines: DEM simulations, Dashed
black lines: model based on steady-state rheology (Yellow circles: prediction at γ = 0+), Solid
black lines: Darcy-Reynolds model.

transients is precisely one of the main goal of the present study. We can readily compare
the magnitude of these stress jumps, occurring right after the step, to the prediction of
the steady-state rheology model. At γ = 0+, the particle packing fraction profile must be
the same as that of the initial steady-state preparation. It is therefore homogeneous along
the y-direction such that φ|γ=0+ = φ|γ=0− = φSS(Ji). Assuming the steady-state flow
rule φSS(J) applies at all times, the viscous number inside the granular layer just after
the jump is thus also the same as that just before the jump, i.e. J |γ=0+ = J |γ=0− = Ji,
even though the external imposed viscous number has changed to Jext = Jf . Since the
shear rate is imposed to be homogeneous, the particle pressure profile must also remain
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Similarly, one obtains (τ̄ /τSS)|γ=0+ = µ(Ji)Jf/µ(Jf)Ji. The steady-state rheology model
thus predicts that, right after the step, the magnitude of the particle stress jump is
given by the ratio of applied Jext, after and before the step, as highlighted by the
yellow circles in Figure 3. We find that this prediction overestimates by more than
one order of magnitude the particle pressure obtained from the DEM simulations. The
same discrepancy is observed for the shear stress overshoots, τ̄ /τSS, which are largely
overestimated by the steady-state rheology.

3.2. Transient evolution inside the bulk

To further investigate the transient evolution of the granular layer, we now turn to
local measurements of the particle pressure Pp(y) and solid fraction φ(y) profiles inside
the bulk of the granular layer for a step increase in Jext (dilation case), see Figure 4. After
the step, the particle pressure Pp(y) and the volume fraction φ(y) progressively evolve
from their initial (red dashed line) to final (black dashed lines) steady-state profiles. The
striking observation is that, even at a strain as small as γ = 0.01 after the step, the
particle profile obtained from the DEM simulations (dark blue solid line) significantly
departs from the prediction of the steady-state rheology model evaluated at γ = 0+:
Pp(γ = 0+, y)/Pext = constant = Jf/Ji (grey solid line). The particle pressure exhibit
smaller stress levels than expected and a large gradient over the cell height, although
the volume fraction profile is nearly uniform. These observations further evidence the
inability of the steady-state rheology to describe the early stress state of the granular
layer.

To characterize more systematically these differences between the prediction of the
steady-state rheology and DEM results, we perform simulations for many combinations
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of the three control parameters of the system: Ji, Jf and H/a. In Figure 5, we report
the normalized particle pressure at the bottom of the cell Pp(y = 0)Ji/PextJf , just after
the step change in Jext, versus Jf/Ji. In this representation, the steady-state rheology
prediction at γ = 0+ (Eq. 3.1) corresponds to the horizontal line Pp(y = 0)Ji/PextJf = 1
(thick grey line). We find that many simulation data are in good agreement with this
prediction, but equally many deviate from it, sometimes by more than an order of
magnitude. We can also observe that the largest discrepancy occurs for small systems
(purple and green squares in Figure 5), while in large systems the pressure tends to be
well predicted by the steady-state rheology model (brown and blue diamonds).

The above results suggest that the steady-state rheology is in many cases unable to
predict the early transient evolution of the stress levels in the granular suspension. Note
that in practice, the earliest strain at which DEM results are reported in Fig. 4 and
5 is γ = 0.01, since before that, DEM results may be dependent on the stiffness of
the particles. One could thus argue that the discrepancy between DEM results and the
steady-state rheology predictions arises from the fact they are not evaluated exactly at
the same strains (γ = 0.01 versus γ = 0+, respectively). However, in what follows, by
deriving the full transient evolution of the granular layer using both the steady-state and



10

Darcy-Reynolds models, we show that this discrepancy arises from a more fundamental
mechanism.

4. Continuum models

In this section, we recall the usual two-phase continuum description for suspen-
sions (Jackson 1997), expressed in the specific setup and approximation that we adopted
in the DEM: a simplified expression for the interaction between the particle and fluid
phase based on a Stokes drag, which neglects the fluid vertical counterflow induced by the
dilation (compaction) of the particle phase. We then present two competing constitutive
models to close this continuum description: one assuming steady rheology at all time
(steady rheology model), the other taking into account a Reynolds-like dilatancy equation
for the transient dynamics of the particle packing fraction (Darcy-Reynolds model).

4.1. Conservation laws

The continuum model aims at describing the time evolution of the particle phase stress
profile Pp(y) in the y−direction and solid fraction profile φ(y), and in fine of the height
H of the top wall. It relies on the mass and momentum conservations and a constitutive
relation relating the volume fraction φ with the particle stress Pp and the shear rate
γ̇. As our dilation problem is translation invariant in the x−horizontal direction, it is
essentially a one-dimensional problem in the y−direction. We will call u(y) the vertical
velocity of the particle phase. Mass conservation for the particle phase reads

∂tφ+ ∂y(uφ) = 0. (4.1)

Momentum conservation, in the approximation of the Suspension Balance Model
(SBM) (Nott & Brady 1994; Morris & Brady 1998; Morris & Boulay 1999; Nott et al.
2011), balances the pressure gradient ∂yPp(y) with the local interphase drag, which is
directly proportional to u as we recall that the fluid vertical velocity is neglected†

− ∂yPp(y) =
ηfφR(φ)

a2
u(y), (4.2)

with R(φ) the hydrodynamic resistance of the particle matrix, which is dimensionless in
3D. This expression is adapted to our 2D DEM simulations with a simple Stokes drag
using R(φ) = 6a, where the particle pressure Pp is now a force per unit length. Note
that the linear dependence in φ of the interphase drag differs from the SBM as usually
presented in the literature. This is to remain consistent with our numerical setup in which
the interphase drag (4.2) is borne from the Stokes drag on every particle, hence is linear
in φ, rather than from an actual pore flow, which dependence in φ is more complex.
Besides its adequacy for the comparison with our simulation results, this simplification,
while affecting the model accuracy with respect to the flow of an actual suspension (but
so does our choice of a two-dimensional setup), does not impact the qualitative features
of the model.

The boundary conditions for the problem are as follows. We require vanishing vertical
velocity at the bottom wall u(0) = 0, which from (4.2) yields ∂yPp(y = 0) = 0. Moreover,
force balance on the top wall prescribes

Pext + κ∂tH − Pp(H) = 0, (4.3)

with κ the resistance of the top wall, and we impose that the velocity of the particle

† Note that the drag would still be proportional to u even if we considered the fluid velocity,
only the φ dependency of R would be different.
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phase follows the top wall velocity in y = H, u(H) = ∂tH. Similarly, to match our 2D
DEM setup, we use κ = 6πηfNwalla/lx, with Nwall the number of particles in the top wall.
We can adimensionalize this model with a the unit length, 1/γ̇ the unit time, and ηf γ̇
(ηf γ̇a in 2D) the unit stress. We denote by X̂ the adimensionalized X, for any physical
quantity X. Inserting momentum balance in the mass balance equation to eliminate u,
we obtain

∂t̂φ− ∂ŷ
[
R̂(φ)−1∂ŷP̂p

]
= 0, (4.4)

with boundary conditions

0 = ∂ŷP̂p

∣∣∣
0

(4.5)

0 = J−1ext −
κ̂

φ(Ĥ)R̂(φ(Ĥ))
∂ŷP̂p

∣∣∣
H
− P̂p(Ĥ), (4.6)

with κ̂ = κa/η and R̂ = R(φ) in 3D, and κ̂ = κ/η and R̂ = R(φ)/a in 2D.
As such, the model is not closed, as we need a further relation between the normal stress

and the solid fraction, that is, a constitutive model. In the following, we will consider two
of them, both reducing to the usual [µ(J), φSS(J)] rheology in steady state, but differing
in their transient behaviors.

4.2. Steady-state rheology model

In the first model, we assume, as it is usually done when solving a shear-induced
migration problem (Morris & Boulay 1999; Snook et al. 2016; Sarabian et al. 2019), that
the steady-state rheology is valid at all times and can describe the state of the suspension
even during the transient migration of the particle phase. This simply sets

φ = φSS(J), (4.7)

with J = 1/P̂p and φSS(J) behaving close to jamming as

φSS(J) ≈ φc −KJβ , (4.8)

which is equivalent to ηn(φ) = K1/β(φc − φ)−1/β in a volume imposed formula-
tion (DeGiuli et al. 2015). Inserting Eq. 4.7 in Eq. 4.4, we obtain that the volume
fraction obeys the following diffusion equation

∂t̂φ− ∂ŷ [D(φ)∂ŷφ] = 0, (4.9)

with a φ-dependent diffusion coefficient D(φ) = K1/β/(R̂(φ)βJ1+β).
As for the temperature governed by the heat equation, after a step change of external

pressure on the upper wall or after a global change of shear rate, the particle stress
remains strictly homogeneous at γ = 0+ and exhibit a discontinuity at the upper wall
boundary, see Fig. 6 (a). The dilation/compaction process starts from the upper wall
and gradually diffuses within the bulk of the granular layer, simply as heat would diffuse
within the layer after a step change in temperature of the upper wall, with a φ-dependent
diffusion coefficient.

4.3. Darcy-Reynolds model

In the second model, we use the constitutive relation proposed by Pailha & Pouliquen
(2009), which assumes that during transients the volume fraction φ relaxes towards its
steady-state value φSS(J) in a finite strain scale γ0 as

∂t̂φ = − 1

γ0
[φ− φSS(J)] . (4.10)
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Figure 6. Expected normalized particle pressure profile at γ = 0+ for a) the steady-state
rheology model and b) the Darcy-Reynolds model for different values of H/`.

This simple closure was built as an extension at finite J of previous Reynolds dilatancy
laws proposed for dry granular material (Roux & Radjai 1998; Roux & Radjäı 2002), and
to recover the φSS(J) rheology in steady state. It prescribes that the rate of dilation of the
suspension is kinematically imposed by a “dilatancy angle” propotional to the distance
between the actual volume fraction φ and φSS(J). The relaxation strain scale could be φ
dependent, but for the sake of simplicity we will consider it a material constant, as a fit
parameter.

Crucially, this finite relaxation strain scale for dilation completely modifies the way the
stress profile is set up. In contrast to the diffusive dynamics for the steady-state rheology
model (Eq. 4.9), inserting (4.10) in (4.4), yields a second-order nonlinear ODE for the
stress

∂ŷ

[
R̂(φ)−1∂ŷP̂p

]
+ γ−10 [φ− φSS(J)] = 0, (4.11)

where the time derivative has dropped. This fundamental difference has an important
consequence regarding the early transient response during a change of Jext (or more
generally to a change in boundary conditions). In the ODE (Eq. 4.11), information can
travel infinitely fast and instantaneous changes of the particle stress can occur at γ = 0+

a finite distance from the wall. Said otherwise, in contrast with the steady-state rheology
model, the Darcy-Reynolds model induces a non-local dynamics for the particle stress†.
For infinitesimal changes of the boundary conditions, i.e for δJ ≡ |Jf − Ji| � 1, we can

work out the “non-locality” length scale ˆ̀over which P̂p is affected by the change in Jext.

Linearizing Eq. 4.11 at γ = 0+ for which φ = φi, we obtain that δP̂p = P̂p− P̂pi satisfies

∂2ŷδP̂p +
δP̂p

ˆ̀2
= 0, (4.12)

with

ˆ̀=

√
−γ0

R̂J2
i φ
′
SS(Ji)

=

√
γ0

KβR̂(φi)J
β+1
i

. (4.13)

The solution of Eq. 4.12, given the boundary conditions provided in Eq. 4.6, leads to the

† While Eq. 4.11 formally looks similar to the stress dynamics postulated in non-local
constitutive models (Goyon et al. 2008; Kamrin & Koval 2012), the similarity is only superficial,
as here the transient constitutive law is local. The non-locality in Eq. 4.11 is induced by the
combination of two processes, the local dilation coupled to the pore flow resisting it.
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particle stress profile

P̂p(ŷ) =
1

Ji
−
(

1

Ji
− 1

Jf

)
cosh(ŷ/ˆ̀)

ˆ̀−1φ−1i R(φi)−1κ̂ sinh(Ĥi/ˆ̀) + cosh(Ĥi/ˆ̀)
, (4.14)

with Ĥi the thickness of the granular layer at γ = 0+. A step change in Jext here leads
to an instantaneous change in particle pressure on a depth of order ˆ̀ below the top wall,
while deeper regions remain unchanged relative to the initial steady state at Ji, see Fig.
6 (b). In particular, the particle pressure at the bottom of the layer Pp(y = 0) follows:

Pp(y = 0)

Pext
=
Jf
Ji

+

(
Jf
Ji
− 1

)
1

ˆ̀−1φ−1i R(φi)−1κ̂ sinh(Ĥi/ˆ̀) + cosh(Ĥi/ˆ̀)
. (4.15)

The Darcy-Reynolds model thus predicts that, when Ĥi/ˆ̀ 6 1, a step change in Jext
instantly affects the particle pressure all the way to the bottom of the layer. Conversely,
in the limit Ĥi/ˆ̀→ ∞, the steady-state rheology prediction Pp(y = 0)/Pext = Jf/Ji
is recovered. Moreover, we see that ˆ̀ may diverge at the jamming transition, with an

asymptotic behavior ˆ̀∝ J−(1+β)/2i = (φc − φ)−(1+β)/2β , if one assumes that γ0 remains
finite at φc. Investigating the particle pressure profile just after the step in small systems
which are close to jamming, i.e. for which Ĥi/ˆ̀6 1, should thus provide an unambiguous
way to discriminate the two models.

Note that in the limit case where Ji = 0, i.e. for a granular layer initially at rest, we
have `→∞. In such a case, the stress profiles is instantaneously affected over the entire
height of the suspension, whatever the system size. We compute the stress profile in this
limit case in Appendix B.

5. Model testing

In this section, we compare the results of the DEM simulations to the solution of the
two models presented above (§4). The predictions of the steady-state rheology model
are fit-free, since the values of β = 0.44 and K = 0.67 are set from the steady-state
rheological law φSS(J) obtained from the DEM simulations (Athani et al. 2021). In the
Darcy-Reynolds model, we evaluated γ0, with γ0 = 0.48 for dilation, and γ0 = 0.28 for
compaction separately.

We start by comparing the two models to the macroscopic measurements presented
in Fig. 3. Overall, the long time evolution of the thickness H of the granular layer, the
average particle stress P̄p and the depth-averaged shear stress τ̄ (see Fig. 3 b, c and
d, respectively) are fairly well predicted by both the steady-state and Darcy-Reynolds
models. While from these results one could conclude that the refinement of the Darcy-
Reynolds model over the steady-state rheology model is in practice unnecessary, the
value of the particle stress at short times after the step reveals that the prediction of
the steady-state rheology model is off by more than one order of magnitude. Conversely,
the Darcy-Reynolds model achieves good quantitative predictions even at early strains
after the step change of Jext, as highlighted in the inset of Fig. 3. Both models converge
and start providing similar results only after a strain scale of order γ0. This result is
expected since the strain scale required for stress diffusion to affect the stress profile on a
length scale ˆ̀ is D(φ)/ˆ̀2 = γ0. It is also consistent with the dilatancy law Eq. 4.10, which
states that locally, the steady-state rheology is recovered on a strain scale of order γ0.
These macroscopic observations provide a first illustration of the fundamentally different
dynamics for the particle stress in the two models. In the dilation case shown in Fig. 3,
the nonlocal length scale given by the Darcy-Reynolds model is much smaller than the



14

system height (Ĥi/ˆ̀ ≈ 0.08). The change of boundary conditions at the top wall is
thus felt instantaneously within the granular layer, an indication that Darcy-Reynolds
coupling is key to capture the early transient dynamics of the granular layer.

To evidence this further, we compare in Fig. 5 the two continuum models to the particle
pressure obtained with the DEM simulations at the bottom of the layer and just after
the step for many combinations of Ji, Jf , and several system sizes. We have already
seen that DEM results can differ from the steady-state rheology prediction at γ = 0+

(thick horizontal grey line), but this difference could be attributed to the finite strain at
which DEM results are reported. Importantly, both models and DEM results are now
compared at the same strain γ = 0.01. We find that in the steady-state rheology model,
stress diffusion from the upper wall can lead to a finite decrease of the particle pressure
at γ = 0.01. However, significant discrepancies remain (e.g. purple dashed lines). By
contrast, the Darcy-Reynolds model (e.g. purple solid lines) provides surprisingly good
quantitative agreement with the DEM simulations over the whole range of parameters.

In the insets of Fig. 5, we also show the full pressure profiles at γ = 0.01 for two
examples. In the top profile, the step is performed far from jamming (i.e. starting from
Ji = 0.01). The “non-locality” length scale ` is thus much smaller than the system size
and as a result, the steady-state and Darcy-Reynolds predictions are undistinguishable at
the bottom of the cell. Conversely, in the bottom profile, the step is performed closer to
jamming (i.e. starting from Ji = 0.001). This time the “non-locality” length scale is larger
and as a result the bottom particle pressure is instantaneously modified after the step,
as predicted by the Darcy-Reynolds model. In both cases however, the Darcy-Reynolds
model makes much better predictions for the pressure than the steady-state model near
the top wall. Note that these particle stress profiles (along with similar plots at other
strain values γ and other Jf values) are used to fit the value of γ0, both for compaction
(Jf = 10−4), yielding γ0 = 0.28, and dilation (Jf = 0.1) yielding γ0 = 0.48. Those values
are then kept constant when evaluating the Darcy-Reynolds model predictions.

Our simulation data unambiguously show that the instantaneous response in particle
pressure can either be set by the fluid Darcy flow through the particle phase associated
with dilation or compaction, or by the steady-state rheology, depending on the value of
the parameters involved in the step in Jext. What decides which of these two scenarii
dominates? We showed that in the case of the Darcy-Reynolds model, the linearized
pressure ODE (4.12) predicts that the Darcy flow is associated with a length scale
ˆ̀ corresponding to the typical length over which a dilation or compaction (and the
associated Darcy flow) is instantaneously initiated when the boundary conditions on the
top wall are modified. A natural expectation is thus that, even in the non-linear regime,
the pressure response is dominated by the Darcy flow when the initial height of the
system Ĥi is of order ˆ̀. On the contrary, when Ĥi/ˆ̀� 1, we may expect that the steady

rheology sets the pressure level in most of the system except a thin layer of height ˆ̀

below the top wall.

In Fig. 7 we therefore show as a function of Ĥi/ˆ̀ the rescaled bottom pressure ∆P =
(Pp(y = 0)/Pext − 1) / (1− Ji/Jf) + 1. This rescaling is useful as for any step in Jext,
∆P is bounded such that 0 < ∆P < 1, with ∆P = 1 corresponding to the prediction
of the steady rheology at γ = 0+. We find that for all the combination of Ji and Jf
investigated, data collapse on a master curve, where ∆P monotonically increases when
plotted versus Ĥi/ˆ̀, and saturates at 1 for Ĥi/ˆ̀& 10. This confirms that the boundary
between the steady-rheology dominated and Darcy-Reynolds dominated regimes is set
by ˆ̀. In Fig. 7, we also show the prediction of the Darcy-Reynolds model (solid lines).
The agreement with DEM simulation data is good, over the whole range of parameter
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Figure 7. The rescaled bottom particle pressure ∆P = (Pp(y = 0)/Pext − 1) / (1− Ji/Jf) + 1

plotted versus Ĥi/ˆ̀ at γ = 0.01 shows that the boundary between the steady-state rheology

and the Darcy-Reynolds dominated regime is set by the nonlocal length scale ˆ̀, and that the

steady-state rheology only applies when Ĥi/ˆ̀ � 1. Symbols: DEM simulations, Solid lines:
Darcy-Reynolds model, Grey dashed line: steady-state rheology model at γ = 0+.

investigated, that is for Ĥi/ˆ̀ varying over three orders of magnitude and Ji varying over
four orders of magnitude. The fact that the best fits of the particle stress profiles are
obtained for two distinct values of γ0 in dilation (γ0 = 0.48) and compaction (γ0 = 0.28)

implies a Jf -dependence of ˆ̀ which is ignored in the linearized problem, but probably
cannot be in the cases considered here, for which Ji−Jf is of order of or even larger than
Ji.

6. Discussion & Conclusion

Through DEM simulations, we investigated the transient rheological behavior of a
neutrally buoyant suspension under pressure imposed conditions, subject to a sudden
change in shear rate or external pressure. We compare these simulations with two
competing continuum two-phase models: the standard Suspension Balance Model (SBM)
which assumes the steady-state rheology to be valid at all times, and a “Darcy-Reynolds”
model in which the volume fraction locally relaxes towards its steady-state value on a
strain scale γ0, by analogy with Reynolds dilatancy in soil mechanics. This study shows
that the early stress response of the suspension is not set by the steady-state rheological
flow rules, but instead arise from the Darcy back-flow resulting from the geometrically
imposed dilation rate of the granular phase (4.8). Before discussing the consequences of
these results, let us recall that they were obtained for a dynamics which is essentially
one-dimensional. This is because we considered a model setup where dilation occurs in
only one direction and shear is homogeneous in the sample. Some results we obtain
may be quantitatively modified in a less idealized setup, as for instance a non-uniform
shear rate could locally modulate the Reynolds dilatancy. Nonetheless we believe that
the qualitative picture which emerges from our results should remain. Indeed, our results
have several important consequences and implications:

First, our study extends the domain of application of the Reynolds-like dilatancy law
(4.10) proposed by Pailha & Pouliquen (2009), which was introduced to describe the
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H

H
= 1

Steady state rheology valid

Steady state rheology not valid:
Reynolds-like dilatancy needed

∆PDarcy−Reynolds
p ∼ ηf

a2
H2γ̇

γ0
∆φ

∆P steady−state
p ∼ ηfηn(φ)∆γ̇

Figure 8. Domain of application of the steady-state rheology model and adequate scaling for
the particle stress for the early response of a suspension of initial volume fraction φ and typical
size H, subject to a sudden change of flow condition ∆J . Here ∆γ̇ is the shear rate jump and
∆φ = |φ− φSS(Jf)|.

transient dilation/compaction of avalanches of an initially dense/loose sediment under
gravity. Here, we provide evidence that this law also applies for continuously sheared
suspensions below φc, when the flow parameters (external pressure, shear rate) are
suddenly changed. The transient migration and stresses are quantitatively captured over
a wide range of control parameter, J ∈ [10−4−10−1], and system sizes, H/a ∈ [33−140].
Our study thereby shows that the concepts of Reynolds dilatancy and shear-induced
migration can be described within a unique framework provided by the Darcy-Reynolds
model (4.11).

Second, our study reveals that after a sudden change of flow parameters, the stress
levels inside the suspension can be very different than that predicted by the steady-state
rheology. More precisely, the Darcy-Reynolds model gives rise to a nonlocal length scale
`, which scales with the particle size and diverges algebraically at jamming (4.13). This
length scale corresponds to the distance from the free boundary over which a finite rate
of dilation/compaction occurs after a step change of flow conditions. In this region, the
stress level is thus fixed, not by the steady-state rheology, but by the Darcy fluid pressure
gradient resulting from this dilation/compaction rate.

Accounting for this mechanism is key to predict the stress levels at early strains
(γ 6 γ0), which we quantify by the difference between the external imposed pressure
and the particle pressure in the bulk, ∆Pp. As summarized in the flow regime diagram
sketched in Fig. 8, for a suspension of volume fraction φ, when the system size H is
much larger than `, ∆Pp is well predicted by the steady-state rheology of the suspension.
In a situation where the shear rate is suddenly modified from γ̇ to γ̇ + ∆γ̇, the quadi-
Newtonian steady-state rheology predicts ∆P steady−state

p ∼ ηfηn(φ)∆γ̇. On the contrary,
when H 6 `, the transient pressure is set by the drag of the fluid on the particle phase
generated by the Darcy flow coming from dilation or compaction, which spans the whole
system. It therefore depends on the particle and system sizes. As the pressure gradient
across the system scales as ∆Pp/H, from Eq. 4.11 we can evaluate the Darcy-Reynolds
scaling ∆PDarcy−Reynolds

p ∼ ηf γ̇H
2∆φ/a2γ0, where ∆φ = |φ − φSS(Jf)| is the amount
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of dilation/compaction between the initial and final states. The boundary between the
steady-rheology dominated and Darcy-Reynolds dominated regimes is thus set by the
length scale ratio H/` = O(1). This boundary also corresponds to the conditions for
which the steady-state and Darcy-Reynolds prediction for the stress are equal, i.e.
∆PDarcy−Reynolds

p /∆P steady−state
p = O(1). Indeed, for a small flow perturbation ∆γ̇ ≈

γ̇∆J/J2 while, ∆φ ≈ KβJβ−1∆J , which gives ∆PDarcy−Reynolds
p /∆P steady−state

p = H/`.

Our demonstration of the validity of the Reynolds-like dilatancy law (4.10) for flow
below φc and the identification of the nonlocal length scale ` for estimating the particle
stress should help to better understand the transient dynamics of suspensions, as observed
during impacts (Nicolas 2005; Peters et al. 2013; Grishaev et al. 2015; Schaarsberg et al.
2016; Boyer et al. 2016), submarine avalanches (Rondon et al. 2011; Topin et al. 2012;
Iverson 2012; Bougouin & Lacaze 2018; Montellà et al. 2021), or unsteady two-phase flows
in general (Kulkarni et al. 2010; Snook et al. 2016; Saint-Michel et al. 2019; d’Ambrosio
et al. 2021). For instance, the Darcy-Reynolds model was successfully used to described
the impact of a sphere on a suspension initially prepared above φc (Jerome et al. 2016).
However, the behavior of the system below φc could not be described by the quasi-
static approach used in this study. Similarly, when prepared just below φc, suspension
drops impacting a rigid plane observe large spreadings that cannot be captured using the
steady-state viscosity of the suspension (Jørgensen et al. 2020). For such small systems
close to jamming, it is likely that H/` < 1, for which the Darcy-Reynolds scaling applies.
Note that these configurations are apparently under volume imposed conditions. However,
the presence of a free surface allows a slight dilation of the granular network after the
impact. We thus anticipate that in these configurations too, the level of stress right after
the impact should originate, not from the steady-state rheology, but from the transient
geometrical dilation of the granular phase and the associated pore pressure feedback
effect.

Our study could also have implication to rationalize the transient dynamics of shear
thickening suspensions. Shear thickening suspensions are characterized by a stress-
dependent critical packing fraction (Seto et al. 2013; Wyart & Cates 2014). Upon a
sudden change of boundary conditions, an initially unjammed suspension may be driven
above its maximum packing fraction and shear-jam. This shear-jammed regime exhibits
fascinating transient features such as impact-activated solidification and traveling
“jamming front” (Waitukaitis & Jaeger 2012; Han et al. 2016, 2018a), that cannot be
described using steady-state rheological flow rules. Predicting the resistive stress in
this shear-jammed regime is an important issue which is still largely unresolved. Most
existing models assume a minimal description in which the medium jams in a finite strain
(Waitukaitis & Jaeger 2012; Han et al. 2016, 2018a) without considering two-phase flow
coupling (see however (Jerome et al. 2016) and (Brassard et al. 2020)). However, in such
configurations standing above φc where the nonlocal length scale ` diverges, one expects
the Darcy-Reynolds coupling to play a major role.

Finally, an important open question concerns the microscopic origin of the Reynolds-
like dilatancy law (4.10) proposed by Pailha & Pouliquen (2009). In the quasistatic
regime, Reynolds dilatancy is usually explained from geometric/kinematic arguments
through the introduction of a dilatancy angle (Reynolds 1885; Wood 1990). More recently,
this law was reinterpreted as a normal stress relaxation law in a medium of finite
compressibility (Bouchut et al. 2016; Lee 2021; Montellà et al. 2021), in line with the
“Reynolds pressure” concept of Ren et al. (2013). Compared to the steady-state rheology
model, the Reynolds-like dilatancy law requires the microstructure to reorganize in a
strain scale γ0 of order 1. Capturing the microstructure dynamics in a linear relaxation



18

of a scalar variable is certainly an over simplification, as one probably needs to generally
consider a tensorial descriptor of the microstructure (Chacko et al. 2018b; Gillissen &
Wilson 2018). However, in the case of a simple shear in a direction constant in time,
a scalar relaxation has already proven useful to describe transient responses (Mari
et al. 2015; Chacko et al. 2018a; Han et al. 2018b). It is worth noting that in Pailha
& Pouliquen (2009), for dilation experiments starting from above the jamming point
(φ > φc), Reynolds dilatancy follows γ0 ≈ 0.3. This value is intriguingly close to the
values of γ0 we find for our φ < φc conditions. It is thus tempting to conjecture that
the value for γ0 is independent of φ, or at least only weakly dependent on φ, around
the jamming transition. This would mean that the classical Reynolds dilatancy of the
critical state theory is just a limiting case of a more general dilatancy law valid over a
wide range of volume fractions.
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Appendix A. Numerical method

As described in Sec. 2, the granular suspension considered in this study is neu-
trally buoyant and we work in vanishing Stokes number and Reynolds number regime;
consequently, the equation of motion is just the force balance between hydrodynamic
forces and contact forces for bulk particles, and between hydrodynamic forces, contact
forces and the externally applied force for wall particles. Contact forces are modelled
using a system of springs and dashpots (Cundall & Strack 1979). Using the notation
FC ≡ (fC,1, . . . ,fC,N , tC,1, . . . , tC,N ) for the Nd(d + 1)/2 vector of contact forces and
torques on each particle (in spatial dimension d), we have

FC = −RC
FU ·U + FC,S (A 1)

with U (resp. Ω) the vector of velocities (resp. angular velocities) for each particle, RC
FU

the resistance matrix associated to dashpots, and FC,S the part of contact forces coming
from springs. For hydrodynamic forces and torques FH, we have (Jeffrey 1992)

FH = −RH
FU ·U ′ +RFE : E∞ (A 2)

with U ′ = U − U∞ the vector of non-affine velocities and angular velocities for each
particle, where U∞ are the background velocities and angular velocities evaluated at the
particles centers, and E∞ the symmetric part of the imposed velocity gradient ∇U∞.
The resistance matrices RH

FU and RFE contain Stokes drag and regularized lubrication
forces at leading order in particle separation Mari et al. (2014).

The equation of motion is thus

FH + FC + FExt = 0 , (A 3)

with FExt the external force/torque applied on each particle. Of course, FExt takes non-
zero values only for the wall particles.
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As the simulated system (see Fig. 2) comprises of frozen wall and bulk particles
suspended in the fluid, we separate the total resistance matrix as

RC
FU +RH

FU ≡ RFU =

(
Rbb

FU Rbw
FU

Rwb
FU Rww

FU

)
(A 4)

The matrices Rbb
FU, Rbw

FU, Rwb
FU and Rww

FU indicate the hydrodynamic resistance matrices
including bulk-bulk, bulk-wall, wall-bulk and wall-wall interactions respectively. Sim-
ilarly, the non-affine velocities have also been separated into bulk particle velocities
Ub −U∞ and wall particle velocities Uw −U∞,

U ′ =

(
U ′b

U ′w

)
. (A 5)

We can then solve the equations of motion, Eq. A 3 for the bulk velocities, to get

U ′b = Rbb
FU

−1 ·
[
Kb −Rbw

FU ·U ′w
]

(A 6)

with (
Kb

Kw

)
= RFE : E∞ + FC,S −RC

FU ·U∞ (A 7)

We further decompose the wall non-affine velocity in horizontal and vertical components
U ′w = U ′wh + vyY

w, where Y w is the vector corresponding to a unit non-affine vertical
velocity for particles belonging to the upper wall, and vanishing non-affine velocity for
particles of the lower wall. Thus the scalar vy = ∂tH is the upper wall vertical speed.

Injecting Eq. A 6 in the wall part of Eq. A 3, and using Eq. A 5, we get

vyB · Y w = Kw −Rwb
FU ·Rbb

FU

−1 ·Kb −B ·U ′wh + FExt . (A 8)

Taking the dot product with Y w, and using Y w · FExt = Pextlx we get the vertical wall
velocity

vy =
Y w ·

[
Kw −Rwb

FU ·Rbb
FU

−1 ·Kb −B ·U ′wh
]

+ Pextlx

Y w ·B · Y w
. (A 9)

Imposing that the vertical component of the upper wall velocity is vy ensures that the
total force on the upper wall vanishes.

Appendix B. Stress profile from uniform state

B.1. Jammed initial state

As noted in Sec. 4, within the Darcy-Reynolds model upon change of Jext at γ = 0, the
viscous number is instantaneously changing in the part of the suspension just below the
top wall, on a length scale ˆ̀. When the initial state is at Ji = 0, ˆ̀ however diverges, and
the response is qualitatively different from the one exposed in Eq. 4.14. We can illustrate
this as Eq. 4.11 has an essentially analytically tractable solution for an initial profile
φi = φc when β = 1/2.

From Eq. 4.11, first with an initially arbitrary β, for φi = φc with Eq. 4.8 the stress
satisfies

∂2ŷ P̂p + γ−10 R̂(φc)KP̂
−β
p = 0. (B 1)

Using ∂ŷP̂p as an integrating factor, we get

1

2

[
∂ŷP̂p

]2
= − R̂(φc)K

γ0(1− β)
P̂−β+1
p +

C

2
, (B 2)
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with C an integration constant. Remembering that from a jammed configuration we
expect dilation, that is ∂ŷP̂p < 0, leads to

∂ŷP̂p = −
√
−2

R̂(φc)K

γ0(1− β)
P̂−β+1
p + C. (B 3)

To go further we assume β = 1/2, close to the actual measured value, and separating
variables we can integrate to get

ŷ =

√
2γ20

3R̂(φc)2K2

[
R̂(φc)K

γ0

√
P̂p + C

]√
−2

R̂(φc)K

γ0

√
P̂p + C + C ′, (B 4)

with a new constant of integration C ′. Because of the no-flux boundary condition at the

bottom wall, ∂ŷP̂p(0) = 0, which with Eq. B 3 imposes that

√
−2 R̂(φc)K

γ0

√
P̂p + C = 0 for

ŷ = 0. We therefore have C ′ = 0, as well as C = 2R̂(φc)K
√
P̂p(0)/γ0 > 0. Introducing

r =
√
P̂p and A = R̂(φc)K/γ0, we then get a cubic equation for r,

0 =
2A

3
r3 + Cr2 − C3

3A2
+

3ŷ2

2
≡ Q(r). (B 5)

The determinant of this polynomial is

∆ = −16A2

3
ŷ2
(
−2C3

9A2
+ ŷ2

)
. (B 6)

For small enough ŷ, ∆ > 0 (and ∆ = 0 for ŷ = 0), which corresponds to having three real
solutions. Because for ŷ = 0, Q(0) < 0 and its cubic and quadratic terms have positive
coefficients, we have two negative solutions and a positive one. As r must be positive,
the latter is the correct solution. For ŷ =

√
2C3/2/(3A), the determinant vanishes, and

this solution vanishes. Because we want the solution to be positive up to the top wall,
this gives us a lower bound for C, C > (3AĤ/

√
2)2/3.

The three roots of Q are, with k = 0, 1, 2

rk = − C

2A

[
1 + 2 cos

{
1

3

[
ϕ

(
3A

C3/2
ŷ

)
+ (2k + 1)π

]}]
, (B 7)

with ϕ such that eiϕ(x) = 1− x2 − ix
√

2− x2. We can identify the correct root with the
case ŷ = 0, for which we know that there are two degenerate negative solutions and the
positive one we are interested in. Indeed, as ϕ(0) = 0, we have that r0 = r2 = −CA for

ŷ = 0, while r1 = C
2A , which implies that r1 is the root we are looking for. As a result,

replacing A by its value in terms of the problem parameters, we have the stress profile
at γ = 0

P̂p(ŷ) =
γ20C

2

4R̂(φc)2K2

{
1− 2 cos

[
1

3
ϕ

(
3R̂(φc)K

γ0C3/2
ŷ

)]}2

. (B 8)

We can then pick C to satisfy the top wall boundary condition defined in Eq. 4.6, but
this must be done numerically as there is no mathematically closed expression for C. A
few important things can however be inferred from Eq. B 8.

First, although a cosine appears in the r.h.s., it of course does not mean that the
stress profile is non-monotonic. Indeed, as noted earlier C is bounded from below by

(3AĤ/
√

2)2/3, which means that the argument of ϕ in Eq. B 8 is satisfying 3R̂(φc)K
γ0C3/2 ŷ <
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Figure 9. Particle pressure at the bottom wall P̂p(y = 0) at γ = 0+ scaled by the imposed

pressure at the top wall Pext, as a function of the system height Ĥ = H/a, when the initial

configuration is jammed (Ji = 0), from Eq. B 8 . The pressure scales as Ĥ4/3 in the large Ĥ
limit.

√
2. It is easy to show that ϕ(0) = 0 and ϕ(

√
2) = π, so that the cosine in r.h.s of Eq. B 8

is decreasing from the bottom wall to the top wall, its argument spanning at most the
interval [0, π/3]. Moreover, the stress at the top of the cell must be different from the
stress at the bottom, and from the argument of the cosine that it implies that C must
scale as Ĥ2/3 for large Ĥ.

Second, we expect from the divergence of ˆ̀ when φi = φc that the stress profile is
instantaneously modified at all points in the system at γ = 0. The fact that a branch of
cosine taking ŷ in its argument appears in Eq. B 8 is pointing towards such a scenario,
but because of the nonlinear behavior of ϕ it is not immediately apparent that the profile
is not flat in the bottom of the cell. We know that ∂ŷP̂p(0) = 0 by construction (which
can easily be verified on Eq. B 8), so we have to evaluate the second derivative at the
bottom wall to be informed about the flatness of the profile there. A quick calculation,
using that ϕ′(0) = −

√
2, shows that the curvature of the stress profile at the bottom

wall is

∂2ŷ P̂p(0) = − 2

C
∝ Ĥ−2/3, (B 9)

which is to be compared with the ∝ exp(−Ĥ/ˆ̀) for φi < φc. This weak scaling implies
that the stress at the bottom will be height dependent, which is easy to verify, as

P̂p(0) =
γ20C

2

4R̂(φc)2K2
∝ Ĥ4/3, (B 10)

here again in stark contrast to the case Ji > 0, for which the stress at the bottom is
initially converging to −1/Ji exponentially in Ĥ/ˆ̀. This approach to the asymptotic
behavior is shown in Fig. 9.

B.2. Flowing initial state

If the initial state is a steady state under viscous number Ji, we again can derive the
stress profile at γ = 0 for a rheology given by Eq. 4.8 in the case β = 1/2. Injecting
Eq. 4.8 in Eq. 4.11, with a uniform solid fraction φi = φSS(Ji), we get

∂2ŷ P̂p + γ−10 R̂(φi)K

−√Ji +
1√
P̂p

 = 0. (B 11)
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Using ∂ŷP̂p as an integrating factor, we get

1

2

[
∂ŷP̂p

]2
= γ−10 R̂(φi)K

[
2

(√
P̂p(0)−

√
P̂p

)
+
√
Ji

(
P̂p − P̂p(0)

)]
, (B 12)

where we used the bottom wall boundary condition ∂ŷP̂p(0) = 0 and we recall that P̂p(0)
is the particle pressure at the bottom wall. This leads to

∂ŷP̂p = ±
√

2γ−10 R̂(φi)K

[
2

(√
P̂p(0)−

√
P̂p

)
+
√
Ji

(
P̂p − P̂p(0)

)]
. (B 13)

Here the choice of the r.h.s. sign depends on the change of Jext. A dilation, with Jf > Ji,
implies ∂ŷP̂p 6 0, whereas a compaction, with Jf < Ji, implies ∂ŷP̂p > 0. Introducing

g(P̂p) =

√
2

(√
P̂p(0)−

√
P̂p

)
+
√
Ji

(
P̂p − P̂p(0)

)
, (B 14)

we can integrate Eq. B 13 by separation of variables, yielding

ŷ =

√
γ0

2R̂(φi)KJi

g(P̂p) + J
−1/4
i ln

∓J1/4
i g(P̂p) +

√
P̂pJi − 1√

P̂p(0)Ji − 1

 . (B 15)

Finally, P̂pb is set by the top wall boundary condition, Eq. 4.6, which makes Eq. B 15 an
implicit but complete solution for the stress profile.
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Roux, Stéphane & Radjai, Farhang 1998 Texture-Dependent Rigid-Plastic Behavior. In
Physics of Dry Granular Media, NATO ASI Series , pp. 229–236. Dordrecht: Springer
Netherlands.
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