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Fluides - Kampé de Fériet, UMR 9014, France

Abstract. Rare events play a crucial role in many physics, chemistry, and
biology phenomena, when they change the structure of the system, for instance in
the case of multistability, or when they have a huge impact. Rare event algorithms
have been devised to simulate them efficiently, avoiding the computation of long
periods of typical fluctuations. We consider here the family of splitting or cloning
algorithms, which are versatile and specifically suited for far-from-equilibrium
dynamics. To be efficient, these algorithms need to use a smart score function
during the selection stage. Committor functions are the optimal score functions.
In this work we propose a new approach, based on the analogue Markov chain, for
a data-based learning of approximate committor functions. We demonstrate that
such learned committor functions are extremely efficient score functions when used
with the Adaptive Multilevel Splitting algorithm. We illustrate our approach for
a gradient dynamics in a three-well potential, and for the Charney–DeVore model,
which is a paradigmatic toy model of multistability for atmospheric dynamics. For
these two dynamics, we show that having observed a few transitions is enough to
have a very efficient data-based score function for the rare event algorithm. This
new approach is promising for use for complex dynamics: the rare events can be
simulated with a minimal prior knowledge and the results are much more precise
than those obtained with a user-designed score function.

PACS numbers:
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1. Introduction

Rare events are often extremely important, either because they have a huge impact,
like for instance climate extremes [1], or because they change completely the structure
of the system and shape its history over long times, like for instance the dynamics
of metastability [2] and multistability phenomena [3, 4]. Such rare events are so
important in many physics, chemistry, and biology applications that specific tools have
been developed to study them. These theoretical approaches and dedicated numerical
algorithms have been designed by the statistical mechanics and applied mathematics
community.

In this paper, we are mainly interested in computational approaches for rare
events. A key difficulty in numerical computation is that these events can be so rare
that simulating them directly is prohibitively expensive. Rare event algorithms and
simulations [5], that aim at reducing their computational cost, have been devised
since the nineteen fifties [6]. They have been used to address many problems in
statistical physics, for instance studying percolation [7], liquids physics [8], Lyapunov
exponents [9], dynamical phase transitions [10], first order phase transitions [11], just
to cite a few examples among many others. Chemical physics, biochemistry and the
study of biomolecules have inspired many new techniques, see for example [12, 13, 14,
15]. Recent uses in biology models [16] and ecology have also to be noticed.

Recently, rare events have been studied in far-from-equilibrium systems and non-
equilibrium steady states, where one starts from dynamics without detailed balance.
Rare event techniques have then been extended to scientific fields so far unexpected,
with complex dynamics. For instance in studies of multistability in turbulence [17, 18],
studies of intermittency in turbulence models [19, 20, 21], transitions to turbulence in
pipe and Couette flows [22, 23, 24], rogue waves [25], atmospheric dynamics [18, 26],
climate dynamics [27, 28, 29, 30, 31, 32], astronomy [33, 34], among many other
examples.

For such non-equilibrium problems, without detailed balance, one can use either
computations related to minimum action methods, possibly related to large deviation
theory (see for instance [35]), or the vast family of splitting algorithms or cloning
algorithms [6, 36, 37]. However, for many applications, for instance in turbulence,
climate, atmospheric dynamics, or astronomy, any method that relies on an a priori
given bare action is not appropriate. This is the case when the system is deterministic.
This can also be the case for stochastic systems: the precise noise statistics may not
be accessible or the rare events may not be produced directly by the model noise but
rather by internal fluctuations.

Then, for these cases, the only possible choices for rare event algorithms are
splitting algorithms. These algorithms have indeed been empirically shown to work
well for some classes of deterministic chaotic dynamical systems [38, 27]. An
alternative route for studying rare events, without rare event algorithms, would be to
use methods that require only short off-equilibrium simulations, for instance through
resimulating and milestoning [13, 39] or coarse-graining of a reduced space of collective
variables [31, 32]. Such approaches might be very relevant, however only when the
system is simple enough or when one knows sufficiently well the system to define a
priori relevant collective variables.

The main aim of this paper is to develop the methodology of splitting algorithms
such that they might actually be used, practically, for genuinely complex dynamics.
The general principle of splitting algorithms is to perform ensemble simulations,
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select trajectories prone to produce extremes, discard other less interesting ones, and
resimulate from the interesting ones. The effectiveness of these algorithms strongly
relies on the quality of the score function which is used for the selection stage. For
complex dynamics, in cases when the dynamics is simple enough or the phenomenology
of the dynamics is sufficiently well understood to devise good score functions, splitting
algorithms are wonderful tools. For instance, they have been used to compute rare
event probabilities which were totally unreachable with direct numerical simulations,
for stochastic partial differential equations [11], atmospheric turbulent flows [18, 26], or
full complexity climate models [27]. However, without a good score function, splitting
algorithms might completely fail. If the score function is not too bad, but not very
good, splitting algorithms actually produce efficiently rare events, but might suffer
from the phenomenon of apparent biases for the estimation of probabilities [40, 41].
The aim of this work is to propose a new methodology to solve these problems and
to be able to use splitting algorithms in very complex dynamics without a priori
knowledge or understanding of a simple effective description of the dynamics.

For many splitting algorithms, there exists a mathematical characterization of an
optimal score function: a score function which minimizes the algorithm variance for
the computation of the rare event probability and will be very efficient in practice. For
instance, for the Adaptive Multilevel Splitting (AMS) [37], to be used in this article,
the committor function is the optimal score function [42] . The committor function is
the probability that a trajectory visits a region B of the phase space before another
region A, as a function of the initial condition [43] . If B is the set of rare events
of interest, the committor function is then a probabilistic measure of the progress
towards the rare event. The committor function is also a central object of transition
path theory [44, 45, 46, 47, 48]. A key difficulty is that this optimal score function,
the committor function, is actually the rare event probability conditioned on the state
of the system. It contains the information one wishes to compute. One has thus no
easy access to it.

For similar problems, when one would need to know an approximation of a
function to efficiently compute the function itself, it is very natural to consider
an iterative procedure: a feedback control iterative procedure between the efficient
algorithm to produce the data and the learning of the function itself. The learning of
an approximation of the optimal score function makes the algorithm more efficient, and
the algorithm provides more data for a better quality of the learning procedure. This is
for instance the idea behind the Wang and Landau algorithm [49], in multicanonical
methods for equilibrium statistical mechanics, or the idea at the base of adaptive
importance sampling [50]. This feedback iterative procedure is illustrated in figure 1.
We have already implemented such a feedback iterative procedure for the Giardina–
Kurchan cloning algorithm, a specific example of a splitting algorithm [51]. One
iteration of the loop was also performed with the AMS algorithm, using a Mondrian
forest for learning, for a two-dimensional gradient dynamics [52]. However, the
learning step in the first example was extremely simple as the function to be learned
was a function over a one-dimensional space. We want to extend this approach to
more complex dynamics.

Many interesting methods have been or are currently being devised to learn
committor functions: based on direct machine learning [53], using a characterization of
the committor function for diffusions as a solution of a partial differential equation [54,
55], computing the committor function from a finite state Markov chain [56, 57, 58, 59],
possibly a Markov state model approximation of the dynamics [60]. Recently a very
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Figure 1: Sketch of a feedback control iterative procedure between the rare event
algorithm and the machine learning of an approximate optimal score function. The
learning of an approximation of the optimal score function makes the algorithm more
efficient, and the algorithm provides more data for a better quality of the learning
procedure.

interesting approach has been considered starting from a Galerkin approximation of
the dynamics generator, or the Koopman operator. Finite dimensional approximations
of the dynamics generator have been used to identify good reaction coordinates [61, 62],
or to evaluate eigenfunctions of the operator [63, 64, 65, 66], sometimes with climate
applications [63, 64]. Such a direct Galerkin approximation has been used to
directly compute committor functions, avoiding the burden of discretizing a high
dimensional phase space [67, 68]. Several computations of committor functions have
been performed with applications in either geophysical fluid dynamics or in climate
sciences [31, 69, 32, 70, 71], using either direct or involved approaches.

The aim of this paper is to test the coupling of data-based learning of approximate
committor functions with rare event algorithms, in the spirit of figure 1. As we are
specifically interested in complex dynamics, the learning strategy needs to have the
potentiality to scale well in very large dimensions. Moreover, it should be suited
for any dynamics, including chaotic deterministic systems or dynamics for which the
noise is irrelevant for the process of interest. It also needs to be not too greedy in
terms of dataset length. Among all the possible approaches for learning committor
functions, the ones based on approximation of the dynamics generator seem to be best
suited [67, 68].

In this paper we propose a new method based on an approximation of the
generator for the dynamics. For this purpose, we consider a slightly modified version
of the analogue method, first proposed by Lorenz [72, 73]. The idea behind the
analogue method can be summed up by Maxwell’s sentence [74] ”From like antecedents
follow like consequents”. This approach is nowadays used to build stochastic weather
generators [75, 76]. A key remark is that the analogue method defines a Markov
chain which is an approximation of the generator of the original dynamics. Then a
learned committor function can be computed using classical methods for computing
Markov chain committor functions. This new way to compute committor function,
based on the analogue Markov chain, is an alternative path that leads to dynamic-
based estimates of the committor function. We show in this paper that this method
is actually very simple, robust, and efficient. We show that the learned committor
function, based on the analogue Markov chain, is more precise and efficient than the
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classical K-nearest neighbors regression, which computes the committor by averaging
the observations of K nearby points.

After having put forward and tested this committor function computation
using the analogue Markov chain, we couple it to the Adaptive Multilevel Splitting
(AMS) [37]: we directly use the data-based approximate committor function as a score
function for the algorithm. We make a precise study that shows that for large enough
data sets, the performance of the AMS algorithm is greatly improved. The apparent
bias phenomenon is avoided and rare events are computed without a priori knowledge
of the dynamics.

To summarize the previous discussion, the purpose of this work is twofold. On
the one hand, we introduce a data-driven approach which can be used to compute the
committor function, and which exploits the dynamical information provided by the
observed dynamics. On the other hand, we show how it is possible to use this method
to build a learned score function for efficient rare event algorithms. We illustrate
our approach for two dynamics. First a stochastic gradient dynamics in a three-well
potential, in dimension two. Then we study the Charney–DeVore model, which is a
paradigmatic toy model of multistability for atmospheric flows [77], with six variables.
For these two dynamics, we show that having observed a few transitions is enough to
have a very efficient data-based score function for the rare event algorithm.

The paper is organized as follows. In Sec. 2, we define and discuss the
mathematical properties of the committor function, we explain a direct sampling
strategy, and define the Brier score which quantifies the quality of an approximate
committor function. Section 3 is devoted to the analogue method and how it can
be used to obtain a dynamics-based estimate of the committor function. Finally, in
Sec. 4 we introduce the AMS rare event algorithm, we use it with a score function
which is the learned analogue Markov chain committor function, and we discuss the
improvements given by this approach.

2. The committor function

2.1. Definition of the committor function for a Markov process

For a Markov process, a committor function [44, 45, 46, 47] is the probability to hit
a set B of the phase space before another set A, conditioned on the knowledge of
the initial condition. In practice, A and B may for instance be two regions of phase
space corresponding to two metastable states, like two conformations of a protein [78]
or two configurations of a turbulent flow [18, 26]. Then, the committor function
is the probability of transition from one of these states to the other (see figure 2).
Alternatively, region A may correspond to a typical state around which the system
fluctuates, and region B to an atypical fluctuation of interest because of its impact,
usually defined by some observable reaching a given threshold. In that case, the
committor function allows to estimate the probability that the rare event occurs within
a given timeframe, or alternatively the return time of the event [80]. As an example,
we have recently used the committor function within this framework to study the
probabilistic predictability of occurrence of El Niño events [71].

To give a more precise definition, we consider a discrete time stochastic process
on a phase space X ⊂ RD, where D is the space dimension. A given realization of the
process will be noted as {Xn}1≤n≤Nt , with Xn ∈ X . The first hitting time TD(x) of
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Figure 2: Sketch [79] of a first passage trajectory from A to B. The transition path,
also called reactive trajectory, is highlighted in red.

a set D ⊂ X is defined as

TD(x) = inf{n : Xn ∈ D|X0 = x}. (1)

The committor function q(x) is the probability that the first hitting time of a set B
be smaller than the first hitting time of set A, as a function of the initial condition,
i.e.

q(x) = P[TB(x) < TA(x)]. (2)

This definition immediately generalizes for continuous time Markov processes.
If the dynamics is a stochastic differential equation, q(x) is the solution of the

Dirichlet problem [44, 67]:

Lq(x) = 0 with q(x) = 0 if x ∈ A and q(x) = 1 if x ∈ B, (3)

with L the adjoint of the Fokker-Planck operator:

L =

D∑
i=1

ai(x)
∂

∂xi
(·) +

D∑
i,j=1

bij(x)
∂2

∂xi∂xj
(·), (4)

where a is the drift coefficient and b the diffusion coefficient. One way to compute
a committor function is to solve this partial differential equation. In practice, such a
computation is impossible, using standard techniques, as soon as the system has more
than a few degrees of freedom. This equation can be used for computing approximate
solutions, using machine learning, for systems of dimension D ∼ 10 [54, 55].

2.2. Direct sampling of the committor function

In this section we consider data-based methods for the computation of a committor
function. The data consists of sets of trajectories of the stochastic process. The
simplest method is to directly use the definition (2). In practice, to compute the
function at point x, we initialize an ensemble of N trajectories in X0 = x and evolve
them until they reach A or B. Let NB be the number of trajectories that have reached
B before A. Then, the value of the committor function at point x can be estimated
as

q(x) =
NB
N
. (5)

Like the Dirichlet problem (3), this method can only be applied if the equations of
motion are known, and it is inapplicable for high dimensional systems, as it requires
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simulating many trajectories for each point of phase space where we want to compute
the committor function. The numerical burden thus increases exponentially with the
dimension of the system.

For an ergodic process, the committor function q(x) and the stationary
distribution function ρ(x) can be computed from an observed trajectory {Xn} from
the formulas

ρ(x)q(x) = lim
Nt→∞

1

Nt

Nt∑
n=0

δ (Xn − x) 1{TB(Xn)≤TA(Xn)} and

ρ(x) = lim
Nt→∞

1

Nt

Nt∑
n=0

δ (Xn − x) , (6)

where δ is a Dirac delta function, and 1{TB(Xn)≤TA(Xn)} takes value 1 if the trajectory
visits set B before set A starting from Xn, and 0 otherwise. Numerically, q(x) can
be computed from (6) after spatial and temporal discretization of the process (see for
instance [70, 78, 71]). Unlike the previous methods, this approach is applicable even
if we do not know the equations of motion. Its numerical cost does not depend on the
dimension of phase space, but it only provides estimates of the committor function on
points which neighborhood was visited many times by the observed trajectory.

2.3. Estimating the committor function for any point of the phase space

In Sec. 2.2, we have presented a direct sampling method to estimate the committor
function based on data. However, it provides values only on the set of points that was
visited along the trajectory. This is also true for the other data-based method that we
will present in Sec. 3, the analogue method. For applications, we may need to estimate
the value of the committor function for points which were not in the learning dataset.
This may be the case simply for graphical representations of the committor function
along a line or on a plane in phase space (e.g. Sec. 3.3.1). Even more importantly,
to use the estimated committor function as a score function with the AMS algorithm
(Sec. 4), we need to be able to compute it for arbitrary points in phase space.

To do so, we will use a nearest neighbor method [81]. Let us denote {Xn}1≤n≤Nt ∈
RD the learning dataset, for which we have an estimate of the committor q̂(Xn). For
any point y ∈ RD, we search the K nearest neighbors (using the Euclidean distance

dE(y,x)
2

=
∑D
i=1 (yi − xi)2), corresponding to indices nj ∈ J1, NtK in our dataset, for

1 ≤ j ≤ K. We then perform a weighted average of the corresponding values of the
committor:

q̂(y) =

∑K
j=1 wj q̂(Xnj )∑K

j=1 wj
. (7)

The weights wj can be chosen uniform: wj = 1 (like in Sec. 3.3) or given by a kernel,

such as wj = e−
dE(y,Xnj

)2

ω2 , where ω > 0 is a kernel width (like in Sec. 4), depending
on the application.

2.4. Estimation of the quality of an approximate committor function: the Brier score

In this section we address the issue of how to quantify the precision of an estimate of
the committor function. In what follows, the true committor function is denoted by
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q while q̂ stands for our estimate. As the committor function value q(x) is for any
x the probability of a binary variable, it is natural to look for a score for a forecast
of a binary variable. We also require that this score can be computed directly from
observations. The Brier score is a natural candidate.

We first consider Y a random variable with binary outcomes, Y ∈ {0, 1}, and a
Bernoulli distribution: P[Y = 1] = q and P[Y = 0] = 1 − q. In this section q is a
single number that does not depend on x. We look for an estimator that quantifies
the precision of an estimation q̂ of q.

One of the simpler quantities having the required properties was proposed in 1950
by Brier [82]. We consider {Yn}1≤n≤N , N independent realizations of the variable Y .
The Brier score is defined as

BN =
1

N

N∑
n=1

(q̂ − Yn)
2
, (8)

The Brier score is thus a random variable, with values between 0 and 1.
The random variable (q̂ − Yn)2 takes value (1− q̂)2 with probability q and value

q̂2 with probability (1− q). Then the average value of BN is

E(BN ) = (1− q̂)2q + q̂2(1− q) = q(1− q) + (q̂ − q)2. (9)

The expectation of the Brier score BN is therefore the sum of two terms. The first
one, q(1− q) is related to the stochastic nature of the forecast and is independent of

q̂ ; it is a fixed lower bound. Meanwhile, the second term, (q̂ − q)2, is a quadratic
measure of the error made in the estimation of q. The closer the forecast q̂ is to the
real value q, the lower the Brier score is. While the computation of only the quadratic
error requires the knowledge of the truth q, the computation of the Brier score does
not require the knowledge of q. In the limit N →∞, we have an ergodic average and
limN→∞BN = E(BN ).

We now extend naturally the definition of the Brier score to the case of Markov
processes and committor functions, when q is a function that depends of the variable
x. We consider a set of events {(Xn, Yn)}1≤n≤N , where Xn are points in the
phase space distributed according to the invariant measure ρ of the Markov process,
E [δ (Xn − x)] = ρ(x), and Yn are binary variables which takes the value 1 with
probability q (Xn) and value 0 with probability 1− q (Xn). For instance, the couples
(Xn, Yn) can be sampled along one or several trajectories of the Markov chain, where
Xn are the states of the Markov chain and Yn is equal to zero if the first hitting time
of B after n is smaller than the first hitting time of A after n.

We want to estimate the quality of an approximation q̂ of the committor function
q. Then the committor function Brier score is defined as

BTN =
1

N

N∑
n=1

[q̂ (Xn)− Yn]
2
, (10)

Extending directly the previous computations, and assuming ergodicity, we have

E(BTN ) = lim
N→∞

BTN = ‖q − q̂‖2ρ +
∥∥∥√q(1− q)∥∥∥2

ρ
, (11)

where ‖f‖2ρ =
∫
D f

2(x)ρ(x) dx is the L2 norm weighted according to the invariant

measure. Then the committor Brier score is ‖q − q̂‖2ρ, the weighted L2 norm of the
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difference q− q̂, up to the constant term
∥∥∥√q(1− q)∥∥∥2

ρ
. While the weighted L2 norm

cannot be computed without the knowledge of q and ρ, the Brier score can be directly
computed from the data by the ergodic average (10).

3. The analogue Markov chain

In this section we introduce the analogue method in one of its current versions [75,
76, 83, 84, 85]. It provides a way to build effective dynamics from the data that can
be reused to generate new trajectories of the system under consideration at a lower
computational cost. Although more precise definitions will be given throughout the
section, we think that briefly illustrating the analogue method in its original form
proposed by Lorenz [72, 73] in 1969 is both conceptually and historically instructive.
Furthermore, this can be seen as a particular case of the method we will present in
which only K = 1 analogue is considered.

In a nutshell, the idea is the following. Suppose we have access to a time series
of observations that we will denote by {Xn}1≤n≤Nt , at times tn = nδt where δt is the
sampling time step. Starting from a state x at time t, we want to predict a possible
dynamical evolution after a duration ∆t = lδt. We search among the available data
{Xn}1≤n≤Nt the closest to x, i.e. an analogue, which will be denoted by Xn? :

Xn? = argmin
{Xn}

{d(x, Xn)}, (12)

where d(·, ·) is a distance. After identifying the best analogue Xn? , the prediction of
x(t+ ∆t), denoted x̃(t+ ∆t), will be

x̃(t+ ∆t) = Xn?+l. (13)

This method was intended by Lorenz as a deterministic prediction. In the following
we are rather interested by stochastic predictions, either because the actual dynamics
itself is stochastic, or because we understand the analogue method as an approximate
effective description of a chaotic dynamics. For stochastic prediction, we will use K
analogues rather than a single one.

3.1. Definition of the analogue Markov chain

Let {X(t)}0≤t≤+∞ be a dynamical process that takes values in the phase space

X ⊂ RD. The nature of the process, i.e. whether it is deterministic or stochastic,
Markovian or not, is irrelevant to the discussion. Suppose that a realization of this
process is observed at regular time intervals δt during a total time T = Ntδt and let
{Xn}1≤n≤Nt denote this sampled trajectory made up of Nt points. Each point Xn is

in RD.
We will build a Markov chain that is a data-based approximation of the initial

process, based on a generalization of the Lorenz analogue method. We now define
possible transitions starting from an observed state Xn. Rather than considering
just a single nearest neighbor of Xn in the observed data, we will use the K nearest
neighbors, where K is a positive number. Those K nearest neighbors are denoted

{X̂(k)
n = Xnk}1≤k≤K , where nk ∈ J1, NtK is the index of the k−th analogue. After

identifying analogues
{
X̂

(k)
n

}
, we suppose that we can have a transition between the

state Xn and all the possible images of this set of points. These images will be denoted
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by {Xnk+1}1≤k≤K and the probability to have a transition between Xn and Xnk+1 is
set to 1

K . An illustration of the analogue Markov chain is shown in figure 3.

Figure 3: Schematic of the analogue method. On the left-hand side of the figure a

point Xn surrounded by its analogues {X̂(k)
n = Xnk}1≤k≤K is shown (here K = 4). On

the right-hand side the observed images {Xnk+1}1≤k≤K of the analogues one time step
forward are shown. The transitions observed in the data are represented by black lines
which link the analogues with their corresponding images. Red lines are associated to
the possible transitions from the state Xn of the analogue Markov chain.

With this definition, we see that K is both the number of analogues and the
number of possible transitions from any state of the Markov chain. One needs K
to be large enough to properly approximate all the possible transitions from a given
state. At the same time, the larger K, the further the analogue, and the larger the
error incurred by using a point further from Xn. The optimal value of K will be a
tradeoff between these two effects, as a balance between precision and complexity. In
practice, K will be chosen empirically, for instance using cross validation.

It should be noted that, in addition to the number of analogues K, the analogue
method depends on a second hyper-parameter, i.e. the lag time ∆t. To lighten the
notation we have decided to explain the method for ∆t = δt (where δt is the sampling
time) but the generalization is straightforward. In analogy to what happens for the
choice of K, there is no precise protocol for choosing the value of ∆t. In principle,
∆t should be large enough so that the dynamics of the system on such time scales
can be considered Markovian. Hence, ∆t should be of the same order of magnitude
of the correlation time of the system. For the examples in Sec.3, we use K = 150 and
∆t = δt. Although there are no systematic criteria to justify such choices, we stress
that for low-dimensional systems, such as those discussed in this paper, the results
do not crucially depend on the values of the two hyper-parameters. Therefore, K
and ∆t can be chosen in a fairly wide range. For more complex dynamics, however,
further analyses are required to determine the most appropriate values of the hyper-
parameters.

The selection of neighbors is subordinated to the choice of a distance. The best
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distance most probably depends on the system under investigation. Distances will be
specified on a case-by-case basis.

The analogue Markov chain is a Markov chain on the finite set of Nt observations.
In practice, we introduce a matrix with integer entries, T ∈ MNtK(N). Each row
n ∈ J1, NtK of T contains the indices of the K nearest neighbors of the point Xn, i.e.

the indices n1, . . . , nK such that X̂
(k)
n = Xnk for 1 ≤ k ≤ K. We stress that T is not

the transition matrix of the Markov chain, to be described latter. T is rather a matrix
of indices of the states.

Since we cannot associate any transition to the end-point XNt , this point will be
excluded from the possible candidates for the analogues of each point. To summarize,
each entry of T can take values between 1 and Nt − 1, i.e. Tnj ∈ J1, Nt − 1K for all
n, j such that 1 ≤ n ≤ Nt and 1 ≤ j ≤ K.

To generate a synthetic trajectory, we can proceed as follows. We start with a
state s0 ∈ J1, NtK. Then, we generate a random integer k distributed uniformly in
the interval [1,K] and the new state will be s1 = Ts0k + 1. This procedure is iterated
to build the entire trajectory. Through this method we build a Markov chain whose
states are {Xn}1≤n≤Nt , i.e. the learning dataset.

We now describe the transition matrix G ∈MNt(R). The elements Gnj of G are
the probability to observe a transition from the state n to the state j. They are given
by

Gnj =


1

K
if ∃k? ∈ J1,KK : j = Tnk? + 1,

0 otherwise.
(14)

G is an approximation of the propagator P(Xj |Xn) of the real dynamics.
Given an observable at time t, represented by a column vector f(t) = fi(t), the

observable at time t+ 1 is obtained by applying the operator G to f(t), i.e.

f(t+ 1) = Gf(t). (15)

Therefore, G plays the same role as the generator of a continuous stochastic process.
Concerning the temporal evolution of probabilities there are two possibilities:

• consider probabilities as row vectors π and let G act to the right, i.e π(t + 1) =
π(t)G;

• consider probabilities as column vectors π and let them evolve by applying the
adjoint operator G†, i.e. π(t+ 1) = G†π(t).

In this paper, the second choice has been adopted to emphasize the analogy with
continuous stochastic processes.

To initialize a trajectory at a point x that does not belong to the dataset, we
search the K nearest neighbors of x among the available data and we select as initial
condition one of these points with a probability 1

K . This corresponds to the association
of a probability vector p(x) = pi(x) to the point x defined as

pi(x) =


1

K
if Xi is an analogue of x,

0 otherwise.
(16)

Note that, for simplicity, in equations (14) and (16) we have assumed that each of
the K analogues are chosen with uniform probabilities. We could generalize this choice
using analogue dependent weights, for instance computed according to the distances
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of Xn to its analogues, to account for the varying quality of the various analogues.
The statistical properties of the distance between a state and its different analogues
have recently been studied in [84].

3.2. Computing the committor function from the analogue Markov chain

Using the analogue Markov chain defined in the previous section, we can compute the
committor function q for this Markov chain. A first approach would be to generate
trajectories of this Markov chain, and to directly sample the committor function
through a Monte Carlo estimation as described in Sec. 2. However, we propose a more
efficient computation which consists in solving a linear equation that characterizes the
committor function of a Markov chain. Solving this linear equation is more precise
than the direct approach, as we obtain the exact committor function up to numerical
accuracy, without sampling errors. This linear equation will be solved by estimating
the leading eigenmodes of a spectral problem, following the algorithm proposed in [57].
Our paper is the first application of this idea to the analogue Markov chain.

We start from the Markov chain transition matrix G. We consider two sets
A ⊂ X and B ⊂ X , and we will compute the committor function q which is the
probability to reach B before A. For simplicity, we group together all the states that
belong to A (resp. B) into a single state with index iA (resp iB). We then define
an auxiliary process where A and B are absorbing states: no transition out of these
states is allowed. The corresponding modified transition matrix is G̃, with G̃iAiA = 1
and for all j 6= iA, G̃iAj = 0, G̃iBiB = 1 and for all j 6= iB, G̃iBj = 0, while for

i 6= iA, i 6= iB, G̃iiA =
∑
k:Xk∈AGik and G̃iiB =

∑
k:Xk∈BGik, and for all other

transitions G̃ij = Gij .

For the Markov chain G̃, the committor function is a column vector q = qi where
qi is the value of the committor function at the state i. qi is an approximation of the
committor function of the initial dynamics at point Xi: q(Xi).

For simplicity, we use the same notation for the vector q (associated to the Markov
chain) and the function q (associated to the initial dynamics), although they are
actually different. In the limit of a large dataset, when the Markov chain fits perfectly
the real dynamics, we have asymptotically qi → q(Xi).

From the definition qi = P(TB(i) < TA(i)), we have qiA = 0 and qiB = 1.
Moreover it is a classical result that G̃q = q [56, 57, 58, 59]. This is a simple
consequence of the estimation of q at two successive steps of the Markov chain. The
affine problem

G̃q = q with qiA = 0 and qiB = 1 (17)

then characterizes the committor function, if we assume that G is ergodic.
Following [57], we note that 1 is the largest eigenvalue of G̃ (a consequence of the

Perron–Frobenius theorem for positive operators that preserve probability). Moreover
G̃† has two trivial eigenstates with eigenvalue 1, corresponding to situations where the
full probability vector is concentrated on state iA or iB, respectively. As a consequence,
G̃ also has two eigenstates with eigenvalue 1. If we assume that G is ergodic, then the
dimension of the eigenspace of G̃ with eigenvalue 1 is exactly 2.

This gives a simple algorithm to compute q. We first compute v1 and v2 two
leading eigenvectors of G̃ with any standard algorithm. Then q is a linear combination
of v1 and v2: q = αv1 +βv2, where α and β can be computed from the two conditions
qiA = 0 and qiB = 1.
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If the initial dynamics is indeed ergodic, we expect that for large enough dataset
the Markov chain G will also be ergodic for most of the realizations. However, this
might not be the case for some realizations. Such situations could lead to an incorrect
computation of q as the solution of (17) is then not unique. In practice we check a
posteriori (after running the algorithm) whether qi ∈ [0, 1] for all i, which is a necessary
condition for qi to be a probability. Sometimes, for some realizations of the sampling
of the analogue Markov chain, rarely and even more rarely for large datasets, q takes
values outside the interval [0, 1]. We interpret these cases as a sign of breaking of
ergodicity. We then exclude these rare realizations, with possible ergodicity breaking
of the Markov chain, from the results.

3.3. Applications

In this section, we estimate the committor function using the analogue method for two
different models: Sec. 3.3.1 deals with a system of dimension 2 while Sec. 3.3.2 concerns
a model with 6 degrees of freedom. For each system, we compare the estimated
committor to the true committor, and we analyze the behavior of the error as the
quantity of data upon which the analogue Markov chain relies varies. Finally, we
compare the results of the analogue method with those obtained by the direct method,
based on the same amount of data. The committor learned using the analogue Markov
chain is denoted by q̂A.

3.3.1. Model with two degrees of freedom Let us consider a non-trivial 2-dimensional
dynamics [41]. The model is defined by the following stochastic differential equation:

ẋ = −∇V (x) +
√

2εΞ(t), (18)

where x = (x, y), Ξ = (ξx, ξy) is a two dimensional gaussian white noise with 〈ξi〉 = 0,
〈ξi(t)ξj(t′)〉 = δijδ(t− t′), and the potential V (x) is

V (x, y) = 0.2x4+0.2

(
y − 1

3

)4

+3e−x
2
(
e−(y− 1

3 )
2

− e−(y− 5
3 )

2)
−5e−y

2
(
e(x+1)2 + e(x−1)

2
)
.(19)

The stationary distribution of the system is

ρs(x) = Z−1e−
V (x)
ε , (20)

where Z =
∫

dx e−
V (x)
ε .

Figure 4 shows both the potential V (x) (4a) and the stationary distribution ρs(x)
for ε = 0.5 (4b). As can be seen in figure 4a, V (x) has two global minima close to the
points x1 = (−1, 0) and x2 = (1, 0), one local minimum close to the point xm = (0, 1.5)
and a saddle point close to xs = (0,−0.5) — there are also two saddle points separating
the global minima from the local minimum, approximately located at (−0.6, 1.0) and
(0.6, 1.0). By comparing the panels 4a and 4b, it can be noted that small values of
the invariant distribution correspond to large values of the potential and vice versa.
In particular, figure 4b shows that ρs(x) has global or local maxima at x1, x2, and
xm.

Let us consider the two setsA = {x : dE(x,x1) < 0.05} and B = {x : dE(x−x2) <
0.05}. Note that these sets are defined to include the two maxima of the invariant
distribution, where the dynamics spends most of the time. For ε = 0.5, the relaxation
time τr inside A or B is of order O(1), while the average waiting time Te to observe a
transition between these two sets is of order O(102).
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(a) Potential V (x). (b) Stationary distribution ρs(x).

Figure 4: Color maps of the potential V (x) (panel (a), left), defined by (19), and of
the stationary distribution ρs(x) (panel (b), right), defined by (20), for ε = 0.5.

Figure 5: Committor function q(x) for the 2D gradient system (18), computed using
the real dynamics. The region x ∈ [−1, 1], y ∈ [−1, 2] is divided into Nc = L×L cells
(L = 250) and, for each cell, N = 10000 Monte Carlo experiments are performed.

We will now compute the committor function q(x) = P[TB(x) < TA(x)] for this
system. First, we compute a reference committor function in the region [−1, 1]×[−1, 2]
by direct sampling (as explained in Sec. 2.2), using a large amount of data: for each
point on a 250×250 grid in this region, we sample 10 000 trajectories until they reach
A or B and compute the value of the committor at that point using (5). This reference
committor function is shown in figure 5. One can note that in a region around the set
A the committor function is close to 0, while in the proximity of B it is mostly equal
to 1; for y ' −0.5 and moving along the x direction q(x) changes abruptly through
the saddle point xs. On the contrary, around the relative minimum point xm the
committor function is mostly constant, with a value around 0.5, which corresponds to
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the probability to reach either of the two minima starting from this point.
Now we estimate the committor function using the method presented in Sec. 3.2.

To do so, we need to generate some learning dataset and to choose a distance and
a number of nearest neighbors K. Because we want to measure the quality of our
estimator q̂A(x), by comparing it to the reference committor q(x), as the quantity
of available data varies, we generate three trajectories (using the real dynamics)
of different length. Rather than fixing the length of the trajectory, we integrate
each trajectory until a fixed number of transitions (1, 2 and 20) between sets A
and B are observed. We then construct three analogue Markov chains using each
of these trajectories as learning dataset and compute the corresponding committor
function. For these computations, we have used the Euclidian distance and K = 150
analogues. The estimate of the committor function for the three choices of learning
dataset are shown in Figs. 6a,6b,6c. Note that the method presented in Sec. 3.2 yields
an estimate of the committor function only at the points included in the learning
dataset. To represent the contour levels in Figs. 6a, 6b and 6c, we extend our
estimate of the committor function to the whole region of interest by using a K-
nearest neighbor regression method, as explained in Sec. 2.3. To avoid introducing
additional parameters, we choose uniform weights wj = 1 for all the nearest neighbor
and we use the same number of neighbors as for constructing the analogue Markov
chain K = 150.

In addition to the reference committor, we also want to compare the committor
estimator based on the analogue method to a direct sampling estimate with the same
amount of data. To do so, we also compute the committor function using (6) for the
same three trajectories as above. In practice, because the exact same points are never
visited twice, this amounts to assigning value 1 to a point in the trajectory if set B
is visited before A in the rest of the trajectory, and value 0 otherwise. Again, this
provides an estimate of the committor function only at points included in the learning
dataset and we extend it to the region of interest with the same K-nearest neighbor
method as above. This alternative estimator for the committor function, which we
refer to as the direct method, is shown in Figs. 6d, 6e, and 6f.

Several conclusions can be drawn by comparing qualitatively the committor
estimates shown in figure 6 with the reference committor shown in figure 5. First
of all, note that a single reactive trajectory does not contain enough information
to capture the structure of the committor function (Figs. 6a,6d). The committor
estimates start to be qualitatively acceptable when two reactive trajectories are used
(Figs. 6b,6e). This is due to the fact that our data set includes the two types of
transition paths between A and B (the one that passes through the saddle point xs
and the one that goes through the relative minimum xm). A comparison between
figure 6b and figure 6e shows that the analogue method gives smoother results than
the direct approach. However, note that both methods have a sharper transition region
than that shown in figure 5. By increasing the number of reactive trajectories, a wider
transition region is obtained (see Figs. 6c,6f) and the results appear more similar to
the reference committor. Again, note that the result of figure 6c is smoother than
that of figure 6f.

To quantify the error made in approximating q(x) we consider the quantity

‖q − q̂‖2ρs =

∫
dx[q(x)− q̂(x)]

2
ρs(x) ≈ 1

Np

Np∑
i=1

(q(xi)− q̂(xi))2, (21)

where q is the true committor and q̂ the estimate. The justification of using (21) as
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(a) 1 reactive trajectory. (b) 2 reactive trajectories. (c) 20 reactive trajectories.

(d) 1 reactive trajectory. (e) 2 reactive trajectories. (f) 20 reactive trajectories.

Figure 6: Estimates q̂A(x) and q̂(x) of the committor function of the 2D gradient
system (18) using the analogue method (top row, panels a–c) and the direct method
(bottom row, panels d–f), for learning datasetsets of different length.

Figure 7: Error for the analogue and direct estimators of the committor function of
the 2D gradient system (18) as function of the number of reactive trajectories in the
learning dataset.

an error measurement has already been given in Sec. 2.4: ‖q − q̂‖2ρs corresponds to
the non-constant term in the Brier score (11). The errors computed from (21) for
the two estimators of the committor function (the analogue method and the direct
method) are represented in figure 7 as a function of the number of transitions in the
dataset. Each point in figure 7 corresponds to the average error computed over 10
independent realizations containing the same number of transitions while the error
bar corresponds to the standard deviation. It can be noted that, for small datasets
(2 or 3 reactive trajectories), the performances of the two methods are comparable
within statistical errors but the direct approach seems to provide more stable results.
A simple interpretation is that when there is not enough data, the analogue Markov
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chain is not a good enough approximation of the real dynamics to provide any benefit
to estimate the committor function. However, it becomes the case as the amount of
data increases, and the analogue method outperforms the direct method as soon as
the learning dataset contains at least 4 transitions. When the data contains at least
4 transitions, the error with the analogue method is two to three times smaller than
the error with the direct method.

3.3.2. The Charney–DeVore model We now apply the analogue method to compute
a committor function for a more complex dynamics, the Charney–DeVore model [77].
It is a simple toy model of atmospheric dynamics in the Northern Atlantic region,
represented as a 2D channel with differential rotation. This model was introduced with
the aim of proving that the combination of topography and barotropic instabilities can
lead to different atmospheric flow regimes. It is not intended to be realistic. Actually,
the kind of multistability observed in this model is not observed in real atmospheric
dynamics. The interest of this model is more methodological, providing a relevant
dynamics of intermediate complexity. The model is obtained by expanding the quasi-
geostrophic stream function ψ(z, y, t) (z corresponds to the longitude and y to the
latitude) on the basis {φnm(z, y)} with

φ0m =
√

2 cos
(my
b

)
, (22)

φnm =
√

2 exp (inz) sin
(my
b

)
, (23)

and truncating the series to retain only the first six terms. After the following change
of variables [86],

x1 =
1

b
ψ01, x4 =

1

b
ψ02, (24)

x2 =
1√
2b

(ψ11 + ψ−11), x5 =
1√
2b

(ψ12 + ψ−12), (25)

x3 =
i√
2b

(ψ11 − ψ−11), x6 =
i√
2b

(ψ12 − ψ−12), (26)

the truncated equations of motion become

ẋ1 = γ̃1x3 − C(x1 − x?1) +
√

2εξ1 ,

ẋ2 = −(α1x1 − β1)x3 − Cx2 − δ1x4x6 +
√

2εξ2 ,

ẋ3 = (α1x1 − β1)x2 − γ1x1 − Cx3 + δ1x4x5 +
√

2εξ3 ,

ẋ4 = γ̃2x6 − C(x4 − x?4) + η(x2x6 − x3x5) +
√

2εξ4 ,

ẋ5 = −(α2x1 − β2)x6 − Cx5 − δ2x3x4 +
√

2εξ5 ,

ẋ6 = (α2x1 − β2)x5 − γ2x4 − Cx6 + δ2x2x4 +
√

2εξ6 , (27)

where a Gaussian white noise ξ(t) has been added with an arbitrary amplitude
controlled by the parameter ε. All the components of the noise are independent and
delta-correlated in time: 〈ξi(t)ξj(t′)〉 = δijδ(t−t′). The parameters in (27) are defined
as follows

αm =
8
√

2

π

m2

4m2 − 1

b2 +m2 − 1

b2 +m2
, γ̃m = γ

4m

4m2 − 1

√
2b

π
, (28)

βm =
βb2

b2 +m2
, η =

16
√

2

5π
, (29)
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(a) Convergence to the zonal regime. (b) Convergence to the blocked regime.

(c) Stream function ψ(z, y, t) in the zonal
regime.

(d) Stream function ψ(z, y, t) in the blocked
regime.

Figure 8: Time evolution of the six variables of the Charney–DeVore model for different
initial conditions ((a) and (b)) showing the relaxation to two different states and the
corresponding stream functions ((c) and (d)).

δm =
64
√

2

15π

b2 −m2 + 1

b2 +m2
, γm = γ

4m3

4m2 − 1

√
2b

π(b2 +m2)
. (30)

There are 7 free parameters in this model: b, γ, β, C, x?1, x
?
4, and the noise amplitude

ε. For ε = 0, the main feature of the system is the coexistence of multiple equilibrium
states, in particular the existence of blocked flow and zonal flow regimes. The
number and stability of these equilibrium states depend on the choice of the system
parameters [86, 87]. We adopt the same choice made by Grafke et al. [88, 35], that is
{b, γ, β, C, x?1, x?4} = {0.5, 1, 1.25, 0.1, 4.5,−1.8}. Crommelin et al. show that for these
parameter values the system has two stable equilibrium points [87]: one corresponding
to a zonal regime and the other to a blocked one. Figure 8 shows the convergence
of the system towards the two equilibrium states as well as the corresponding stream
function ψ for the deterministic model (ε = 0). The panels 8a and 8b show that, for
this choice of parameters, the system exhibits multistability, and that the time it takes
to reach the stationary regimes is of order O(10). The two equilibria correspond to a
zonal state, with almost horizontal streamlines (figure 8c) and a blocked state, with
strong cyclonic and anticyclonic structures (figure 8d). In the zonal regime the flow is
characterized by a strong eastward jet uz = ∂yψ(z, y, t). Instead, in the blocked state
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there is no jet, the flow meanders strongly across the domain and it is characterized
by the presence of vorticity.

For ε 6= 0, the system can switch spontaneously from one regime to the other,
under the influence of noise. To study the noise-induced transitions between the zonal
and blocked states, we have to define the corresponding regions of the phase space.
Let xZeq and xBeq be the equilibrium points corresponding to zonal and blocked flow,
respectively. Given two radii rB , rZ > 0, we define the sets

A = {x : dE(x,xZeq) < rZ} ,
B = {x : dE(x,xBeq) < rB} . (31)

In the rest of this section, we consider rZ = 0.8, rB = 0.3 and ε = 0.02. For such
parameters, the average time between two transitions is of order O(103).

Let us now discuss the committor function q(x) = P(TB(x) < TA(x)) of the
system. First of all, it should be noted that a direct computation of q(x) in the whole
phase space is not feasible. Indeed, such a calculation would require discretizing the
six-dimensional phase space and to simulate a set of N trajectories for each point of
the domain until they reach either A or B. If 100 points along each direction were to
be taken, then N × 1012 trajectories would have to be simulated. Considering a time
of one millisecond to simulate N trajectories, the computation of q(x) would still take
Tq = 109 s ≈ 11574 days. Therefore, the reference committor q(x) is computed on
a limited number of points Np distributed according to the invariant measure. Since
the invariant distribution of the system is not known, the points Np are sampled at
regular time intervals over a very long trajectory. To be more specific, we consider a
trajectory 107 time units long and we sample the Np points at intervals δt = 103 time
units. In this way, we ensure the statistical independence of the points. Furthermore,
their distribution will coincide with the invariant distribution of the system in the
limit Np → +∞ by construction. Then, the committor function on those points can
be computed by running N Monte Carlo experiments for each of them.

After computing q(x) along a trajectory in the six-dimensional space, it is natural
to ask how to represent such a function in a low-dimensional space. We will show below
the empirical distribution of the value of the committor conditioned on the coordinate
x1, defined as:

ζ(q|x1) =

∫
dyρs(y)δ(q(y)− q)δ(y1 − x1)∫

dyρs(y)δ(y1 − x1)
. (32)

We chose to condition on the coordinate x1 because the separation of the two attractors
is larger in this direction than in the others. We want to emphasize that the
distribution ζ(q|x1) is introduced for illustrative purposes only. We stress that we
actually compute the committor function q(x) on the whole phase space, and we
use all these values to evaluate the performance of the analogue method. Similarly,
the score function that we use in the rare event algorithm is the committor function
q(x). The distribution ζ(q|x1) for the reference committor is represented on figure 9,
along with the conditional average 〈q〉x1

=
∫
qζ(q|x1) dq. We can first consider the

conditional average of q as a function of x1. It is close to 1 for x1 . 1.5 as x is
close to xBeq. The conditional average of the committor decreases like a sigmoid for
1.5 . x1 . 2.5. It is finally close to 0 for x1 & 2.5. Note however that the conditional
average misses a lot of information in the range 1.5 . x1 . 2.5 that the conditional
distribution give us. The conditional distribution is extremely dispersed in this range.
Actually, in this range the conditional distribution is bimodal and considering the
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Figure 9: Color map of the conditional distribution ζ(q|x1) for the reference committor
of the Charney–DeVore model. The conditional average 〈q〉x1 as a function of x1 is
shown as a red line. The reference committor is computed using the real dynamics
on Np = 10000 points of the phase space distributed according to the stationary
distribution ρs. For each point, N = 100 Monte Carlo experiments are performed.
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(a) 2 reactive trajectory.
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(b) 15 reactive trajectories.

Figure 10: Color maps of the conditional distribution ζA(q|x1) for the committor
function of the Charney–DeVore model estimated using the analogue method q̂A(x)
with learning dataset containing 2 (a) and 15 (b) reactive trajectories. The conditional
average 〈qA〉x1 as a function of x1 is shown as a red line.

committor as a function of x1 does not give us all the information on this function.
The fact that the committor function exhibits some spread around 0 and 1 close to
sets A and B can be explained by observing that many of the points are in fact located
outside of the hyperballs defining these sets (31), although they lie in the basins of
attraction of the zonal and blocked states.

We now estimate the committor function for the Charney–DeVore model using
the analogue method. As in Sec. 3.3.1, we use several datasets of different size to
build the analogue Markov chain used to estimate the committor. The size of these
datasets is measured by the number n = 2, 5, 10, 15 of transitions between A and
B. As previously, we select K = 150 analogues using the Euclidean distance. We
represent the conditional distributions ζA(q|x1) in figure 10, along with the conditional
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Figure 11: Error for the analogue and direct estimators of the committor function of
the Charney–DeVore model as function of the number of reactive trajectories in the
learning dataset.

average 〈qA〉x1
=
∫
qζA(q|x1) dq. The subscript A indicates that they are conditional

distributions for the estimated committors q̂A, using the analogue Markov chain.
The results are shown for two learning experiments, using time series displaying
respectively 2 and 15 reactive trajectories. By comparing figure 9 and figure 10,
it can be noted that the conditional distributions ζA(q|x1) provided by the analogue
method have the same qualitative structure as the conditional distribution of the
reference committor, with values concentrated close to 0 and 1 in the vicinity of sets
A and B, and a sharp transition region in between. However, the distributions are
much more concentrated around the two set A and B than the reference one. This is
probably because the phase space has not been explored sufficiently and therefore the
analogues of points lying outside the hyperballs defining the sets are instead inside A
and B. Similarly, the transition region is narrower. The estimates obtained with the
two datasets of different lengths are qualitatively very similar (see Figs. 10a and 10b),
even if the distribution using 15 reactive trajectories (figure 10b) exhibits slightly more
spread close to attractor B and a seemingly broader transition region.

We now compare the performances of the two data-based methods (the analogue
method and the direct estimator (6)) as the amount of data varies using the same
procedure as in Sec. 3.3.1. The error associated to an estimate of the committor is
given by the non-constant term of the Brier score (11), i.e.

‖q − q̂‖2ρs =

∫
dx(q(x)− q̂(x))

2
ρs(x) ≈ 1

Np

Np∑
i=1

(q(xi)− q̂(xi))2, (33)

where q is the reference committor, q̂ its approximation and ρs is the invariant measure.
Note that here, we are directly comparing the committor functions q and not the
distributions ζ(q|x1).

For each dataset size, we repeat the computation 10 times using different
realizations of the trajectory. The error is computed as the empirical average over
those realizations and the error bar corresponds to the standard deviation computed
over the different experiments. These results are shown, as a function of the size of the
dataset upon which the analogue Markov chain is built, in figure 11. The estimates
of the committor function provided by the analogue method are more precise than
those obtained by the direct approach, regardless of the length of the dataset. While
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the error associated to the direct approach decreases linearly with the number of
transitions in the dataset, the error for the analogue method decreases faster for small
datasets and reaches a plateau after about 5 reactive trajectories. In this latter regime,
the error with the analogue method is roughly an order of magnitude smaller than with
the direct approach. It is remarkable that although the system has a larger number of
degrees of freedom than the 2D system studied in Sec. 3.3.1, the error associated to the
analogue method is likewise small for datasets containing a relatively small number of
trajectories (about 5). In other words, this suggests that the analogue method does
not require larger datasets for estimating committor functions when the dimension of
space increases. Here, we have only verified this statement for a moderate increase
of the number of degrees of freedom, but we hope that it remains true in higher
dimension, as the relevant data should remain close to the transition paths where
most of the information carried by the committor function is contained.

4. Using the learned committor function in Adaptive Multilevel Splitting

In Sec. 3, we estimated the committor function with the analogue method. We will now
illustrate how this approximated committor can be used in a rare event simulation,
using the Adaptive Multilevel Splitting (AMS) algorithm. This algorithm relies on a
function used to select the trajectories leading to the rarest events, called the score
function. The committor function is known to be the optimal score function, but it
is generally not known exactly. We will show that using the estimated committor as
a score function has two advantages. First, it provides a version of AMS where the
user does not need to explicitly prescribe the score function. This is very useful
in practice when we have little knowledge of the dynamics beyond the presence
of the two attractors A and B. In addition, it can improve the precision of the
quantities computed with AMS, compared to user-defined score functions. Indeed, it
approximates the true committor, which leads to minimal errors on estimates.

4.1. The Adaptive Multilevel Splitting algorithm and the quality of score functions

Adaptive Multilevel Splitting is a splitting method designed to estimate the probability
of rare events, inspired by the pioneering works of Kahn and Harris [6] and
Rosenbluth and Rosenbluth [89]. It has been proposed by Cérou & Guyader [37],
as an improvement over Multilevel Splitting (see [40] for instance). Many variants
have been developed since, and the algorithm has been applied in a variety of
contexts [22, 18, 78, 90]. The description of the algorithm given here follows the
presentation of Lestang et al. [80]. See the review article by Cérou, Guyader &
Rousset [91] for a recent overview of the method and its applications.

For definiteness, we consider a continuous time Markov process Xt in the phase
space X . Let us define two regions A and B in phase space. We again seek to estimate
the probability α = P[TB < TA], where TD = inf{t > 0, Xt ∈ D with X0 ∈ C} is the
first hitting time of the set D, starting from a set C. The set C encloses the set A. We
also wish to compute the corresponding realizations of the dynamics.

The AMS algorithm computes these quantities iteratively. For this matter, the
algorithm uses a score function φ, (sometimes termed reaction coordinate) a map from
the phase space X to R. Ideally, the score function is bounded from below by 0 and
from above by 1, vanishes identically on A and is identically equal to 1 on B. Our
aim is to compare the efficiency of different score functions.
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Figure 12: Sketch illustrating two iterations of AMS in a simplified example with 3
clones (Figure originally made for [92]), in order to compute trajectories going from
set A to set B. Trajectory 1 (dashed line) has the smallest excursion out of A as
measured by the score function Φ. It is removed and branched on another trajectory
(in that case trajectory 2, leading to the purple line). In the successive iteration,
trajectory 2 has the smallest score function and is branched on trajectory 3 (leading
to the red line).

In order to run the algorithm, we first need to sample initial conditions according
to the invariant measure restricted to the set C. In practice, we sample these initial
conditions on C by sampling long trajectories in the basin of attraction of A. Then the
algorithm is initialized by sampling N independent trajectories, with initial conditions
on the set C and run until they reach either the set A or the set B. Let us denote by

{x(0)
n (t)}1≤n≤N the initial ensemble of trajectories, where the subscript denotes the

index of the trajectory in the ensemble and the superscript denotes the iteration of
the algorithm. We associate a weight w0 = 1 to those trajectories.

At each iteration j ≥ 1, we apply the following selection and mutation steps,
which are schematically illustrated in figure 12:

• We compute the score of each trajectory in the ensemble at iteration j − 1:

Φ
(j)
n = supt φ(t,x

(j−1)
n (t)).

• We determine the trajectories which have the lowest score: Φ?j = min1≤n≤N Φ
(j)
n

and we set n?j,1, . . . , n
?
j,`j

the indices such that Φ
(j)
n?j,1

= · · · = Φ
(j)
n?j,`j

= Φ?j . One

can have `j > 1 in some iterations. If `j = N and not all the trajectories have
reached B, the algorithm stops: it leads to an extinction.

• We mutate each trajectory x
(j−1)
n?j,`

(1 ≤ ` ≤ `j): for each of them, we choose a
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trajectory x
(j−1)
n` (n` 6= nj,1, . . . nj,`j ) drawn randomly among theN−`j remaining

trajectories. We determine the smallest time t such that φ(t,x
(j−1)
n` (t)) > Φ?j ,

denoted by tj,`. The new trajectory x
(j)
n?j,`

is set by copying the trajectory x
(j−1)
n`

from t0 to tj,`, and simulating the trajectory with a new independent realisation
of the noise, starting from time tj,`, until it hits either the set A or the set B.

• Trajectories with higher scores are not modified at this step: x
(j)
n = x

(j−1)
n for

n 6= n?j,1, . . . , n
?
j,`.

• We compute the weight of iteration j: wj =
(

1− `j
N

)
wj−1.

The algorithm is iterated until all the trajectories reach the set B. The number of
iterations J is a random number. This leads to an estimator α̂ for the transition
probability α:

α̂ = wJ =

J∏
j=0

(
1− `j

N

)
. (34)

This estimator is a random variable, with one value obtained for each realization of
the algorithm. We perform M independent realizations of the algorithm and compute
the statistics of α̂: the empirical average and variance of α̂.

The mathematical properties of this estimator have been extensively studied [37,
93, 79, 94, 95, 41, 96, 92]. The key property is that, for any N and score function
φ, it is an unbiased estimator [41, 96] with a finite variance. The standard deviation
σα(N), the square root of the variance, depends on N and on the score function. The
optimal score function, with the lowest variance, is the committor function.

More precise results exist asymptotically for large N . It is then proven [42] that

the standard deviation scales like 1√
N

asymptotically σα(N) ∼ G(φ)√
N

. Moreover, when

the score function is the committor function, G is minimal, and the standard deviation
scales like the ideal standard deviation

σid =
α
√
| log(α)|√
N

. (35)

In many cases, an asymptotic scaling is observed in practice when the number of
clones is larger than 100 (see for instance [22], figure 14 (c)). The computation of the
empirical standard deviation of α, given by

σα(N,M) =

√√√√ 1

M

M∑
m=1

(α̂2
m)−

(
1

M

M∑
m=1

α̂m

)2

, (36)

and its comparison to the ideal standard deviation σid has often been used as an
a posteriori test of the quality of the score function and how close it is to the
committor [79, 97, 11].

Although the estimator is actually unbiased (E[α̂] = α), in numerical uses of
AMS, it is often observed that α̂ underestimates α in the large majority of the
M realizations of the algorithm. These underestimates are such that the average
〈α̂〉M = 1

M

∑M
m=1 α̂m over M realizations is most of the time strictly smaller than

α although the average is α (E[〈α̂〉M ] = α). This phenomenon is called an apparent
bias. We note that a similar observation is made in the context of fixed Multilevel
Splitting [40] and Importance Sampling [98]. In these contexts, it can be demonstrated
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that 1
M

∑M
m=1 α̂m underestimates α with a probability that goes to 1 as parameters

like ε, which control the rareness of the event, go to zero [40]. This happens if the score
function yielding the levels of Multilevel Splitting is not adapted. As a consequence,
the observed sample mean of α̂ will be strictly smaller than α unless an out of reach
number of realizations of AMS is performed. It has been conjectured [41] that the
observed apparent bias phenomenon could be explained for the AMS by analogy with
the studies for fixed multilevel splitting.

The apparent bias, measured through the difference α − 〈α̂〉M , decreases like 1
N

as the number of clones N is increased. However, it has been observed that for some
cases, the apparent bias seems to reach a plateau for extremely large values of N [79].
We will see similar behavior in the following. In these situations, it is observed that
this apparent bias is minimal when the score function is the committor function [79].
As this apparent bias is a very important practical problem, we will use the magnitude
of this apparent bias as a measure of the quality of the score function.

We have seen that the committor function is the best score function for the AMS
algorithm, and explained that the computation of the empirical standard deviation and
of the apparent bias are two ways to quantify the quality of a score function. We can
also test the AMS computations by comparing the computation of other observables.
For instance, we will compute the transition path duration, denoted τ . This physical
quantity has proven to be a good indicator of whether AMS was correctly sampling
transition paths [79].

To have an unbiased estimate of α and τ and validate the output of AMS
computations, we perform a large number of Direct Numerical Simulations (DNS) of
reactive trajectories. These DNS start like AMS computations with initial conditions
on C, we let them evolve until they reach either A or B. The proportion of DNS that
reach B before A yields a direct estimate of α. We also perform an estimate of τ by
averaging the duration of trajectories that reach B before A.

The estimate of a quantity by AMS is deemed to be precise enough when the
95% confidence intervals of this estimate performed by AMS and by DNS overlap [41].
These confidence intervals are constructed by noting that we look at the sum of
independent random variables of finite variance. They therefore follow a central
limit theorem and the sample mean of α̂ has a gaussian distribution. The confidence
interval is then given by 〈α〉M ± 1.96σα(N,M), with the empirical standard deviation
σα(N,M). Similar confidence intervals are constructed for α and τ for both AMS and
DNS results.

4.2. The learned committor function

Our goal is to investigate the performance of a score function relying on a data-based
estimate of the committor function, using the analogue method presented in Sec. 3. As
mentioned above, this method only provides an estimate on the points initially present
in the dataset. To extend the score function to the whole phase space, we proceed
as explained in Sec. 2.3, with a nearest-neighbor method using an exponential kernel
with width ω = 0.1. Here, a small number of neighbors K = 10 is used for efficient
computations of the score function. Indeed, for each computation, a search through
neighbors must be performed. For a given training dataset, this method defines a
score function, which we denote φdat.

The use of a kernel is justified by the need to reduce regions of constant score
function. Indeed RD is divided in finite subvolumes where any point y has the same
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neighbours {xj}1≤j≤K and thus would have the same score function without a kernel.
The use of the kernel ensures that sets of constant φdat are hypersurfaces and not
hypervolumes and that much fewer y have the same values of φ at each stage of the
algorithm. Practice shows that this leads to more efficient branching by limiting the
number of clones suppressed at each stage of the algorithm and the risk of extinction.

We will test the use of the analogue based estimate of the committor as a score
function for the AMS computations for the two systems presented in Sec. 3.3: the 2D
three-well system (Sec. 4.3) and the Charney–DeVore model (Sec. 4.4). The test of the
learned committor function will be twofold. First, we will consider a score function
learned on a dataset displaying a large number of transitions and study the quality
of the result as a function of the number of clones N . This will allow us to discuss
the phenomenon of apparent bias and how the learned committor function deals with
it. The second aim will be to study the required size of the dataset to have good
results with the AMS algorithm. This question is critical for complex systems for
which data will be scarce because of computation costs. To address this question, we
will then perform AMS computations with a fixed large number of clones N = 1000
and datasets of increasing size (measured in number of recorded transitions).

4.3. AMS study for the two dimensional three well model

In this subsection, we work on the dynamics of the two-dimensional three-well model
presented in Sec. 3.3.1 (18). The sets A and B as well as the noise variance ε are
defined as in Sec. 3.3.1.

4.3.1. Efficiency of the AMS algorithm with the learned committor function for large
N for the three-well model We first study the efficiency of the AMS algorithm when
using the learned committor function φdat as a score function, when the number of
clones is increased with a fixed data set length.

The time series which is used to compute this score function has Nt = 1.4 · 105

datapoints (effectively 1400 time units long) and displays 21 transitions. The results
for the AMS algorithm with this score function will be compared either to DNS
computations, or to AMS computations with two explicit user-defined score functions:

φlin(x) = x+1
2 and φnorm(x) =

√
(x+1)2+ 1

2y
2

2 . The performances of these score
functions have been studied in detail in the literature [79]. The sample means are
performed using at least M = 6000 realisations of AMS (with φdat and N = 1000)
and up to M = 250000 (with φlin and N = 10).

It has been observed in the literature that if one use the first score function φlin,
the probability α can be gravely underestimated if one uses a number of realisations
M too small for a given number of clones. In practice, at fixed M and N the sample
mean 1

M

∑
m α̂m goes to zero with the noise amplitude ε with a larger rate than

the one for α. The sample mean of durations of reactive trajectories would also
be strongly underestimated. With that score function, AMS computations wrongly
overselect trajectories going through the bottom channel (where paths remain around
y ' 0 and where they cross the highest potential difference, see figure 4a and [79], Fig.
7)a)). As a consequence the most probable value of α̂ is much smaller than α. It is
conjectured that these severe underestimations are a consequence of the apparent bias
phenomenon for AMS [41]. The correct estimate is recovered asymptotically in the
limit M →∞. For this to happen, the histograms of α̂ develop large power law tails
toward very large values of α̂. This phenomenon already starts to be at play for our
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Figure 13: Efficiency of the AMS algorithm with the learned committor function for
fixed and large dataset, for the three-well problem. Comparison of the estimated (a)
Transition probability 〈α〉, (b) Duration of reactive trajectories 〈τ〉, and (c) Rescaled
standard deviation σ, as a function of the number of clones N . For each plot the
black curve is the reference: either the DNS (a) and (b), or the optimal value 1 (c).
The dashed black lines are the 95% confidence interval for the DNS. The color curves
have been computed using the AMS, with respectively the learned committor function
(green), the linear score function (blue) and the quadratic score function (red). The
red and blue curves clearly illustrate the apparent bias phenomenon. The learned
committor function gives excellent results, suppressing the apparent bias and giving
smaller, close to optimal, empirical standard deviation.

case of ε = 0.5. What is at stake here is to propose a score function that ensures the
most precise estimate while requiring as few clones and realisations as possible. We
will show that our learned committor score function does lead to this improvement.

In figure 13 (a), we first show the transition probability 〈α〉M as a function of the
number of clones N used in AMS computations, using the three score functions φdat,
φlin and φnorm, and computed by means of DNS. Error bars show the 95% interval of
confidence. One can first note that for the AMS computations, 〈α〉M (N) is within 1%
of its asymptotic value if the number of clones used is larger than N = 100. As noted
in Sec 4.1 〈α〉M grows with N toward this asymptotic value. The confidence intervals
of the probability for AMS and DNS computations do not overlap when we use the
norm score function φnorm: the asymptotic value of 〈α〉M overestimates α. With the
linear score function φlin, the asymptotic value of 〈α〉M in turn underestimates α: this
is a possible consequence of the apparent bias phenomenon [41]. These results are in
agreement with previous studies [79], which have related these biases to errors in the
relative sampling of transition paths. For instance, the linear score function selects
preferentially trajectories going through the bottom channel (where paths remain
around y ' 0 and where they cross the highest potential difference, see figure 4a
and [79], Fig. 7)a)), leading to the bias. By contrast, if the learned committor function
φdat is used, the confidence intervals overlap as soon as N ≥ 250, thus indicating that
no bias can be detected in this estimate of α.

The results for τ , the average duration of reactive trajectories, are qualitatively
similar: figure 13 (b) shows 〈τ〉M as a function of the number of clones used in AMS
for the three score functions, compared to a reference DNS calculation. Error bars are
again given by the 95% confidence interval. We first note that for the data-based and
linear score functions 〈τ〉M converges toward its asymptotic value to within 1% for
N ≥ 250; for the norm score function it is within that interval for all values of N . The
95% confidence interval of the AMS estimate with learned committor function and of
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DNS overlap if more than 1000 clones are used (a larger number than for the transition
probability α; note however that the confidence intervals are narrower for τ than for
α). Conversely, both the linear and the norm score functions lead to overestimates of
τ .

Finally, in figure 13 (c), we consider the rescaled standard deviation
σα(N,M)/σid(N) of the estimator of α as a function of the number of clones
N . Here the absolute reference is the unit value, obtained for the optimal score
function, the exact committor. We first note that for all score functions, the rescaled
standard deviation reaches a plateau if the number of clones is larger than N = 100.
The value of this plateau is largest when we use the linear score function, with
σα(N,M) = 1.4 ± 0.02. It is somewhat smaller for the norm score function, with
σα(N,M) = 1.25 ± 0.02. The best results are obtained for the learned committor
function, with σα(N,M) = 1.12 ± 0.02. This again indicates that the computations
performed using the learned committor function are the most precise, in that they
come with the smallest statistical error, which is 10% larger than the smallest error
possible.

All things considered, we conclude that if we use a large dataset to learn an
estimate committor function with the analogue Markov chain, and use it as a score
function for AMS, the estimates of transition properties show no apparent biases and
converge to their true value when the number of clones is increased. The better
precision of the results with the learned score function is also clearly visible for the
lower statistical error measured by the empirical standard deviation of the estimate
of α. This level of precision is ensured if at least N = 1000 clones are used: then the
95% intervals of confidence of estimates by mean of DNS and by mean of AMS using
the learned score function overlap.

4.3.2. Efficiency of the AMS algorithm with the learned committor function as a
function of the dataset length for the three-well model In Sec. 4.3.1, we used a large
dataset with 21 transitions to accurately estimate the committor, before using it as
a score function for the AMS. Compared to analytically defined score functions, this
suppressed the apparent bias phenomenon and reduced the statistical error.

However, for many complex systems with very costly computations, it might not
always be affordable to use a long dataset to learn the committor function. Moreover,
in the initial stage of the study, one need to work with short datasets. Hence, we now
study how the results of AMS computations using the learned committor function
depend on the size of the learning dataset. We also study how much the results
change from one realization of the dataset to another, at fixed number of transitions.
This study is first made for the 2D three-well model.

For this matter, we sample trajectories of increasing length that contain an
increasing number of transitions, from 1 to 21. For a number of transitions going
from 2 to 21, we sample seven independent trajectories. For each of these datasets,
we estimate the committor with the analogue method (Sec. 3) and use it as a score
function in AMS computations with N = 1000 clones. For all AMS computations
using the same reaction coordinate (φlin, φnorm and φdat with each dataset), outputs
were averaged over M = 20000 realisations.

Figure 14 (a,b) show the transition probability α and the average duration of
reactive trajectories τ as a function of the number of sampled transitions in the
dataset. We place a point with the 95% confidence interval as error bars of each
AMS estimate using each distinct learned committor. However, all the points are
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Figure 14: Efficiency of the AMS algorithm with the learned committor function,
as a function of the dataset length, for the three-well problem. Comparison of the
estimated (a) Transition probability 〈α〉, (b) Duration of reactive trajectories 〈τ〉, and
(c) Rescaled standard deviation σ, for each case averaged over independent realizations
of the score function. For each plot the black curve is the reference one, either the DNS
(a and b) or the optimal value 1 (c). The dashed black lines are the 95% confidence
interval for the DNS. The color curves have been computed using the AMS, with
respectively the learned committor function (green), the linear score function (blue)
and the quadratic score function (red). The red and blue curves are constant values
(they do not depend on the data set length) for comparison. The learned committor
function gives much better results than the user-defined score functions, even for
very small datasets. With datasets containing only a few transitions, two to five, the
results are already excellent. However, for such small datasets, the quality of the score
function varies much from one realization to another.

essentially superimposed: all the realizations of the score functions lead to the same
results. We note that even if we use a short dataset to learn the committor function,
the estimates are very precise: the intervals of confidence of the AMS algorithm and
the DNS estimates overlap for all our datasets lengths, except for the shortest dataset
(only one transition) for τ . Meanwhile the confidence interval of the estimate of τ
by AMS using φlin and φnorm do not overlap with that of DNS, which indicates the
beginning of incorrect selection of trajectories.

This is confirmed in figure 14 (c) by considering σ, the rescaled standard deviation
of the estimate of α. In this plot, for each dataset length, we have computed the
empirical average and variance of the rescaled standard deviation estimated with the
different realizations of the score function. The empirical average gives the points and
the variance is used to construct the error bars. This first shows that the rescaled
standard deviation decreases as the number of transitions contained in the dataset
increases, from 1.6 when the dataset contains only two transitions to almost 1.1
when the dataset contains 8 transitions or more. This indicates that the statistical
error obtained using the learned score function is systematically smaller than that
obtained using the user-defined score function as soon as the datasets contain at least
8 transitions.

We also note that the fluctuations of the standard deviation between different
dataset realizations decreases as the number of transitions contained in the dataset
increases. If the dataset is short, no more than 6 transitions, one can obtain a
score function that leads to better or worse results than analytically defined score
functions with comparable probability. With a dataset with 3 transitions or more,
the statistical error is most of time reduced when the score function is learned from
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Figure 15: Efficiency of the AMS algorithm with the learned committor function for
large dataset as a function of the number of clones N , for the Charney–DeVore model.
Comparison of the estimated (a) Transition probability 〈α〉, (b) Duration of reactive
trajectories 〈τ〉, and (c) Rescaled standard deviation σ. For each plot the black curve
is the reference one, either the DNS (a and b) or the optimal value 1 (c). The dashed
black lines are the 95% confidence interval for the DNS. The color curves have been
computed using the AMS, with the learned committor function (green) and the linear
score function (blue). The learned committor function gives excellent results, similar
to the linear one for the weak apparent bias of the transition probability (a), and much
better than the linear one for the standard deviation and the duration of reactive
trajectories (b and c).

datasets, compared to the case with user-defined score functions.
Finally, we stress that for very short datasets, with only a few transitions, even if

the standard deviation on the estimate of α is of the same order for both user-defined
and learned score function, the systematic apparent bias is much smaller with the
learned committor function.

4.4. Application to the Charney–DeVore model

We now perform the same tests for AMS computations using the learned committor
function in the Charney–DeVore model (27). We will compute transitions from zonal
to blocked flows and use rZ = rB = 0.8 to define the sets A and B as in Sec 3.3.2.

4.4.1. Efficiency of the AMS algorithm with the learned committor function for large
N for the Charney–DeVore model We proceed as in Sec. 4.3.1: we first learn the
committor function φdat (Sec. 4.2) from a long trajectory, containing Nt = 3.4 · 104

data points and displaying 38 transitions. The estimates will be compared to DNS
results and to a simple linear score function φx1

=
x1−x1,Z

x1,B−x1,Z
with x1,Z = 4.308 and

x1,B = 0.709 (see Figs. 8a and 8b). We will perform averages over at least M = 450
realisations of AMS computations (N = 2500 clones with the learned committor score
function) and over up to M = 20000 realisations (N = 10 clones with the linear score
function).

We first show the estimate of the transition probability α as a function of the
number of clones used in AMS in figure 15 (a). For all three estimates, the 95%
intervals of confidence are fairly large: 2% of the empirical average. All three intervals
overlap if more than 100 clones are used in AMS computations. Based on this
observable alone, both score functions give comparable results, and we cannot conclude
on whether one is better than the other.
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Figure 16: Efficiency of the AMS algorithm with the learned committor function
as a function of the dataset length (measured in number of transitions), for the
Charney–DeVore model. Comparison of the estimated (a) Transition probability 〈α〉,
(b) Duration of reactive trajectories 〈τ〉, and (c) Rescaled standard deviation σ. For
each plot the black curve is the reference one, either the DNS (a and b) or the optimal
value 1 (c). The dashed black lines are the 95% confidence interval for the DNS. The
color curves have been computed using the AMS, with the learned committor function
(green) and the linear score function (blue). For dataset as short as 5 transitions the
AMS algorithm with the learned committor function leads to results as precise as the
DNS, and more precise than the linear score function, for both the rescaled standard
deviation and trajectory duration. Having few transitions in the dataset leads to
variability in the quality of the score function.

We then show the estimate of the average duration of reactive trajectories as a
function of the number of clones used in AMS computations in figure 15 (b). The two
AMS estimates 〈τ〉M decrease with N towards an asymptotic value. With the learned
committor function φdat, the 95% confidence intervals of the AMS and DNS estimates
overlap if N ≥ 250. This never happens for the linear score function φx1

.
Finally, figure 15 (c) shows the rescaled standard deviation of the AMS estimator

of α as a function of the number of clones. Both are compared to the reference value 1.
The learned committor function significantly reduces the statistical error, compared
to the linear score function.

We conclude that using the learned committor function computed from a long
dataset leads to more precise results than using the user-defined score function φx1

,
especially for the statistical error and for the estimate of the duration of reactive
trajectories. We note that AMS computations yield estimates close to the asymptotic
value if N ≥ 1000.

4.4.2. Efficiency of the AMS algorithm with the learned committor function as a
function of the dataset length for the Charney–DeVore model As we did with the
2D three-well model (Sec. 4.3.2), we now wish to determine the amount of data
necessary to learn a committor function leading to good AMS estimates. Again,
we sample longer and longer trajectories, containing from 1 to 99 transitions. From
each of these datasets we learn a committor function and use it in AMS computations
using N = 1000 clones. For each dataset length, we perform an average over at
least M = 100 independent realizations of the score function, and up to M = 870
realisations for the datasets containing 38 transitions.

We first consider the transition probability α (figure 16 (a)) and the average
duration of the reactive trajectories τ (figure 16 (b)) as a function of the number of



Coupling rare event algorithms with learned committor functions 32

recorded transitions. We note that as soon as there are more than five recorded
transitions in the dataset, using the AMS with the learned committor, the 95%
intervals of confidence of α overlap with the DNS estimate, while the confidence
interval of τ always overlap with that of DNS. This indicates that the learned
committor function is relevant for smaller datasets than those used in Sec. 4.4.1.
As the size of the dataset is increased, the confidence interval of DNS estimates and
AMS estimates using the learned score function overlap more and more.

We now examine the rescaled variance of the estimate of α performed by AMS,
using the learned committor score function, as a function of the number of transitions
recorded in the dataset used (figure 16 (c)). It is compared to the rescaled variance
of the estimate of α performed by AMS using the linear score function. We note that
if there are very few transitions recorded in the dataset, the variance is larger than
1.5 and can be larger than the one obtained using the linear score function. However,
this quickly improves with the size of the dataset, the rescaled variance can go down
to 1.2 when using the dataset where 38 transitions are recorded.

5. Conclusions

In this paper, we have proposed a data-driven approach for the computation of the
committor function. This approach relies on the analogue method to define an effective
dynamics starting only from observations. We have shown that this defines a Markov
chain on the observed states of the dynamics, which approximates the true propagator.
A spectral characterization of the committor function can thus be used. This method
of computation of the committor function gives remarkably smooth and robust results
for the committor function.

We have highlighted by means of two examples that it is possible to obtain fairly
precise estimates of the committor function, even in cases where few observations are
available. In addition, we have pointed out that these approximations are more precise
than those provided by a more naive data-driven approach and that increasing the
amount of data results in a faster reduction of the error. The estimates are more
precise because the analogue Markov chain is a dynamical approach, which uses all
the information contained in the trajectories, while this is not the case for the direct
approach, which treats all the points of the same reactive trajectory equally. We also
stress that the analogue Markov chain approach can be used with trajectories of any
length, not necessarily distributed according to the invariant measure of the dynamics.

Finally, we provided evidence of the advantage of coupling the analogue method
with a rare event algorithm. Indeed, the learned committor with the analogue
Markov chain can be used as a score function performing better than user-defined
score functions. This means that it is possible to develop an almost-fully automatic
algorithm that requires very little knowledge and understanding of the system under
consideration. The quality of the results suggest that better understanding can be
obtained a posteriori. While this work presented one iteration of the loop, we are
currently implementing and testing the feedback control loop (figure 1) between the
AMS algorithm and the learning of the committor with the analogue Markov chain.

Although the learned committor function based on the analogue Markov chain,
and its coupling with rare event algorithms, have revealed several very interesting
advantages, some limitations might arise especially when one faces high-dimensional
systems. We have tested the approach for a fairly complex dynamics with 6 degrees
of freedom. It still has to be tested for more complex dynamics. For systems in high
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dimensions, the choice of the distance for the analogue method might be a critical
issue.

Another interesting question would be to compare the quality of the estimation
of the committor function using the analogue Markov chain with other methods. It
could be compared to other methods based on dynamical information, sometimes more
complicated, for instance the direct Galerkin approximation [67, 68] method. It would
also be interesting to compare it to direct approaches using machine learning.
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mechanical force exerted by a turbulent flow on a bluff body by direct and rare-event sampling
techniques. Journal of Fluid Mechanics, 895, 2020.

[91] Frédéric Cérou, Arnaud Guyader, and Mathias Rousset. Adaptive multilevel splitting: Historical
perspective and recent results. Chaos: An Interdisciplinary Journal of Nonlinear Science,
29(4):043108, 2019.

[92] Eric Simonnet. Combinatorial analysis of the adaptive last particle method. Statistics and
Computing, 26(1-2):211–230, 2016.

[93] Arnaud Guyader, Nicolas Hengartner, and Eric Matzner-Løber. Simulation and estimation
of extreme quantiles and extreme probabilities. Applied Mathematics & Optimization,
64(2):171–196, 2011.
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