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Abstract. We study approximation algorithms for the problem of minimizing the makespan
on a set of machines with uncertainty on the processing times of jobs. In the model we
consider, which goes back to Bertsimas et al. [3], once the schedule is defined an adversary
can pick a scenario where deviation is added to some of the jobs’ processing times. Given
only the maximal cardinality of these jobs, and the magnitude of potential deviation for
each job, the goal is to optimize the worst-case scenario. We consider both the cases of
identical and unrelated machines. Our main result is an EPTAS for the case of identical
machines. We also provide a 3-approximation algorithm and an inapproximability ratio of
2 — € for the case of unrelated machines.

Keywords: Makespan minimization, robust optimization, approximation algorithms, EP-
TAS, parallel machines, unrelated machines

1 Introduction

Classical optimization models suppose perfect information over all parameters. This
can lead to optimal solutions having poor performance when the actual parameters
deviate, even by a small amount, from the predictions used in the optimization model.
Different frameworks have been proposed to overcome this issue, among which Robust
Optimization which tackles the uncertainty by providing a set of possible values for these
parameters, and considering the worst outcome over that set. In this paper, we consider
the problem of scheduling a set of jobs J on the set of machines M, so as to minimize
the makespan, and considering that the processing times are uncertain. What is more,
we consider the budgeted uncertainty model introduced by Bertsimas et al. [3] where
each processing time varies between its nominal value and the latter plus some deviation.
Further, in any scenario, at most I" of the uncertain parameters take the higher values,
the other being at their nominal values.

Let us now formally define the Robust Scheduling on Unrelated Machines ( R|U!|Cryax)
problem. For any job j € J and machine i € M, we denote by p;; > 0 the nominal pro-
cessing time of j on 4, and by p;; > 0 the (potential) deviation of j on i. We point
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out that nominal processing times are non negative as it is also the case in the classical
R||Ciax problem, and deviations are also non negative as in the uncertainty model 2!
defined below, any negative p;; can be equivalently set to 0. A schedule o is a func-
tion from J — M. We write o; for the subset of jobs scheduled on machine i. Let
Ut = {£ € {0,131 : ||€|]1 < I'} be the set of all possible scenarios where at most I" jobs
deviate. For any ¢ € U, we set p% = D;; + &;pij to be the actual processing time of j
on 7 in scenario .

Let us now formalize some common terms, but with dependence on scenario &.
The load of machine ¢ in scenario ¢ is calculated as jeos pfj. The makespan in sce-
nario £ is the maximum load in scenario &, i.e., Cfnax(o—) = max;cps Zje o pfj. Finally,
ct (o) = maXeeyr Cax(c) denotes the objective function we consider in Robust
Scheduling, where the adversary takes the worst scenario among U’ .

Next, we will state important observations about the objective function. We first
need to introduce the following notations. Given a set of jobs X; scheduled on machine
i, we define p(X;) = > e, Pij» D(Xi) = > ex, Pij» I'(Xi) as the set of the I" jobs of X;
with the largest p;; values (or I'(X;) = o; when |X;| < I') with ties broken arbitrarily.
Finally, set pr(X;) = p(L'(X;)).

By definition we have Cr(o) = maxgqr maxienm ) _jc,, Ce(0), and thus we can
rewrite Cr(0) = maxjeny maxeeyr Y _jc,, Ce(0) = maxjen Cr(o;), where Cr(o;) =
maXecyr Y ie,, Ce(0) is the worst-case makespan on machine i. The benefit of rewriting
Cr(c) in this form is that it is now clear that Cr(o;) = p(0;) + pr(o;) as the worst
scenario { for a fixed o; is obtained by picking the I" jobs with highest p;; and make
them deviate. Thus, R|U! |Cpax can also be thought as a “classical” scheduling problem
(without adversary) where the makespan on a machine Cr(o;) is simply the sum of all
the nominal processing time of jobs of o;, plus only the I' largest deviating values of
jobs of o;. We are now ready to define R|JU' |Cryax.

Problem 1. ROBUST SCHEDULING ON UNRELATED MACHINES (R|U!|Ciax)

— Input: (J,M,p € @W'X‘J‘,ﬁ € QW'XU') where J is the set of jobs, M the set
of machines, p are the vectors of nominal processing times, and p the vectors of
deviation

— Output: find a schedule ¢ : J — M

— Objective function: min Cr(0) = maxeqyr maxiem Y e, [Pij+6;0i] = maxien Cr(oi),
where Cr(o;) = p(0;) + pr(oi).

Following the classical three field notation, we denote by R\L{F |Cmax the previous
problem. Notice that when all p;; = 0 the problem corresponds to the classical R||Ciyax,
for which we denote by C(0;) = 3., P;; the makespan on machine i. We are also inter-
ested in a simplification of the above problem. This simplification is ROBUST SCHEDUL-
ING ON IDENTICAL MACHINES (P|U"[Ciax) where each has two processing times (p;
and p;), and we have Pij = p; and p;; = p; for any i.

Robust scheduling has been considered in the past, mostly for finite uncertainty
sets without particular structure [1,6,9,10,13,11]. More recently, robust packing and



scheduling with the budgeted uncertainty model A’ from Bertsimas et al. [4] has been
considered [5, 14, 2]. Specifically, Bougeret et al. [5] provided a 3-approximation algorithm
and a (1 + ¢)-approximation (PTAS) for PlU!'|Cyax but only for a constant I, as well
as a randomized approximation algorithm for R|U! |Cpax having an average ratio of
O(log(m)), and an FPTAS for Rm|U" |Cpax (where the number of machines is fixed). It
is also known [5] that 1t/ ;w;Cj is N'P-hard in the strong sense, and is polynomial
when w; =1 for j € J. Tadayon et al. [14] considered the robust one-machine problem
for four commonly-used objective criteria: (weighted) total completion time, maximum
lateness/tardiness, and number of late jobs. They showed that some of these problems are
polynomially solvable and provide mixed-integer programming formulations for others.
Their results considered U™ as well as two closely related uncertainty sets. In a recent
work [2] (with also authors in common), it has been proved that robust bin-packing
problem admits a constant-factor approximation algorithm, both for the ¢!" model, and
the uncertainty sets considered by Tadayon et al. [14].

In this paper we improve existing results [5] for P|U! |Crpax and R|UT |Crax. In Sec-
tion 2 we show that any c-approximation for the classical R||Cyax problem leads to a
(¢ + 1)-approximation for R|U! |Cpax, hence obtaining a 3-approximation algorithm for
the latter problem, and a (2 + ¢)-approximation for P|U!|Cyax. We point out that this
result improves the previous ad-hoc 3-approximation for P|U! |Cpax [5], while having a
simpler proof. In Section 3, we show through a reduction from the RESTRICTED ASSIGN-
MENT PROBLEM that there exists no (2— e)-approximation algorithm for R|U!|Cyyax un-
less P = N'P. This implies that the best possible ratio (unless P = N'P) for RIU" |Crpax
is somewhere between 2 and 3, contrasting with the classical R||Cmax where the gap
between 3 and 2 is open since the work of Lenstra et al. [12).

In Section 4 we consider the P|U!"|Cpax problem and present the first step of our
main result, namely a PTAS which is valid even when I is part of the input, i.e., not
constant. Having I" in the input (and not constant) requires a totally different technique
from the one used in the existing PTAS [5] for fixed I". The algorithm is turned into an
EPTAS in Section 5, i.e., a PTAS where the dependency of € is not in the exponent of
the encoding length.

2 A 3-approximation for unrelated machines

Theorem 1. Any polynomial c-approximation for R||Cmax implies a polynomial (c+1)-
approzimation for RIUT|Cpax.

Proof. We design a dual approximation, i.e., given an instance I of RIU! |Cpax and
an threshold T, we either give a schedule o of I with Cr(o) < (¢ + 1)T, or prove
that T' < OPT(I). Using a binary search on T this will imply a (¢ 4+ 1)-approximation
algorithm.

For that, given an instance I = (J, M,p,p) of R|U" |Crax, and T the current thresh-
old, our objective is to define an instance I' = (J, M, p) of the classical R||Cynax problem.
The transformation of a solution for I’ to a solution for I will be straightforward since
the jobs and machines will be the same.



Given a machine 4, let B; = {j|p;; > L} and S; = J \ B;. Define
_ Py +pi ifjeB;
ij 1= { : (1)
Pij otherwise.

Let us now prove that (1) if OPT(I') > T then we have OPT(I) > T, and (2)
every schedule ¢ with makespan C!'(¢) in I’ has a makespan at most C7' (o) + T in T
(Cr(o) < Cl' (o) +T).

For (1), we prove that OPT(I) < T implies that OPT(I") < T. Let o be an optimal
solution of I and 7 a machine. Cr(o) < T implies that Cr(c;) < T for any ¢, and thus
that p(o;) + pr(o;) < T. Now, observe that (B; No;) C I'(0;). Indeed, assume towards
contradiction that there exists j € (B; No;) \ I'(0;). This implies that |I'(0;)| = I'. As
by definition, any j’ € I'(0;) has p;jr > pij > %, we get that pr(o;) > T, a contradiction.
This implies C*'(07) = p(0i) + p(B; N 03) < (o) + pr(os) < T.

For (2), let o be a solution of I'. Let i € M. Observe that p(I'(c;)) < p(B;iNo;)+ T
as I'(0;) contains at most I jobs in o; \ B;, and these jobs have p;; < % Thus, Cr(o;) =
p(oi) +pr(o;) <plo;) +p(BiNo;)+ T = CI/(O'Z') +T.

Thus, given a T and I we create I’ as above and run the c-approximation for R||Cipax
to get a solution . If C*'(¢) > ¢T' then OPT(I') > T, implying OPT(I) > T, and thus
we reject T'. Otherwise, we consider ¢ as a solution for I, and Cr(o) < (c+ 1)T.

O

Using the well-known 2-approximation algorithm from Lenstra et al. [12], we obtain
immediately the following.

Corollary 1. There is a 3-approzimation for RIUT|Cpax.

Since by this reduction identical machines stay identical we also obtain the following
using the EPTAS of Jansen et al. [7] for the classical P||Cpax problem.

Corollary 2. For every € > 0 there is a (2 + €)-approzimation for PlU"|Cyax running
in time 200/<106(1/9Y) 4 poly(n).

We point out that even if the EPTAS of Jansen et al. [7] also holds for the Q||Cmax
problem (where each machine i has a speed s;, and p;; = I;—Z), Corollary 2 cannot be

extended to Q|U!|Cpax using the same reduction. Indeed, starting from a Q[U” |C’rrlax

instance (where each job has only two processing times p; and p;, and we have p,; = %,

Dij = % for any ), the above reduction would create an instance of R||Cp,q, (and not

of Q||Cinaz) as some job may require more than % on a machine, and less that L on

T
another.

3 A 2 — € inapproximability for unrelated machines

For the classical R||Cyax problem, when all p;; € {1, 00}, deciding if the optimal value
is at most 1 is polynomially solvable as it can be reduced to finding a matching in a
bipartite graph. The result below shows that answering the same question for RU’ |Cyyax
is N'P-complete.



Theorem 2. Given an instance I of R{UT |Cuax, it is NP-complete to decide if OPT(I) <
1 or OPT(I) > 2, and thus for any € > 0 is no (2 — €)-approximation algorithm for
RIUT |Cax unless P = NP, even for I' = 1 and when each job can be scheduled on at
most 3 machines.

Proof. Let us define a reduction from 3-SAT to R|U'|Crpax with I' = 1. Let Iy be an
instance of 3-SAT with clauses {Cj,i € [mp]} and variables {z;,j € [no]}. Each C;
is of the form I} Vv 12 v I} where I} € {z;,%;} for some j. We define an instance I of
R]Z/{F |Cinax With m = 2ny machines and n = ny + my jobs as follows. To each variable
xj we associate two machines {j¢,j;}. We create a set of ng variable jobs where for any
J € [no], Pj;; = Dj,j = 1, Pyyj = oo for any other i/, and p;; = 0 for any i € [m]. For any
clause C;, i € [mg] we define M;: the set of 3 machines corresponding to literals {I¥}
satisfying C;. For example, if C7 = 21 V Z3 V 5 then M7 = {1;,3,5;}. We now define
a set of mg clause jobs as follows. For any j € [ng + 1,n9 + my], job j represents clause
Cj—no With p;; = 1iff i € M;_,, pyj = oo for any other ', and p;; = 0 for any i € [m].
For example, job j = ng+7 is associated to C7 where in particular p1,; = p3,; = p5,; = 1.
Notice that each clause job can be scheduled on at most 3 machines. Let us now verify
that Iy is satisfiable iff OPT(I) = 1.

=. Suppose [ is satisfied by assignment a. For any j € [ng], we schedule j on j; if
x; is set to false in a and on j; otherwise. For any j € [ng + 1,19 + mg], we schedule
job j on any machine i € M;_,, corresponding to a literal satisfying C; in assignment a.
Notice that in this schedule, a machine either receives exactly one variable job, implying
a makespan of 1, or only clause jobs, also implying a makespan of 1 as I = 1.

<. Suppose that OPT(I) = 1 and let us define an assignment a. This implies that
any variable job j is either scheduled on machine j;, in which case we set x; to true,
or on machine j;, in which case we set x; to false. As OPT(I) = 1, and clause job
J € [no+1,n9+myg) is scheduled on a machine i € M;_,,, that did not receive a variable
job, implying that clause j — ng is satisfied by literal 3. O

4 A PTAS for identical machines

Recall that for the P|U' |Cpax problem, given two n dimensional vectors p and p and
the number of machine m, the objective is to create a schedule ¢ that minimizes
max;eprs Cr(o;). Recall also that Cr(o;) = p(oi) + pr(o;), where p(o;) = Zjeai Pj;
and pr(o;) is the sum of the p; values of the I" largest jobs (w.r.t. p;) of o; (or the sum
of all p; values if |o;] < I'). To obtain a PTAS for PIUT|Crax, we will reduce to the
following problem, which admits an EPTAS (see [8]).

Problem 2. UNRELATED MACHINES WITH FEW MACHINE TYPES

— Input: n jobs and a set M of m machines with processing times p;; > 0 for job
j on machine i. Moreover, there is a constant k and machine types TYU---UT}), =
{1,...,m}, such that every machine within a type behaves the same. Formally, for
every k', every i, € Ty and every j < n it holds that p;; = py;



— Qutput: find a schedule 0 : J — M
— Objective function: minimize makespan C (o) = max;en C(0;), where C(03) = 3¢, pij

Notice that the EPTAS of Jansen and Maack [8] for this problem provides an (1+¢)-
approximation running in time f(|I|,€,k) = 90 (klog(k) log (1)) + poly(|1]).
We also introduce the following decision problem.

Problem 3. UNRELATED MACHINES WITH FEW MACHINE TYPES AND CAPACITIES

— Input: as above, but in addition every machine i has a capacity ¢; € (0, 1]. Moreover,
capacities are the same among a type (for any k' € [k], for any i,i" € Ty, ¢; = ¢y)
— Output: decide if there is a schedule where C(o;) < ¢; for any i.

Notice that the EPTAS for Problem 2 allows to approximately decide Problem 3 in
the following sense.

Lemma 1. There is an algorithm that for any € > 0, either outputs a schedule with
C(oi) < (14€)-¢; for any i, or reject the instance, proving that there is no schedule with
C(oi) < ¢ for any i. This algorithm runs in time f(|I|,¢, k) where f is the complezity
of the above EPTAS to get a (1 + €)-approzimation.

Proof. Let A be the EPTAS of Jansen and Maack [8] for Problem 2. Given a input
of Problem 3 we define an input I’ of Problem 2 in the following way. For every j < n,
scale pi;j to pi;j/c;. Then, if A(I') < (1 + ¢€), we can convert the solution found by A
into a solution for I of makespan at most (1 + €) - ¢; for any i. Otherwise, as A is a
(1 4 €)-approximation, it implies that OPT(I’) > 1, and thus that no solution can have
makespan at most ¢; for any 3. O

Let us now describe the PTAS for P|U!'|Cpyax. Our objective is to provide a (1+0(¢))
dual approximation for P|U!|Cyax. The constant multiplying e can be ignored since we
can divide e by this constant in a preprocessing step.

1. Guess the makespan and scale OPT to 1. Let I be an input of P\L{F|Cmax, and T be
a positive value (representing the current threshold). We start by redefining I by scaling

pj = %. Our objective is now to produce a schedule o with Cr(o) < 1+ €, or to prove
that OPT(I) > 1.

2. Rounding deviations. Let us now define I' (having vectors p' and p') in the following
way. For any j, if p; < €/I" then we set ]3]1- < 0. Intuitively, this will only result in
an error of at most I" - ¢/I" on every machine. Otherwise (p; > €/I"), we define ﬁ} by
rounding p; to the closest smaller value of the form e/I"- (1 + ¢€)".

Observation 1 In I' there are at most O(1/elog(I'/€)) deviation values, and at most
O(1/elog(1/e)) deviation values in the interval [e/I,1/T].

In the following, we will denote by CL (o) the cost of o for an instance I'.



Observation 2 If OPT(I) < 1 then OPT(I') < 1. If we get solution o' of I', then
Ch(e") < (1 +)CF (o!) + e

It only remains now to either produce a good solution of I' (of cost at most 1+O(e)),
or prove that OPT(I!) > 1.

3. Machine thresholds. Given any solution o of I' such that C}l (o) < 1, we can associate
to o an outline ¥ (o) (denoted as an m dimensional vector t) which is defined as follows.
For any machine ¢ with more that I" jobs, the threshold value ¢; is such that any job
on i with p; > t; deviates (belongs to I'(0;)) and none of the jobs with p; < ¢; deviate.
Notice that among jobs with p; = t;, some may deviate, but not necessarily all. For
any machine ¢ with at most I jobs, we define ¢; = 0, implying again that any job with
p;j > t; deviates on i. Notice that in both cases we have pr(o;) > I" - t;. Notice also that
C}l (o) < 1 implies t; < % Indeed, if we had ¢; > %, there would be I' deviating jobs
with p; > t;, implying C}l(ai) > 1, a contradiction. Let us denote by A the set of all
possible values of a t;. According to Observation 1 we have |A| = O(1/elog(1/€)). Let
P = A™ be the set of all possible outlines (of solutions of cost at most 1).

Lemma 2. Consider a solution o'* of I' such that Cr(c™) < 1, and let t* = ¥ (a'*).
Then, we can guess in mP1/18(/9) time the vector t* (or a permutation thereof).

Proof. As t* € T, all the ¢} have a value in {0} U [£, £]. Thus, as deviating values are
rounded in I', there are only a constant number of possible threshold value and we can
guess them. For every possible threshold, we guess how many machines in the optimal
solution have it. O

Thus, we can now assume that we know the vector t*.

4. Constructing an instance with few machine types and capacities. To give an insight of
the correct reduction defined below, let us first see what happen if we define an instance
I2(t*) of R||Ciax as follows. For simplicity, we also assume that there are no job with
pj = t; on each machine 7 in the previously considered optimal solution of 1 L For any
machine i and job j, define the processing time in I%(t*) as pij = D; +pj if p; > 17, and
pij = p; otherwise. Then, consider the following implications.

1. if OPT(I') <1, then OPT(I%(t*)) < 1
2. for any solution o’ of I?(t*), C’F (¢/) < CT*(¢) (implying that if there exists o/ with
C*(6') < 1+ ¢, then we will have our solution for I! of cost 1 + )

While Property (1) holds, this is not the case for Property (2). Indeed, suppose that
in ¢’ there is a machine ¢ such that for all jobs j scheduled on ¢, p; < tf. This implies
that C(0i) = 3., P;- However, if we look now at o’ in I', we get C}l(ai) =T (0;) +
p(I'(0;)), which is greater than the claimed value. To solve this problem we have to
remember in R||Cpax that there will be a space of size at most I' - ¢; which will be
occupied by deviations.

Let us now turn to the correct version.



Definition 1. For any t € P, we define the following input I*(t) of Problem 3. We set
the machine capacity to

ci=1-1I-t+e
The addition of € is only a technicality to ensure that all c; are non-zero. Note that if
there are less than I" jobs on i, then t; must be O and therefore ¢; = 1+ €. For every job
j set
Note that at p; = t;, the values of both cases are equal. Notice also that in I?(t) there
are only |A| different machine types.

B {pj +p—t if D>t
Dij =

Lemma 3. If OPT(I') < 1 and t is the outline of an optimal solution o, for any i,
CIQ(t)(UiQ) <.

Proof. Let us consider jobs a? scheduled on machine i. If t; = 0, then
sz‘j = Zf?j—i-ﬁj <1l<g.
jEO’? jegf

Assume now t; > 0, implying that |I"(¢?)| > I'. By choice of t;, every job j € I'(6?) has
p;j > t; and every j € 02\ I'(¢?) has p; < t;. This implies
Zpij: Z Pij + Z Pij = Z [pj +pj — ti] + Z pp<1-1It <c.
jeo? jEr(0}) JETI\I(a7) JEL(a?) ECAVACH)

O

Lemma 4. For any t € P, if there is a solution o* of I*(t) such that CIQ(t)(o?) <
(1+€)- ¢ for any i, then CII“I (0?) < (1 +¢).

Proof. Let i be a machine. Then for every j € U?,
_Jpj+pi—ti=p; ifp; >t
1] _ op A
p; if p; < t;.
Furthermore, for every j € I'(02),
- p;t+Dj—t if pj > ¢,
) _ _ ~ PPN
P >pj+pj—tl- lfpj<ti.
This implies,

N it+pl+ D B<Toti+ Y [pitpi-tl+ D>, P

JEL(a7) j€a\I'(a7) JEL(a?) JETI\I(07)
STtk > pgt Y pi=Tti+ > pij < Dtit(1+e)-(1-Itite) < (1+e)”.
JEI(02) jE€o\TI'(c2) j€o?
~——
<(14e€)c;



Theorem 3. There is a (1+¢)-approvimation algorithm for PlUT |Ciax Tunning in time
O(mO/eloe(1/€)) 5 f(|I],e,0(1/elog(1/€))) where f is the function of Lemma 1. This
implies a running time in m©O1/€108(1/)(29(9) | 1|OMW)) “yhere g(e) = O((1/€)?log®(1/€)).

Proof. Given I input of P|U"|Cpax and a threshold 7', we run algorithm A of Lemma 1
on I%(t) for any t € P with a precision e. If A rejects all the I%(¢) then we can reject T
according to Observation 2 and Lemma 3. Otherwise, there exists ¢o such that A(I?%(ty))
outputs a schedule o2 where C*(0)(52) < (1 + €) - ¢; for any i, implying Ch(o?) <
(1+ 6)0}1 (0%) + € < (1 +¢€)®+ € < 1+ 5e according to Observation 2 and Lemma 4 (for
sufficiently small €). Finally, the running time is as claimed due to the bound of P in
Lemma 2. O

5 EPTAS for identical machines

The approach for an EPTAS is similar to the PTAS above. We would like to remove the
bottleneck from the previous section, which is the guessing the thresholds. In the PTAS
we notice that even if the thresholds were chosen incorrectly, but we find a solution
to the derived problem, we can get a good solution for the initial problem. Informally,
we will now still create an instance of Problem 3, but we only guess approximately the
number of machines for each threshold.

We start by defining I' as in the previous section. Given any solution o' of I' such
that C’F (o!) < 1, we can associate to o a restricted outline m = /(o) where m is defined
as follows. Let ¢ = ¢(c). For any threshold value [ € A, let m; = |{i|t; = [}| be the num-
ber of machines with threshold I in o'. We define m; € {0,1,2,4,8,...,20e(m]} such
that m; < my < 2. Let P = {m € {0,1,2,4,8, ..., 20814 guch that <y m < m}
be the set of possible restricted outlines (of solutions of cost at most 1).

Lemma 5. Consider a solution o'* of I* such that Cr(c'*) < 1, and let m* = (o**).
Then, we can guess in time 20(1/elog?(1/€)) 4 1 O) the vector m*.

Proof. Clearly it suffices to iterate over all values m; € {0,1,2,4,8,.. .,QUOg(m)J}, ie.,
O(log(m)) many. Guessing this number for every threshold value in A takes log®(1/€108(1/9) (1)
time. Consider first the case when log(m)/loglog(m) < 1/elog(1/€). Observe that for

any m > 2, it holds that log'/?(m) < log(m)/loglog(m). This implies that log"/?(m) <
1/elog(1/€). Hence,

logO(l/elog(l/e))(m) _ (10g1/2(m))2-0(1/elog(l/e)) < (1/6 log(l/e))O(l/elog(l/e)) < 20(1/elog2(1/6))'
If on the other hand, if log(m)/loglog(m) > 1/elog(1/€), then

Jog@(/€log(1/€) () < 10g@os(m)/loglog(m) (1) — 9OUog(m)/loglog(m)-loglog(m)) — 1, O(1)

We conclude,
1Og0(1/610g(1/6))(m) < 90(1/elog?(1/e)) +mOW,

From all the guesses, we report fail whenever ) . m; < m/2 or ), m; > m. O



For any m € P, we define the following input I2(m) of Problem 3. We first create for
any [ a set M; of m; machines where for each machine ¢ € M; the capacity and the p;;
are defined as in Definition 1 for threshold ¢; = I. Then, we create another set M; of 7y
machines (that we call cloned machines) with the same capacity and the same p;; values.
Let m’ =Y my. Notice that the total number of machines is 2m/, with m < 2m’ < 2m.
Thus, we have to ensure that not too many machines are used in total. For that purpose
we add a set of 2m’ —m dummy jobs D, where all j € D have p;; = co on the original
machines ¢ € M; and p;; = ¢; on every cloned machine ¢ € M]. Notice that the number
of types is now 2|A|, which is still small enough to get an EPTAS. Let us call the
non-dummy jobs regular jobs.

Lemma 6. If OPT(I') <1 and m is the restricted outline of an optimal solution, then
there exists a solution o2 of I*(m) such that for any i, C1*(™ (0?) < c¢;.

Proof. Let mj = |{i|t; = l}| be the number of machines with threshold [ in the considered
optimal solution of I'. Let [ € A be a threshold value. We first schedule 27m; — m; many
dummy jobs on cloned machines of M. This will cover all dummy jobs, since

Z[le —mj] :2Zm —Zm}k =2m’ —m.
! 1 !

We will now schedule all remaining jobs on the empty machines. For every threshold
value [ we have 2m; — (2m; — mj) = m; many empty machines. In other words, we
are left with an instance with the exact same number of machines for each threshold as
in the optimal solution and with the original jobs. As argued in Lemma 3, we get the
desired claim. O

Lemma 7. For any m € P, if there is a solution o of I*(m) such that C’IQ(H)(UZ-Q) <
c; + € for any i, then we can deduce a solution o for I' with C’F (03) < (1 +2¢)2.

Proof. We will first normalize o2. Since dummy jobs have pij = ¢; on cloned machines,
in a (1 + €)-approximation there can only be one per machine (assuming that ¢ < 1).
Indeed, there may still be a load of € - ¢; from other jobs on the same machine. We want
to ensure that every machine either has a dummy job or some regular load, but not both.
For every threshold value | € A, there can be at most 77; machines in M] that have a
dummy job. For any such machine in M}, we remove all the regular jobs (of total load of
at most €-¢;) from it and move them to one of the original machines in M;, without using
the same machine in M; twice. Since for any i € M; we had C1*(™) (02) < (1+¢€)c; before
moving the jobs, and since regular jobs have the same processing time on machines M;
and Mj, after moving the jobs we get Clz(m)(af) < (1 + 2¢)¢; for any i € M;. We now
have a solution violating the capacities by at most 2e¢ - ¢; such that a machine with a
dummy job has no other jobs.

We now forget about all dummy jobs and the machines they are on. What we are
left with is a set of m machines (with some thresholds ¢) such that for any i we have
cr*m) (02) < (1 + 2€)c;. By Lemma 4 we get the desired result. 0



Allin all, we were able to reduce the number of instances created to only 20(1/¢ log?(1/e)) 4
mOP® many and removed the bottleneck from the PTAS this way. This leads to the fol-
lowing result.

Theorem 4. There is a (1+¢)-approzimation algorithm for P{UT |Cmax Tunning in time
0(20(1/610g2(1/6))—l—mo(l)) x f(|I],€,0(1/elog(1/e€))) where f is the function of Lemma 1.
This implies a running time in 29 |11 where g(e) = O((1/€)?log®(1/€)).

Proof. As in Theorem 3, given an instance of P|U!|Cpax we will use the algorithm
of Lemma 1 on I?(m) for any m € P. As according to Lemma 5 we have |P| <
920(1/elog®(1/€) 4 O we get a running time in O(QO(I/elogQ(l/e)) +mPM) x

f(|1],€,0(1/elog(1/€))) where f is the function of Lemma 1. This running time can be
rewritten (20(1/610’52(1/6)) + mOPM) x (20((1/6)21036(1/6)) +171°M), implying the claimed
bound. O

6 Conclusion

In this article we have provided approximation results for P{U! |Crax, QU |Crax and
R|UT|Crnax, improving the results obtained by Bougeret et al. [5]. The complexity status
of PlU"|Cpax is somehow closed as we cannot hope for an FPTAS. Yet this paper
leaves open two interesting questions: closing the [2 — €, 3] gap for the approximability
of RIU" |Cppax, and determining whether QU |Cruax admits a PTAS.
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