Sequence Positivity Through Numeric Analytic Continuation: Uniqueness of the Canham Model for Biomembranes - Archive ouverte HAL Access content directly
Journal Articles Combinatorial Theory Year : 2022

Sequence Positivity Through Numeric Analytic Continuation: Uniqueness of the Canham Model for Biomembranes

Stephen Melczer

Abstract

We prove solution uniqueness for the genus one Canham variational problem arising in the shape prediction of biomembranes. The proof builds on a result of Yu and Chen that reduces the variational problem to proving non-negativity of a sequence defined by a linear recurrence relation with polynomial coefficients. We combine rigorous numeric analytic continuation of D-finite functions with classic bounds from singularity analysis to derive an effective index where the asymptotic behaviour of the sequence, which is positive, dominates the sequence behaviour. Positivity of the finite number of remaining terms is then checked computationally.
Fichier principal
Vignette du fichier
210211-whn79.pdf (499.75 Ko) Télécharger le fichier
canham.binder.zip (554.03 Ko) Télécharger le fichier
rectangles.pdf (132.61 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-03366860 , version 1 (25-07-2022)

Identifiers

Cite

Stephen Melczer, Marc Mezzarobba. Sequence Positivity Through Numeric Analytic Continuation: Uniqueness of the Canham Model for Biomembranes. Combinatorial Theory, 2022, 2 (2). ⟨hal-03366860⟩
70 View
57 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More