Alexey Ozerov

Anne Lambert

⋆ Suresh

Kirthi Kumaraswamy

ParaDiS: Parallelly Distributable Slimmable Neural Networks

When several limited power devices are available, one of the most efficient ways to take advantage of these resources, is to run in parallel several neural sub-networks and to fuse the result at the end of processing. However, such a combination of sub-networks must be trained specifically for each configuration of devices (characterized by number of devices and their capacities) which may vary over different model deployments and even within the same deployment. In this work we introduce parallelly distributable slimmable (ParaDiS) neural networks that are splittable in parallel among various device configurations without retraining. While inspired by slimmable networks, allowing instant adaptation to resources on just one device, ParaDiS networks consist of several multi-device distributable configurations or switches that strongly share the parameters between them. We evaluate ParaDiS framework on Mo-bileNet v1 and ResNet-50 architectures on ImageNet classification task and on WDSR architecture for image super-resolution task. We show that ParaDiS switches achieve similar or better accuracy than the individual models, i.e., distributed models of the same structure trained individually (without parameter sharing). Moreover, we show that, as compared to universally slimmable networks that are not distributable, the accuracy of distributable ParaDiS switches either does not drop at all or drops by a maximum of 1 % only in the worst cases. Finally, once distributed over several devices, ParaDiS outperforms greatly (universally) slimmable models.

Introduction

Neural networks are more and more frequently run on end user devices such as mobile phones or Internet of Things (IoT) devices instead of the cloud. This is due to clear advantages in terms of better processing latency and privacy preservation. However, those devices have often very limited (runtime and memory) resources. While manually designing lightweight networks [START_REF] Howard | Mobilenets: Efficient convolutional neural networks for mobile vision applications[END_REF][START_REF] Zhang | Shufflenet: An extremely efficient convolutional neural network for mobile devices[END_REF] or using model compression schemes [START_REF] Cheng | Model compression and acceleration for deep neural networks: The principles, progress, and challenges[END_REF] (e.g., pruning [START_REF] Lecun | Optimal brain damage[END_REF] or knowledge distillation [START_REF] Hinton | Distilling the knowledge in a neural network[END_REF][START_REF] Xie | Self-training with noisy student improves imagenet classification[END_REF]) allow satisfying particular constraints, these approaches are not well suited when those resources vary across devices and over time. Indeed, a particular model is handcrafted or compressed for given resource constraints, and once those constraints change, a new model needs to be created. To this end, a new family of approaches that are able to instantly trade-off between the accuracy and efficiency was introduced. We call these approaches (or models) flexible [START_REF] Ozerov | Inplace knowledge distillation with teacher assistant for improved training of flexible deep neural networks[END_REF][START_REF] Lambert | Flexible recurrent neural networks[END_REF], and they include among others early-exit models [START_REF] Huang | Multiscale dense networks for resource efficient image classification[END_REF], slimmable neural networks [START_REF] Yu | Slimmable neural networks[END_REF][START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF], Once-for-All (OFA) networks [START_REF] Cai | Once-for-all: Train one network and specialize it for efficient deployment[END_REF][START_REF] Sahni | Compofa: Compound once-forall networks for faster multi-platform deployment[END_REF], and neural mixture models [START_REF] Ruiz | Distilled hierarchical neural ensembles with adaptive inference cost[END_REF].

An alternative path to gain in efficiency under constrained resources setting, consists in distributing the neural network inference over several devices (if available) [START_REF] Teerapittayanon | Distributed deep neural networks over the cloud, the edge and end devices[END_REF]. The simplest way is to distribute a neural network sequentially, e.g., in case of two devices by executing early layers on the first device and the remaining layers on the second one, while transmitting the intermediate features between the two devices over a network (see Fig. 1 (B)). Depending on the transmission network bandwidth, the features might undergo a lossless or a more or less severe lossy compression [START_REF] Choi | Context-aware deep feature compression for high-speed visual tracking[END_REF]. A neural network (see Fig. 1 (A)) might either be distributed as it is or, in case the features are distorted by compression, after a fine-tuning or retraining [START_REF] Choi | Context-aware deep feature compression for high-speed visual tracking[END_REF]. Though sequential distribution might overcome issues of limited memory and computing power, it does not decrease the processing latency and might only increase it because of the additional communication delay. This might be overcome via a parallel distribution [START_REF] Hadidi | Collaborative execution of deep neural networks on internet of things devices[END_REF], as illustrated on Fig. 1 (C). However, to maintain the functionality of the original neural network all convolutional and fully connected layers need to communicate, which requires a considerable communication burden and increases processing latency.

To overcome this the model may be distributed parallelly without intermediate communication [START_REF] Bhardwaj | Memory-and communicationaware model compression for distributed deep learning inference on iot[END_REF][START_REF] Asif | Ensemble knowledge distillation for learning improved and efficient networks[END_REF], as on Fig. 1 (D), where the only communication needed is to transmit the data to each device and the final result from each device for a fusion. In this work we chose to focus on this parallel distribution without communication and call it simply parallel distribution hereafter. The main advantages are a much smaller processing latency, as compared to sequential distribution, that it does not suffer from high communication burden of communicating parallel distribution, and that it is also easy to deploy. The price to be paid for these advantages consists in a potentially decreasing performance and a need of retraining due to the loss of connections between the intermediate layers.

The question we are trying to answer in this work is: Can we have one neural network that may instantly and near-optimally1 be parallelly distributed over several devices, regardless of the number of devices and their capacities? In this paper we introduce a new framework called parallelly distributable slimmable neural networks or ParaDiS in short that allows such functionality. As its name suggests, ParaDiS is inspired by slimmable neural networks framework [START_REF] Yu | Slimmable neural networks[END_REF], where the full model variants (or so-called switches) consist of the model sub-networks of different widths, and all variants are trained jointly while sharing the parameters. For example, the switch denoted as 0.25× is a sub-network with each layer composed of the first 25 % of the channels of the full network. Similarly, in ParaDiS framework we consider several variants or switches. However, ParaDiS switches include configurations distributable on several devices as illustrated on Figure 2. As such, we represent each configuration or switch as a list of widths. For example, [0.5, 0.5]× denotes a configuration consisting of two parallel networks extracted from the first and the second halves of channels of the full network, respectively. All ParaDiS model switches are trained jointly, while strongly sharing most of their parameters. Once a set of available devices is known, a suitable configuration may be selected and instantly deployed. Moreover, if a copy of the full model is available on each device, the configuration may be changed instantly without re-loading a new model with a new configuration. For example, if one device has got more computational resources for some reason (e.g., some other process has finished) configuration [0.5, 0.25, 0.25]× may be instantly changed to [0.5, 0.5]× by simply changing the sub-models executed on each device. Finally, like slimmable framework, ParaDiS framework is applicable to most modern convolutional neural network (CNN) architectures and to different tasks (e.g., classification, detection, identification, image restoration and super-resolution).

It has been noticed in [START_REF] Yu | Slimmable neural networks[END_REF] that slimmable network switches may share all the parameters except the global statistics of batch normalization (BN) blocks. Individual BN statistics are adopted instead, which does not lead to any serious drawback. Indeed, individual BN statistics may be computed within a simple calibration phase after the model is trained [START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF], and they represent a very tiny overhead in terms of the total number of parameters. Since ParaDiS is an extension of the slimmable framework, we adopt in this work the same strategy of individual BN statistics. The training procedure of universally slimmable (US) networks [START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF] consists in all switches being trained jointly, with the full model trained from the data and all other switches distilled via knowledge distillation (KD) [START_REF] Hinton | Distilling the knowledge in a neural network[END_REF] from the full model. While similar, our method introduces two important differences. First, instead of distilling the knowledge from the full model (switch feature activation maps before the final fully connected layer in addition to the output predicted by the wide model. We have shown that these new ingredients are important for training ParaDiS.

We investigate the proposed ParaDiS framework on ImageNet classification task using MobileNet v1 [START_REF] Howard | Mobilenets: Efficient convolutional neural networks for mobile vision applications[END_REF] and ResNet-50 [START_REF] He | Deep residual learning for image recognition[END_REF] as underlying architectures and on image super-resolution task using WDSR architecture [START_REF] Yu | Wide activation for efficient image and video superresolution[END_REF]. We compare ParaDiS models with the corresponding parallelly distributed configurations trained individually and with the US models [START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF] that are not distributable. First, we find that ParaDiS model performs as good as and, in many cases, better than the individually trained distributed configurations. Second, we observe that distributable ParaDiS switches perform almost as good as non-distributable US model switches of the same overall complexity. Third, we show that, once distributed overs several devices, ParaDiS outperforms greatly the US models. Finally, we conduct an exhaustive ablation study to show the importance of knowledge distillation using a wide model and of distilling activations.

Related work

Compressed and flexible models. Model compression schemes [START_REF] Cheng | Model compression and acceleration for deep neural networks: The principles, progress, and challenges[END_REF] (e.g., pruning [START_REF] Lecun | Optimal brain damage[END_REF] or knowledge distillation [START_REF] Hinton | Distilling the knowledge in a neural network[END_REF]) allow satisfying specific memory and processing constraints, though they only produce a fixed model for every setting. To go further, a new family of so-called flexible approaches allowing to instantly tradeoff between accuracy and efficiency was introduced. These approaches include among others early-exit models [START_REF] Huang | Multiscale dense networks for resource efficient image classification[END_REF], slimmable neural networks [START_REF] Yu | Slimmable neural networks[END_REF][START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF], Oncefor-All (OFA) networks [START_REF] Cai | Once-for-all: Train one network and specialize it for efficient deployment[END_REF][START_REF] Sahni | Compofa: Compound once-forall networks for faster multi-platform deployment[END_REF], and neural mixture models [START_REF] Ruiz | Distilled hierarchical neural ensembles with adaptive inference cost[END_REF]. Moreover, flexible models like OFA networks have been shown to be useful for efficient neural architecture search [START_REF] Yu | Bignas: Scaling up neural architecture search with big singlestage models[END_REF] and for developing dynamic inference approaches [START_REF] Li | Dynamic slimmable network[END_REF]. However, unlike our approach, all these approaches run within one device (nondistributed settings).

Sequentially distributed models. In Neurosurgeon [START_REF] Kang | Neurosurgeon: Collaborative intelligence between the cloud and mobile edge[END_REF], the authors propose a dynamic partitioning scheme of an existing deep neural network between a client (end-user device, for example) and a distant server (edge or cloud) (see also Fig. 1 (B)). The neural network can only be split between layers to form a head and a tail. The optimal partition is obtained by estimating the execution time of each part on the different devices. The main drawback of this approach is the added communication time occurring between the different partitions. To this end other optimization strategies have been developed and intermediate feature compression schemes have been proposed [START_REF] Choi | Context-aware deep feature compression for high-speed visual tracking[END_REF]. However, as we have discussed above, distributing a model sequentially does not allow making use of a plurality of devices to reduce processing latency.

Parallelly distributed models. In contrast to sequential distribution, distributing model parallelly with no communication (see Fig. 1 (D)) allows reducing processing latency without increasing communication burden at the same time. Several recently proposed approaches [START_REF] Bhardwaj | Memory-and communicationaware model compression for distributed deep learning inference on iot[END_REF][START_REF] Asif | Ensemble knowledge distillation for learning improved and efficient networks[END_REF] suggest creating such efficient parallel models via knowledge transfer from a bigger single pre-trained model. Wang et al. [START_REF] Wang | On the surprising efficiency of committee-based models[END_REF] revisit model ensembles that are parallelizable as well and show that they are almost as efficient as individual non-distributable models of the same complexity. However, in contrast to our proposal, none of those models are sharing parameters.

3 ParaDiS neural networks

Switchable batch normalization statistics

Batch normalization (BN) [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] is an essential block present nowadays in most popular deep CNNs. BN is very simple and consists in normalizing CNN features in each layer and channel with mean and variance of the current mini batch. While, during training, the statistics of the current mini batch are considered, during testing, these statistics are replaced by global statistics computed as moving averages over the whole or a part of the training set. Because of this inconsistency between training and testing, the BN parameters cannot be simply shared in slimmable neural networks [START_REF] Yu | Slimmable neural networks[END_REF][START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF]. As such, it was first proposed in [START_REF] Yu | Slimmable neural networks[END_REF] to consider a so-called switchable BN block having separate set of parameters for every switch. It was then shown that it is sufficient to consider only switchable BN statistics, while the remaining parameters of the BN block might be shared between switches. Finally, it was proposed [START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF] to compute switchable BN statistics in a so-called calibration phase after training. For each switch, the calibration consists simply in a forward pass over the corresponding network over a subset of the training set, so as to compute global BN statistics. Since the proposed ParaDiS framework is based on slimmable networks, we here adopt switchable BN statistics together with the calibration procedure. However, in case of ParaDiS models, one may ask the following question: Should a submodel that belongs to several switches, have different BN statistics within these switches, or can these statistics be the same? To put it simply, say the last 0.25width sub-model in [0.5, 0.25, 0.25]× and [0.25, 0.25, 0.25, 0.25]× is the same. So, should we change the BN statistics for this sub-model when changing from one switch to another? Interestingly, we may reply to this question even without starting experimenting. Indeed, since the BN statistics are computed via a forward pass during the calibration phase, the statistics of a particular sub-model are independent of the switch it belongs to. In other words, BN statistics of the last 0.25-width sub-model will be the same, whether they are computed within [0.5, 0.25, 0.25]× switch or within [0.25, 0.25, 0.25, 0.25]× switch. To summarize, the calibrated BN statistics of a given sub-model are independent of the switch. This is good news, since it leads to yet less parameters to be stored.

Training ParaDiS networks

We present two improvements to the training procedure of US networks [START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF] and show how they improve the performance (Section 5, more details in Appendix D). The switches of a ParaDiS network are trained jointly in a training procedure inspired by US networks training [START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF]. Recall that US networks training [START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF] consists in updating all switches jointly (though sampling a limited number of switches per epoch), while only the full 1.0× model is trained from data and all other switches are trained from the output of the full model via a knowledge distillation (KD) [START_REF] Hinton | Distilling the knowledge in a neural network[END_REF]. This procedure is referred to as inplace knowledge distillation (IPKD) since all the switches are strongly sharing their parameters. More specifically, assuming here without loss of generality an image classification task, the full 1.0× model in US training [START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF] is updated based on the true labels using the conventional cross-entropy (CE) loss

loss = L CE (y ′ , y) = 1 C C c=1 y c log(y ′ c), (1)
where C is the number of classes, and y and y ′ are C-dimensional hot vectors of true and predicted labels, respectively. All other switches are trained by optimizing the following KD loss2 :

loss = L CE (ŷ, y ′), (2)
where ŷ and y ′ are hot vectors of labels predicted by the current switch and by the full model, respectively. We adopt this approach to train the ParaDiS networks, while improving it with two novel add-ons (that are important for training) explained just below and depicted on Fig. 3. ImageNet dataset we tried directly applying the US training framework, but this did not lead to a satisfactory result. Indeed, the full [1.0]× model was not training well enough, under-performing by about 1 % the individual MobileNet v1. Since all the other switches were distilled from the full model, their performances were degraded by at least the same amount, as compared to the expected ones. We believe that this is because all the switches span the full 1.0× network width, while sharing their parameters, and thus the full [1.0]× model is not "free enough" to train well. In fact, this is not the case for slimmable [START_REF] Yu | Slimmable neural networks[END_REF] or US [START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF] networks, where all other switches have smaller widths as compared to the full model. This gave us the idea to perform IPKD from a wider (e.g., [1.2]×) network, which is simply called hereafter wide network. Indeed, the wide network is always wider than all other ParaDiS switches, and thus it is not constrained and can train better. Note also that the wide network is only needed for training, as such its additional parameters (as compared to the full network) may be simply discarded after training. Moreover, as another alternative, any other big network (completely independent from the ParaDiS network) may be also used as wide network.

Distilling feature activation maps. Another issue we have noticed is that the training of ParaDiS network distributed switches is not always very stable. Indeed, since the fusion occurs only after the last layer (see, e.g., Fig. 3,bottom) training of one sub-network depends on the outputs of all other sub-networks. To make this IPKD training more "sub-model dependent", we modify the IPKD to distill as well the full [1.0]× model feature activation maps just before the final fully connected (FC) layer to all other sub-models. More precisely, we propose to modify the KD-loss (2) as follows:

loss = L CE (ŷ, y ′) + βL M SE (â, a ′), L M SE (â, a ′) = 1 N ∥â -a ′ ∥ 2 2 , (3
)
where β is a constant parameter, a ′ is an N -dimensional vector containing a vectorization of the feature activation maps before the final FC layer, and â is the vector including the respective activation maps of the corresponding switch3 (see Fig. 3). We believe that this should stabilize training since when β grows training of each sub-network becomes more and more independent of the outputs of other sub-networks within a switch. Such kind of regularization of KD-loss has been already considered in [START_REF] Bhardwaj | Memory-and communicationaware model compression for distributed deep learning inference on iot[END_REF] (see Eq. (6) in the paper), but not in the case of inplace knowledge distillation as we consider here. We refer to this proposed activation distillation as IPKD-A. Also note that in contrast to US training [START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF], where a random selection of switches is updated at each iteration, we update all the switches at each iteration. The resulting procedure is schematized on Figure 3 and described in detail by Algorithm 1.

Experiments

We evaluate our approach on the ImageNet classification dataset [START_REF] Deng | Imagenet: A largescale hierarchical image database[END_REF] with 1000 classes and on bicubic ×2 image super-resolution task using DIV2K dataset [START_REF] Timofte | Ntire 2017 challenge on single image super-resolution: Methods and results[END_REF].

We conducted experiments on one light-weight model (MobileNet v1 [START_REF] Howard | Mobilenets: Efficient convolutional neural networks for mobile vision applications[END_REF]) and one large model (ResNet-50 [START_REF] He | Deep residual learning for image recognition[END_REF]) for ImageNet classification and WDSR model [START_REF] Yu | Wide activation for efficient image and video superresolution[END_REF] for image super-resolution. For all models 4 different switches are trained at each epoch: [START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF]. The corresponding approach is then referred to as US Wide (some results on the effect of wide distillation for US and slimmable Nets are in Appendix B).

For all models, we show the complexity in terms of Millions of Multiply-Adds (MFLOPs). For readability the results of wide models as well as of small switches for the reference models are not shown on the plots, however detailed results can be found in the corresponding appendices. This representation in Algorithm 1: Training ParaDiS network M (see also Fig. 3).

Require: Define list of switches, e.g., as on Fig. 2: [Clear gradients, optimizer.zerograd().

5

Execute wide model, y ′ = M (x, wide model).

6

Compute loss, loss = LCE(y ′ , y) (Eq. (1)).

7

Accumulate gradients, loss.backward().

8

Stop gradients of y ′ as label, y ′ = y ′ .detach(). 9 Execute full model, (ŷ, a ′) = M (x, [1.0]×), where a ′ is the activation maps vector.

10

Compute loss, loss = LCE(ŷ, y ′) (Eq. (2)).

11

Accumulate gradients, loss.backward().

12 Stop gradients of a ′ as activation, a ′ = a ′ .detach().

13

for switch in list of switches do

14 if switch != [1.0]× then 15
Execute current switch, (ŷ, â) = M (x, switch), where â is the activation maps vector..

16

Compute loss, loss = LCE(ŷ, y ′) + βLMSE(â, a ′) (Eq. (3)).

17

Accumulate gradients, loss.backward().

18

Update weights, optimizer.step().

terms of total MFLOPs does not correctly represent the gain of ParaDiS over US and Slimmable models when run in parallel. To represent this gain, we also show the results assuming a deployment where we have any number of devices with equal capacities. In that case the US switch 0.5× and the ParaDiS switch [0.5, 0.5]× will use the same number of MFLOPs, while [0.5, 0.5]× has a superior accuracy. These results tagged as "distributed" show the accuracies of switches [0.25, 0.25, 0.25, 0.25]×, [0.5, 0.5]×, [1.0]× as a function of MFLOPs for one submodel (and not a sum of MFLOPs for all sub-models). This is representative of a deployment with several equal capacities devices and shows the real advantage of ParaDiS over US and Slimmable models.

ImageNet Classification

We evaluate the top1-accuracy on the center 224 × 224 crop of images in the validation set.

MobileNet v1

We use the default training and testing settings [START_REF] Howard | Mobilenets: Efficient convolutional neural networks for mobile vision applications[END_REF] for Mo-bileNet v1 with the same adjustments as proposed in US-Nets paper [START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF]: 250 epochs, stochastic gradient descent as optimizer (instead of RMSProp), a linearly decaying learning rate from 0.5 to 0 and a batch size of 1024 images. The results are shown on Figure 4. First, one may see that ParaDiS performs on par with or in some cases ([4 × 0.25]× and [0.5, 0.5]×) better than the individual models. This is in line with similar findings for slimmable and US models [START_REF] Yu | Slimmable neural networks[END_REF][START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF], and this is mostly thanks to implicit KD (parameters sharing) and explicit KD. Second, yet more striking is the fact that the distributable ParaDiS switches perform as good as non-distributable US switches of the same overall complexity. Finally, while [0.5, 0.25, 0.25]× switch has not been explicitly trained at all, it performs well. This is possibly because it spans the full width, as other switches, and all its sub-models were trained within other switches. As noted earlier it is only when we account for the fact that the model is "distributed" that we see the real benefit of our approach over US model.

Resnet-50

We use the same parameters as in slimmable networks [START_REF] Yu | Slimmable neural networks[END_REF]: 100 epochs with a batch size of 256 images, a learning rate of 0.1 divided by 10 at 30, 60 and 90 epochs. We use stochastic gradient descent (SGD) as optimizer, Nesterov momentum with a momentum weight of 0.9 without dampening, and a weight decay of 1e-4 for all training settings.

The results are shown on Figure 5 (see Appendix C for details), where we also compare with slimmable and slimmable wide, since they perform better than US wide for ResNet-50. Almost the same conclusions as for MobileNet v1 may be drawn with the following differences. First, the improvement of ParaDiS over individual models is yet more significant. Second, the performance of ParaDiS

Image super-resolution

Inspired by [START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF], we experiment with DIV2K dataset [START_REF] Timofte | Ntire 2017 challenge on single image super-resolution: Methods and results[END_REF] which contains 800 training and 100 validation 2K-resolution images, on the task of bicubic ×2 image super-resolution. The WDSR network has no batch normalization layer, instead weight normalization [START_REF] Salimans | Weight normalization: A simple reparameterization to accelerate training of deep neural networks[END_REF] is used. We use the latest implementation of the WDSR network released in April 2020 5 and adapt the model and training to support Slimmable, Universally Slimmable (US) and ParaDiS configurations. Note that, to our best knowledge, there is no publicly available implementation of WDSR US-Nets as reported in [START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF]. We use the same maximum width (64 channels), number of residual blocks [START_REF] He | Deep residual learning for image recognition[END_REF] We report results in Figure 6 and show that ParaDiS exhibits a performance on par with US-Nets and slightly below individually trained models. When distributing the ParaDiS network on several devices (orange dotted curve in Figure 6), the benefit of the parallelization allows our model to outperform individual models running on a single device. The results are consistent with results for individual models reported in [START_REF] Yu | Wide activation for efficient image and video superresolution[END_REF] and with results for US-Nets without inplace distillation reported in [START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF]. However, we were unable to reproduce the results reported for US-Nets when inplace distillation is used during training. In our experiments, all models showed a degradation of performance when using knowledge distillation.

Ablation Study

In this section we show the impact of different training settings such as Inplace Knowledge Distillation (IPKD), the use of a wide network for the IPKD and the effect of distilling the activation. We use MobileNet v1 and Resnet-50 trained on ImageNet to measure the contribution of these different parameters (additional plots may be found in Appendix D).

First, results in

Scalability

Within the proposed ParaDiS networks there is potentially many more possible switches than in slimmable or US nets. Indeed, every sub-network in a ParaDiS switch might be of any width. As such, it seems important to be able to scale the approach to more switches than the 4 used in our experiments.

We have shown in our experiments that some switches might perform well even if they were never explicitly trained, e.g., switch [0.5, 0.25, 0.25]× (see Figs. 4 and5), possibly because it spans the full width, as other switches, and all its sub-models were trained within other switches. Based on this observation, we conjecture that if we have smaller sub-models, e.g., by considering wider full model, we may have more non-trained satisfactory switches "for free". For example, if we split the full model in 8 sub-models and train [1.2]×, [1.0]×, [0.5, 0.5]×, [4 × 0.25]× and [8 × 0.125]×, we would have 6 other switches coming for free. We show experimentally in Figure 7 that this path to scale up ParaDiS framework is viable.

Alternatively, we have also tried training ParaDiS with 8 switches while varying the width spanned by the switch. The results we obtained (see Appendix E for details) are very unsatisfactory: the accuracy of each switch is at least 4 % below the accuracy of the corresponding US net switch. What remains unclear and should be a subject of a further study is: Is this performance drop because all these switches cannot co-exist within the shared ParaDiS parameters setting or because we have not found yet a way to train them correctly?

Conclusion

In this work we have introduced parallelly distributable slimmable (ParaDiS) neural networks. These networks are splittable in parallel between various device configurations without retraining. While so-called flexible networks allowing instant adjusting to a given complexity have been already widely studied, the kind of "flexibility-to-distribute" property of ParaDiS networks is considered for the first time to our best knowledge. ParaDiS networks are inspired by one-device flexible slimmable networks and consist of several distributable configurations or switches that strongly share the parameters between them. We evaluated ParaDiS framework on MobileNet v1 and ResNet-50 architectures on ImageNet classification task and on WDSR architecture for DIV2K image super-resolution task. First, we have shown that ParaDiS models as good as and, in many cases, better than the individually trained distributed configurations. Second, we have found that distributable ParaDiS switches perform almost as good as non-distributable universally slimmable model switches of the same overall complexity. Finally, we have shown that once distributed over several devices, ParaDiS outperforms greatly slimmable models.

A very important topic for further study would be scaling the ParaDiS networks to more configurations/switches than 4. As we have demonstrated in Section 6, one way to achieve this consists in considering more sub-models at the last level of split with "for free" non-trained switches as a result. To improve on this, one might also consider width-overlapping sub-models.

Fig. 1 .

 1 Fig. 1. Different ways of distributing a neural network (A) over two devices: sequential distribution (B), parallel distribution with communication (C), and parallel distribution without communication (D). Bold red arrows indicate communication over the transmission network.

Fig. 2 .

 2 Fig.2. Illustration of ParaDiS model consisting of 4 switches. While white circles denote the neurons, gray circles denote either network inputs (e.g., image pixels) or its outputs. All the parameters are shared between switches (except for batch normalization statistics) and trained jointly.

Fig. 3 .

 3 Fig. 3. Visualization of the ParaDiS network training scheme, also described by Alg. 1.

 [4 × 0.25]× 4 , [0.5, 0.5]×, [1.0]× and [1.2]× ([1.5]× for WDSR model). We compare our performance with US model and individually trained models ([4 × 0.25]×, [0.5, 0.5]×, [0.5, 0.25, 0.25]× and [1.0]×). Note that for a fair comparison the reference US model, similarly to our ParaDiS model, was trained while distilling from a wide [1.2]× (e.g. [1.5]× for WDSR) model instead of the full [1.0]× model as in the original work

 [1.0]×, [0.5, 0.5]×, . . . , [0.25, 0.25, 0.25, 0.25]×] Require: Define wide model, e.g., as [1.2]× switch. 1 Initialize training settings of the main shared network M . 2 for t = 1, . . . , Titers do 3 Get next mini batch of data x and label y.

4

 4

Fig. 4 .

 4 Fig. 4. Complexity in MFLOPs vs accuracy of MobileNet v1 trained on ImageNet for different switches (US-Nets and ParaDiS). The vertical dotted lines indicate the complexity of specific switches. The diamond points are individual models trained for a particular switch. The square blue points are switches explicitly trained, while the empty blue circle is never trained, only tested.

[4 ×Fig. 5 .

 45 Fig. 5. Complexity in MFLOPs vs accuracy of ResNet-50 trained on ImageNet for different switches (US-Nets, Slimmable and ParaDiS). The vertical dotted lines indicate the complexity of specific switches. The diamond points are individual models trained for a particular switch. The square blue points are switches explicitly trained, while the empty blue circle is never trained, only tested.

Fig. 6 .

 6 Fig. 6. Complexity in MFLOPs vs PSNR of different WDSR networks (US-Nets, Slimmable and ParaDiS) trained on DIV2K on the task of bicubic ×2 image superresolution. The vertical dotted lines indicate the complexity of specific switches. The diamond points are individual models trained for a particular switch.

[26]

 26 . The default hyper-parameters (number of training epochs, learning rate, weight decay ...) are used for all experiments.

Table 1 .

 1 Table 1 indicate the importance of IPKD and of the wide model for ParaDiS training. At the same time, it shows that distilling activations (either with β = 0.1 or β = 1) does not help for training ParaDiS MobileNet v1. However, results in Table 2 confirm the importance of distilling activations when training ParaDiS ResNet-50. Impact of different hyperparameters on the training of ParaDiS (MobileNet v1 + ImageNet).

		[1.2]× [1.0]× [0.5, 0.5]× [0.5, 0.25, 0.25]× [4 × 0.25]×
	ParaDiS Wide IPKD-A β=1 72.64% 71.77% 68.23%	66.32%	63.66%
	ParaDiS Wide IPKD-A β=0.1 73.04% 71.99% 68.59%	66.36%	64.18%
	ParaDiS Wide IPKD	73.18% 72.13% 69.10%	66.49%	64.43%
	ParaDiS IPKD	N/A 71.52% 68.21%	66.10%	63.51%
	ParaDiS	N/A 70.83% 67.67%	64.41%	63.28%
		[1.2]× [1.0]× [0.5; 0.5]× [0.5; 0.25; 0.25]× [4 × 0.25]×
	ParaDiS Wide IPKD-A β = 1 76.48% 76.25% 74.56%	72.87%	71.17%
	ParaDiS Wide IPKD	76.48% 76.06% 74.38%	73.02%	71.34%

Table 2 .

 2 Impact of the distilling the activation when training Resnet-50 for ImageNet.

The term "near-optimally" means here that each distributed configuration takes advantage of the available resources and that it performs on par with a similar configuration trained specifically for this setup.

As compared to Eq. (2), more sophisticated KD-losses are often considered[START_REF] Hinton | Distilling the knowledge in a neural network[END_REF][START_REF] Ozerov | Inplace knowledge distillation with teacher assistant for improved training of flexible deep neural networks[END_REF], including those that take into account the true labels y as well. However, we keep here this simple formulation since it was shown to work in US training[START_REF] Yu | Universally slimmable networks and improved training techniques[END_REF].

Since a switch of a ParaDiS network does not necessary span the range of the full model (e.g., it might be [0.25, 0.25]), vector â in (3) may be shorter than a ′ . In this case we assume that â is simply padded by zeros to have the same length.

[4 × 0.25]× is a shorter notation for [0.25, 0.25, 0.25, 0.25]×.

https://github.com/ychfan/wdsr

Acknowledgments The present work has been supported by European Union's Horizon 2020 research and innovation program under grant number 951911 -AI4Media.

A ParaDiS and Slimmable neural networks representation Fig. 8. A graphical representation of Slimmable and ParaDiS switches. For each switch, the surface of the blue area is roughly equal to the relative number of parameters, as compared to the full 1.0× model, and the relative number of FLOPs.

Here we present a graphical representation of Slimmable and ParaDiS switches that allows a better understanding of these models. An important observation is that in most cases slimming a CNN from 1.0× (full model) to W × leads to roughly W 2 times more parameters in switch 1.0× than in switch W × (the same is valid for the computational complexity in FLOPs). This is because most parameters reside in the weights of convolutional and fully connected layers, and the number of these weights scales with network width W as W 2 const. The same holds for ParaDiS sub-models. As such we have found very intuitive to represent slimmable switches as squares and ParaDiS switches as sets of squares, as shown on Figure 8. For each switch within this representation the surface of the blue area is roughly equal to the relative number of parameters, as compared to the full 1.0× model, and the relative number of FLOPs. For example, from this representation we may conclude that ParaDiS switch [4 × 0.25]× has roughly the same complexity as slimmable or US switch 0.5× since their surfaces are equal. This is confirmed by the fact that, as we may see from Tables 4 and5 below, the US switch that is closest in complexity to ParaDiS switch [4 × 0.25]× is of width 0.525 ≈ 0.5. Finally, [START_REF] Yu | Bignas: Scaling up neural architecture search with big singlestage models[END_REF] were also using such a representation with "squares" for slimmable networks (see Fig. 1 in [START_REF] Yu | Bignas: Scaling up neural architecture search with big singlestage models[END_REF]).

B Wide vs. non-wide for US and slimmable nets

Table 3 regroups the results of experiments using US or slimmable networks for MobileNet v1 or Resnet-50. Interestingly, it is MobileNetv1 that benefits most of the wide network, the results for slimmable Resnet-50 show a slight loss of performance for the biggest switches and a small gain for the lowest switches.

C Detailed results for ImageNet classification

Tables 4 and5 summarize the detailed results corresponding to those plotted on Figures 4 and5, respectively. We may see in Table 5 that for most of Par-aDiS switches we do not indicate results of slimmable networks. This is simply because the complexities of slimmable switches do not correspond exactly to those of ParaDiS switches. As for results of US nets on both Tables 4 and5

D Ablation Study

In this section we present the results of our ablation study for MobileNet v1 and Resnet-50 trained on ImageNet.

D.1 Wide vs. non-wide and IPKD vs. no KD

First we study the impact of IPKD and distilling from a wide network. Figure 9 clearly shows the benefit of IPKD from a wide model by comparing the ParaDiS models trained without Knowledge Distillation, trained with IPKD from model [1.0]× and trained with IPKD from wide model [1.2]×. It is interesting to note the positive impact of using Knowledge Distillation on untrained switches. In our case we see a big improvement in performance, thanks to IPKD, for the [0.5, 0.25, 0.25]× switch that is never explicitly trained.

D.2 Distillation of the activations

We present in this section the results of experiments using MobileNet v1 and Resnet-50 with and without distilling feature activation maps from the [1.0]× model. Figure 10 shows that the distillation of feature activation maps does not help training different switches of ParaDiS MobileNet v1. But from Figure 11 one may see the benefit of distillation of feature activation maps for ParaDis Resnet-50, especially for the largest switches.

E Scaling ParaDiS models to more switches