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ABSTRACT

The size of the data sets is increasing, providing a large number of variables to describe a phenomenon.
Assuming that the relationship between the active variables and the response variable is linear, the
high-dimensional Gaussian linear regression provides a relevant framework to identify active variables
related to the response variable. Many methods exist, and in this article, we focus on methods based
on regularization paths. We perform a comparison study by considering different simulation settings
and evaluate the performance of the methods. Our results show that the ability to discriminate between
active and inactive variables is important and difficult when the data are not normally distributed and
there is a dependency structure between variables. We observe that LARS combined with Elastic-net
often gives the best performances. Finally, even if no method is optimal, it was possible to group the
methods into groups according to their performance and the characteristics of the dataset.
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1 Introduction

Recent scientific advances allow us to have access to large-scale data: the size of the data sets is exploding, as well
as the complexity of each of them. In a statistical point of view, the number of parameters to estimate explodes and
reduction of dimension is required to select only relevant variables and summarize the redundant information for a given
model. In this review, we focus on the variable selection procedures in high-dimensional linear Gaussian regression
models. The considered dataset with a number of variables p close to or slightly higher than the number of observations
n is a real challenge since it hampers the use of the traditional estimation methods. A regularization of the cost function
is required so that only a subset of variables is selected to explain the response variable.



Variable selection in high-dimensional regression

In most reviews on variable selection in high-dimensional Gaussian linear regression, a focus is done on the construction
of the regularization path. It is based on the minimization of a cost function penalized by a regularization function
and provides an order on variables. [1] provides a meticulous theoretical analysis of the `1 regularization function. In
particular, for a given number of active variables, the author discusses the choice of the number of observations to ensure
asymptotic properties to recover these active variables. [2] compared several regularization functions in a simulation
study by using semi-real datasets. In their simulation design, they considered several numbers of observations, numbers
of variables and numbers of active variables. They also modified the signal-to-noise ratio and considered two scenarios
of variable correlations. The results of the different regularization functions are inspected with ROC curves and partial
ROC curves when 0.5n and 0.9n variables are selected. [3] compared a large set of regularization functions with a
simulation design similar to [2]. They evaluated both prediction and variable identification but the main difference
with our investigations is that the only considered model selection procedure applied from the regularization path is
the cross-validation one. Finally some reviews considered different contexts. [4] were interested in robust variable
selection strategies when heavy-tailed errors and outliers in response variables exist. They discussed the different steps
from the modification of the least squares function to the choice of the parameters for the model selection through
a presentation of algorithms accounting for outliers. [5] considered a variety of models from survival models to
generalized linear models, frequently used in biomedical research. [6] considered a wide range of model structures
(linear, grouped, additive, partially linear and non-parametric) and discussed three main categories of algorithms for the
variable selection.

Our review distinguishes itself from the previous ones since we propose an evaluation of both construction of reg-
ularization paths and choice of the final selected variables. This leads to 33 combinations. Moreover, for model
selection procedure, we add in this review non-asymptotic methods which are generally not considered. To construct the
regularization path, we test two regularization functions (Lasso [7] and Elastic-Net [8]) combined with two algorithms
(LARS [9] and gradient descent algorithm [10]). Each regularization path provides a collection of variable subsets. To
choose one of them, we compare model selection and variable identification approaches. On the one hand, the model
selection uses penalization criteria of the least squares (eBIC [11], data-driven calibration strategies [12, 13, 14, 15]
and LinSelect [16, 17]). On the other hand, the variable identification methods (ESCV [18], Bolasso [19], Stability
Selection [20], Tigress [21] and the knockoffs method [22]) use sampling strategies to stabilize the selected variable
subset while limiting the selection of non-active variables. Methods based on multiple testing procedures [23] and
Bayesian approaches are not included in this review. We refer the readers to [24] for an empirical comparison of
frequentist and Bayesian points of view. Lastly, we assume no prior knowledge between interactions, spatial localization
and chronological information and refer to [25, 26] for such approaches.

After a description of the methods and some of their theoretical properties, we compare them in a simulation study by
considering three settings. In the first one, the variables are independent and drawn from a Gaussian distribution. It
allows a method comparison in the theoretical framework used to develop them. In the second setting, two structures of
the correlation between variables are considered to evaluate how dependencies usually observed affect the methods.
Observations are generated according to a Gaussian linear model, the most favorable case where assumptions broadly
hold. Finally, the third setting mimics the biological complexity of transcription factor regulations. Observations are
generated using the FRANK algorithm [27].

In these three settings, performances of the method are evaluated for their prediction performance and for their ability to
identify the active variables. To discriminate active variables to the others, we use the pROC-AUC metric. We evaluate
the performance of prediction by using the mean squared errors (MSE) and characterize the quality of the selected
subset of variables through the recall, the specificity, and the false discovery rate (FDR).Our results show that the
ability to discriminate between active and inactive variables is important and difficult when the data are not normally
distributed and there is a dependency structure between variables. We observe that LARS combined with Elastic-net
often gives the best performances. Finally, as [2, 3], we notice that no method is optimal, but it was possible to group
the methods into groups according to their performance and the characteristics of the dataset.

2 Methods

2.1 Statistical framework

For the sequel, the norms |.|0, |.|1 and ||.|| on Rq are defined for a vector β∈ Rq by

|β|0 =

q∑
j=1

1{βj 6=0}; |β|1 =

q∑
j=1

|βj |; ||β|| =

√√√√ q∑
j=1

β2
j .
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Variable selection in high-dimensional regression

We consider a Gaussian linear regression model where the response variable Y is explained by a linear combination of
p variables X = (X1, . . . , Xp):

Y = Xβ∗ + ε.

The parameter vector β∗ belongs to Rp and ε follows a centered Gaussian distribution with an unknown variance
denoted σ2. To estimate them, independent observations are available for i ∈ {1, ..., n}, yi ∈ R and (xi1, ..., xip) ∈ Rp.

We consider the high-dimensional framework with p ∼ n or p� n, preventing the traditional least squares estimation.
In this context, we assume that only a small number of the variables explains the response variable. These variables are
associated to a non-zero coefficient in β∗ and are named active variables. Under this sparsity assumption, the estimation
criterion becomes for t > 0:

min
β∈Rp:|β|0≤t

||Y −Xβ||2,

and its associated Lagrangian form is for λ > 0:

min
β∈Rp

{
||Y −Xβ||2 + λ|β|0

}
. (1)

The proof of the equivalence and the link between t and λ are provided in [7]. Determining the hyperparameter λ is one
of the major issues and the challenge lies in its calibration to adjust a trade-off between sparsity and good adjustment.
A large value of λ provides a small subset of variables, but it may correspond to a fit far from the response variable.
A small value of λ corresponds to a fit close to the response variable, but it may provide a large subset of variables.
Moreover, the criterion being non-convex, the existence and the uniqueness of the solution are not guaranteed. So, as
presented in [5], Equation (1) is replaced with the optimization problem:

min
β∈Rp

{
||Y −Xβ||2 + λF (β)

}
, (2)

where F is a continuous and convex function satisfying the existence of a minimum for any λ.

2.2 Regularization functions

Here we present the most commonly used regularization functions. The first one is the `1 regularization, named Lasso
[7] with

F (β) = |β|1.
If λ is well chosen, it provides a consistent estimator of β∗. This procedure achieves the best trade-off between regularity
(convexity, reasonable computational solution) and sparsity for independent variables. However, when some variables
are correlated, Lasso tends to select randomly only one of them rather than selecting none or all of them. A solution to
this problem is the Adaptive Lasso procedure where each variable is weighted with respect to an initial estimator [28].

Another well-known regularization function is the Ridge regularization [29] where F (β) = ||β||2. In addition to taking
variable dependencies into account, Ridge provides a strictly convex and derivable optimization problem with an explicit
estimator of β∗. However, this estimator is not sparse. To combine sparsity and correlated variables, [8] proposed the
Elastic-Net regularization, where α controls the trade-off

F (β) = (1− α)|β|1 + α||β||2.

When prior knowledge on variable dependencies is available, there exist other regularization functions, not considered
here: the Group Lasso [30], Overlap Group Lasso [31], Hierarchical Group Lasso [32], double sparse Lasso [33] and
fused Lasso [34].

2.3 Regularization path construction

The optimization problem (2) has generally no explicit solution and requires a computational approach. A first algorithm
is LARS [9] where one variable is added at each step and each step corresponds to a value of λ. Briefly speaking, the
first subset contains the variable Xj which has the largest absolute correlation with Y . The second subset contains
exactly two variables: Xj and the variable which is the most correlated with the residuals of the regression of Y on Xj .
LARS provides an exact solution of the optimization problem with nested subsets, an important property for theoretical
considerations.

A second algorithm is based on the gradient descent method [10]. This algorithm constructs a regular grid Λ of a
given size by starting with the largest λ corresponding to the first nonempty variable subset. Then, a variable subset is
obtained for each λ of this grid by solving (2) with the cyclic coordinate descent method. In contrast to LARS, the
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Variable selection in high-dimensional regression

gradient descent method provides a proxy of the optimization problem with independent solutions along the grid and
possibly several models of the same dimension.

From the regularization function and the algorithm, we obtain a collection of subsets (mλ)λ∈Λ. Each mλ is associated
with an estimator of β∗, however this estimator being known to be biased [35], it is commonly replaced with the
least-squares estimator calculated on the subset mλ and is denoted β̂λ [36]. The number of non-zero coefficients of β̂λ
or in an equivalent manner, the number of variables in mλ is denoted Dλ.

2.4 Subset selection

To select the best subset mλ̂, model selection approaches consist of minimizing a penalized loss function in λ ∈ Λ:

γ(mλ) + pen(n, p,Dλ). (3)

The loss function γ(mλ), quantifying the quality of the model fit, is either the least-squares function ||Y −Xβ̂λ||2 or
the deviance −2 log(L(Y,X; β̂λ, σ̂

2
λ)), where L is the likelihood function calculated with β̂λ and σ̂2

λ, the empirical
estimators associated to mλ. The penalty function pen(n, p,Dλ) accounts for the model complexity and the
characteristics of the sample.

Asymptotic criteria The first criteria are asymptotic: their properties are verified when the sample size n tends to infinity.
In this review, we focus on the more recent asymptotic criterion, called eBIC [11]. Let δ is a value in [0, 1], it is used to
get a consistent estimator by penalizing the deviance by:

peneBIC(n, p,Dλ) = Dλ log(n) + 2δ log(

(
p

Dλ

)
), (4)

Non-asymptotic criteria In a practical consideration, having guarantees for n going to infinity has no sense and applying
criteria with properties confirmed for any fixed sample size n is more relevant [17]. Introduced by [37], the goal of
non-asymptotic criteria is to achieve the risk oracle:

inf
λ∈Λ

E[ ||Xβ∗ −Xβ̂λ||2],

and instead of getting asymptotic equality of the kind

P

 lim
n→+∞

E[ ||Xβ∗ −Xβ̂λ̂||
2]

inf
λ∈Λ

E[ ||Xβ∗ −Xβ̂λ||2]
= 1

 = 1,

they get an inequality holding for any value of n:

E[ ||Xβ∗ −Xβ̂λ̂||
2] ≤ Cn inf

λ∈Λ
{E[ ||Xβ∗ −Xβ̂λ||2] }+Rn, (5)

where Cn ≈ 1 at least for n large and Rn is small comparable to the risk oracle. The selected model is the minimizer of
Equation (3) where γ(mλ) is the least-squares function and two penalty functions, which do not require the knowledge
of the variance, are available. The first penalty is a data-driven penalty [12]:

penData-driven(n, p,Dλ) = 2κDλ

(
2.5 + log

( p
Dλ

))
, (6)

where the constant 2.5 has been proposed in a context of changepoint detection in a signal [13]. The constant κ is
calibrated from the sample. For that, two strategies are proposed. The first one is the slope heuristics: assuming that
the least-squares function is linear in Dλ

(
2.5 + log( p

Dλ
)
)

as soon as Dλ is large enough (see Figure 2 of [14]), the
constant κ is then equal to the estimated slope. The second strategy is the dimension jump: assuming the existence of
κ∗ such that for all the values smaller than κ∗, the associated model has a very high dimension, whereas for all the
values greater than κ∗, the associated model has a reasonable dimension (see Figure 1 of [14]), the constant κ is then
equal to the estimated κ∗. For more practical and theoretical details, we refer the reader to [14, 15].

The second penalty function is LinSelect proposed in [16] and generalized for a high dimensional context in [17]. It is
built from the empirical estimator of the variance onto each mλ:

penLinSelect(n, p,Dλ) = 1.1× n−Dλ

n−Dλ − 1
Ψ
(
Dλ + 1, n−Dλ − 1, e−Lλ

)
, (7)
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Variable selection in high-dimensional regression

where the Lλ are weights satisfying some properties and the function Ψ[D,N, q] is the unique solution of the equation:
φ [D,N,Ψ(D,N, q)] = q,

where φ[D,N, x] is defined for x ≥ 0:

φ[D,N, x] =
1

D
E
[
max

(
0, χ2

D − x
χ2
N

N

)]
,

for χ2
D and χ2

N two independent χ2 random variables with degrees of freedom D and N respectively.

2.5 Variable identification

In the high-dimensional framework, addition, suppression, or modification of some observations could radically change
the variable subset selected. For prediction, different sets of variables can give the same prediction performances.
However, when the objective is the identification of the active variables, this instability is a drawback.

To circumvent this problem, the idea is to work with perturbed datasets generated from the original sample. Cross-
validation [38, 39] is commonly proposed. It consists in splitting K times the original sample into a training set and a
test set. The training set is used to compute an estimator β̂kλ and the test set is used to evaluate the mean squared error.
The selected model minimizes the mean squared error in λ. But applying cross-validation in a high-dimensional context
is computationally expensive and known to be unstable. An alternative is ESCV [18] which estimates the instability
along the regularization path with the K perturbed datasets and selects the variable subset which minimizes in λ:

1
K

K∑
k=1

||Xβ̂kλ − 1
K

K∑̀
=1

Xβ̂`λ||2

|| 1
K

K∑̀
=1

Xβ̂`λ||2
.

Sampling strategy is also a solution. Two widely used approaches are Bolasso [19] and Stability Selection [20]. They
mainly differ in their sampling strategy: Bolasso generates datasets of n data uniformly chosen with replacement among
the original sample, whereas Stability Selection generates datasets of

⌊
n
2

⌋
distinct data randomly chosen and includes

also the complement of each generated dataset in the sampling strategy to limit the subsampling effects. In Stability
Selection, they also propose a random perturbation in the `1 regularization:

F (β) =

p∑
j=1

|βj |
wj

,

where wj ∼ U([θ, 1]) with θ > 0. Both sampling strategies provide a frequency of occurrence for each variable, and
those with the highest frequency of occurrence are retained to form the final variable subset. Tigress method [21]
modifies the calculation of the frequency of occurrence by averaging over the grid.

The last type of variable identification method is the knockoffs method [22], which controls the False Discovery Rate
(FDR). This method starts with the construction of a matrix X̃ such that X̃ and X have the same covariance structure
with X̃j the least correlated to Xj . It is done through linear algebra tools [22, 40]. Then, a regularization path is
constructed on the augmented matrix XX̃ of size n× 2p where the active variables are expected to be selected very
earlier than their copy. Let denote

Wj = max
(
Zj , Z̃j

)
× sign

(
Zj − Z̃j

)
, (8)

where Zj and Z̃j correspond to the largest λ for which Xj and X̃j are selected respectively. A positive value of Wj

states that Xj is selected before its copy X̃j and a large positive value indicates that Xj is selected rapidly. Let q be the
target FDR, the final variable subset is composed by the Xj such that Wj ≥ T with:

T = min

{
t ∈ {|Wj |, j = 1, ..., p} \ {0}, 1 + #{j : Wj ≤ −t}

min (1,#{j : Wj ≥ t})
≤ q
}
.

3 Comparison study

3.1 Three simulation settings

The design of the simulation study is thought to study the behavior of the methods with respect to the dependency
structures between the variables.
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Variable selection in high-dimensional regression

Simulation under independent design This is the simplest setting where the high-dimensional framework is the
single handicap [41, 3]. The matrix X is simulated by concatenation of p independent standard Gaussian vectors
of size n. The number of non-zero coefficients of the vector β∗ is generated from a uniform variable on integers
between 10 and 15. Theirs values are generated from U([0.5, 2]) and the response variable Y is defined by
Y = Xβ∗ + ε, where ε ∼ N (0, In).

Simulation under a Gaussian graphical model We use the equivalence between the network inference by Gaussian
Graphical model and support estimation in Gaussian linear regressions [42]. An edge between the nodes i and j in the
network means either Xj is an active variable when Xi is the response variable; or Xi is an active variable when Xj is
the response variable. We generate a dataset of size n from a (p+ 1) multivariate centered Gaussian distribution with
covariance matrix Σ, where the dependency structure is encoded in the precision matrix Σ−1 [43, 44]. The response
variable Y is chosen as a column of the (p+ 1) multivariate centered Gaussian and the remaining columns constitute
the matrix X of size n× p. It differs from [45, 46, 47, 3], where the response variable is simulated once the matrix X
is fixed. This choice has been motivated by applications such that regulatory network inference where transcription
factors can be response variables and also active variables. We consider two graph patterns:

• Cluster: the precision matrix is simulated as a block diagonal matrix with B blocks of equal size. The response
variable Y is defined as the first variable.

• Scale-free: a few variables have many neighbors while all the other have few neighbors in the network. We
consider two response variables corresponding to the variables having the highest and the smallest number of
neighbors. These simulation designs are called scale-free-max and scale-free-min respectively.

Simulation under a dynamical process It is based on the algorithm FRANK [27] which simulates large networks with
characteristics of gene regulatory networks. In this algorithm, variables are categorized into a set of transcription factors
that activate or inhibit a set of target genes and the FRANK data are generated from a dynamic process and deviate
from the statistical model assumptions, especially the Gaussian distribution. We use FRANK with only transcription
factor variables in order to compare the results with those from the other settings. We consider as response variables the
variables having the highest and the smallest number of neighbors. These simulation designs are called FRANK-max
and FRANK-min respectively.

For all the settings except FRANK, we set n = {150, 300, 600, 1200}, p = 199 and 100 samples of size 2n are
generated to create a training set of size n for the estimation and a test set of size n to evaluate the methods. The
observations generated for n = 150 are included in the datasets of size n = {300, 600, 1200}. For each sample, before
being used, the variables are centered and scaled. To generate data from Gaussian graphical model, we use the function
huge.generator from the R package huge (version 1.3.4.1). For the cluster design, the block number B equals 5 and
the probability of connection within a component is set to the default value 0.3. For the FRANK algorithm, we use p
transcription factors and 2n observations with n = 150. The number of eigenvalues of the matrix on the unit circle is
fixed to 2 and the minimum and maximum of sparsity are set to 1 and 50. Other parameters are set to default values and
40 samples are generated.

3.2 Investigated methods and their parameters

A total of 16 methods of model selection are defined by the combination of a regularization function (Lasso or
Elastic-net) with an algorithm (LARS or the gradient descent method) and a penalty function (eBIC, LinSelect or the
2 data-driven penalties). A total of 17 methods of variable identification are defined: when the sampling strategy is
performed before the definition of the grids, 8 methods are defined by the combination of the sampling strategy (Bolasso
or Stability Selection) with a regularization function (Lasso or Elastic-net) and an algorithm (LARS or the gradient
descent method). When the grid Λ is fixed, the sampling strategy is performed for each λ of the grid, which implies
using the gradient descent algorithm, hence 4 methods are defined. Furthermore, we include Tigress, the knockoffs
method and ESCV. For the last two, a gradient descent algorithm is used with either Lasso or Elastic-net.

For the LARS algorithm, we use the function enet of the R package elasticnet (version 1.1.1). The maximal number
of steps to define the grid size is the default value 50×min(p, n− 1). For the gradient descent method, we use the
function glmnet of the R package glmnet (version 3.0) and set the grid size at 1000. The functions enet and glmnet
propose the Lasso and elastic-net regularization functions. We set α = 0.5 for Elastic-Net.

To perform model selection, eBIC is implemented with δ = 1. LinSelect is implemented in the function tuneLasso of
the R package LINselect (version 1.1.3). The data-driven penalties are calculated by using the function capushe of the
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R package capushe (version 1.1.1). The parameters are set to the default values except for the minimum percentage of
points for the plateau selection set to 0.1.

To perform variable identification, the function escv.glmnet of the R package HDCI (version 1.0.2) is used for the
ESCV strategy, with a number of groups K = 10. Bolasso and Stability Selection are implemented with 100 samples.
We do not investigate the impact of the presence of a random perturbation in Lasso for Stability Selection. A variable
is selected when its occurrence frequency is higher than 0.8. For Tigress, we use the function tigress of the R
package tigress (version 0.1.0) with 50 steps for LARS. For the knockoffs method, we use the function knockoff.filter
with option create.second_order of the R package knockoff (version 0.3.2), we calculate the Wj with the function
stat.lasso_lambdasmax and set the FDR to 0.1.

3.3 Evaluation metrics

We use the partial area under the receiver operating characteristic curve (pROC-AUC) where the x-axis is the proportion
of selected non-active variables among the non-active variables and the y-axis is the proportion of selected active
variables among the active variables. Since the length of the regularization paths may differ according to the choice of
both regularization function and algorithm, the pROC-AUC are calculated by truncating the values of the x-axis at the
largest value common to all the regularization paths and normalized to be compared. A value of 1 indicates that the
active variables are distinguished from the others.

Second, we evaluate the prediction performance of the methods by calculating the mean squared errors (MSE) on each
test set (Y,X ):

1

n

n∑
i=1

(
Yi − (X β̂λ̂)i

)2

, (9)

where β̂λ̂ is the estimator of β∗ calculated on the associated training set. As data are centered and scaled, a MSE value
lower than 1 means that the selected variables predict Y better than the empty set.

Finally, we calculate the recall (the proportion of the selected active variables among the active variables), the specificity
(the proportion of the non-active variables not selected among the non-active variables) and the false discovery rate
which is the average of the proportion of selected non-active variables among the selected variables across the samples
for which at least one variable was selected. Since the objective is to limit the selection of non-active variables while
selecting as many active variables as possible, recall and specificity are expected to be close to 1 while the FDR is
expected to be low.

4 Results

The first part is dedicated to the results obtained when samples of n = 150 observations described by p = 199 variables
are generated from Gaussian distributions. We consider the independent setting as benchmark since n < p and the
number of active variables verified the sparsity hypothesis (12.59 in average with a standard deviation of 1.76). The
cluster setting evaluates the impact of the dependency structure when the number of active variables is similar to those in
the independent setting (11.63 in average with a standard deviation of 2.75). With the scale-free design, we investigate
the method behavior with respect to the number of active variables: In scale-free-min, the support size always equals 1.
In scale-free-max, the support size is 31.41 on average with a high standard deviation (9.70). In the second part we
discuss how the sample size n impacts the method performances. In the third part, we investigate the impact of the
non-Gaussian assumption through the FRANK datasets.

4.1 Method performances in a high dimensional context

For the sequel, the notations GD and E-Net denote respectively the gradient descent algorithm and the Elastic-Net
regularization function. Finally, grid and sub denote the strategies when the grids are first generated and the samples
are first generated, respectively.

4.1.1 Discrimination of the active variables from the others

Figure 1 summarizes the pROC-AUC values of the different regularization paths for the four settings. We observe that
LARS combined with E-Net is the best combination to discriminate between the active and non-active variables. Its
value is around 0.99 for the independent setting, whereas the use of Lasso with LARS provides a median value around
0.73. In a general way, The GD algorithm discriminates less well the active and non active variables.
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Variable selection in high-dimensional regression

Figure 1: Boxplots of the pROC-AUC values calculated on 100 samples of size n = 150. The gradient descent algorithm
combined with E-Net is colored light green, the gradient descent algorithm combined with `1 regularization is
colored dark green, LARS combined with E-Net is colored cyan and LARS combined with `1 regularization function

is colored dark cyan.

For the three settings, where a dependency structure exists, the highest median values are always obtained with LARS
combined with the E-Net regularization: 0.84 and 0.98 for cluster and scale-free-max designs respectively and 1 for
scale-free-min design. LARS combined with Lasso does not differ from the GD algorithm.

4.1.2 Size of the selected subsets

Figure 2A summarizes the size of the estimated support for the four settings. The number of methods compared in this
study being large, we represent on this figure the best combination, LARS with E-Net regularization, for the model
selection methods, as well as for Bolasso and Stability Selection when samples are first generated (sub). For ESCV
and the knockoff method which are based on the gradient descent algorithm, we show the MSE obtained with E-Net
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since this regularization method seems to be slightly better than with Lasso. For Tigress, no choice is required since
the method is only implemented with LARS and Lasso. The size of the support estimated by the methods with all the
possible combinations in the four settings are represented in Figures A1 and A2.

Figure 2: Column A: Boxplots of the size of the support calculated on 100 samples of size n = 150 in the four settings.
The red line indicates the number of active variables. Column B: Boxplots of the MSE calculated on 100 samples of
size n = 150 in the four settings. The red line indicates 1, the value below which the methods have a prediction
ability. Results are presented with LARS combined with E-Net for the model selection methods, Bolasso and
Stability Selection. For ESCV and the knockoff method which are based on the gradient descent algorithm, the

MSE is showed with E-Net.Tigress is implemented with LARS and Lasso. .

In the independent setting, among the model selection methods, eBIC provides the closest number to the size of the
support. Linselect generally selects 1 variable, the maximum being 3. Concerning the data-driven penalties, the number
of selected variables is always significantly higher than expected. Among the variable identification methods, ESCV
and the knockoffs method provide a number of selected variable very close to the number of active variables, whereas
all the other methods select less variables than expected. Tigress is very conservative.

9
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When a dependency structure is introduced, for the model selection methods, eBIC becomes as conservative as Linselect.
The data-driven penalties are preferable. All the variable identification methods show difficulties to manage the
dependency between the variables. They select very small subsets of variables in the cluster design and favor the empty
subset for the scale-free-min. For the scale-free-max design, ESCV and the knockoff method outperform.

4.1.3 Prediction performances

We measure the performance of prediction by the MSE shown in Figure 2B. The MSE values of the methods with all
the possible combinations in the four settings are represented in Figure A3 and A4.

For the independent setting, all the methods have a MSE lower than 1 but differences can be observed: For the model
selection strategies, the median value is around 0.07 for eBIC and the data-driven penalties and rising to 0.96 for
LinSelect. For the variable identification methods, the smallest median values are around 0.07 for ESCV and the
knockoffs method. In contrast, Tigress has a median value ten times higher. Concerning the Bolasso and Stability
Selection, the MSE median values are 0.27 and 0.17 respectively.

When a dependency structure exists, the results of the model selection methods deteriorate. For the cluster, the median
value of eBIC and LinSelect is higher than 0.92, the data-driven penalties are not predictive. For the scale-free-min
design, methods are not predictive. For the scale-free-max, the data-driven penalties have a median value at 0.37. The
penalty eBIC and Linselect achieve 0.56 and 0.87 respectively. The variable identification methods are not better, the
median values are very close to 1 for the cluster and scale-free-min designs. For the scale-free-max design, the median
value is around 0.35 for ESCV and the knockoffs method. The values of Bolasso and Stability Selection are 0.5 and
0.44 respectively. Tigress is not predictive.

In summary, when the variables are independent, the best methods are eBIC, the data-driven penalties, ESCV and the
knockoffs method. When a dependency structure exists, the predictive performances are deteriorated. For the cluster
and scale-free-min designs, the methods are not really predictive. For scale-free-max design, the best methods are
ESCV, the knockoffs method followed by the two data-driven penalties.

4.1.4 Recall and specificity

We measure the ability to select the active variables through the recall. Results are shown in Figure 3A.

For the independent setting, all the model selection methods except LinSelect select all the active variables. Among
the variable identification methods, ESCV and the knockoffs method select also all the active variables. Bolasso and
Stability Selection have median values of 0.57 and 0.71 respectively and finally Tigress is very far with a median value
around 0.18. Based on Figures A5 and A6, we observe that the choice of the regularization function for Bolasso and
Stability Selection is very important since with Lasso, the recall equals 0, meaning that no active variables are selected.

When a dependency structure exists, among the model selection methods, the data-driven penalties have a better recall
better than eBIC and Linselect for the three settings. However, on Figures A5 we observe that their results vary between
the settings and depend on the combination of the algorithm and the regularization function. Among the variable
identification methods, the results are highly dependent on the setting. For the cluster design, the best median value is
obtained by ESCV and Stability Selection. However, the median value remains low, around 0.2 and there is a large
variability among the 100 samples. For the scale-free-max design, the knockoffs method and ESCV provide the best
results (0.75). The other methods are clearly worst. For the scale-free-min design, only ESCV selects the active variable.

Concerning the ability to not select the non-active variables, it is measured by the specificity, shown in Figure 3B. For
the independent setting, only the data-driven penalties show a specificity different from 1 meaning that some non-active
variables are selected and it might be explained by the size of the estimated support which is larger than the number
of the active variables. All the variable identification methods have a specificity very close to 1. When a dependency
structure exists, the conclusions are exactly the same.

In summary, when variables are independent, eBIC, the data-driven penalties, ESCV and the knockoffs method recover
the active variables. When a dependency structure exists, the results of the data-driven penalties are the best for the
three settings, but at the risk to select some non-active variables. ESCV is the best variable identification method but
its performance depend on the design and ESCV recall is always lower than that of the data-driven penalties but its
specificity equals 1, meaning that it does not select non-active variables.

4.1.5 False discovery proportion and FDR

For many domain of applications, it is very important to limit the selection of non active variables. To evaluate this
ability, we calculate the false discovery proportion and estimate the FDR. Figure 4 shows the results for the four settings.
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Figure 3: Column A: Boxplots of the recall calculated on 100 samples of size n = 150 in the four settings. The red line
at 1 indicates the ability to recover all the active variables. Column B: Boxplots of the specificity calculated on the
same 100 samples of size n = 150 in the four settings. The red line at 1 indicates the ability to not select all the
non-active variables. Results are presented with LARS with E-Net regularization for the model selection methods,
Bolasso and Stability Selection. For these latter, the sampling strategy is sub. For ESCV and the knockoff method
which are based on the gradient descent algorithm, the recall is showed with E-Net.Tigress is implemented with

LARS and Lasso.

For the independent setting, among the model selection methods, eBIC and the data-driven penalties have an estimated
FDR higher than 0.1. For the data-driven penalties, it is a consequence of selecting too many variables. LinSelect has
an estimated FDR equal to 0 and as we saw that Linselect selects very few variables, it means that it selects variables
that are always active. For the variable identification methods, the estimated FDR is very often lower than 0.05 except
for the knockoffs method with an estimated FDR of 0.08 for an expected control of 0.1.
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Figure 4: Boxplots of the FDP calculated on 100 samples of size n = 150 in the four settings. The star indicates
the estimated FDR. Results are presented with LARS with E-Net regularization for the model selection methods,
Bolasso and Stability Selection. For these latter, the sampling strategy is sub. For ESCV and the knockoff method
which are based on the gradient descent algorithm, the FDP is showed with E-Net.Tigress is implemented with
LARS and Lasso. The red line indicates 0.1, the threshold for the knockoff method. The dashed red line indicates

0.05.

With the presence of a dependency structure, eBIC and Linselect have an estimated FDR lower than 0.05 for the scale-
free-max setting and about 0.2 for the cluster setting, whereas it increases and is higher than 0.4 for the scale-free-min
setting. The estimated FDR of the data-driven penalties is always too high. Among the variable identification methods,
for the scale-free-max setting, the estimated FDR is always lower than 0.1. For the other two settings, the knockoff
method and Tigress still have an estimated FDR below 0.1. The other methods have an increase of their estimated FDR.

In summary, the variable identification methods have a lower estimated FDR than the model selection methods. The
knockoffs method gets an estimated FDR close to the threshold given as input to the method. For eBIC, we observe on
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Figure A7, that LARS combined with Lasso gives an estimated FDR lower than 0.1 with similar results for MSE and
recall.

4.2 Impact of the sample size on the method performances

We evaluate how the number of observations n affects the performance of the method, bearing in mind that if the metric
improves as the sample size increases, then the behaviour observed in the previous section is actually due to the high
dimension.

4.2.1 Discrimination of the active variables from the others

For the high-dimensional context, we have seen that the ability to discriminate between active and non-active variables
is very important. The behavior of each combination with respect to n cannot be commented on, since the length of the
regularization path for each sample size can be different. However, with a fixed sample size, we can compare the four
combinations. On Figure 5, we observe that LARS combined with E-Net remains the best in all the settings, although
the differences between the four combinations decrease as n increases.

4.2.2 Size of the selected variable subset

The evolution of the estimated support is shown in Figure 6A. In the independent setting, eBIC and the data-driven
penalties behave well with an estimated support close to the number of active variables as soon as n = 300. For the three
combinations of algorithm and regularization function, we observe the same results for eBIC and an overestimation of
the support size for the data-driven penalties. For Linselect, the size of the support increases sharply as n = 600. For
the variable identification methods, the behavior of ESCV is constant with n and the estimated support is close to the
number of active variables. For Bolasso and Stability Selection, the estimated support increases gradually until the
number of active variables. However we observe an instable behavior of the grid sampling strategy. For Tigress, the
estimated support increases gradually but remains far from the number of active variables. For the knockoff method, a
sample size of n = 300 seems to put it in difficulty but as soon as n = 600, the estimated support is close to the number
of active variables.

When a dependency structure exists, for the cluster and scale-free-max settings, the size of the estimated support
increases gradually with n, except Linselect that increases sharply in the scale-free-max setting as n = 600. For
eBIC, the support size is close to the number of active variable when n = 1200. For the two data-driven penalties,
the estimated supports are always greater than the number of active variables. For Linselect in the cluster setting,
the support size is underestimated. For the variable identification methods, the behavior of ESCV is always constant
with n but the estimated support is now lower that the number of active variable. For Tigress, the estimated support
increases gradually but is still far from the number of active variables. The structure of dependency put in difficulty the
knockoff method and the increase of the sample size does not improve its behavior. The estimated support is usually
lower than the number of active variables. For Bolasso and Stability, the estimated support increases with n for all
the combinations of algorithm and regularization function and for the two sampling strategies. It remains lower than
the number of active variables. Finally, for the scale-free-min setting, when only one variable is active, the median
value of the estimated support is 1 for eBIC and Linselect, greater than 1 for the data-driven penalties. All the variable
identification methods, which favor an empty set at n = 150, start to select some variables when n increases.

To summarize, when the variable are independent, as soon as the number of observations equals 300, all the methods
except Linselect and the knockoff method behave as expected. We note that Tigress remains conservative even with
a sample size increasing. When a dependency structure exists, all the methods have more difficulties to retrieve a
number of selected variables close to the number of active variables. The most impacted methods are the data-driven
penalties and the knockoff method. The grid sampling strategy, which has an instable behavior when the variables are
independent, behaves correctly when a dependency structure exists.

4.2.3 Prediction performance

The evolution of the MSE is shown in Figure 6B. For the independent design, the MSE of eBIC and the data-driven
penalties is very low whatever n and decreases with n until 0.05. The MSE of Linselect also decreases with n and
reaches 0.07 with LARS as soon as n = 600. For the variable identification methods, the MSE of Bolasso and Stability
Selection decrease with n, except when the grid sampling strategy is used. LARS combined with E-Net remains the
best combination. For ESCV and Tigress, the MSE also decrease gradually with n but the results are different since
ESCV always has a median MSE lower than 0.2, while Tigress has a median MSE always higher than 0.6. The knockoff
method is the only method with an unexpected behavior, since the MSE is close to 1 for n = 300 and drops to 0.1 as
n = 600.
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Figure 5: Boxplots of the pROC-AUC values calculated on 100 samples of size n = {150, 300, 600, 1200}. The
gradient descent algorithm combined with E-Net is colored light green, the gradient descent algorithm combined
with Lasso is colored dark green, LARS combined with E-Net is colored cyan and LARS combined with Lasso is

colored dark cyan.

When there is a dependency, we observe that all the model selection methods have a MSE decreasing with n but the
methods are not predictive (median value higher than 0.5). For the variable identification methods, Bolasso and Stability
Selection combined with LARS and E-Net are to be preferred with a median MSE around 0.2 to Tigress whose MSE
is between 1 and 0.8. ESCV has an averaged MSE that increases slighly from 0.36 to 0.52 between n = 300 and
n = 1200 with an important increase in the inter-sample variability, which makes an observable difference in the
median value between the two regularization functions. The knockoff method has an MSE comparable when n = 1200
to that when n = 150 but between these two sample sizes, the MSE increases to reach 0.85 or more.

To summarize, the MSE of the methods decreases when the number of observations increases. The dependency structure
complicates the prediction task.
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Figure 6: Column A: Boxplots of the estimated support calculated on 100 samples in the four settings. The red line
indicates the number of active variables. Colmun B: Boxplots of the MSE calculated on 100 samples in the four
settings. The red line indicates 1, the value below which the methods have a prediction ability. A sample size of
n = 150 is colored in light pink, n = 300 in light blue, n = 600 in light salmon and n = 1200 in light steel blue.
Results are presented with LARS with E-Net regularization for the model selection methods, Bolasso and Stability
Selection. For these latter, the sampling strategy is sub. For ESCV and the knockoff method which are based on the

gradient descent algorithm, the recall is showed with E-Net.Tigress is implemented with LARS and Lasso.

4.2.4 Recall and specificity

The evolution of the ability to recover of the active variables is shown in Figure 7A. For the independent design, among
the model selection methods, only Linselect does not have a recall equal to 1 for n = 150 but as soon as n = 600,
Linselect does. For the variable identification methods, the recall of Bolasso and Stability Selection increases with n,
except when the the grid strategy is used. LARS combined with E-Net remains the best combination. The recall of
ESCV is equal to 1 as n = 150 or more. The recall of Tigress increases gradually with n, but it remains low with a
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median value of 0.25. The knockoff method again shows an unexpected behavior when n = 300, the averaged recall
drops to 0.2 to is back to 1 as n = 600.

Figure 7: Column A: Boxplots of the recall calculated on 100 samples in the four settings. The red line at 1 indicates
the ability to recover all the active variables. Colmun B: Boxplots of the specificity calculated on 100 samples in
the four settings. The red line at 1 indicates the ability to not select all the non-active variables. A sample size of
n = 150 is colored in light pink, n = 300 in light blue, n = 600 in light salmon and n = 1200 in light steel blue.
Results are presented with LARS with E-Net regularization for the model selection methods, Bolasso and Stability
Selection. For these latter, the sampling strategy is sub. For ESCV and the knockoff method which are based on the

gradient descent algorithm, the recall is showed with E-Net.Tigress is implemented with LARS and Lasso.

For the three dependency structures, all the model selection methods have a recall increasing with n. The recall reaches
1 for all the methods as soon as n = 300 in the scale-free-min setting. In the scale-free-max and cluster settings, the
recall is maximum as soon as n = 600. Only Linselect seems to be sensitive to the dependency structure since its recall
is below 0.5 in the cluster setting, whereas it reaches 1 in the scale-free-max setting. For the variable identification
methods, the results vary between the three dependency structures. In the scale-free-min setting, all the methods retrieve
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the active variable as soon as n = 300, except the knockoff method that selects the empty set whatever the value of
n. For Bolasso and Stability Selection, as usually, the combination LARS and E-Net is to be preferred. When many
variables are active, Bolasso and Stability Selection have a recall increasing with n and Stability Selection seems to be
slightly better. Tigress has also an increasing recall but the values remain low and differs between the cluster setting
and the scale-free-max setting. ESCV has an averaged recall increasing slightly until 0.5 but the inter-sample variability
is large leading to a median value lower for n = 1200 than for n = 600 for the cluster setting. For the scale-free-max
setting, ESCV behaves as expected, the recall increases with n and reaches 1 for n = 1200 when E-Net is used. The
behavior of knockoff method varies with the dependency structure. In the cluster setting, the knockoff method usually
selects no variables, while in the scale-free-max setting, its recall reaches 0.86 when n = 1200, so better than 0.75
as n = 150. However between these two sample sizes, the recall decreases to 0 and 0.2 for n = 300 and n = 600,
respectively.

The evolution of the ability to not select the non-active variables is shown in Figure 7B. For the independent design,
among the model selection methods, we observe that only the data-driven penalties do not have a specificity equal
to 1 for n = 150 but as soon as n = 300, they do. When the sample size increases, LinSelect selects non-active
variables. It is clearly related to its difficulty to select a relevant number of variables as soon as n = 600. For the
variable identification methods, the specificity equals 1 for all the sample sizes.

To summarize, all the methods, except Tigress, retrieve the active variables. The model selection methods seem to
require less observations than the variable identification methods to have a recall equal to 1. The knockoff method is the
only method that gives different results depending on the dependency structure.

4.2.5 False Discovery proportion and FDR

For the independent setting, on Figure 8, we observe that eBIC and the data-driven penalties manage to get an estimated
FDR lower than 0.1 as soon as n = 300. The estimated FDR of Linselect increases with n but is always higher than 0.1.
For all the variable identification methods, the estimated FDR is lower than 0.1.

A dependency structure dramatically increases the estimated FDR of the data-driven penalties for all the sample sizes.
The estimated FDR of eBIC varies between the settings. For scale-free-max, it is always below 0.01. For the cluster and
scale-free-min settings, it decreases with n and achieves 0.1 as n = 600. For Linselect, the behavior of the estimated
FDR varies with the dependency structure. In the cluster and scale-free-min settings, the estimated FDR decreases
with n and is lower than 0.1 as n = 300 and n = 600, respectively. For the scale-free-max, it is lower than 0.1 when
n = 300 and then sharply increases up to 0.7. For all the variable identification methods, the estimated FDR in the
scale-free-max setting is lower than 0.1. For the cluster setting, the estimated FDR of Bolasso and Stability Selection
decrease with n and is lower than 0.1 for almost all the combinations of algorithm, regularization function and sampling
strategy. ESCV has a decreasing estimated FDR with n. With Lasso, the estimated FDR of ESCV achieves to be lower
than 0.1. Tigress has an estimated FDR very low due to the very small number of selected variables. The knockoff
method has an estimated value always lower than 0.1. For the scale-free-min setting, the estimated FDR of Bolasso and
Stability Selection decrease with n and is lower than 0.1 for some combinations of algorithm, regularization function
and sampling strategy, but it is difficult to identify the best combination. ESCV maintains an estimated FDR close to 0.1
with Lasso. Tigress has an estimated FDR very low due to the very small number of selected variables. The knockoff
method has an estimated value always lower than 0.1.

To summarize, when the variable are independent, and when the sample size increases, all the methods have an estimated
FDR lower than 0.1. When the dependency structure exists, the data-driven penalties select many non-active variables,
whereas eBIC and Linselect select few non-active variables as soon as n is large enough. The variable identification
methods always have a lower estimated FDR than the model selection methods, although the estimated FDR varies with
the dependency structure.

4.3 Behavior of the methods in a non-Gaussian framework

Understanding gene regulation is a real challenge in molecular biology and the emergence of high-throughput tech-
nologies, such as microarrays and RNA sequencing, has made feasible to measure the activities of thousands of genes
simultaneously and to perform genome-scale inference of transcriptional gene regulation. Several studies have already
shown that inferring gene network is a difficult task and no single inference method performs optimally [48]. The
regression methods are usually included in such studies but always with Lasso. In this section, we would like to
investigate whether the regularization function and the algorithm affect the performances of the methods when the
distribution of the observation is far from the Gaussian distribution. We also study the nonparanormal transformation
shrinkage of the R package huge known to help relax the assumption of normality.
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Figure 8: Boxplots of the FDP calculated on 100 samples in the four settings. A sample size of n = 150 is colored
in light pink, n = 300 in light blue, n = 600 in light salmon and n = 1200 in light steel blue. The star indicates
the estimated FDR. Results are presented with LARS algorithm with E-Net regularization for the model selection
methods, Bolasso and Stability Selection. For these latter, the sampling strategy is sub. For ESCV and the knockoff
method which are based on the gradient descent algorithm, the FDP is showed with E-Net.Tigress is implemented
with LARS and the `1 regularization. The red line indicates 0.1, the threshold for the knockoff method. The dashed

red line indicates 0.05.

Similarly with scenarios from independent and Gaussian models, the combination of the E-Net regularization with
the LARS achieves the highest value of pROC-AUC. However, this value equals 0.5 for FRANK-max and 0.57 for
FRANK-min. All other combinations have values smaller than 0.3. We do not observe improvement by using the
nonparanormal transformation of the data. Hence, the quality of the regularization paths has clearly deteriorated on
FRANK data. No combination between an algorithm and a regularization function achieves to clearly discriminate the
active and non-active variables.
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Concerning the MSE, for FRANK-max and FRANK-min, all the methods lead to a MSE value very close to 1. The
recall is also deteriorated. The median value of the recall is often 0, except for ESCV and the data-driven penalties
for FRANK-max design. But their values remain low around 0.05. We do not observe any improvement by using
the nonparanormal transformation of the data. Hence, all the methods fail to select the active variables and when the
methods sometimes select variables, these variables are non-active variables, since the estimated FDR is high. The
exception is Tigress and the knockoff method, which are very conservative, but they seem to be able to select active
variable when the subset is not empty.

5 Discussion

High-dimensional regression is commonly used to model real dependent data when the number of variables is close
to or larger than the number of observations. This framework raises many methodological questions and this review
aims at highlighting the method performances according to different metrics. For each method, the first step is the
minimization of least-squares penalized by a regularization function to construct a collection of possible subsets and the
second step is the selection of the best subset. We simulated different settings, each one having its own characteristics:
The independent setting is the framework used to establish the properties of the estimators. The settings based on the
Gaussian graphical model generate correlated variables but observations have still a Gaussian distribution. The FRANK
setting completely deviates from the statistical model assumptions. In these different settings, we evaluated the methods
with different point of views: the ability to discriminate the active variables from the others, to predict the variable
response, to recover the active variables and, to limit the number of selected variables which are non active. We also
considered datasets with a number of observations larger than the number of variables to study their behavior with
respect to n.

In our simulation study, we investigated how the choice of the regularization function to penalize the estimation criterion
and of the algorithm to optimize the penalized criterion numerically affects the results. We conclude that LARS
combined with E-Net is the best combination to discriminate the active and non-active variables in all the settings.
Moreover, we observed that the differences between the combinations tend to disappear when the number of observation
increases. When data distribution is far from a Gaussian distribution and a dependency structure exists, as we simulated
with the FRANK setting, the user should be aware that it becomes difficult to discriminate between active and non-active
variables even with LARS and E-Net and it affects the performances of the methods, as already pointed by [49].

The ability to discriminate between active and inactive variables is important but does not necessarily predict the
performance of the methods in terms of MSE, recall, specificity and FDR. Indeed we observe that there is no effect of
the algorithm and the regularization function on ESCV and the knockoffs method, while LARS combined with E-Net
should be favoured for Bolasso, Stability Selection, LinSelect and the data-driven penalties. For eBIC, the MSE and the
recall are similar when LARS is combined with E-Net or Lasso whereas the estimated FDR is higher than 0.1 with
E-Net and lower than 0.1 with Lasso.

The different settings allow us to discuss the results with respect to the proportion of active variables. When this
proportion is about 6% and all the variables are independent, we identified three groups of methods at = n150. The
first group gathers eBIC, ESCV, the knockoffs method which are predictive, sensitive (a mean recall greater than 0.85)
and select very few non-active variables (estimated FDR between 0.05 and 0.08). A second group gathers Linselect
and Tigress which are very conservative, but when they select variables, these latter are active variables. In between,
we find Bolasso and Stability Selection based on LARS, E-Net and the sub strategy which are less predictive and less
sensitive than the methods of the first group but their advantage is that they select very rarely non-active variables.
The data-driven penalties are as predictive and sensitive as the first group, but at the cost of selecting many non-active
variables. When the proportion of active variables is up to 6% and a structure of dependency exists as in the cluster
and scale-free-min settings, all the methods, except the data-driven penalties, behave similarly by selecting very few
variables or none at all. Moreover, when some variables are selected, there is no guarantee that they are active variables,
as almost one out of every two selected variables is non active. With the data-driven penalties, more active variables are
recovered more often but at the cost of selecting many non-active variables. When the number of active variables is
about 15%, as in the scale-free-max setting, the first group now consists of ESCV and the knockoffs method. Their
mean MSE is about 0.35, their mean recall of 0.65 and 0.75 respectively and the estimated FDR remains controlled
(estimated FDR of 0.05 and 0.08 respectively). The data-driven penalties constitute a second group close to the first one.
Their mean MSE is about 0.40, their recall is better with a mean value of 0.90 but their estimated FDR is about 0.34.
The eBIC method joins the group consisting of Bolasso and Stability Selection. Their mean MSE is about 0.45, their
recall is between 0.26 and 0.43 but their estimated FDR is about 0.1. Finally Linselect and Tigress constitute the fourth
group. these two methods are the most impacted by the dependency structure and their metrics are unsatisfying. In
practice, these results suggest that ESCV and the knockoffs method could be a good choice. The knockoff method
could select very few variables but since the FDR is controlled, the selected variables seem to be more often active than
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inactive variables. ESCV selects more variables but the risk of getting more inactive variables is higher. The results of
our simulation study show also that the difficulty of retrieving the active variable depends on their number.

When the sample size increases, all the methods have the expected behavior except Linselect and the knockoff method.
Tigress remains a very conservative method but when Tigress selects a variable, there is a high probability that it is an
active variable. For the knockoff method, it seems that the construction of the matrix X̃ is impacted by the sample size.
Finally the data-driven do not manage the dependency structure, they select a very large number of non active variables
without selecting all the active variables.

In this simulation study, we decided to include model selection methods with non-asymptotic properties as LinSelect
and the data-driven penalties because there are rarely compare to the others. The performances of LinSelect depends on
the number of active variables and are impacted by the dependency structure. Concerning the data-driven penalties,
the recall is high but so is the estimated FDR. The data-driven penalties performances seem less impacted by the
simulation setting. One reason about the differences between LinSelect and the data-driven penalties may be that
data-driven methods are based on a heuristic whereas LinSelect was constructed from an oracle inequality. Moreover,
the data-driven penalties require a calibration of the shape penalty and the multiplicative constant 2.5 in (6) has been
fixed in a context of detection of changepoints in a signal [13]. This value may be not fitted in a high-dimensional
Gaussian linear regression. It may be interesting to investigate this in the future.

The last part of our work is dedicated to datasets that do not verify the assumptions usually made in a high-dimensional
Gaussian regression. We observe a deterioration of all the metrics, which means that the Gaussian distribution seems to
be an important assumption. Even when we include a data transformation, we do not observe a clear improvement in
the metrics. These results corroborate previous studies on the difficulties of using high-dimensional Gaussian regression
on transcriptomic data [27, 48], but we show that the difficulties arise first from the ranking of the variables. It may be
interesting to investigate this in the future.

6 Additional information

The scripts as well as supplementary figures are available on https://forgemia.inra.fr/GNet/
high-dimensional_regression_comparison.
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Figure A1: Boxplots of the size of the support estimated by the model selection procedures from dataset of size n = 150
in the four different settings.
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Figure A2: Boxplots of the size of the support estimated by the variable identification procedures from dataset of size
n = 150 in the four different settings.
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Figure A3: Boxplots of the MSE values for model selection procedures and for n = 150.
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Figure A4: Boxplots of the MSE values for variable identification procedures and for n = 150.
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Figure A5: Boxplots of the recall values for model selection procedures and for n = 150.
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Figure A6: Boxplots of the recall values for variable identification procedures and for n = 150.
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Figure A7: Estimated FDR for model selection methods and for n = 150.
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Figure A8: Estimated FDR for variable identification methods and for n = 150.
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