
HAL Id: hal-03366848
https://hal.science/hal-03366848

Submitted on 3 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heat diffusion distance processes: a statistically founded
method to analyze graph data sets

Etienne Lasalle

To cite this version:
Etienne Lasalle. Heat diffusion distance processes: a statistically founded method to analyze graph
data sets. Journal of Applied and Computational Topology, 2023, �10.1007/s41468-023-00125-w�.
�hal-03366848�

https://hal.science/hal-03366848
https://hal.archives-ouvertes.fr


HEAT DIFFUSION DISTANCE PROCESSES : A STATISTICALLY
FOUNDED METHOD TO ANALYZE GRAPH DATA SETS

Etienne Lasalle,
Laboratoire de Mathématiques d’Orsay,

CNRS, Université Paris-Saclay,
Orsay, France

etienne.lasalle@universite-paris-saclay.fr

ABSTRACT

We propose two multiscale comparisons of graphs using heat diffusion, allowing to com-
pare graphs without node correspondence or even with different sizes. These multiscale
comparisons lead to the definition of Lipschitz-continuous empirical processes indexed by
a real parameter. The statistical properties of empirical means of such processes are studied
in the general case. Under mild assumptions, we prove a functional central limit theorem,
as well as a Gaussian approximation with a rate depending only on the sample size. Once
applied to our processes, these results allow to analyze data sets of pairs of graphs. We de-
sign consistent confidence bands around empirical means and consistent two-sample tests,
using bootstrap methods. Their performances are evaluated by simulations on synthetic
data sets.

1 Introduction

Considering the current growth of available data and the modeling power of networks, methods to analyze
graph-structured data have gained interest over the last few decades. Particular attention has been devoted
to designing notions of distance between graphs. The design of these notions is highly constrained by the
working framework. In particular, different types of information can be used depending on whether the
graphs are directed or undirected, weighted or unweighted, have the same size or not. Another key factor to
define distances is whether a node correspondence (NC) is known or not. In the case of known NC, we can
consider the graphs to be defined on the same vertex set and comparisons can be made at the edge scale. In
this context, people have applied various metrics to compare adjacency matrices, Laplacian matrices, heat
kernels [20] and other matrices whose entries represent quantities associated to pairs of nodes [26]. On
the other hand, when no NC is available, graphs are often compared at a mesoscopic or macroscopic level
using structural summaries. People have used global statistics on graphs like degree distributions, network
diameters, or clustering coefficients [36]. Another well studied approach is to consider graphlets [36], i.e.,
small given subgraphs that are counted in graphs. Then, various methods have been developed to compare
the graphlet counts [35, 49, 1, 14]. Some work has also been pursued to exploit the structural information
carried by spectra of operators [48, 18]. To measure distances (or equivalently similarities) between graphs,
one can also rely on graph kernels, hence benefiting from the general kernel methods to solve statistical
problems. These various kernels can be based on neighborhood information, subgraphs structures, random
walk properties, shortest paths. Unfortunately, these kernels often require additional information like node
or edge labels, attributes, which are not always available. Moreover, not all graph kernels are able to handle
weighted graphs. For more details on graph kernels, see the survey of [27].

Another powerful way to encode structural information about graphs is to use diffusion processes, like heat
diffusion. When working with weighted graphs, one can interpret weights as the thermal conductivity of
edges, meaning that heat diffuses faster along edges with higher weights. Note that unweighted graphs can
always be seen as weighted graphs with weights in {0, 1}. Given initial conditions, the way heat diffuses can
be used to characterize and compare graphs [10, 9, 20, 45]. This approach is appealing as it allows to analyze
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graphs at different scales by looking at different diffusion times t. For small values of t, the diffusion only
concerns a small neighborhood of the initially heated nodes, while for larger values it involves larger and
possibly more complex structures, taking into account topological properties of the graph. Thus, the choice
of relevant and informative diffusion times is essential.

For more references on comparisons of graphs, we refer the reader to [41], [12], [44] and references therein.

1.1 Our contributions

While a lot of the above notions of distances are often supported by experimental results and applications
to learning or data mining tasks, they usually lack statistical foundations. In this context, we provide new
tools to analyze and compare graphs or even data sets of graphs, that benefit from statistical guarantees. Our
methods take advantage of the desirable multiscale property of heat diffusion. Moreover, one of our methods
can deal with graphs without known NC or even graphs of different sizes, by using topological descriptors
from topological data analysis (TDA). To circumvent the difficulty of choosing a suitable diffusion time, we
opt to take into account the whole diffusion process. As a result, we define two real-valued processes, indexed
by all the diffusion times in [0, T ] for some T > 0, representing comparisons of heat distributions. Basically,
instead of trying to define a real value that would measure the distance between two graphs, we define a
curve, a distance profile, that represents the comparisons of heat distributions across all diffusion times.

The first process, called Heat Kernel Distance (HKD) process, is defined by comparing heat kernels with the
Frobenius norm. In this case, a NC between graphs needs to be known for the entry-wise comparison of
the heat kernels to be meaningful. The second process, called Heat Persistence Distance (HPD), is defined
using tools from TDA and can deal with graphs of different sizes. To do so, each graph is equipped with a
real-valued function defined on the vertex set: the Heat Kernel Signature (HKS) [43, 23]. Then, graphs are
converted into topological descriptors called persistence diagrams. They are multisets of points in R2, encod-
ing how topological features, like connected components and loops, evolve along with the families of sublevel
and superlevel subgraphs. The diagrams are then compared with the so-called Bottleneck distance. Using
persistence diagrams allows to switch from node-based representations of graphs to comparable topological
summaries, hence requiring no assumption on graph sizes and NC.

To statistically study the HKD and HPD processes, we prove general results on Lipschitz-continuous real-
valued empirical processes indexed by a real parameter. Namely, we show that they verify a functional Central
Limit Theorem and admit Gaussian approximations with rates depending only on the sample sizes. These
results ensure the asymptotic validity of bootstrap methods to design confidence bands around empirical mean
processes, as well as consistent two-sample tests. They are applied to the HKD and HPD processes and could
be applied to any other Lipschitz-continuous processes indexed by a real parameter under mild assumptions.
In our graph framework, we can summarize the general idea as follows. We convert families of pairs of
graphs into families of distance curves using HKD or HPD processes and then, we leverage the statistical
properties of smooth curves mentioned above to exploit these families of curves. As a proof of concept, we
illustrate these results on simulated data sets of pairs of graphs, drawn from various models: Erdős-Rényi
model, stochastic block model, and random geometric graph models. We also compare our HKD-based test
with tests based on other notions of distance and show improvements when using the multi-scale comparison
of graphs. The HPD-based test is compared with various tests based on graph kernels.

The results from this article allow to statistically analyze data sets of pairs of graphs. While it might seem
more natural to study data sets of graphs, we would like to motivate our analysis. There are various situations
where graphs naturally come in pairs, and where the relevant information is actually the structural changes
inside the pairs. For example, when monitoring brain diseases [37, 16], patients’ brains can be observed at
different time points. In this case, the changes of the brains’ connectivity are of prime interest to assess the
evolution of the disease [15, 6]. Moreover, even when graphs don’t come in pairs, there exist several ways to
turn a data set of graphs into a data set of pairs of graphs. For example, one can consider all the possible pairs
of graphs from the data set or split the data set into two groups and construct pairs that contain a graph of each
group. However, designing relevant approaches to combine graphs into pairs is probably a task-dependent
problem, which is beyond the scope of this article.

1.2 Organisation

The rest of the paper is organized as follows. Section 2 introduces the graph framework, heat diffusion on
graphs, the HKD and HPD processes. General results of such processes are developed in Section 3. We
introduce the framework for general continuous real-valued empirical processes indexed by a real parameter,
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prove their statistical properties and present some applications on bootstrap methods. These general results
are applied to the HKD and HPD processes in Section 4, where we also detail the construction of a HKD or
HPD-based confidence bands and two-sample tests for samples of pairs of graphs. We provide asymptotic
results on the level and power of these tests. Finally, as a proof of concept, we illustrate the construction of
confidence bands and two-sample tests in Section 5 using several generative models of random graphs. All
Python codes are available at https://github.com/elasalle/HeatDistanceProcess.

2 Comparing graphs using heat distance processes

In this section, we introduce notions of distance between graphs based on heat diffusion. We define the
resulting HKD and HPD processes.

2.1 Background and definitions

Before introducing the key notions of this work, we present general definitions and notations that will be used
in the rest of the paper. We start by introducing notations relative to graph theory before presenting the theory
of extended persistence adapted to graphs.

2.1.1 Graphs

For 0 ≤ wmin ≤ wmax, we denote by Gn(wmin, wmax) the set of undirected weighted graphs of size n,
without self-loop and whose weights are in {0} ∪ [wmin, wmax]. The special case of unweighted graphs
correspond to wmin = wmax = 1. For clarity in the notation, we remove the wmin and wmax, whenever
there is no ambiguity. We also consider Gn (with n as an exponent) the set of graphs of size at most n, i.e.,
Gn = ∪1≤i≤nGi. For a graph G in Gn, we denote by W (G) its weight matrix (or adjacency matrix), i.e., the
n × n symmetric matrix whose (i, j)-coefficient is the weight wi,j of edge {i, j}. The degree matrix D(G)
denotes the diagonal matrix whose entry D(G)i,i is the degree of node i defined by

∑
j wi,j(G), the sum of

all incident weights. The combinatorial Laplacian L(G) is defined by D(G) −W (G). Taking non-negative
weights ensures that L(G) is a real symmetric positive-semidefinite matrix. From now on, we forget the
dependence in G in the notation, whenever there is no ambiguity. Let λ1 ≤ · · · ≤ λn be the eigenvalues of L
and let (ϕ1, . . . , ϕn) be a family of orthonormal eigenvectors. We denote by Λ the diagonal matrix containing
the eigenvalues on the diagonal and ϕ the matrix whose columns are the ϕi’s so that L admits the following
decomposition

L = ϕΛϕT =

n∑
k=1

λkϕkϕ
T
k . (2.1)

Note that λ1 = 0 and that ϕ1 can always be chosen to be the vector whose entries are equal to 1/
√
n. In the

following, this choice will always be made.

2.1.2 Persistence on graphs

We present here the basics of ordinary and extended persistence. We refer the reader to [8], [11] and [33] for
a complete description of these theories.

Persistence theory allows to study the topology of topological spaces in a multiscale manner. Usually, given a
topological space X and a continuous real-valued function f : X → R, one considers the family of sublevel
sets Xα := {x ∈ X, f(x) ≤ α}, for α varying from −∞ to +∞. Ordinary persistence records the levels
at which topological features (connected components, loops, cavities or higher dimensional holes...) appear
and disappear. For each feature, its birth and death levels are stored as the coordinates (b, d) of a point in R2.
The multiset of these points is called a persistence diagram. This framework can be applied to graphs.

Let G = (V,E) be a graph with vertex set V and edge set E, and f be a real-valued function on V . Consider
the family of sublevel subgraphs (Gα)α∈R, where Gα = (Vα, Eα) with Vα = {v ∈ V, f(v) ≤ α} and
Eα = {{v, v′} ∈ E, v, v′ ∈ Vα}. Across the family of sublevel graphs, as α increases, we can record birth
and death levels of connected components, and birth levels of loops. As a connected component dies when
it gets connected to an older connected component, remark that the connected components of G will never
die. Similarly, as a loop dies when it gets "filled-in" by a 2-dimensional object, loops appearing in Gα (an
object of maximal dimension 1) will never die. To prevent topological features from having no death levels
(or infinite death levels), the theory of extended persistence suggests that the family of superlevel subgraphs
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should also be considered. Define Gα = (V α, Eα) similarly to Gα with V α = {v ∈ V, f(v) ≥ α}. A
death level is now assigned to connected components of G and loops as the level at which they appear in the
family of superlevel subgraphs when α decreases. Additionally, we record the birth and death of connected
components in the family of superlevel subgraphs. Hence, extended persistence is able to detect four types of
topological features and extract their birth and death levels (b, d) corresponding to four types of points:

• Ord0 : birth and death of a connected component in (Gα).
• Rel1 : birth and death of a connected component in (Gα).
• Ext0 : birth and death of a connected component of G when using (Gα) and (Gα).
• Ext1 : birth and death of a loop when using both (Gα) and (Gα).

These four types of topological features can be seen as downward branches, upward branches, connected
components, and loops, respectively; with the orientation being taken with respect to f . For a graph G
and a function f on its vertices, we will denote by Ord0(G, f), Rel1(G, f), Ext0(G, f) and Ext1(G, f)
the persistence diagrams containing the corresponding points. In the following, Dg(G, f) will generically
denote any of these four diagrams. We refer the reader to [5, Section 2.1] for a more precise and illustrative
presentation of extended persistence diagrams on graphs.

The space of diagrams can be equipped with the Bottleneck distance dB . We recall its definition. Let µ and
ν be two diagrams, i.e., two multisets of points in R2, and let ∆ := {(a, a), a ∈ R} be the diagonal. Denote
by Π(µ, ν) the set of bijections from µ ∪∆ to ν ∪∆. dB is defined by

dB(µ, ν) := inf
π∈Π(µ,ν)

sup
x∈µ∪∆

∥x− π(x)∥∞.

We state a stability result for extended persistence diagrams computed on graphs. It is a consequence of a
more general stability result for persistence diagrams [7, 8].
Theorem 1. For all graphs G = (V,E), for all f, f ′ : V → R, and for all diagram constructions Dg among
Ord0, Rel1, Ext0 and Ext1,

dB(Dg(G, f), Dg(G, f
′)) ≤ ∥f − f ′∥∞,

with ∥f∥∞ = max{|f(v)| , v ∈ V }.

2.2 Heat distances

Let G be a graph in Gn and let L be its Laplacian. For t ≥ 0, let ut ∈ Rn be the vector whose i-th coefficient
represents the amount of heat of node i at time t. Then, ut follows the heat equation:

∀t ≥ 0,
d

dt
ut = −Lut.

The solution is given by ut = e−tLu0. The matrix e−tL is called the heat kernel and describes how heat
diffuses in the graph. The i-th column of e−tL contains the amount of heat of each node at time t, when a
single unit of heat was placed at node i at time t = 0. From (2.1), the heat kernel decomposes in

e−tL = ϕe−tΛϕT =

n∑
k=1

e−tλkϕkϕ
T
k .

The heat kernel encodes all the solutions of the heat equation and will be used to define notions of distances
between graphs. Note that the diffusion time t acts as a scale parameter, where diffusion for small values of t
only considers direct neighborhoods of the nodes, while for larger values it takes more global structures into
account. This multi-scale property will be exploited in the following.

2.2.1 Heat Kernel Distance

Assume that we know the NC for graphs in Gn and that we number the nodes such that the identity mapping
gives the correspondences. Hence, comparing adjacency matrices, Laplacians, or heat kernels entry-wise
becomes meaningful. Here we compare graphs through their heat kernels. For two graphs G and G′, define
their Heat Kernel Distance (HKD) at time t by

Dt((G,G
′)) = ∥e−tL − e−tL′

∥F , (2.2)
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G

2
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G′ G′′
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1
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Figure 1: Top: representation of three unweighted graphs G, G′, G′′. Removing the edge {5, 6} to G gives
G′. Removing {1, 2} to G gives G′′. Bottom: we plot t 7→ Dt((G,G

′)) and t 7→ Dt((G,G
′′)).

where L and L′ are the laplacian matrices of G and G′ respectively, and ∥ · ∥F denotes the Frobenius norm.
This notion of distance was introduced by [20]. Basically, it compares different signals defined on the nodes of
G and G′. These signals are given by the heat distribution obtained after a diffusion time t, for all elementary
initial conditions. Considering heat kernels instead of adjacency or Laplacian matrices allows for a more
robust notion of distance. Indeed, it is more aware of the global structures of graphs. Adding or removing
edges with low impacts on the overall graphs structures results in small changes of the HKDs, especially for
diffusion times that are not too close to zero. For example removing an edge joining two dense components is
seen differently by the HKD than removing an edge inside one of the component (see Figure 1). This would
not be the case when comparing adjacency or laplacian matrices. The example in Figure 1 also illustrates
the multi-scale property of HKDs. At a local scale the HKD only detects that an edge has been removed.
However, at a larger scale the functional role of the removed edge for the graph connectivity is captured by
the HKD. Moreover, we choose to compare the heat kernels through the Frobenius norm as it is a Euclidean
norm on the space of matrices. This property will be handy for deriving an exact expression of Dt((G,G

′))
in terms of the eigen-elements of L and L′ in Proposition 7.

To turn the HKD into a parameter-free notion of distance, [20] define the Graph Diffusion Distance as
maxtDt((G,G

′)). This has the drawback of comparing different pairs of graphs at different times. To
avoid this effect and to take advantage of the multi-scale property of heat kernels mentioned above, our ap-
proach consists in using the whole function t → Dt((G,G

′)). More precisely, considering a probability
distribution P on Gn × Gn and a random pair of graphs (G,G′) ∼ P , we are interested in the stochastic
process {Dt((G,G

′)), t ∈ [0, T ]} for some T > 0. That is, the process obtained by evaluating the functions
of the family FHKD := {Dt, t ∈ [0, T ]} on a random pair of graphs (G,G′). This framework corresponds
to the general framework of empirical processes.

2.2.2 Heat Persistence Distance

In practice, the NC between graphs is not always known. Additionally one may be interested in comparing
graphs of different sizes. In these cases, HKD cannot be computed. To circumvent these issues and follow-
ing ideas from [5], we define the Heat Persistence Distance (HPD) by using extended persistence diagrams
computed with the Heat Kernel Signature (HKS). These persistence diagrams can be compared with the
Bottleneck distance dB without any assumption on graph sizes and node correspondence.

The HKS was first introduced by [43] for the study of shapes. Here we restrict ourselves to the definition of
the HKS on graphs of [23]. For a graph G of size n with vertex set V = {1, . . . , n}, the HKS at time t is the
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function ht(G) : V → R such that

ht(G)(i) =

n∑
k=1

e−tλkϕk(i)
2, 1 ≤ i ≤ s.

Intuitively, the image of ht(G) corresponds to the diagonal of the heat kernel e−tL. Hence, ht(G)(i) repre-
sents the remaining amount of heat at node i after a diffusion time t, when a single unit of heat was placed
at node i at time t = 0. For each value of t, the HKS provides a function on the vertices of a graph, that
we use to compute extended persistence diagrams. Recall that these persistence diagrams encode the upward
branches, downward branches, connected components and loops of the graph, when the up/down orientation
is given by the HKS. The HPD at time t between two graphs G,G′ in Gn is defined by

Ht((G,G
′)) = max

Dg
dB(Dg(G, ht(G)), Dg(G

′, ht(G
′))), (2.3)

where the maximum is taken over the four diagram constructions Ord0, Rel1, Ext0 and Ext1. In our
simulations, persistence diagrams are computed by following the approach of [5] and using the Gudhi library
[30].

Similarly to FHKD, we define the family FHPD := {Ht, t ∈ [0, T ]} in order to study the induced stochastic
process: {Ht((G,G

′)), t ∈ [0, T ]}, for some random pair of graphs (G,G′) ∈ Gn × Gn.

The statistical properties of the processes associated with FHKD and FHPD are developed in Section 4.1.
But we first provide in Section 3 a more general study of such empirical processes.

3 General continuous empirical processes

In this section, we properly introduce the general framework for continuous empirical processes, then show
that uniform boundedness and Lipschitz-continuity implies a functional central limit theorem, as well as
a Gaussian approximation. Finally, we derive consequences on the construction of confidence bands and
two-sample tests.

3.1 Background and definitions

Let I be a compact interval of R and C(I) the space of continuous real-valued functions on I endowed with
the metric induced by the uniform norm: ∥h∥∞ = supt∈I |h(t)|. Consider a measurable space (X,X ). For
all measures Q on (X,X ) and all measurable functions g : X → R, we denote the integral of g with respect
to Q by Qg :=

∫
X g(x)dQ(x). Consider a probability measure P on (X,X ) and F := {ft, t ∈ I}, a

family of measurable real-valued functions on X indexed by I . For all x ∈ X, define f(x) as the function
t→ ft(x), and assume that f(x) ∈ C(I). Therefore, given a random variable X with distribution P , one can
equivalently see {ft(X), t ∈ I} either as a random process or as f(X) a random variable in C(I).
Given an i.i.d sample X1, . . . , XN drawn under P , we are interested in the statistical properties of the mean
function N−1

∑
i f(Xi) and its centered and scaled version N−1/2 (

∑
i f(Xi)− Pf). Equivalently, one

can study the empirical processes {PNft, t ∈ I} and {GNft, t ∈ I}, where PN = N−1
∑

i δXi
, and

GN =
√
N(PN −P ). In the following, we see random processes and random functions as the same objects.

When studying the statistical properties of F , one might be interested in a functional version of the central
limit theorem. This corresponds to the concept of Donsker families.
Definition 1 (P-Donsker). Let P be a probability measure on (X,X ), the family F is called P -Donsker if
the process {GNft, t ∈ I} converges in distribution to the centered Gaussian process {Gt, t ∈ I} with
covariance function κ defined as κs,t := Pftfs − PftPfs for all t, s ∈ I .

Here convergence in distribution means weak convergence in the space C(I). That is, for all continuous
bounded functions h : C(I) → R, limN→∞ E [h (GNf)] = E [h (G)], where the expectation on the left-
hand side is taken over the distribution of the sampleX1, . . . , XN , and the one on the right-hand side is taken
over the distribution of the Gaussian process G.

Going further into the statistical analysis of F , one might want to assess the speed at which {GNft, t ∈ I}
converges in distribution to {Gt, t ∈ I}. This can be done by proving Gaussian approximation results.
Definition 2 (Gaussian Approximation). Let (rN )N≥1 be a vanishing sequence of positive real numbers. We
say that the process {GNft, t ∈ I} admits a Gaussian approximation with rate rN , if for all λ > 1, there
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exists a constant C such that for all N ≥ 1 one can construct on the same probability space both the sample
X1, . . . , XN and a version G(N) of the Gaussian process G verifying

P
(∥∥∥GNf −G(N)

∥∥∥
∞
> C.rN

)
≤ N−λ.

Note that if {GNft, t ∈ I} admits a Gaussian approximation with rate rN , applying the Borel-Cantelli
Lemma would yield

∥∥GNf −G(N)
∥∥
∞ = O(rN ) almost surely.

3.2 Donsker theorem and Gaussian approximation

Before stating the central theorem of the paper, we introduce two assumptions on F .

(L) - There exits k > 0 such that for all x ∈ X the function t → ft(x) is k-Lipschitz continuous on I ,
meaning that for all t, s ∈ I

|ft(x)− fs(x)| ≤ k |t− s| .
(B) - F is uniformly bounded. That is, there exists a constant M > 0 such that for all x ∈ X and for all

t ∈ I ,
|ft(x)| ≤M.

Remark that assumptions (L) and (B) are simple and can easily be checked for most processes. We now show
that they are sufficient to obtain a Donsker theorem and a Gaussian approximation result.
Theorem 2. Assume that F verifies assumptions (L) and (B) .
Then for any probability measure P on (X,X ), F is P -Donsker and {GNft, t ∈ I} admits a Gaussian
approximation with rate rN = N−1/7 logN9/14.

This theorem provides a functional central limit theorem as well as some information about the rate of con-
vergence. It allows us to derive in the next section more practical consequences. Namely, it validates the
construction of consistent confidence bands and consistent two-sample tests using bootstrap methods.

The proof of Theorem 2 can be found in Appendix A. The Donsker property is proved by standard arguments
of tightness. The proof of Gaussian approximation is based on a result from [2] requiring technical work
and a more complex formalism. Essentially, by using Lipschitz-continuity we control the covering number
of F , which is a quantity that indicates the complexity of the family of functions. Even if Theorem 2 is a
consequence of [2], working in the special case of continuous processes indexed by a real parameter allows
us to present a more accessible result. And although the main interest of the paper is its application to the
HKD and HPD processes, we believe that the framework is simpler and that this theorem could easily be
applied to other processes.

3.3 Statistical applications

Here we present how we can construct confidence bands around empirical mean processes and two-sample
tests while retrieving statistical guarantees from Theorem 2.

Confidence Band

Let cα := inf{u, P (∥G∥∞ > u) ≤ α} be the upper α-quantile of the maximum of the Gaussian limit
process. As a consequence of Theorem 2, we have

lim
N→∞

P
(
∀t, Pft ∈

[
PNft −

cα√
N
,PNft +

cα√
N

])
≥ 1− α.

Unfortunately, as the distribution of G is unknown, cα can not be directly computed. Instead, consider a
bootstrap sample X̂1, . . . , X̂N drawn under PN and let P̂N be its empirical probability measure. Consider
the process {ĜNft, t ∈ I} where ĜN is the measure

√
N(P̂N − PN ) and let ĉα be the upper α-quantile of

∥ĜNf∥∞ given the data. Theorem 2.6 in [25] ensures that when F is P -Donsker, {ĜNft, t ∈ I} converges
weakly to G, given the data. Hence ĉα provide an approximation of cα, and we can use ĉα to design a
consistent confidence band around PNf :

lim
N→∞

P
(
∀t, Pft ∈

[
PNft −

ĉα√
N
,PNft +

ĉα√
N

])
) ≥ 1− α.
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Note that ĉα can be estimated with Monte-Carlo simulations, by drawing as many bootstrap samples as we
want.

Two Sample Test

Consider the following setup. Let P and Q be two probability distributions on X, and assume we are given
two independent iid samples (X1, . . . , XM ) and (Y1, . . . YN ), drawn under P andQ, respectively. We denote
by PM and QN the empirical measures. We would like to test the null hypothesis H0 : P = Q against the
alternatives H1 : P ̸= Q, by using the family F , assuming that it is Donsker with respect to both P and Q.
We follow the approach described in Section 3.7 of [46], and consider the following test statistic:

DM,N :=

√
MN

M +N
∥PMf −QNf∥∞ .

The strategy is to define a data-dependent threshold ĉM,N (α) and reject the null hypothesis whenever
DM,N > ĉM,N (α). Consider the pooled data (Z1, . . . ZM+N ) = (X1, . . . , XM , Y1, . . . , YN ), and its em-
pirical measure HN+M . Let (Ẑ1, . . . ẐM+N ) be a bootstrap sample drawn from HM+N and consider the
bootstrap empirical measures

P̂M =
1

M

M∑
i=1

δẐi
and Q̂N =

1

N

N∑
i=1

δẐM+i
.

We can define

D̂M,N :=

√
MN

M +N

∥∥∥P̂Mf − Q̂Nf
∥∥∥
∞
,

as well as
ĉM,N (α) = inf

{
t, P

(
D̂M,N > t

∣∣∣ Z1, . . . , ZN+M

)
≤ α

}
,

for α ∈ (0, 1). Note that ĉM,N (α) can be estimated with Monte-Carlo simulations. Using ĉM,N (α) as the
threshold to accept or reject H0 leads to a consistent test.

Theorem 3 ([46], Section 3.7.2). Assume that F is Donsker with respect to both P and Q and that ∥Pf∥∞
and ∥Qf∥∞ are finite. Furthermore assume that M/(M + N) → λ ∈ (0, 1). Then the test that rejects
H0 whenever DM,N > ĉM,N (α) is consistent, in the sense that the asymptotic level is α and under any
alternative verifying ∥Pf −Qf∥∞ > 0, P (DM,N > ĉM,N (α)) → 1.

This provides guarantees of the two-sample test when both sample sizes grow to infinity. Intuitively, under
H0, as both the process defining DM,N and the one defining D̂M,N given Z1, . . . , ZN+M converge to the
same Gaussian process, we can sample from the distribution of the latter (randomness coming only from
resampling) to estimate the quantile of the former.

4 Back to the heat distance processes

Using the results of the previous section, we are able to show that the HKD and HPD processes admit a
functional version of the central limit theorem, as well as a Gaussian approximation. This is essentially based
on the fact that they are uniformly bounded Lipschitz-continuous processes. From these results, we propose
a procedure to construct consistent confidence bands. We also detail the construction of a two-sample test for
samples of pairs of graphs based on either the HPD processes or the HKD processes when the graph sizes
and NC allow their computation. We explicit these constructions and state their consistency results.

4.1 Statistical properties

Let P be a probability distribution on Gn × Gn. Let T be a positive real number and recall that FHKD :=
{Dt, t ∈ [0, T ]}, with Dt defined in (2.2). We will study the centered and rescaled empirical process
{GNDt, t ∈ I} = {

√
N(PN − P )Dt, t ∈ I}, where PN is the empirical measure N−1

∑
i δ(Gi,G′

i)

associated to a N -sample ((G1, G
′
1), . . . , (GN , G

′
N )) drawn under P . We now state the statistical results

concerning the HKD process.
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Theorem 4. For any probability distribution P on Gn × Gn, the family FHKD is P -Donsker. That is, the
process {

√
N(PN − P )Dt, t ∈ [0, T ]} converges weakly to G in C([0, T ]), where G = {Gt, t ∈ [0, T ]} is

a zero mean Gaussian process with covariance function κ(t, s) = P (DtDs)− PDt.PDs.
Moreover, it admits a Gaussian approximation with rate rN = N−1/7 logN9/14.

We have a similar result for HPD processes. Recall that for HPD processes we work in Gn. Let P
be a probability distribution on Gn × Gn. Let T be a positive real number and recall that FHPD :=
{Ht, t ∈ [0, T ]}, with Ht defined in (2.3). Again, we study the empirical process {GNHt, t ∈ I} =

{
√
N(PN − P )Ht, t ∈ I}, where PN is the empirical measure N−1

∑
i δ(Gi,G′

i) associated to a N -sample
((G1, G

′
1), . . . , (GN , G

′
N )) drawn under P .

Theorem 5. For any probability distribution P on Gn × Gn, the family FHPD is P -Donsker. Thus, the
process {

√
N(PN − P )Ht, t ∈ [0, T ]} converges weakly to G in C([0, T ]), where G = {Gt, t ∈ [0, T ]} is

a zero mean Gaussian process with covariance function κ(t, s) = P (HtHs)− PHt.PHs.
Moreover, it admits a Gaussian approximation with rate rN = N−1/7 logN9/14.

These theorems can be seen as functional central limit theorems for the HKD and HPD processes. They val-
idate bootstrap methods for the construction of consistent confidence bands and consistent two-sample tests.
Gaussian approximations strengthen these results and provide information about the speed of convergence to
Gaussian processes. Note that this rate is independent of the graph size n. This could indicate that even in
the finite sample case with large graphs, methods based on the Donsker property could work well.

The proof of Theorem 4 and Theorem 5 can be found in Appendix B. We start by showing that under the
hypothesis of bounded weights on the edges of the graphs the HKD and HPD process are uniformly bounded
and Lipschitz-continuous, then the proofs are direct applications of Theorem 2.

4.2 Confidence band and consistency

As explained in Section 3.3, Donsker results allow for the construction of consistent confidence bands using
bootstrap methods. In Algorithm 1, we detail this construction based on the HKD and HPD processes on a
sample of pairs of graphs. As the construction is similar in the HKD or HPD case, we only present the HKD
case.

Algorithm 1: Confidence Band
Data: a sample of pairs of graphs ((G1, G

′
1), . . . (GN , G

′
N ))

Input: an integer B and a level α.

for i ∈ {1, . . . , N} do
compute di : t 7→ Dt((Gi, G

′
i));

end
compute dN = N−1

∑
i di;

for b ∈ {1, . . . , B} do
draw with replacement a bootstrap sample (d̂

(b)
1 , . . . d̂

(b)
N ) out of (d1, . . . dN );

compute d̃(b)N = N−1
∑

i d̂
(b)
i ;

compute t(b) =
√
N∥d̃(b)N − dN∥∞;

end
compute c̃α the empirical upper α-quantile of t(1), . . . , t(B);

Result: the confidence band
[
dN (t)− c̃α√

N
, dN (t) + c̃α√

N

]
for all t.

By choosing the bootstrap sample size B large enough, c̃α can approximate as closely as we want the upper
α-quantile ĉα of the bootstrap test statistic t(1) given the data. And according to Section 3.3 we know that

lim
N→∞

P
(
∀t,EP [Dt((G,G

′))] ∈
[
dN (t)− ĉα√

N
, dN (t) +

ĉα√
N

])
) ≥ 1− α.

This means that for large enough B, Algorithm 1 produces a consistent confidence band.
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4.3 Two-sample test and consistency

We now detail how to construct a two-sample test for sample of pairs of graphs in Algorithm 2. As previously,
we present the HKD case, as the HPD case is similar.

Algorithm 2: Two-sample Test
Data: two samples of pairs of graphs
((G1,1, G

′
1,1), . . . (G1,N , G

′
1,N )) and ((G2,1, G

′
2,1), . . . (G2,M , G

′
2,M ))

Input: an integer B and a level α.

for i ∈ {1, . . . , N} do
compute d1,i : t 7→ Dt((G1,i, G

′
1,i));

end
for i ∈ {1, . . . ,M} do

compute d2,i : t 7→ Dt((G2,i, G
′
2,i));

end
compute the empirical means d1 = N−1

∑
i d1,i and d2 =M−1

∑
i d2,i;

compute the test statistic T =
√
NM(N +M)−1∥d1 − d2∥∞;

for b ∈ {1, . . . , B} do
draw with replacement (d̂(b)1,1, . . . d̂

(b)
1,N ) and (d̂

(b)
2,1, . . . d̂

(b)
2,M ) out of (d1,1, . . . d1,N , d2,1, . . . d2,M );

compute d̃(b)1 = N−1
∑

i d̂
(b)
1,i and d̃(b)2 =M−1

∑
i d̂

(b)
2,i ;

compute T (b) =
√
NM(N +M)−1∥d̃(b)1 − d̃

(b)
2 ∥∞;

end
compute c̃α the empirical upper α-quantile of T (1), . . . , T (B);

Result: Reject the null hypothesis if T > c̃α.

Once again, for a large enough B, c̃α closely approximate the the upper α-quantile of T (1) given the data.
Recall that from Theorem 3, using ĉα as the rejection threshold yields to a control of the asymptotic level and
power. That is

limPH0 (T > ĉα) ≤ α,

and under any alternative verifying ∥P1D· − P2D·∥∞ > 0 where P1 and P2 are the distributions that gener-
ated the two samples,

limPH1 (T > ĉα) = 1.

The limits are for both N and M going to infinity under the condition that N/(N +M) → λ, for a λ in
(0, 1). Hence, for large enough B, Algorithm 2 produces a asymptotically valid two-sample test for samples
of pairs of graphs.

5 Experiments

We illustrate the construction of confidence bands and two-sample tests on synthetic data sets of pairs of
graphs. For that, we consider different random graph models and combine them to create independent pairs
of graphs.

5.1 Random graph models

In this section, we present the models generating the random graphs, namely the Erdős-Rényi model [13],
the stochastic block model [22], the geometric model [34] and the Watts-Strogatz model [47]. For each, we
specify the parameters used in our simulations.

Erdős-Rényi model (ER)

This model generates random graphs where each edge appears with probability p, independently from all the
others. It requires two parameters: n the graph size and p the edge probability. Because of the independence
and their homogeneity, ER graphs are considered to have no structure.

10
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In our simulations, we take n = 50 and p = 0.5. Weights may be added by assigning a uniform weight
between 0 and 2 to each existing edge, independently from all the others.

Stochastic block model (SBM)

This model is a generalization of the ER model that introduces a block structure. The n nodes are clustered in
K groups C1, . . . , CK , of respective sizes n1, . . . , nK . Edges appear independently from the others, but with
a probability depending on the groups: edge {i, j} appears with probability pk,l when i ∈ Ck and j ∈ Cl.

In our simulations, we take K = 2, n1 = n2 = 25, and p1,1 = p2,2 = 0.75, p1,2 = p2,1 = 0.25. So graphs
are composed of two dense clusters, with few edges between them. Similarly to the ER model, we may add
random weights following the uniform distribution between 0 and 2.

Geometric model (GM)

Given a compact domain U of Rd for some d, a graph is generated from the GM by drawing n points
uniformly on U and creating an edge between two points if their Euclidean distance is smaller than a given
threshold. Here we choose a slight variation of this model by considering a number p ∈ [0, 1] and creating
the edges corresponding to the ⌊p

(
n
2

)
⌋ pairs of points with the smallest euclidean distances.

In our simulations, the compact domain U is either Aε the annulus in R2 with outer radius 1 and inner radius
ε > 0 or A0 the unit disk. We either fix n = 50 or for each graph, n is drawn from a Poisson distribution
of parameter 50. We take p = 0.5. To obtain weighted graphs, we may assign the weight e−2d to an edge,
where d is the distance between the two points forming the edge.

Watts-Strogatz model (WS)

This model is famous for its so-called small-world property, meaning that any two nodes in the graph are
usually not far apart in graph distance. Random graphs under this model are constructed as follows. First a
ring of n nodes is created where each node is connected to its k nearest neighbors. Then, for each edge, with
probability p independently of all others edges, one of its terminal nodes is replaced by another node chosen
uniformly at random.

In our simulations, we take n = 50, k = 25 and p = 0.5. Weights may be added by assigning a uniform
weight between 0 and 2 to each existing edge, independently from all the others.

We combine these models to generate pairs of independent graphs on which we can compute HKD and/or
HPD processes. We consider the pairs of independent ER graphs (ER-ER) and the pairs containing one ER
graph and one SBM graph (ER-SBM). For these distributions, the groups’ composition is known and nodes
are treated independently among groups. Thus, we can consider that we know an NC between graphs. As a
result, we can compute both HKD and HPD processes. Similarly, we consider (ER-ER) and (ER-SW) pairs
and compare them with HKD processes (as nodes are exchangeable). We also consider pairs of independent
geometric random graphs: Disk-Disk and Disk-Annulus. However, as nodes in these models correspond to
random points, there is no default NC. Hence, only HPD processes are computed.

5.2 Simulation results

In this section, we present the simulation results concerning the construction of confidence bands and the
performances of the two-sample tests.

5.2.1 Confidence bands

In this section, we compute confidence bands under the different models of pairs of graphs defined above.
For each model, we draw a sample (G1, G

′
1), . . . , (GN , G

′
N ) with N = 100. We compute the mean process,

that is t → N−1
∑

iDt((Gi, G
′
i)) or t → N−1

∑
iHt((Gi, G

′
i)) and compute a confidence band of level

99% around this empirical mean using the bootstrap method detailed in Algorithm 1. Computations are done
with 1000 bootstrap samples. Results are shown in Figure 2, 3 and 4, where solid lines represent empirical
means and transparent areas represent confidence bands.

Remark that confidence bands around HKD processes (Figure 2) seem to be narrower than those around
HPD processes (Figure 3), relatively to the height of the curves. Therefore, users should rather use HKD
processes whenever NC’s are available. Nonetheless, the versatility of HPD processes does not totally reduce
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(a) Unweighted. (b) Weighted.

Figure 2: Confidence band around the mean HKD processes with ER-ER (red) and ER-SBM (blue) distribu-
tions.

Figure 3: Confidence band around the mean HPD processes with unweighted ER-ER (red) and ER-SBM
(blue) distributions.

their efficiency. As Figure 4 indicates, HPD empirical means seem to be able to discriminate between the
different distributions. These observations will be confirmed in the next section, where the performances of
the two-sample tests are investigated.

5.2.2 Two-sample tests

Levels and Powers. Simulations are run to evaluate the performances of the two-sample tests using HKD
and HPD processes as detailed in Algorithm 2, see Figure 5, Figure 6 and Figure 7. In all tests, the desired
level is set to 0.05, and computations are done with 1000 bootstrap samples. Figures 5a and 6a illustrate that
the asymptotic levels of the tests correspond to the set level. On the other hand, Figures 5b, 6b and 7 illustrate

(a) Unweighted,
fixed size.

(b) Weighted,
fixed size.

(c) Unweighted,
random size.

Figure 4: Confidence band around the mean HPD processes with Disk-Disk (red) and Disk-Annulus (blue)
distributions.
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(a) Levels estimations. (b) Powers estimations.

Figure 5: Performances of the two-sample test using HKD processes. The level estimations are made with
weighted ER-ER distributions, while the power estimations are made with weighted ER-ER and ER-SBM
distributions. The samples size varies in [25,50,100,200]. Estimations are done by repeating 400 independent
tests. Vertical lines represent 95%-confidence intervals of the estimations.

(a) Levels estimations. (b) Powers estimations.

Figure 6: Performances of the two-sample test using HPD processes. The level estimations are made with
Disk-Disk distributions, while the power estimations are made with Disk-Disk and Disk-Annulus distribu-
tions. Graphs are unweighted and with fixed size. The samples size varies in [20,40,80,120]. Estimations are
done by repeating 100 independent tests. Vertical lines represent 95%-confidence intervals of the estimations.

that the powers tend to 1 when sample sizes increase, indicating that the tests manage to distinguish between
the different distributions. Moreover, Figure 6b and 7 show the good performances of the HPD-based test
even when NC is unknown and when graphs have different sizes.

Comparison with other distances. We first propose to compare our HKD-based two-sample test with tests
based on other distances. We consider the Graph Diffusion Distance (GDD) of [20] and the comparison of
graphs based on the Frobenius norm of the difference of their adjacency matrices. As these distances return
real values and not processes anymore, we compare samples of pairs of graphs through the mean distance
of each sample and compute a rejection threshold using a standard bootstrap method. The result of these
comparisons are presented in Figure 8. In Figure 8a, we consider distributions of pairs of ER-ER vs pairs
of ER-SBM. In that case, both the adjacency-based and GDD-based test are unable to detect that graph
distributions are different, while the HKD-based test reaches a power of 1 for samples of size greater than
100. In Figure 8b, we evaluate the tests on pairs of ER-ER vs pairs of ER-WS. In this setting, only the
adjacency-based test fails to distinguish between the two distribution, while the HKD-based and GDD-based
test have similar powers.

It is particularly interesting to witness the power difference (and similarity) between the tests with GDD
and HKD. Essentially, the GDD quickly discards the multi-scale information by taking the maximum of
each HKD process. On the other hand, the HKD-based test conserves it until it compares the two mean
processes. Figure 8a illustrates that the multi-scale information contained in the HKD-processes can actually
be relevant, and that it is worth conserving it to compare samples of graphs. However, from Figure 8b,
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Figure 7: Power of the two-sample test using HPD processes with graphs of random sizes. Power estimations
are made with Disk-Disk and Disk-Annulus distributions. Graphs are unweighted and with Poissonian sizes.
The samples size varies in [25,50,100,150]. Estimations are done by repeating 100 independent tests. Vertical
lines represent 95%-confidence intervals of the estimations.

we see that this additional multi-scale information is not always needed. A possible explanation could be
that when considering SBM graphs, the density of edges is heterogeneous. For example, the density of
edges in the whole graph is different compared to the one inside each block. Thus, heat diffusion may
reflect that heterogeneity. To give the intuition, at the begining of the diffusion process, heat essentially
diffuses inside a dense block, then it diffuses to the rest of the graph more slowly as the edge density is
smaller. Thus, capturing these two phases of the heat diffusion can be meaningful. However, in the ER and
WS models, graphs are essentially homogeneous. In this case, multi-scale information might be less valuable.

We then proceed by comparing our HPD-based two-sample test with tests based on graph kernels and the
Maximum Mean Discrepancy (MMD) [19]. We apply them on graphs with different sizes. We consider the

following graph kernels:

• GS - graphlet sampling [39]
• WL - Weisfeiler-Lehman [38]
• SP - shortest path [4]
• VH - vertex histogram [42]
• ST - SVM Theta [24]
• NH - neighborhood Hash [21]
• RW - random walk [42].

Kernel computations were done using

the Grakel python library [40].

In this set of experiments, we only consider unweighted graphs as most of these kernels do not handle edge
weights. For kernels requiring vertex labels, we choose to provide the degree of a vertex as its label. More-
over, MMD-based tests essentially perform a test on the mean of each sample seen in the corresponding
RKHS. Therefore, they are not designed to handle sample of pairs of graphs. As a consequence let us give
a description of the experimental procedure. We want to evaluate how well two-sample tests distinguish be-
tween two different graph distributions P and Q. HPD-based test will be applied to samples of independent
pairs P -P and P -Q while MMD-based tests are computed with samples of graphs from P and from Q. Fig-
ure 9a displays the powers the various tests for P being the Disk distribution and Q the Annulus distribution,
each with Poissonian graph sizes. The HPD-based test achieve good performance for sample sizes greater
than 100 pairs of graphs, but it is out-performed by the tests based on the graphlet sampling, Weisfeiler-
Lehman, vertex histogram and SVM Theta kernels. Moreover, the three other kernel-based tests are unable
to distinguish between P and Q. Note that among the successful kernels, the WF and ST require labels and
thus their tests are actually based on degree distributions, which are different in P and Q. On Figure 9b, the
test powers are given for P being the ER distribution and Q the SBM one, each with Poissonian graph sizes.
Here, only the GS and ST methods successfully distinguish between P and Q, all other methods fail.

Comparison with the Neyman-Pearson Test. The Neyman-Pearson test [32] is an optimal testing proce-
dure, in the sense that it is the test with the highest power for a given level. But being based on likelihood ra-
tios, it rarely is computable. Its performances are determined by the total variation distance (TV) between the
two distributions. If we consider the case of distributions that depend on the sample size, the speed at which
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(a) ER vs SBM (weighted) (b) ER vs WS (weighted)

Figure 8: Powers of the HKD-based test, the GDD-based test and the adjacency-based test. Tests are per-
formed either under weighted ER-ER and ER-SBM distributions (left) or weighted ER-ER and ER-WS dis-
tributions (right). The samples size varies in [25,50,100,150]. Estimations are done by repeating 400 inde-
pendent tests. Vertical lines represent 95%-confidence intervals of the estimations.

(a) Disk vs Annulus (random size) (b) ER vs SBM (random size)

Figure 9: Powers of the HPD-based test and MMD tests for various graph kernels. Tests are performed either
under Disk-Disk and Disk-Annulus distributions with graphs of random sizes (left) or ER-ER and ER-SBM
distributions with graphs of random sizes (right). The samples size varies in [25,50,100,150]. Estimations are
done by repeating 50 independent tests. Vertical lines represent 95%-confidence intervals of the estimations.

their TV tends to 0 determines if the Neyman-Pearson test will asymptotically be able to distinguish between
the two distributions. For ER models, independence of the edges allows to theoretically compute bounds of
the TV and determine the phase transition. Let us take a real number p such that 0 < p < 1. And for each
sample size N ≥ 1 consider the parameters p0(N) and p1(N), such that both converge to p. Following [28,
Section 13.1.], we can show that as long as |p0(N)− p1(N)| ≫ N−1/2, the Neyman-Pearson test asymptoti-
cally distinguishes between the distributions of independent pairs of ER(n, p0(N)) and independent pairs of
ER(n, p1(N)) when using N -samples. Figure 10 shows that for large enough sample sizes, our two-sample
test based on HKD processes distinguishes between ER models up to |p0(N)− p1(N)| = C logN/

√
N ,

with C = 0.01. The tests are computed with a set level of 0.05 and with 1000 bootstrap samples.

5.3 Computational complexity

Both Algorithm 1 and Algorithm 2 require to compute eigenvalues and eigenvectors decompositions of Lapla-
cian matrices in order to obtain heat diffusion distance processes. For symmetric matrices of size n× n, the
computational complexity of divide-and-conquer algorithms to compute such decomposition is, in the worst
case, in O(n3) operations. (see Table 3.1 of [31]).

In our experiments, we restricted graph sizes to around 50 vertices. This is because we needed to repeat the
tests several hundred times to estimate the levels and powers with statistical significance. However, single
tests with graphs of a few hundreds or even thousands of vertices could be considered.
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Figure 10: Evolution of the power of the HKD two-sample test when |p0(N)− p1(N)| = C logN/
√
N .

The samples size N varies in [20,50,100,200,300]. Estimations are done by repeating 100 independent tests.
Vertical lines represent 95%-confidence power intervals of the estimations.

In the case where graphs would be too large for eigendecompositions, strategies to approximate the heat ker-
nel could be developed. Previous works used Taylor expansion, Chebychev approximation, or low frequency
approximation [45, 29].

6 Conclusion

We proposed two multiscale comparisons of graphs using heat diffusion processes, namely the HKD and
HPD. The first one requires the assumption of equal graph sizes and a known NC, while the second one is
free of these assumptions. The multiscale approach solves the problem of choosing an informative diffusion
time. We proposed to use these processes to analyze data sets of pairs of graphs and were able to design
consistent confidence bands and two-sample tests. The methods are supported by theoretical results: the
HKD and HPD families are Donsker, meaning that the processes verify a functional central limit theorem.
Moreover, the processes admit Gaussian approximations with rates that are independent of the graph sizes.
These results are very general and could easily be applied to other processes. Essentially, the processes are
required to be uniformly bounded and Lipschitz-continuous. Moreover, the performances of our methods
were illustrated by simulations on synthetic data sets. We showed that the two-sample tests were able to
distinguish between Erdős-Rényi and SBM graphs, as well as between geometric graphs sampled on different
domains. Moreover, we confirmed the benefit of using multi-scale notion of distances, as the HKD and HPD
processes, over other notions of distances, especially when graphs have heterogeneous densities. On Erdős-
Rényi models with parameters depending on the sample size, the tests were still distinguishing between the
different distributions, even when working close to the phase transition of the Neyman-Pearson test.

As future work, we would like to extend these methods to be able to perform learning tasks, e.g., clustering,
classification, or change point detection on graph data. Extensions to be able to deal with data sets of graphs
by opposition to pairs of graphs should also be developed to broaden the application spectrum. Transferring
our approach to directed graphs could also be interesting. Although technical difficulties related to spectral
decomposition of non-symmetric matrices would need to be dealt with. On the theoretical side, studying
the interplay between graph sizes and sample sizes could be a first step toward non-asymptotic methods to
analyze data sets of graphs.

Nonetheless, we believe that the introduction of the HKD and HPD processes has the potential to bring
innovative and statistically founded ways to analyze data sets of graphs. Moreover, the theoretical results
presented in this work being very general, our methods could be extended to other fields.

Appendix

A Proof of Theorem 2

We start by proving the Donsker property.
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Proof. We need to prove the weak convergence of {GNft, t ∈ I} to the centered gaussian process G. To
do so, remark that assumption (B) ensures that second moments of f(X) are finite. This allows to apply
the multidimensional version of the central limit theorem to all finite-dimensional marginals of the random
functionGNf . Hence, these finite-dimensional marginals converge in distribution to those of G. To conclude
to the weak convergence of the whole process, the sequence of random functions {GNf, N ≥ 1} needs to
be tight. According to [3, Theorem 12.3], tightness of {GNf, N ≥ 1} is implied by the following two
conditions:

1. There exists t0 ∈ I , such that {GNft0 , N ≥ 1} is tight.

2. There exist γ ≥ 0, α > 1 and a non-decreasing function ψ : I → R such that ∀t, s ∈ I , ∀N ≥ 1,

E [|GNft −GNfs|γ ] ≤ |ψ(t)− ψ(s)|α .

Let us start by proving point 1. Let t0 be any point in I . We have to prove that for all η > 0, there exists
α > 0 such that for all N ≥ 1

P (|GNft0 | ≤ α) > 1− η. (A.1)
If V ar(ft0(X)) = 0, {GNft0 , N ≥ 1} is tight, since for all N , GNft0 = 0 P -a.s.. Otherwise, fix
η > 0. As the left hand side in (A.1) is non-decreasing with respect to α, we may as well show that there
exists α such that for all N , P (−α < GNft0 ≤ α) > 1 − η. Following from (B) , ft0(X) admits a third
moment. Combined with the positive variance, we can apply the Berry-Essen Theorem: if FN and ϕ denote
the cumulative distribution functions of, respectively, GNft0 and a centered Gaussian variable of variance
V ar(ft0(X)), then there exists a constant C such that for all α ∈ R and all N ≥ 1

|FN (α)− ϕ(α)| ≤ C√
N
.

Now we take Nη such that for all N > Nη , C/
√
N < η/4, and we choose αη such that ϕ(αη) > 1 − η/4.

Then, for all N > Nη

P (−αη < GNft0 ≤ αη)

=FN (αη)− FN (−αη)

=ϕ(αη)− ϕ(−αη) + (FN (αη)− ϕ(αη))− (FN (−αη)− ϕ(−αη))

≥ϕ(αη)− ϕ(−αη)− 2
C√
N

=2ϕ(αη)− 1− 2
C√
N

>2
(
1− η

4

)
− 1− 2

η

4
= 1− η

One can easily choose α > αη to extend the inequality P (−αη < GNft0 ≤ αη) > 1− η to all N ≥ 1. This
finishes the proof of point 1.

The proof of point 2, is a consequence of assumption (L) . For all t, s ∈ I , one has the following inequality

E
[
|GNft −GNfs|2

]
=E

[
|(ft(X)− Pft)− (fs(X)− Pfs)|2

]
≤(2k |t− s|)2

=(2kt− 2ks)2.

This proves point 2. with γ = 2, α = 2 and ψ(u) = 2ku, and finishes the proof of Theorem 2.

The proof of Gaussian approximation is based on a result from [2]. They derive rates for the Gaussian approx-
imation of more general processes. They do so by approaching the process by finite-dimensional marginals
and applying a multidimensional Gaussian approximation result. Controlling the covering number of the
family (or equivalently its metric entropy) allows them to derive a good trade-off between a good approxima-
tion by the marginals and keeping the dimension small enough to obtain good rates in the multidimensional
Gaussian approximation. For the sake of completeness, let us recall their result.
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Let M be the set of all measurable real-valued functions on (X,X ). The authors work with a centered and
scaled empirical process {GN f̃ , f̃ ∈ F̃} indexed by a general family F̃ ⊂ M, not necessarily indexed by
I . Their result shows that, under mild assumptions, this process can be approached by a centered Gaussian
process G̃ indexed by F̃ with covariance E

[
G̃(f̃)G̃(g̃)

]
= P f̃ g̃ − P f̃P g̃, for f̃ , g̃ ∈ F̃ . Let us define

the covering number of F̃ . First, assume that there exists F̃ ∈ M such that for all f̃ ∈ F̃ and all x ∈ X,
|f̃(x)| ≤ F̃ (x). We say that F̃ is an envelope of F̃ . For all probability measures Q on (X,X ), we consider
the semi-metric dQ(g, h)2 =

∫
(g − h)2dQ, for g, h ∈ M. Under dQ, we define the ball of radius δ > 0

centered in h ∈ M by BQ(h, δ) := {g ∈ M, dQ(g, h) < δ}. We also define F̃ 2
Q :=

∫
F̃ 2dQ. For δ > 0, let

N(F̃ , dQ, δ) be the size of the smallest finite subset K ⊂ M verifying that the union of balls BQ(h, δ) for
h in K covers F̃ . Finally, we set the covering number of F̃ to be N(F̃ , δ) := supQN(F̃ , dQ, δ.F̃Q), where
the supremum is taken over all Q such that 0 < F̃Q <∞.

Before stating the result of [2], consider these two basic assumptions.

(F.i) For some M > 0 and for all f̃ ∈ F̃ , supx∈X |f̃(x)| ≤M/2.

(F.ii) The class F̃ is point-wise measurable, i.e., there exists a countable subclass F̃∞ of F̃ such
that we can find for any function f̃ ∈ F̃ a sequence of functions {f̃m} in F̃∞ for which
limm→∞ f̃m(x) = f̃(x) for all x ∈ X.

Proposition 6. [2, Proposition 1.] Assume that F̃ verifies (F.i) and (F.ii). Take F̃ := M/2 as the envelope
of F̃ . Moreover, assume that there exist positive constants c0 and v0 such that N(F̃ , δ) ≤ c0δ

−v0 . Then, for
each λ > 1 there is a constant ρ(λ) such that for each N , one can construct X1, . . . , XN and G̃(N) such that

P

(
sup
f̃∈F̃

∣∣∣GN f̃ − G̃(N)(f̃)
∣∣∣ > ρ(λ)N− 1

2+5v0 logN
4+5v0
4+10v0

)
≤ N−λ.

Let us now prove the Gaussian approximation in Theorem 2 by applying the previous proposition.

Proof. The proof consists in applying Proposition 6 to F with v0 = 1. Clearly, assumption (B) implies (F.i).
Since the paths t → ft(x) are continuous for all x ∈ X, taking F∞ = {ft, t ∈ I ∩Q} gives (F.ii), where Q
is the set of rational numbers.

Let us prove the upper-bound on the covering number. Let L be the length of I . From (L) , we know that
there exists a constant k, such that t → ft(x) is k-lipschitz, for all x. Considering a regular grid on I ,
min I = t0 < t1 < · · · < tq = max I . For all t ∈ I there exists a integer j such that for all x ∈ X,∣∣ft(x)− ftj (x)

∣∣ ≤ k |t− tj | ≤ kL/q. Hence, for all probability measures Q, dQ(ft, ftj ) ≤ kL/q, meaning
that N(F , dQ, kT/q) ≤ q + 1. As this last inequality stands for all Q, we can find a constant c0 > 0 such
that N(F , δ) ≤ c0δ

−1, for all δ > 0. This finishes the proof.

B Application to the Heat distance processes.

B.1 Bounds for the laplacian eigenvalues.

Let us start by proving a lemma on the extremal laplacian eigenvalues of graphs in Gn. We define Λmin and
Λmax as, respectively, the minimal and maximal positive laplacian eigenvalues of graphs in Gn:

Λmin := inf{λ > 0, s.t. λ is an eigenvalue of L(G), G ∈ Gn}
Λmax := sup{λ > 0, s.t. λ is an eigenvalue of L(G), G ∈ Gn}.

Lemma 1. Λmin and Λmax satisfy the following bounds:

Λmin ≥ 8wmin

n2
, (B.1)

Λmax ≤ nwmax. (B.2)
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Note that (B.1) will not be used in the rest of the paper. Still, we choose to present it as we believe it could
be of future use.

Proof. Take G ∈ Gn, we want to prove that λmin, the smallest positive eigenvalue of L(G), verifies λmin ≥
8wminn

−2. To do so, we apply a Cheeger-type inequality. First assume that G is connected, hence λmin =
λ2(G). Let V be the set of vertices of G. Following [17, Section 3], we define the average minimal cut of G
by

γ(G) = min
∅̸=U⊊V

∑
i∈U, j∈V \U

wi,j

|U | (n− |U |)
.

As G is connected, there exists at least one edge with a weight greater than wmin joining U and V \U . Hence,∑
i∈U, j∈V \U

wi,j ≥ wmin.

Moreover, for all U , |U | (n − |U |) ≤ n2/4. This yields to γ(G) ≥ 4wmin/n
2. From [17, Theorem 2], we

have that λ2(G) ≥ 2γ(G), hence λ2(G) ≥ 8wminn
−2. If now G is not connected, one can check that there

exists Gsub a connected subgraph of G of size nsub, such that λmin = λ2(Gsub). This gives

λmin = λ2(Gsub) ≥
8wmin

n2sub
≥ 8wmin

n2
.

This finishes the proof of the first bound.

We now prove the second bound. The largest eigenvalue of L(G) is denoted by λn. Letting x be an eigenvector
associated to λn verifying ∥x∥2 = 1, we have

λn = xTL(G)x =
∑
i<j

wi,j(xi − xj)
2 ≤ wmax

∑
i<j

(xi − xj)
2 = wmax x

TL(Gcomp)x

where Gcomp is the complete undirected graph, hence

L(Gcomp) =


n− 1 −1 · · · −1

−1
. . . . . .

...
...

. . . . . . −1
−1 · · · −1 n− 1

 .

One can check that xTL(Gcomp)x ≤ λn(L(Gcomp)) = n, so λn ≤ nwmax.

B.2 Result on HKD processes.

To apply Theorem 2 to the HKD processes we first prove that they are uniformly bounded and Lipschitz-
continous.

Proposition 7. For all G,G′ in Gn, denote by (λk)1≤k≤n and (ϕk)1≤k≤n (resp. (λ′l)1≤l≤n and (ϕ′l)1≤l≤n)
the eigenvalues and orthonormal eigenvectors of L(G) (resp. L(G′)). Remember that we always choose ϕ1
and ϕ′1 equal to the vector with all entries equal to 1/

√
n. We denote by ⟨·, ·⟩ the standard scalar product in

Rn. Then, the application t→ Dt((G,G
′)) verifies:

1. For all t ∈ [0, T ], Dt((G,G
′)) can be written in terms of the eigen-elements of L(G) and L(G′):

Dt((G,G
′)) =

 n∑
k,l=2

(e−tλk − e−tλ′
l)2⟨ϕk, ϕ′l⟩2

1/2

. (B.3)

2. For all t ∈ [0, T ], Dt((G,G
′)) ≤

√
n.

3. t 7→ Dt((G,G
′)) is (n3/2wmax)-Lipschitz continuous on [0, T ].
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Proof. Let G,G′ be in Gn. We start by proving (B.3). This is done through the following computation:

∥e−tL − e−tL′
∥2F

=∥e−tL∥2F + ∥e−tL′
∥2F − 2Tr

(
e−tLe−tL′

)
=

n∑
k=1

e−2tλk∥ϕkϕTk ∥2F +

n∑
l=1

e−2tλ′
l∥ϕ′lϕ′l

T ∥2F − 2

n∑
k,l=1

e−tλke−tλ′
lTr

(
ϕkϕ

T
k ϕ

′
lϕ

′
l
T
)

One can prove that Tr
(
ϕkϕ

T
k ϕ

′
lϕ

′
l
T
)
= ⟨ϕk, ϕ′l⟩2.

Similarly ∥ϕkϕTk ∥2F = ∥ϕk∥22 =
n∑

l=1

⟨ϕk, ϕ′l⟩2 and ∥ϕ′lϕ′l
T ∥2F = ∥ϕ′l∥22 =

n∑
k=1

⟨ϕk, ϕ′l⟩2. So

∥e−tL − e−tL′
∥2F =

n∑
k,l=1

(e−tλk − e−tλ′
l)2⟨ϕk, ϕ′l⟩2.

The sums can start at k = 2 and l = 2 thanks to the facts that λ1 = λ′1 = 0 and ϕ1 = ϕ′1 combined with the
orthogonality of the eigenvectors families. This finishes the proof of (B.3).

Bounding all terms (e−tλk − e−tλ′
l)2 by 1 in (B.3), and using the orthonormality of the eigenvectors families

yields to Dt((G,G
′)) ≤

√
n.

We now prove the Lipschitz result. One can check that t→ Dt((G,G
′)) is C1 on [0, T ]. The case G = G′ is

easily dealt with. Assume now that G ̸= G′. For all t ∈ (0, T ],

∣∣∣∣ ddtDt((G,G
′))

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣
−

n∑
k,l=2

(e−tλk − e−tλ′
l)(λke

−tλk − λ′le
−tλ′

l)⟨ϕk, ϕ′l⟩2(
n∑

k,l=2

(e−tλk − e−tλ′
l)2⟨ϕk, ϕ′l⟩2

)1/2

∣∣∣∣∣∣∣∣∣∣∣
≤

n∑
k,l=2

∣∣∣e−tλk − e−tλ′
l

∣∣∣ ∣∣∣λke−tλk − λ′le
−tλ′

l

∣∣∣ |⟨ϕk, ϕ′l⟩|2(
n∑

i,j=2

(e−tλi − e−tλ′
j )2⟨ϕi, ϕ′j⟩2

)1/2

≤

√√√√ n∑
k,l=2

∣∣λke−tλk − λ′le
−tλ′

l

∣∣2 ⟨ϕk, ϕ′l⟩2
√√√√√√√√

n∑
k,l=2

(e−tλk − e−tλ′
l)2⟨ϕk, ϕ′l⟩2

n∑
i,j=2

(e−tλi − e−tλ′
j )2⟨ϕi, ϕ′j⟩2

=

√√√√ n∑
k,l=2

∣∣λke−tλk − λ′le
−tλ′

l

∣∣2 ⟨ϕk, ϕ′l⟩2,
where the last inequality comes from the Cauchy-Schwarz inequality.

According to the mean value theorem, for all k and l∣∣∣λke−tλk − λ′le
−tλ′

l

∣∣∣ ≤ |λk − λ′l| ≤ Λmax.

Hence, for all t ∈ (0, T ],∣∣∣∣ ddtDt((G,G
′))

∣∣∣∣ ≤ Λmax

√√√√ n∑
k,l=2

⟨ϕk, ϕ′l⟩2 ≤ nwmax

√
n = n3/2wmax.

This finishes the proof.

The proof of Theorem 4 is a direct application of Theorem 2, as Proposition 7 ensures that the hypotheses of
Theorem 2 are verified by the HKD process.
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B.3 Result on HPD processes.

To prove Theorem 5, we start by showing that under the hypotheses of the theorem the HPD processes are
uniformly bounded and Lipschitz-continuous.

Proposition 8. For all G,G′ in Gn, the application t→ Ht((G,G
′)) verifies:

1. For all t ∈ [0, T ] , 0 ≤ Ht((G,G
′)) ≤ 1.

2. t 7→ Ht((G,G
′)) is (2nwmax)-Lipschitz-continuous on [0, T ].

Proof. Recall that for all G ∈ Gn, and for a vertex i,

ht(G)(i) =

n(G)∑
k=1

e−tλkϕk(i)
2,

where (λk)1≤k≤n(G) and (ϕk)1≤k≤n(G) are the eigenvalues and orthonormal eigenvectors of L(G) and n(G)
is the size of G. Hence 0 ≤ ht(G)(i) ≤ 1 for all i, meaning that all points in the diagram Dg(G, ht(G)) are
contained in [0, 1]2. So from the definition of the Bottleneck distance, 0 ≤ Ht((G,G

′)) ≤ 1, for all G,G′ in
Gn and for all t ∈ [0, T ].

Let us now compute the first derivative of ht(G)(i):

d

dt
ht(G)(i) = −

n(G)∑
k=1

λke
−tλkϕk(i)

2.

Its absolute value is upper-bounded by λn(G), the largest eigenvalue of L(G). From Lemma 1, we have
λn(G) ≤ n(G)wmax. Hence, t → ht(G) is (nwmax)-Lipschitz continuous on [0, T ]. To conclude, we come
back to the definition of the HPD in terms of distance between persistence diagrams. Applying the triangular
inequality to the Bottleneck distance gives for all G,G′ ∈ Gn, for all t, t′ ∈ [0, T ], and for all diagram
construction Dg,

|dB(Dg(G, ht(G)), Dg(G′, ht(G
′)))− dB(Dg(G, ht′(G)), Dg(G

′, ht′(G
′)))|

≤dB(Dg(G, ht(G)), Dg(G, ht′(G))) + dB(Dg(G
′, ht(G

′)), Dg(G′, ht′(G
′))).

Similarly, the same inequality but with maxima over the diagram constructions holds:

|Ht((G,G
′))−Ht′((G,G

′))|
≤max dB(Dg(G, ht(G)), Dg(G, ht′(G))) + max dB(Dg(G

′, ht(G
′)), Dg(G′, ht′(G

′))).

Applying Theorem 1 and using the Lispchitz continuity of the HKS yields

|Ht((G,G
′))−Ht′((G,G

′))|
≤∥ht(G)− ht′(G)∥∞ + ∥ht(G′)− ht′(G

′)∥∞
≤2nwmax |t− t′| .

Theorem 5 follows from Proposition 8 and Theorem 2.
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