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Resolving power of MUSIC-like algorithms for

circular or rectilinear correlated sources in CES

data models
Habti Abeida and Jean-Pierre Delmas

Abstract

The concept of threshold array signal-to-noise ratio (ASNR) which is defined as the minimal SNR at which

specific high-resolution algorithms are able to resolve two closely spaced far-field sources, allows to quantify

and to compare sensors array performance in localizing remote targets. This paper generalizes and extends the

expressions of the threshold ASNR given in the literature for the conventional and non-circular (NC) MUSIC

direction-of-arrival (DOA) estimation algorithms in the context of uncorrelated stochastic circular or rectilinear

Gaussian sources and circular complex Gaussian (C-CG) noise, in a more general stochastic framework. We

assume that the sources are correlated with an arbitrary distribution, which is inherent in a context of multipath

or smart jammers, and that the noise is circular complex elliptically symmetric (C-CES) distributed, which

can model impulsive noise with heavy-tailed distributions. The C-CES and NC-CES distributed observations

are also considered to quantify the gain in resolution provided when the sample covariance matrix (SCM) of

the observations is replaced by M -estimates of this matrix. Asymptotic approaches and perturbation analysis

have been performed to derive closed-form expressions of the mean null spectra of the two considered MUSIC

algorithms for both observation models, which allow us to derive, for the first time, general unified explicit

analytical expressions of the threshold ASNR along the Cox and the Sharman and Durrani criteria. These

expressions allow us to quantify the impact of the non-Gaussianity of noise and observations, as well as of

the phase and magnitude of the correlation on the resolution threshold, and to quantify the benefit provided

when the SCM is replaced by M -estimates of this covariance matrix for CES observations. Finally, numerical

illustrations are included to support our theoretical analysis.
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I. INTRODUCTION

The ability to resolve two closely-spaced narrowband far-field sources is an important performance measure

of sensor arrays in localizing remote targets with wide-ranging application in, among others, astronomy, radar

and wireless communications [1]. This very old problem has been extensively studied in the literature and is still

the object of active research in many applications (see e.g., [2], [3]). There are usually four different approaches

in the literature to determine the resolution limit of two closely spaced signals. The first one rests on the analysis

of the mean null spectrum concerning specific high-resolution algorithms. More precisely, two main criteria

based on the mean null spectrum have been introduced by Cox [4] and Sharman and Durrani [5]. The first

criterion states that two sources are resolved if the midpoint mean null spectrum is greater than the mean null

spectrum in the two true source DOAs. While for the second criterion, two sources are resolved if the second

derivative of the mean spectrum at the midpoint is negative. The two criteria were applied to derive the threshold

ASNR for specific high-resolution algorithms, including conventional MUSIC and Min-Norm (the first one in

[6]–[10] and the second one in [11], [12]). Then, they have been used to compare the threshold ASNR for the

conventional MUSIC and NC MUSIC algorithms [13] in the context of uncorrelated circular and rectilinear

sources, respectively. The second approach is based on a hypothesis test using the generalized likelihood ratio

test [14], [15] or the Bayesian approach [16]. The third approach relies on the estimation accuracy, capitalizing

on the Cramér-Rao bound (CRB). It compares the DOA separation of two sources to the square-root of the

CRB of the DOA [17] or to the CRB of the difference between the two DOA’s introduced in [18] and then

used in numerous papers (see e.g., [19]–[22]). The last approach is based on the information theory and more

specifically on the Stein’s lemma which links the false alarm probability resulted from the Neyman-Pearson

decision criterion to the relative entropy between two hypothesis [23], or on the mutual information between

DOA, scattering properties and the received signal [2]. In all these works, however, the sources embedded in

a spatially uncorrelated C-CG distributed noise are considered either deterministic or uncorrelated stochastic

Gaussian distributed, except in [9] which presents some simulation results using the null spectrum with correlated

and coherent C-CG distributed sources, and in [22] which uses the Smith’s criterion [18] in the MIMO radar

context under K-distributed clutter.

This paper is dedicated to the threshold ASNRs derivation based on the first approach and its aim is twofold.

First, it gives theoretical approximate interpretable closed-form expressions of the threshold ASNR for which
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MUSIC-like algorithms are able to resolve two closely spaced sources in a much more general statistical

framework than in the previous works. More precisely, we assume here that the directional sources are circular

or rectilinear correlated with arbitrary distributions, which is inherent in a context of multipath or smart jammers.

We also consider that the noise is spatially uncorrelated and C-CES distributed, which can model impulsive

noise with heavy-tailed distributions. This kind of noise can be encountered in radar clutter [24] [25], made-

man noise and interference in indoor and outdoor mobile communications channels [26] [27]. In these adverse

conditions, this allows us, in particular, to quantify the increase of threshold ASNR required to resolve two

closely-spaced equipowered sources with the conventional MUSIC and NC MUSIC algorithms based on the

SCM of the observations, with respect to the standard conditions of uncorrelated sources embedded in C-CG

distributed noise. Second, it aims is to quantify the gain in resolution brought when this SCM is replaced by an

M -estimate of the covariance matrix of the observations. For this purpose, interpretable closed-form expressions

of the threshold ASNR are also derived for C-CES and NC-CES distributed observations.

The paper is organized as follows. Section II gives a brief reminder on CES distribution and specifies the

data models and the involved MUSIC-based DOA estimation algorithms. It first describes a standard array data

model with two equal-power arbitrary distributed correlated sources, which are either circular or rectilinear, and

a spatially white C-CES distributed noise. Then, a robust distribution model, where the observations are either

C-CES or NC-CES distributed, is introduced. This section ends with a brief review of the conventional and NC

MUSIC algorithms and the statistical distributions of the SCM and M -estimators of covariance matrices. Section

III presents the resolving power of MUSIC-like algorithms. After a brief review of the Cox, and of Sharman

and Durrani criteria on which resolving power is based, two preliminary lemmas based on perturbations of

noise projectors are given. They allow us to give closed-form expressions of the mean-null spectrum associated

with the conventional and NC MUSIC algorithms for the two models introduced in Section II. Two general

closed-form expressions of the threshold ASNR applicable to the two models and criteria for each conventional

MUSIC and NC MUSIC algorithms are deduced. Then, comments to explain how the non-Gaussianity of the

noise and observations, and the phase and magnitude of the correlation of the sources impact the threshold

ASNR are discussed. Numerical illustrations of the threshold ASNR are given in Section IV, with particular

attention paid to the phase and magnitude of the correlation of the sources and to the robustness of M -estimates

of covariance matrices of the observations. Finally, the paper is concluded in Section V.

The notations used throughout this paper are the following. The abbreviation [resp. ] stands for respectively.

Vectors and matrices are denoted by bold-faced lowercase and uppercase letters, respectively. ∗, T , and H

respectively represent the conjugate, the transpose and the conjugate transpose operators. E(.), Re(.), |.| and

# are the expectation, real part operator, determinant and Moore-Penrose inverse, respectively. =d stands for

July 26, 2021 DRAFT



4

”shares the same distribution as”. vec(·) is the vectorization operator that turns a matrix into a vector by stacking

the columns of the matrix one below another which is used in conjunction with the Kronecker product A⊗B as

the block matrix whose (i, j) block element is ai,jB and with the vec-permutation matrix K which transforms

vec(C) to vec(CT ) for any matrix C. The matrix J is the exchange matrix

0 I

I 0

 and ek denotes the k-unit

vector.

II. DATA MODEL AND MUSIC-LIKE ALGORITHMS

In this section, we specify two data array models with two equal-power arbitrary distributed correlated sources

impinging on an arbitrary array of N sensors with spatially white noise. In the first model, the sources are

either arbitrary or rectilinear with a C-CES distributed noise and in the second one, the observation is either

C-CES or NC-CES distributed. For the ease of the readers, we begin by giving a brief reminder on C-CES and

NC-CES distributions.

A. Brief review of C-CES and NC-CES distributions

In this paper, we use N -dimensional zero-mean C-CES [resp., NC-CES] distributed random variables (r.v.)

yt possessing probability density functions (p.d.f.) given by

p(yt) = |Ry|−1g(yHt R−1
y yt), [resp., |Rỹ|−1/2g(

1

2
ỹHt R−1

ỹ ỹt)], (1)

where ỹt
def
= [yTt ,y

H
t ]T and Rỹ

def
=

Ry Cy

C∗y R∗y

 with Ry and Cy are N × N Hermitian positive definite

and complex symmetric matrices, respectively called scatter and pseudo-scatter matrices. The function1 g(.):

R+ 7→ R+ satisfies δN,g
def
=
∫∞

0 tN−1g(t)dt < ∞. The r.v. yt admit the following stochastic representation:

yt =d

√
QtR1/2

y ut [28] [resp., ỹt =d

√
QtR1/2

ỹ ũt [29] with ũt
def
= [uTt ,u

H
t ]T ], where the non-negative real

r.v. Qt and the complex r.v. ut are independent and ut is uniformly distributed on the unit complex N -sphere.

B. Standard data model

Consider two equal-power narrowband uncorrelated or correlated (but non-coherent) signals impinging on

an arbitrary array of N sensors. The signal received in baseband at the time instant t is modeled as

yt = Axt + nt, t = 1, ..., T, (2)

1To remove the so-called scale ambiguity, the density generator g is here constrained such that δN+1,g/δN,g = N , [28] to ensure that
the scatter Ry and extended scatter Rỹ matrices are equal to the covariance E(yty

H
t ) and extended covariance E(ỹtỹ

H
t ), respectively.

The expressions of these p.d.f. are consistent with the ones given in [28] and [30], respectively, because the normalizing constant is
here included in the function g.
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where {y1, ...,yt, ...,yT } are independent and identically distributed. A = [a1,a2] is the steering matrix where

each vector ak = a(θk) is parameterized by the real scalar parameter θk according to the parametrization

introduced in [10] where ‖ak‖2 = N . xt = [xt,1, xt,2]T and nt model signals transmitted by sources and additive

measurement noise, respectively. xt and nt are zero-mean with finite fourth-order moments and not correlated

with each other. nt is assumed to be C-CES distributed and spatially uncorrelated with E(ntn
H
t ) = σ2

nI. The

fourth-order moments of nt are proved to be characterized by a single parameter η. This parameter is defined

by η
def
= E(Q2

t )
N(N+1) from the stochastic representation nt =d σn

√
Qtut. This parameter satisfies the conditions

η ≥ N/(N + 1) [31], η = 1 for C-CG distributions and can take very large values for very impulsive noise,

such that for the circular complex Student t-distributions with heavier tails than the C-CG distribution as shown

in Section IV-A. The signal sources xt are arbitrary distributed (circular or non-circular to the second-order),

with covariance Rx = E(xtx
H
t ) and complementary covariance Cx = E(xtx

T
t ). Consequently, this leads to

the following covariance and complementary covariance of yt

Ry = ARxA
H + σ2

nI
def
= S + σ2

nI and Cy = ACxA
T , (3)

where

Rx = σ2
x

 1 ρ

ρ∗ 1

 with ρ
def
= E(xt,1x

∗
t,2) ∈ C and |ρ| < 1. (4)

We will also consider the specific case where xt,1 and xt,2 are rectilinear (also called strictly second-order

non-circular), i.e., described by

xt,k = st,ke
iφk where st,k are real-valued with ∆φ

def
= φ1 − φ2 ∈ [0,+π]. (5)

The phases φk associated with different propagation delays are assumed fixed, but unknown during the array

observation. To derive MUSIC-like algorithms exploiting the prior knowledge of rectilinear sources, the model

(2) can be rewritten according to the following equivalent extended model:

ỹt
def
=

yt

y∗t

 = Ãst + ñt, t = 1, . . . , T, (6)

where Ã
def
= [ã1, ã2] with ãk

def
= [aTk e

iφk ,aHk e
−iφk ]T , st

def
= [st,1, st,2]T and ñt

def
= (nTt ,n

H
t )T . Consequently

the covariance Rỹ
def
= E(ỹtỹ

H
t ) and complementary covariance Cỹ

def
= E(ỹtỹ

T
t ) of the extended signal ỹt are

given by

Rỹ = ÃRsÃ
H + σ2

nI
def
= S̃ + σ2

nI and Cỹ = RỹJ = JR∗ỹ, (7)
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where if

Rs
def
= E(sts

T
t ) = σ2

x

 1 ρ′

ρ′ 1

 with ρ′ ∈ (−1,+1), (8)

Rx in (3) is written in the following form:

Rx = σ2
x

 1 ρ′ei∆φ

ρ′e−i∆φ 1

 . (9)

Consequently, in the specific case of rectilinear sources, the phase separation ∆φ associated with the sign of

ρ′ corresponds to the phase ∠ρ of the correlation of the sources.

Assuming that A and Ã are full column rank, whose column spaces characterize the DOA (θ1, θ2), the con-

ventional and NC MUSIC algorithms are usually based on the SCM and extended SCM Ry,T = 1
T

∑T
t=1 yty

H
t

and Rỹ,T = 1
T

∑T
t=1 ỹtỹ

H
t , respectively.

C. Robust distribution model

Many papers in the literature (see e.g., [28], [32]) have shown by numerical simulations that the MUSIC

sample null spectrum presented a loss of resolution for heavy-tailed distributed noise. To mitigate this loss

in resolution performance of MUSIC-like algorithms for heavy-tailed C-CES distributed noise, the SCM and

extended SCM can be replaced by the ML estimate of Ry and Rỹ, respectively. However, these ML estimates

cannot be obtained for arbitrary distributed xt and arbitrary C-CES distributed nt in (2). To overcome this

difficulty, we consider here an alternative model used in [31], [29] and [33], where the observations yt in (2)

are CES distributed. In this case the distributions of xt and nt are not specified, but only their second-order

statistics are imposed. More specifically, in the cases where the signals xt are circular to the second-order [resp.,

rectilinear], where {y1, ...,yt, ...,yT } are assumed independent zero-mean C-CES [resp., NC-CES] identically

distributed whose p.d.f. are given by (1).

The ML estimate of Ry [resp., Rỹ] in this model is solution of the implicit equation:

Γy,T =
1

T

T∑
t=1

ψ(yHt Γ−1
y,T ỹt)ytỹ

H
t ,

[
resp., Γỹ,T =

1

T

T∑
t=1

ψ

(
1

2
ỹHt Γ−1

ỹ,T ỹt

)
ỹtỹ

H
t

]
, (10)

where ψ(t)
def
= − 1

g(t)
dg(t)
dt . Existence, uniqueness of the solution of (10) and convergence in probability of the

sequence Γy,T to Ry have been proved in [28]. These properties have been extended in [29] to the sequence

Γỹ,T which converges in probability to Rỹ.

These estimates belong to the class of M -estimators of scatter matrices introduced by Maronna [34], where

ψ(.) does not need to be related to the density generator of any particular C-CES/NC-CES distribution. Existence

and uniqueness of the solution of (10) where ψ(.) is replaced by a function u(.) have been proved in the real
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case, provided u(.) satisfies a set of general conditions (called Maronna conditions) stated in [34].

Γy,T =
1

T

T∑
t=1

u(yHt Γ−1
y,T ỹt)ytỹ

H
t ,

[
resp., Γỹ,T =

1

T

T∑
t=1

u

(
1

2
ỹHt Γ−1

ỹ,T ỹt

)
ỹtỹ

H
t

]
, (11)

These conditions have been extended to the complex case in [35] and [28]. These sequences denoted by Γuy,T

and Γuỹ,T to specify their dependence in u(.) converge in probability to σuRy and σuRỹ, respectively where

σu given by [28, (46)] depends on u(.) and the C-CES [resp., NC-CES] distribution of yt [resp., ỹt]. Note that

Tyler’s M -estimator [36] is also solution of (11) with the specific weight u(t) = N
t , does not satisfy Maronna

conditions. It is a distribution-free estimator within the family of C-CES/NC-CES distributions. However, it

has been proved for real elliptically symmetric (RES) distributions in [36] and for C-CES distributions in [37],

then extended to NC-CES distributions in [29], that after normalizing, the solutions Γuy,T and Γuỹ,T of (10) also

converges in probability to σuRy and σuRỹ, respectively with σu = 1.

D. MUSIC-like algorithms

For the standard and robust distribution models, we consider the conventional MUSIC algorithm associated

with Ry,T and Γuy,T , respectively. The DOAs estimated by this algorithm are given by the two smallest minima

of the following so-called sample null spectra gAlgC

T (θ) and gAlgu
C

T (θ) [38]:

θ̂AlgC

k,T = arg min
θ
gAlgC

T (θ) and θ̂
Algu

C

k,T = arg min
θ
g

Algu
C

T (θ), k = 1, 2, (12)

with

gAlgC

T (θ)
def
= aH(θ)ΠTa(θ) and g

Algu
C

T (θ)
def
= aH(θ)Πu

Ta(θ), (13)

where ΠT and Πu
T denote the projector matrix associated with the noise subspace of Ry,T and Γuy,T , respectively.

In the specific case where xt is rectilinear, we consider for both models, the NC MUSIC algorithm devised

in [39] associated with Rỹ,T and Γuỹ,T , respectively. The DOAs are also estimated by the two smallest minima

of gAlgNC

T (θ) and gAlgu
NC

T (θ), respectively

θ̂AlgNC

k,T = arg min
θ
gAlgNC

T (θ) and θ̂
Algu

NC

k,T = arg min
θ
g

Algu
NC

T (θ), k = 1, 2 (14)

with

gAlgNC

T (θ)
def
=
(
aH(θ)Π1,Ta(θ)

)2−|aT (θ)Π∗2,Ta(θ)|2 and g
Algu

NC

T (θ)
def
=
(
aH(θ)Πu

1,Ta(θ)
)2−|aT (θ)Πu∗

2,Ta(θ)|2,

(15)

where Π1,T and Π2,T [resp., Πu
1,T and Πu

2,T ] are Hermitian and complex symmetric respectively, given by the
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projector matrices Π̃T and Π̃u
T structured as Π1,T Π2,T

Π∗2,T Π∗1,T

 and

 Πu
1,T Πu

2,T

Πu∗
2,T Πu∗

1,T


associated with the noise subspace2 of Rỹ,T and Γuỹ,T , respectively.

The following table summarizes the different models and algorithms that are defined in this paper:

Standard data model Robust distribution model

Circular noise: C-CG or C-CES C (or NC)-CES distributed observations yt with scatter matrix:

arbitrary sources rectilinear sources C-CES: Ry=ARxA
H+σ2

nI NC-CES: Rỹ=ÃRsÃ
H+σ2

nI

conventional MUSIC algorithm NC MUSIC algorithm conventional MUSIC algorithm NC MUSIC algorithm

Ry,T 7−→ ΠT Rỹ,T 7−→ Π̃T Γuy,T 7−→ Πu
T Γ̃uỹ,T 7−→ Π̃u

T

Table.1. Different models and algorithms studied in this paper.

E. Statistical distributions of the SCM and M -estimators of covariance matrices

For deriving in Section III-C the resolving power of these MUSIC algorithms based on Ry,T and Rỹ,T , we

will need the covariance Rry
def
= E[(vec(Ry,T ) − vec(Ry))(vecH(Ry,T ) − vec(Ry))] and Rrỹ

def
= E[(vec(Rỹ,T ) −

vec(Rỹ))(vecH(Rỹ,T )− vec(Rỹ))] of these SCM. They are given in [31] and [40], respectively, by

Rry =
1

T
[(R∗y ⊗Ry) + K(Cy ⊗C∗y) + (A∗ ⊗A)Qx(AT ⊗AH) + Qn], (16)

Rrỹ =
1

T
[(R∗ỹ ⊗Rỹ) + K(Cỹ ⊗C∗ỹ) + (Ã∗ ⊗ Ã)Qs(Ã

T ⊗ ÃH) + Qñ], (17)

where Qx, Qs, Qn and Qñ are the quadrivariance3 of xt, st, nt and ñt, respectively. For C-CES distributed noise Qn

and Qñ are given in [31] and [29], respectively by

Qn = σ4
n(η − 1)[I + vec(I)vecT (I)], (18)

Qñ = σ4
n(η − 1)[(I⊗ I) + K(J⊗ J) + vec(I)vecT (I)]. (19)

Similarly to the standard data model, we will need the covariance of Γuy,T and Γuỹ,T for deriving in Section III-C

the resolving power of the MUSIC algorithms based on these M -estimators. But only their asymptotic distributions are

available. Under these Maronna conditions, it has been proved for RES distributions [41] and for C-CES distributions

in [28], [42], then extended to NC-CES distributions in [29], that the sequences
√
T (vec(Γuy,T ) − vec(σuRy)) and

√
T (vec(Γuỹ,T ) − vec(σuRỹ)) converge in distribution to the zero mean Gaussian distribution N (0,RΓuy

,CΓuy
) and

2Similar to the projector matrix ΠT associated with RT from its EVD, the projector matrices Π̃T and Π̃u
T are defined by the EVD

of Rỹ,T and Γuỹ,T , respectively, by collecting the eigenvectors associated with their 2N − 2 smallest eigenvalues.
3For example [Qx]i+2(j−1),k+2(l−1) = κi,j,k,l

def
= Cum(x∗t,j , xt,i, xt,l, x

∗
t,k), i, j, k, l ∈ {1, 2}.
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N (0,RΓuỹ
,CΓuỹ

), respectively, where

RΓuy
= ϑ1(R∗y ⊗Ry) + ϑ2vec(Ry)vecH(Ry), (20)

RΓuỹ
= ϑ1((R∗ỹ ⊗Rỹ) + K(Cỹ ⊗C∗ỹ)) + ϑ2vec(Rỹ)vecH(Rỹ) (21)

and with CΓuy
= RΓuy

K and CΓuỹ
= RΓuỹ

K, where ϑ1 and ϑ2 are given by [28, (48-49)].

III. RESOLVING POWER OF MUSIC-LIKE ALGORITHMS

A. Review on the resolving power

Based upon the assumption [6] that the standard deviation
√

Var[gAlgC

T (θ)] of the sample null spectrum associated with

the conventional MUSIC and Min-Norm algorithms for circular Gaussian signals is small compared to its mean value

E[gAlgC

T (θ)] in the vicinity of the true DOAs, the mean value of the sample null spectrum can be reasonably taken as

representative of the ensemble of sample null spectra. We note that this assumption has been specified in [43], for which

its validity has been proved in the conditions N � 1 and T � N for the conventional MUSIC algorithm. We suppose it

is also valid for non-Gaussian signals and as well as for the NC MUSIC algorithm. Based on this assumption, we continue

to use the Cox [4] and the Sharman and Durrani [5] criteria which respectively state that two closely spaced equal-power

sources are resolved if the following respective conditions are satisfied:

E[gAlg
T (θ1)] = E[gAlg

T (θ2)] ≤ E[gAlg
T (θm)] (22)

d2E[gAlg
T (θ)]

dθ2 |θ=θm
≤ 0, for θm

def
= (θ1 + θ2)/2. (23)

B. Preliminary lemmas

Approximations to the resolution threshold are deduced from equalities in (22) and (23). Consequently, the key point to

derive these resolution thresholds depends on the expectation of the random variables gAlgC

T (θ) and gAlgNC

T (θ). To obtain

these expectations, we resort to an analysis based on perturbations of the noise projector [38] instead of those of the

eigenvectors (e.g., [6], [10]). Therefore, we consider the following second-order expansion of δΠT
def
= ΠT −Π (where

w.r.t. Π denotes the projector matrix associated with the noise subspace of Ry) w.r.t. δRy,T
def
= Ry,T −Ry proved in

[38]:

δΠT = −(ΠδRy,TS# + S#δRy,TΠ)

+ S#(δRy,TΠδRy,T )S# −Π(δRy,TS#2δRy,T )Π + S#(δRy,TS#δRy,T )Π

+ Π(δRy,TS#δRy,T )S# − S#2(δRy,TΠδRy,T )Π−Π(δRy,TΠδRy,T )S#2 + o(δR2
y,T ). (24)

This relation is also valid for the extended model (6) by replacing Π, ΠT , δΠT , δRy,T and S, by Π̃, Π̃T , δΠ̃T , δRỹ,T

and S̃, respectively. It is also valid for the robust distribution model, by replacing (δΠT , δRy,T ) and (δΠ̃T , δRỹ,T ), by

(δΠu
T , δR

u
y,T

def
= σ−1

u δΓuy,T ) and (δΠ̃u
T , δR

u
ỹ,T

def
= σ−1

u δΓuỹ,T ), respectively.

July 26, 2021 DRAFT



10

To proceed, we need the expressions of E(δRy,TB1δRy,T ) and E(δRỹ,TB2δRỹ,T ) for arbitrary N ×N matrices B1

and 2N × 2N matrices B2, which are given by the following lemma proved in Appendix A:

Lemma 1: For the standard data model, we have

E(δRy,TB1δRy,T ) =
1

T

Tr(B1Ry)Ry + CyB
T
1 C∗y +

∑
i,j,k,l∈{1,2}

κi,j,k,lAeje
T
kAHB1Aele

T
i AH

+ σ4
n(η − 1)[B1 + Tr(B1)I]

)
, (25)

E(δRỹ,TB2δRỹ,T ) =
1

T

Tr(B2Rỹ)Rỹ + CỹB
T
2 C∗ỹ +

∑
i,j,k,l∈{1,2}

κi,j,k,lÃeje
T
k ÃHB2Ãele

T
i ÃH

+ σ4
n(η − 1)[B2 + JBT

2 J + Tr(B2)I]
)
, (26)

and for the robust distribution model:

E(δRu
y,TB1δR

u
y,T ) ≈ 1

Tσ2
u

(
ϑ1Tr(B1Ry)Ry + ϑ2RyB

T
1 Ry

)
, (27)

E(δRu
ỹ,TB2δR

u
ỹ,T ) ≈ 1

Tσ2
u

(
ϑ1Tr(B2Rỹ)Rỹ + ϑ1CỹB

T
2 C∗ỹ + ϑ2RỹB2Rỹ

)
. (28)

Then using Lemma 1 with B1 = Π,S# and S#2, then with B2 = Π̃, S̃# and S̃#2 in the derivation of the mean of δΠT

given in (24) and the mean of δΠ̃T , we get after some algebraic manipulations based on the identities RyΠ = σ2
nΠ,

ΠCy = 0, S#Π = 0 and RỹΠ̃ = σ2
nΠ̃, JΠ̃TJ = Π̃, JS̃#T

J = S̃# and JS̃#2T J = S̃#2, the following lemma:

Lemma 2: In the standard data and robust distribution models, the mean of δΠT and δΠu
T are given respectively by

E(δΠT ) ≈ 1

T

(
Tr(Π)U− Tr(U)Π + (η − 1)

(
Tr(Π)U

′
− Tr(U

′
)Π
))

, (29)

E(δΠu
T ) ≈ ϑ1

Tσ2
u

(Tr(Π)U− Tr(U)Π) , (30)

with U
def
= σ2

nS#RyS
# and U

′ def
= σ4

nS#2.

For the two extended models, the mean of δΠ̃1,T , δΠ̃2,T , δΠ̃u
1,T and δΠ̃u

2,T are given respectively by

E(δΠ1,T ) ≈ 2

T

(
Tr(Π1)U1 − Tr(U1)Π1 + (η − 1)

(
Tr(Π1)U

′

1 − Tr(U
′

1)Π1

))
(31)

E(δΠ2,T ) ≈ 2

T

(
Tr(Π1)U2 − Tr(U1)Π2 + (η − 1)

(
Tr(Π1)U

′

2 − Tr(U
′

1)Π2

))
(32)

E(δΠu
1,T ) ≈ 2ϑ1

Tσ2
u

(Tr(Π1)U1 − Tr(U1)Π1) , (33)

E(δΠu
2,T ) ≈ 2ϑ1

Tσ2
u

(Tr(Π1)U2 − Tr(U1)Π2) , (34)

where U1 and U2, U
′

1 and U
′

2, Π1 and Π2 are N×N sub-block matrices of the 2N×2N Hermitian positive semidefinite

matrices Ũ
def
= σ2

nS̃#RỹS̃
# =

 U1 U2

U∗2 U∗1

, Ũ
′ def

= σ4
nS̃#2 =

 U
′

1 U
′

2

U
′∗
2 U

′∗
1

 and Π̃ =

 Π1 Π2

Π∗2 Π∗1

, respectively.

Using (29) and (30) in (13), allows us to straightforward derive the mean null spectra associated with the conventional
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MUSIC algorithm based on the SCM, then on an M -estimate covariance of yt, which are given respectively by:

E(gAlgC

T (θ)) ≈ gAlgC(θ) +
1

T

(
(N − 2)aH(θ)Ua(θ)− Tr(U)gAlgC(θ)

+ (η − 1)
(

(N − 2)aH(θ)U
′
a(θ)− Tr(U

′
)gAlgC(θ)

))
(35)

E(g
Algu

C

T (θ)) ≈ gAlgC(θ) +
ϑ1

Tσ2
u

(
(N − 2)aH(θ)Ua(θ)− Tr(U)gAlgC(θ)

)
, (36)

with gAlgC(θ)
def
= aH(θ)Πa(θ).

For the NC MUSIC algorithm, the derivation of the mean null spectra is more involved, but using asymptotic distribution

of Π1,T , Π2,T , Πu
1,T and Πu

2,T given in [29], the mean null spectra for this algorithm based on the SCM and then on an

M -estimate covariance of ỹt are proved in Appendix B and given respectively by:

E(gAlgNC

T (θ)) ≈ gAlgNC(θ)

+
2

T
(2N − 3)[(aH(θ)U1a(θ))(aH(θ)Π1a(θ))− Re[(aH(θ)U2a

∗(θ))(aT (θ)Π∗2a(θ))]]

+
2(η − 1)

T
(2N − 3)[(aH(θ)U′1a(θ))(aH(θ)Π1a(θ))− Re[(aH(θ)U′2a

∗(θ))(aT (θ)Π∗2a(θ))]]

− 4

T
[Tr(U1) + (η − 1)Tr(U

′

1)]gAlgNC(θ) (37)

E(g
Algu

NC

T (θ)) ≈ gAlgNC(θ)

+
2ϑ1

Tσ2
u

(2N − 3)[(aH(θ)U1a(θ))(aH(θ)Π1a(θ))− Re[(aH(θ)U2a
∗(θ))(aT (θ)Π∗2a(θ))]]

− 4ϑ1

Tσ2
u

Tr(U1)gAlgNC(θ), (38)

with gAlgNC(θ)
def
=
(
aH(θ)Π1a(θ)

)2 − |aT (θ)Π∗2a(θ)|2.

We check that (35) and (37) reduce to [13, rel. (3.6)] and [13, rel. (4.4)], respectively, for circular Gaussian noise for

which η = 1. Likewise, (36) and (38) reduce to [13, rel. (3.6)] and [13, rel. (4.4)], respectively, for Gaussian observations

associated with the SCM for which σu = ϑ1 = 1.

Finally, note that all the results of this subsection apply to an arbitrary number K of sources necessarily equi-powered

by by replacing N − 2 by N −K in (35) (36) and 2N − 3 by 2N −K − 1 in (37) (38).

C. Derivation of the threshold ASNR

First, we note that mean null spectra associated with the standard data model (35) and (37) reduce to those of the robust

distribution model (36) and (38) if η = 1 and T replaced by Tσ2
u/ϑ1. Consequently, the threshold ASNR for the robust

distribution model is directly deduced form those of the standard data model. Let us start with the derivation of the threshold

ASNR given by the Cox (22) and the Sharman and Durrani (23) criteria, applied to the conventional MUSIC algorithm

for the standard data model. To obtain these threshold ASNRs, we must get closed-form expressions of aH(θ)Ua(θ),

aH(θ)U′a(θ) and aH(θ)Πa(θ) in (35). To simplify notations and to make the calculations of these expressions easier,

we derive in Appendix C, the matrices Π, U and U′ for only centrosymmetric arrays where the coordinate system has its
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origin at the centroid of the arrays4. Plugging their expressions in (35) and using symbolic calculus akin to a high level

language, the terms E(gAlgC

T (θ1)), E(gAlgC

T (θm)) and d2E[g
AlgC
T (θ)]

dθ2 |θ=θm
of the Cox and the Sharman and Durrani criteria,

can be written in the following form:

E(gAlgC

T (θ1)) ≈ 1

T

[
1

r
h1,1 +

1

r2
h2,1

]
(39)

E(gAlgC

T (θm)) ≈ gAlgC(θm) +
1

T

[
1

r
h1,m +

1

r2
h2,m

]
(40)

d2E[gAlgC

T (θ)]

dθ2 |θ=θm
≈ d2gAlgC(θ)

dθ2 |θ=θm
+

1

T

[
1

r
h′1,m +

1

r2
h′2,m

]
, (41)

where r def
= Nσ2

x/σ
2
n and the terms h1,1, h2,1, h1,m, h2,m h′1,m and h′2,m given in Appendix D for arbitrary centrosymmetric

arrays are functions of the real-valued geometric terms aH1 a2, aH1 am, a
′H
m a1 and a

′′H
m a1. Using expansions of these terms

with respect to δθ def
= θ2 − θ1 according to the parameterization of [10] for closely-spaced sources allow us to prove the

following result:

Result 1: The threshold ASNRs deduced from the Cox (22) and the Sharman and Durrani (23) criteria given by the

conventional MUSIC algorithm (12) for both standard data (section II-B) and robust distribution (section II-C) models

with two correlated equal-power sources and an arbitrary centrosymmetric array are given for closely-spaced sources and

a large number T of snapshots, by the following approximations:

ξC−MUSIC ≈
δ1δ2
T

(
1 + Re(ρ)

1− |ρ|2

)
αN

(∆θ)4

(
1 +

√
1 +

δ3T

δ1δ2

(∆θ)2

βN

)
, (42)

where ∆θ denotes the measure5 of the angular separation between the two sources defined by [10, rel. (8)] and where

the parameters δ1, δ2 and δ3 are defined in Table 2.

Cox criteria δ1 = 2

Sherman and Durrani criteria δ1 = 1

Standard data model (δ2, δ3) = (1, η)

Robust distribution model (δ2, δ3) = (ϑ1/σ
2
u, 1)

Table 2. Parameters δ1, δ2 and δ3

In the specific case of ULA associated with the symmetric steering vectors

a(θ) =
(
e−i

(N−1)θ
2 , e−i

(N−3)θ
2 , .., ei

(N−3)θ
2 , ei

(N−1)θ
2

)T
, (43)

4We note that this structure is very used in practice because uniform linear, uniform circular and regular hexagonal shaped arrays
[44], cross-based centro-symmetric arrays, square-based centro-symmetric array are centrosymmetric.

5This measure is defined by (∆θ)2
def
= (2π)2

λ2N2

∑N
n=1[rTn (s1 − s2)]2, where rn, s1 and s2 denote vectors pointing from the centroid

of the array to the n-th sensor and to the two sources, and λ is the wavelength.
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where the coordinate system has its origin at the centroid of the array, this measure of angular separation ∆θ for closely-

spaced sources is given by

∆θ ≈ Nδθ cos θm/(2
√

3) where θm
def
=

1

2
(θ1 + θ2) (44)

and αN and βN are given by:

αN =
10N4 cos4 θm

(N2 − 1)(N + 2)
and βN =

5N2 cos2 θm
2(N + 2)

.

For the NC MUSIC algorithm, the derivation of the threshold ASNRs given by the Cox and the Sharman and Durrani

criteria follows the same steps. Closed-form expressions of the blocks Π1, Π2, U1, U2 and U′1, U′2 of Π̃, Ũ and Ũ′,

respectively, are derived in Appendix D and E. Note that the expression [aTk e
iφk ,aHk e

−iφk ]T of the extended steering vectors

allows for simpler calculations than for the expression [aTk ,a
H
k e
−i2φk ]T used in the literature. Using symbolic calculus,

(39), (40) and (41) can also be derived for the mean spectrum E[gAlgNC

T (θ)] where now h1,1, h2,1, h1,m, h2,m h′1,m and

h′2,m are functions of both ∆θ and ∆φ. Using expansion of these spatial terms with respect to ∆θ for closely-spaced

sources allow us to prove the following result:

Result 2: The threshold ASNRs deduced from the Cox (22) and the Sharman and Durrani (23) criteria given by the

NC MUSIC algorithm (14) for both standard data (section II-B) and robust distribution (section II-C) models with two

correlated equal-power sources and an arbitrary centrosymmetric array are respectively given for closely-spaced sources

and a large number T of snapshots, by the following approximations:

ξNC−MUSIC ≈
δ1δ2
T

(
1 + ρ′ cos(∆φ)

(1−ρ′2) sin2(∆φ)

)
γN

(∆θ)2

1 +

√√√√1+
δ3T

δ1δ2

(∆θ)2

γN

[
1+

(
ρ′ + cos(∆φ)

1+ρ′ cos(∆φ)

)2
] , (45)

except for ”very small” ∆φ mod π for which:

ξNC−MUSIC ≈
δ1δ2
T

(
1

1−ρ′

)
αN

(∆θ)4

(
1 +

√
1+

δ3T

δ1δ2

(∆θ)2

βN

)
, (46)

where δ1, δ2 and δ3 are defined in Table 2.

In the specific case of ULA whose steering vector given by (43) and where ∆θ is defined by (44), we have

γN =
N2(2N − 3) cos2 θm

N2 − 1
, αN =

5N4(2N − 3) cos4 θm
(N2 − 1)(N2 − 4)

and βN =
5N2(2N − 3) cos2 θm

N2 − 4
.

We note that for Gaussian distributed noise in the standard data model for which η = 1 and Gaussian distributed

observations in the robust distribution model for which ϑ1 = σu = 1, we have δ2 = δ3 = 1 in (42), (45) and (46),

In this case, for uncorrelated sources (ρ = ρ′ = 0), the threshold ASNRs (42), (45) and (46) reduce to [13, (3.7)(3.8)],

[13, (4.5)(4.6)(4.8)] and [13, (4.5)(4.6)(4.7)], respectively.

D. General comments

This section attempts to explain the influence of the signal and noise parameters on the ASNR thresholds in Results 1

and 2.
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1) Influence of the non-Gaussianity of the noise and observations: In the standard data model for which δ2 = 1

and δ3 = η, the non-Gaussianity of the noise can strongly impact the threshold ASNR. This is particularly the case of the

C-CCG noise distributions [28] including the circular complex Student t and generalized Gaussian distributions, for which

η > 1 where η is very large for heavy-tailed distributions. Thus for these distributions, the required ASNR to resolve

closely-spaced sources can be very large, as it will be illustrated in Section IV.

In the robust distribution model for which δ2 = ϑ1/σ
2
u and δ3 = 1, the non-Gaussianity of the observation impacts the

threshold ASNR through the equivalent number T/δ2 = σ2
uT/ϑ1 of snapshots. For ML estimates of Ry and Rỹ , σu = 1

and ϑ1 is close to 1 for many heavy-tailed CES distributions. Likewise, for the Tyler’s M -estimate, ϑ1 = (N + 1)/N

[37]. Consequently, the threshold ASNRs (42), (45) and (46) required for heavy-tailed CES distributions are very similar

to those obtained in the case of Gaussian distributions. In contrast if the SCM have been used to estimate Ry and Rỹ ,

u(t) = 1 gives σu = 1 and ϑ1 = η and the equivalent number T/δ2 = T/η of snapshots is dramatically reduced for

heavy-tailed distributions and thus, the required ASNR to resolve closely-spaced sources would be very large.

2) Influence of the correlation (magnitude and phase) for the conventional MUSIC algorithm: The threshold

ASNR (42) is a function of the magnitude of the correlation of sources, but also of its phase. Note that many performance

analysis of the conventional MUSIC algorithm seem to have always assumed that the correlation phase is zero or 180◦

(e.g., in [45]). Whereas, it is known [46] that the correlation phase has a strong effect on the associated Cramér-Rao bound

under certain conditions (small aperture arrays, large correlation magnitude and closely-spaced sources).

As expected, the threshold ASNR generally increases strongly as the magnitude of the correlation approaches one for

which the sources are coherent. In this case, the signal subspace is one-dimensional and the conventional MUSIC algorithm

fails. More precisely, the relevant correlation term in (42) satisfies the following property:

1 + Re(ρ)

1− |ρ|2
|∠ρ6=π =

1 + |ρ| cos(∠ρ)

1− |ρ|2
|∠ρ 6=π −−−−−→

|ρ|→+1
+∞

1 + Re(ρ)

1− |ρ|2
|∠ρ=π =

1

1 + |ρ|
−−−−−→
|ρ|→+1

1/2. (47)

In this latter case the threshold ASNR reaches half the value for uncorrelated sources. This singular case occurs when the

distance E|xt,1 − xt,2|2 reaches its maximum.

However, for a fixed magnitude correlation, the phase correlation can also strongly impact the threshold ASNR. We

can clearly observe that the threshold ASNR (42) is maximal [resp., minimal] for ∠ρ = 0 [resp., ∠ρ = π] where the term
1+Re(ρ)
1−|ρ|2 of (42) takes the value 1

1−|ρ| and 1
1+|ρ| , respectively. We can deduce that for ∠ρ = π, two correlated sources are

better resolved than uncorrelated sources with the conventional MUSIC algorithm.

3) Influence of the correlation and phase separation of rectilinear sources for the NC MUSIC algorithm:

It can also be seen, comparing (45) to (42), that the NC MUSIC algorithm always largely outperforms the conventional

MUSIC algorithm used for rectilinear sources, due to the proportionality of ξNC−MUSIC and ξC−MUSIC to 1/(∆θ)2 and

1/(∆θ)4, respectively.

In contrast, for very weak ∆φ (mod π), the behavior of the conventional and NC MUSIC algorithms are similar due

to the similarity of the dependence in (∆θ)4 in (42) and (46). The weak ∆φ (mod π) correspond to the worst resolution
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capability of the NC MUSIC algorithm. Consequently, the phase separation ∆φ plays a crucial role from the resolution

point of view for any distribution of noise and observations.

For uncorrelated sources (ρ′ = 0), (45) clearly shows that the threshold ASNR deduced from the Cox and the Sharman

and Durrani criteria given by the NC MUSIC algorithm is minimum for ∆φ = π/2. Furthermore (45) shows that

ξNC−MUSIC is a symmetric function of ∆φ with respect to π/2. This property is consistent with the asymptotic variance

of the NC MUSIC DOA estimation algorithm, which has been observed numerically minimal for ∆φ = π/2 [47].

For correlated sources, the role of ∆φ in (45) is more complicated to analyze. However, noting that for ρ′ > 0,
1+ρ′ cos(∆φ)

(1−ρ′2) sin2(∆φ)
and

(
ρ′+cos(∆φ)
1+ρ′ cos(∆φ)

)2

are decreasing functions of ∆φ in [0, π] and [0,∆φ0], respectively (where ∆φ0 is

solution of ρ′+cos(∆φ0) = 0), the threshold ASNR (45) is minimum for ∆φ = ∆φ1 > ∆φ0 > π/2, where ∆φ1 increases

as ρ′ increases. With the same approach, for ρ′ < 0, the threshold ASNR is minimum for ∆φ = ∆φ1 < ∆φ0 < π/2,

where ∆φ1 decreases as ρ′ decreases. This dependence of ξNC−MUSIC to ∆φ for different values of ρ′ will be illustrated

in Fig.5 in Section IV. Furthermore, we note that for ∆φ = π/2, 1+ρ′ cos(∆φ)
(1−ρ′2) sin2(∆φ)

= 1
1−ρ′2 and

(
ρ′+cos(∆φ)
1+ρ′ cos(∆φ)

)2

= ρ′2, and

therefore the threshold ASNR does depend on the sign of ρ′ ∈ (−1,+1).

Note also that the threshold ASNR associated with NC MUSIC algorithm generally increases strongly as the magnitude

of the correlation approaches one because 1+ρ′ cos(∆φ)
(1−ρ′2) sin2(∆φ)

→ +∞ for ∆φ 6= 0 and ρ′ → ±1 in (45) and 1
1−ρ′ → +∞

for ∆φ = 0 and ρ′ → +1 in (46). However, 1
1−ρ′ → 1/2 for ∆φ = 0 and ρ′ → −1 in (46), which is consistent with the

singular case of the conventional MUSIC algorithm, whose performances are similar for ∆φ = 0.

4) Fluctuation of the correlation phase: Finally note that the phase of the correlation ρ of the sources for the

conventional MUSIC algorithm (which corresponds to ∆φ for rectilinear sources, see (9)) is a highly variable and

unpredictable parameter in a multipath environment for which it is very sensitive to the difference between the propagation

delays in the direct and secondary paths. Consequently, the threshold ASNRs may vary significantly from time to time

and thus the resolution performance are rather given by the mean of the threshold ASNRs with respect to the correlation

phase. For the conventional MUSIC algorithm, (42) gives:

E(ξC−MUSIC) ≈ δ1δ2
T

(
1

1− |ρ|2

)
αN

(∆θ)4

(
1 +

√
1 +

δ3T

δ1δ2

(∆θ)2

βN

)
, (48)

which also clearly increases with the magnitude of the correlation. For the NC MUSIC algorithm, the expression of mean

of the threshold ASNRs (45)(46) which is not reachable will be illustrated in Section IV.

IV. ILLUSTRATIVE EXAMPLES

This section illustrates the dependence of the threshold ASNR given by Results 1 and 2 on the non-Gaussianity of the

noise and observations, and the phase and magnitude of the correlation of the complex circular and rectilinear sources by

considering two illustration parts corresponding to the standard data and robust distribution models. Let us assume that two

narrowband equal-power rectilinear correlated signal sources with power σ2
x impinge on a uniform linear array of N = 10

sensors separated by a half-wavelength for which the steering vectors are a(θk) is given by (43) where θk = π sin(ωk),

k = 1, 2, with ωk is the DOAs relative to the normal of array broadside. The phases φk, k = 1, 2 associated with different
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propagation delays are assumed fixed, but unknown during the array observation and the threshold ASNR depends only

on ∆φ
def
= φ1 − φ2. The SNR is defined as 10 log10(σ2

x/σ
2
n) dB.

A. Standard data model

In the first experiment, the noise nt is either circular complex Student t-distributed with parameter ν > 4 to have finite

fourth-order moment for which η = ν−2
ν−4 > 1, which has heavier tails than the Gaussian, or C-CG distributed (with η = 1

obtained also for ν →∞). We suppose the sources in model (5) consist of two multipaths issued from two independent

BPSK modulated signals et,1 and et,2, for which we have st,1 = et,1 and st,2 = ρ′et,1 +
√

1− ρ′2et,2 with ρ′ ∈ (−1,+1).

The two sources xt,1 and xt,2 are thus equal-powered with correlation ρ = ρ′ei∆φ.

1) Influence of the non-Gaussianity of the noise: Figs. 1a and 1b exhibit the threshold ASNRs given by the Cox

criterion and the Sharman and Durrani criterion as a function of the shape parameter ν for circular complex Student’s

t-distributed noise associated with the conventional MUSIC and NC MUSIC algorithms for uncorrelated sources. These

figures show that the non-Gaussianity of the noise strongly impacts the threshold ASNR for large heavy-tailed distributions,

i.e., when ν approaches 4. We also note that the threshold ASNR loss is of the order of 2dB when the C-CG distributed

noise becomes circular complex Student’s t-distributed for ν = 4.1. Furthermore, these figures confirm that the NC MUSIC

algorithm greatly outperforms the conventional MUSIC algorithm for large phase separations.

 shape parameter ν

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

 T
h

re
s
h

o
ld

 A
S

N
R

 (
d

B
)

25

30

35

40

45

Cox criterion

Sharman and Durrani criterion

∆θ=0.07rd

∆θ=0.1rd

∆θ=0.2rd

 shape parameter ν

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

 T
h

re
s
h

o
ld

 A
S

N
R

 (
d

B
)

4

6

8

10

12

14

16

18
Cox criterion

Sharman and Durrani criterion

∆θ=0.1rd

∆θ=0.2rd

∆θ=0.07rd

(a) Conventional MUSIC algorithm with ρ = 0 (b) NC-MUSIC algorithm with ρ′ = 0 and ∆φ = π/2

Fig. 1. Threshold ASNRs (42) (45) given by the Cox criterion and the Sharman and Durrani criterion as a function of the parameter
ν associated with the conventional MUSIC and NC MUSIC algorithms for circular complex Student t-distributed noise.

2) Influence of the correlation (magnitude and phase) for the conventional MUSIC algorithm with C-CG

noise: Figs. 2a and 2b show the crucial role played by the phase of the correlation. One can see that the resolution

threshold ASNR of the conventional MUSIC algorithm is minimal [resp. maximal] for the phase of correlation ∠ρ = π

[resp., ∠ρ = 0] as predicted by III-D2. Fig. 2a shows that there is a resolution gain of 3dB when the sources are practically

in phase opposition (∠ρ ≈ π) compared to uncorrelated sources. We also naturally see a severe degradation for a large
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magnitude of the correlation (13dB for |ρ| = 0.95) for a zero phase with respect to uncorrelated sources. Fig. 2b shows

the threshold ASNR loss ratio r1 = ξC−MUSIC||ρ|/ξC−MUSIC||ρ|=0 varies with respect to |ρ| in 1
1−|ρ| and 1

1+|ρ| , for

respectively ∠ρ = 0 and ∠ρ = π as depicted by III-D2.
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Fig. 2. Ratio r1 = ξC−MUSIC||ρ|/ξC−MUSIC||ρ|=0 given by the Cox criterion (42) for the conventional MUSIC algorithm with
∆θ = 0.05rd as a function of the angle (a) and magnitude (b) of the correlation.

3) Influence of the correlation (magnitude and phase) for the NC MUSIC algorithm with C-CG noise:

Fig. 3 illustrates that the threshold ASNR given for the NC MUSIC algorithm is maximum for ∆φ = 0rd mod π, but

only minimum when ∆φ = π/2rd for uncorrelated sources. For correlated sources, the threshold ASNR is minimum for

∆φ1 > π/2 for ρ′ > 0 and for ∆φ1 < π/2 for ρ′ < 0 and this value of ∆φ1 deviates from π/2 when |ρ′| increases, as

depicted by III-D3.

Fig. 4 shows that the threshold ASNR of the NC MUSIC algorithm with the particular value ∆φ = π/2 does not

depend on the sign of ρ′ as depicted by III-D3 and naturally increases when ∆θ decreases.

4) Mean of the threshold ASNRs with respect to the correlation phase: Figs. 5a and 5b represent the mean of

the threshold ASNR with respect to the correlation phase given by the Cox criterion for the conventional MUSIC and NC

MUSIC algorithms, respectively, with C-CG distributed noise, as a function of the magnitude of the correlation. This mean

is derived from (48) for the conventional MUSIC algorithm and by averaging 12000 realizations for both conventional

MUSIC and NC MUSIC algorithms. Fig. 5a shows that the approximate value of the threshold ASNR given by the

closed-form expressions (48) is very close to the mean derived from (39) and (40). We clearly see a great degradation

in resolution for correlated sources compared to uncorrelated sources (about 7dB for |ρ| = 0.9 for both algorithms). This

figure also shows the advantage of using the NC MUSIC algorithm rather than the conventional MUSIC algorithm for

rectilinear sources.
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Fig. 3. Threshold ASNR given by the Cox criterion (45) for the NC MUSIC algorithm with C-CG distributed noise as a function of
the noncircularity phase separation ∆φ for ∆θ = 0.05rd for negative (a) and positive (b) values of ρ′ as shown in (8).
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Fig. 4. Threshold ASNR given by the Cox criterion (45) for the NC MUSIC algorithm with C-CG distributed noise as a function of
ρ′ for ∆φ = π/2.

B. Robust distribution model

In this second experiment, we assume that the observations yt follow either a circular or a NC complex Student t-

distribution with parameter ν > 4, with associated structured covariance Ry given by (3), or extended covariance Rỹ

given by (7), respectively. These robust distribution models can be considered as second-order approximative models of

the actual ones.

We consider here three estimates of covariance and extended covariance based on the circular or NC complex Student

t-distribution: the complex Student’s ML, M -estimator and the complex Tyler’s M -estimator for which the associated
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Fig. 5. Mean of the threshold ASNR with respect to the correlation phase given by the Cox criterion (42),(45) for the conventional
MUSIC algorithm (a) and NC MUSIC algorithm (b) with C-CG distributed noise, as a function of the magnitude of the correlation.

weight functions ψ(t) and u(t) are respectively defined in [28] by ψ(t) = 2N+ν
ν+2t and u(t) = N

t . The SCM estimator

corresponding to the ML in the Gaussian case is obtained with u(t) = 1. The parameters ϑ1 and σu of this complex

Student t-distribution are also given by ϑ1 = N+ν/2+1
N+ν/2 and σu = 1 for ML M -estimator, ϑ1 = N+1

N and σu = 1 for

Tyler’s M -estimate and by ϑ1 = η = ν−2
ν−4 and σu = 1 for the SCM [30].

Fig. 6 exhibits the threshold ASNRs given by the Cox criterion for circular [resp., NC] complex Student t-distributed

observations associated with the conventional [resp., NC] MUSIC algorithms, based on ML M -estimate, Tyler’s M -

estimate and SCM of the covariance [resp., extended covariance], as a function of ∆θ. We see that for heavy-tailed

distributions (ν = 4.1), the threshold ASNRs provided by Tyler’s M -estimate reaches that of the ML M -estimate and

outperforms those of the SCM by about 10dB. Furthermore, naturally, the NC MUSIC algorithm applied to rectilinear

sources outperforms the conventional MUSIC algorithm applied to circular sources, associated with the same structured

covariance Ry (3). Fig. 7 shows estimation of probability of resolution related to the Cox and to the Sharman and Durrani

criteria for NC complex Student t-distributed observation models (with ν = 4.1) obtained by Monte Carlo simulations6 for

highly correlated sources (ρ′ = 0.95) and ∆θ = 0.2rd. 1000 independent Monte Carlo runs have been performed where

the number of snapshots is fixed at T = 500. We see that the ASNR threshold given by our non-probabilistic approach

based on the mean null spectrum gT (θ) confirms the results of Fig. 6.

6In each simulation trial, the two sources are considered resolved for the Sharman and Durrani criterion if gAlgNC
T (θm+0.002 ∆θ)+

gAlgNC
T (θm − 0.002 ∆θ)− 2gAlgNC

T (θm) < 0.
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Fig. 6. Threshold ASNRs (42),(45) given by the Cox criterion for circular [resp., NC] complex Student t-distributed observations with
ν = 4.1 associated with the conventional [resp., NC] MUSIC algorithms, based on ML M -estimate, Tyler’s M -estimate and SCM of
the covariance [resp., extended sample covariance], as function of ∆θ, with ∆φ = π/6.
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Fig. 7. Probability of resolution as function of the ASNR for NC complex Student’ t-distributed observation models with ν = 4.1,
ρ′ = 0.95 and ∆θ = 0.2rd; given by the Cox and the Sharman and Durrani criteria associated with the NC MUSIC algorithm for two
values of ∆φ.

V. CONCLUSION

In this paper, we have derived interpretable unified closed-form expressions for the threshold ASNR along the Cox and

the Sharman and Durrani criteria associated with the conventional MUSIC and NC MUSIC algorithms in the context of

arbitrary circular or rectilinear distributed correlated sources and circular CES distributed noise, as well as of C-CES and

NC-CES distributed observations. Using these expressions, we investigated the impact of the non-Gaussianity of the noise
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and observations, as well as of the phase and magnitude of the correlation of the sources. In particular, we proved for the

first time that the phase of the correlation, which is the non-circularity phase separation for rectilinear sources, may have

a strong impact on the resolution and a zero phase may lead to overly optimistic resolution. Otherwise, we quantified the

resolution benefit provided when the SCM is replaced by M -estimates of the covariance matrix for CES observations.

APPENDIX

A. Proof of Lemma 1

We will make use of the following relations proved in [48, chp.16] which hold for any conformable matrices A, B, C,

and D and vectors a and b.

vec(ABC) = (CT ⊗A)vec(B), (49)

(A⊗B)(C⊗D) = AC⊗BD, (50)

vec(abT ) = b⊗ a, (51)

Tr(AB) = vecT (AT )vec(B), (52)

K(A⊗B) = (B⊗A)K, (53)

vec(A⊗B) = (I⊗K⊗ I)[vec(A)⊗ vec(B)], (54)

(I⊗K⊗ I)vec(K) = vec(K). (55)

Let us first consider the standard data model and start to prove (25). Using the vectorization operator, it follows form (49)

that

vec[E(δRy,TB1δRy,T )] = E(δRT
y,T ⊗ δRy,T )vec(B1), (56)

with δRy,T
def
= Ry,T −Ry gives after straightforward manipulations

E(δRT
y,T ⊗ δRy,T ) =

1

T

(
E(y∗ty

T
t ⊗ yty

H
t )−RT

y ⊗Ry

)
=

1

T

(
E[vec(yty

H
t )vecH(yty

H
t )]−RT

y ⊗Ry

)
=

1

T

(
TRry + vec(Ry)vecH(Ry)−RT

y ⊗Ry

)
, (57)

where (50) and (51) is used in the second equality and where Rry is also the covariance of the random vector 1√
T

vec(yty
H
t ).

Using its expression in (16) and(18), we get

E(δRT
y,T ⊗ δRy,T ) =

1

T

(
vec(Ry)vecH(Ry) + K(Cy ⊗C∗y) + (A∗ ⊗A)Qx(AT ⊗AH)

+ σ4
n(η − 1)[I + vec(I)vecT (I)]

)
. (58)
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Plugging (58) into (56) and using (49), (52) and (53), (25) is proved. The proof of (26) follows the same steps as the

proof of (25) using (17) and (19).

Consider now the robust distribution model and let us start to prove (27) for the conventional MUSIC algorithm. From

the asymptotic distribution of Ru
y,T

def
= σ−1

u Γuy,T , we deduce that

E[vec(δRu
y,T )vecH(δRu

y,T )] ≈ 1

Tσ2
u

RΓuy
, (59)

for large enough T , where RΓuy
is given by (20). By vectorization of (59) and using (51), we get

E[vec(δRu
y,T

T )⊗ vec(δRu
y,T )] ≈ 1

Tσ2
u

[
ϑ1vec(R∗y ⊗Ry) + ϑ2vec(R∗y)⊗ vec(Ry)

]
. (60)

Using (54), we deduce that (60) is equivalent to

E(δRu
y,T

T ⊗ δRu
y,T ) ≈ 1

Tσ2
u

[
ϑ1vec(Ry)vecH(Ry) + ϑ2(R∗y ⊗Ry)

]
. (61)

Plugging (61) into (56) where δRy,T is replaced by δRu
y,T and using (49) and (52), (27) is proved.

The proof of (28) for the NC MUSIC algorithm begins in the same way, where (60) yields

E[vec(δRu
ỹ,T

T )⊗ vec(δRu
ỹ,T )] ≈ 1

Tσ2
u

[
ϑ1{vec(R∗ỹ ⊗Rỹ)+vec(K(Cỹ ⊗C∗ỹ))}+ϑ2vec(R∗ỹ)⊗ vec(Rỹ)

]
. (62)

But now the rest of the proof is more complex because the permutation matrix K comes into (62). To exclude it, we

premultiply to the left (62) by I⊗K⊗ I, and thanks to (54), we obtain

vec[E(δRu
ỹ,T

T ⊗ δRu
ỹ,T )]≈ 1

Tσ2
u

[
ϑ1{vec(R∗ỹ)⊗ vec(Rỹ)+(I⊗K⊗ I)vec(K(Cỹ ⊗C∗ỹ))}+ϑ2vec(R∗ỹ ⊗Rỹ)

]
. (63)

We then prove after some algebraic manipulations, using (49) and (55), that (I⊗K⊗I)vec(K(Cỹ⊗C∗ỹ)) = vec(K(Cỹ⊗

C∗ỹ)). It follows from (51) that vec(R∗ỹ)⊗ vec(Rỹ) = vec[vec(Rỹ)vecT (RT
ỹ )], and hence (63) is equivalent to

E(δRu
ỹ,T

T ⊗ δRu
ỹ,T ) ≈ 1

Tσ2
u

[
ϑ1{vec(Rỹ)vecT (RT

ỹ ) + K(Cỹ ⊗C∗ỹ)}+ ϑ2(R∗ỹ ⊗Rỹ)
]
. (64)

Plugging (64) into (56) and using (49), (52) and (53), (28) is proved.

B. Proof of relations (37) and (38)

To simplify the derivation of E(gAlgNC

T (θ)), let us introduce M
def
= a(θ)aH(θ) and N

def
= a(θ)aT (θ) for which we have:

gAlgNC

T (θ) = Tr(Π1,TM)Tr(Π1,TM)− Tr(Π∗2,TN)Tr(Π2,TN∗),

which gives with δΠ1,T
def
= Π1,T −Π1 and δΠ2,T

def
= Π2,T −Π2

E(gAlgNC

T (θ)) = gAlgNC(θ)

+ 2Tr[E(δΠ1,T )M]Tr(Π1M)− 2Re (Tr[E(δΠ2,T )N∗]Tr(Π∗2N))

+ E [Tr(δΠ1,TM)Tr(δΠ1,TM)]− E
[
Tr(δΠ∗2,TN)Tr(δΠ2,TN∗)

]
. (65)
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The first-order terms of (65) are deduced from (31) and (32), which gives from Tr[Π̃) = 2Tr[Π1) = 2N − 2 where

a
def
= a(θ) (for sake of brevity)

Tr[E(δΠ1,T )M] ≈ 1

T

(
(2N − 2)(aHU1a)− 2Tr(U1)(aHΠ1a)

+ (η − 1)[(2N − 2)(aHU
′

1a)− 2Tr(U
′

1)(aHΠ1a)]
)
,

Tr[E(δΠ2,T )N∗] ≈ 1

T

(
(2N − 2)(aHU2a

∗)− 2Tr(U1)aHΠ2a
∗

+ (η − 1)[(2N − 2)(aHU
′

2a
∗)− 2Tr(U

′

1)(aHΠ2a
∗)]
)
.

Introducing these expressions into (65), the first-order terms are given by

2Tr[E(δΠ1,T )M]Tr(Π1M) ≈ 2

T

(
(2N − 2)(aHU1a)(aHΠ1a)− 2Tr(U1)(aHΠ1a)2

+ (η − 1)[(2N − 2)(aHU
′

1a)(aHΠ1a)− 2Tr(U
′

1)(aHΠ1a)2]
)
, (66)

2Re (Tr[E(δΠ2,T )N∗]Tr(Π∗2N) ≈ 2

T

(
(2N − 2)Re

(
(aHU2a

∗)(aTΠ∗2a)
)
− 2Tr(U1)|aHΠ2a

∗|2
)
,

+ (η−1)[(2N−2)Re((aHU
′

2a
∗)(aTΠ∗2a))−2Tr(U

′

1)|aHΠ2a
∗|2]
)
. (67)

The second-order terms of (65) are given by

E [Tr(δΠ1,TM)Tr(δΠ1,TM)] = vecT (MT )E
(
vec(δΠ1,T )vecH(δΠ1,T )

)
vec(M)

≈ 1

T
vecT (MT )CΠ1

vec(M), (68)

E
[
Tr(δΠ∗2,TN)Tr(δΠ2,TN∗)

]
= vecT (N)E

(
vec(δΠ∗2,T )vecT (δΠ2,T )

)
vec(N∗)

≈ 1

T
vecT (N)C∗Π2

vec(N∗), (69)

where CΠ1
and CΠ2

denote the covariance matrices of the asymptotic distribution of Π1,T and Π2,T , respectively, deduced

from the covariance matrices CΠ̃ of the asymptotic distribution of Π̃T given from [47] by:

CΠ̃ = (I + K(J⊗ J))
(

(Π̃∗ ⊗ Ũ) + (Ũ∗ ⊗ Π̃)
)

+ (η − 1) (I + K(J⊗ J))
(

(Π̃∗ ⊗ Ũ
′
) + (Ũ

′∗ ⊗ Π̃)
)
,

that implies:

CΠ1
= (Π∗1 ⊗U1) + (U∗1 ⊗Π1) + K [(Π2 ⊗U∗2) + (U2 ⊗Π∗2)]

+ (η − 1)
(

(Π∗1 ⊗U
′

1) + (U
′∗
1 ⊗Π1) + K

[
(Π2 ⊗U

′∗
2 ) + (U

′

2 ⊗Π∗2)
])
,

CΠ2
= (I + K)(Π1 ⊗U1) + (U1 ⊗Π1)

+ (η − 1)
(

(I + K)(Π1 ⊗U
′

1) + (U
′

1 ⊗Π1)
)
.
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Introducing these expressions into (68) and (69) gives after straightforward algebra manipulations

E [Tr(δΠ1,TM)Tr(δΠ1,TM)] ≈ 2

T

(
(aHU1a)(aHΠ1a) + Re[(aHU2a

∗)(aTΠ∗2a)]

+ (η − 1)[(aHU
′

1a)(aHΠ1a) + Re[(aHU
′

2a
∗)(aTΠ∗2a)]]

)
, (70)

E
[
Tr(δΠ∗2,TN)Tr(δΠ2,TN∗)

]
≈ 4

T

(
(aHU1a)(aHΠ1a) + (η − 1)(aHU

′

1a)(aHΠ1a)
)
. (71)

Incorporating expressions (66), (67), (70) and (71) into (65) proves (37). Then (38) follows with the same lines.

C. Expressions of Π, U and U′

The expression of Π, U and U′ are derived from the two non-zero eigenvalues and the associated eigenvectors of the

rank two matrix S = σ2
s(a1,a2)

 aH1 + ρaH2

ρ∗aH1 + aH2

. The non-zero eigenvalues of S are the roots of the quadratic polynomial:

λ2−Tr(S)λ+det

σ2
s

 aH1 + ρaH2

ρ∗aH1 + aH2

 (a1,a2)

 which are λk = ‖ak‖2σ2
s(α±

√
α2 − γ), k = 1, 2, with α def

= 1+βRe(ρ)

and γ def
= (1 − |ρ|2)(1 − β2) where β def

= aH1 a2/N
2 ∈ [−1,+1] and the associated eigenvectors vk = [Nσ2

s(1 + ρ∗β) −

λk]a1 − ‖ak‖2σ2
s(ρ∗ + β)a2. Plugging these eigenvalues and eigenvectors in U =

(
σ2
n

λ1
+

σ4
n

λ2
1

)
v1v

H
1

‖v1‖2 +
(
σ2
n

λ2
+

σ4
n

λ2
2

)
v2v

H
2

‖v2‖2

and U′ =
σ4
n

λ2
1

v1v
H
1

‖v1‖2 +
σ4
n

λ2
2

v2v
H
2

‖v2‖2 and using Π = I−A(AHA)−1AH , these three matrices are deduced after cumbersome

but straightforward algebraic manipulations.

D. Expressions of h1,1, h2,1, h1,m, h2,m h′1,m and h′2,m for ULA

Substitution the general expressions of Π, U and U′ given in Appendix C into (35) yields, after some tedious algebraic

manipulation and with the aid of symbolic algebra and calculus tools, that the terms involved in (39), (40) and (41) are
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given for arbitrary centrosymmetric arrays by,

h1,1 =
N − 2

1− |ρ|2
,

h2,1 =
η(N − 2)(1 + |ρ|2 + 2βRe(ρ))

N(1− β2)(1− |ρ|2)2
,

h1,m =
2

|ρ|2 − 1

(
(N − 2)ρ2

1,m(Re(ρ)− 1)

(1 + β)2
− gm(1 + βRe(ρ))

N(β2 − 1)

)

h2,m =
2η

(1− β2)(|ρ|2 − 1)2

(
(N − 2)ρ2

1,m(|ρ|2(1 + β)− 2Re(ρ)2β + (β − 1)(2Re(ρ)− 1))

N(β + 1)2

+
gm(|ρ|2(1− β2) + 1 + 2Re(ρ)2β2 + β2 + 4βRe(ρ))

N2(β2 − 1)

)
,

h′1,m =
4(N − 2)

|ρ|2 − 1

(
ρ1,mρ

′′

1,m(Re(ρ)− 1)

(β + 1)2
−
ρ
′2
1,m(Re(ρ) + 1)

(β − 1)2

)
− 2(1 + βRe(ρ))hm
N(β2 − 1)(|ρ|2 − 1)

,

h′2,m =
4(N − 2)

N(β2 − 1)(|ρ|2 − 1)2

(
ρ
′2
1,m(|ρ|2(β − 1)− 2Re(ρ)2β − (β + 1)(2Re(ρ) + 1))

(β − 1)2

−
ρ1,mρ

′′

1,m(|ρ|2(1 + β)− 2Re(ρ)2β + (β − 1)(2Re(ρ)− 1))

(β + 1)2

)

− 2hm(|ρ|2(1− β2) + 1 + β2 + 2β2Re(ρ)2 + 4Re(ρ)β)

N2(β2 − 1)2(|ρ|2 − 1)2
,

with gm
def
= gAlgC(θm) = N

(
1− 2

ρ21,m
1+β

)
and hm

def
= d2gAlgC (θ)

dθ2 |θ=θm
= 4N

(
ρ
′2
1,m

β−1 −
ρ
′′
1,mρ1,m
β+1

)
and where β =

aH1 a2

N ,

ρ1,m =
aH1 am
N , ρ′1,m =

a
′H
m a1

N and ρ
′′

1,m =
a
′′H
m a1

N .

E. Expressions of Π1, Π2, U1, U2, U′1 and U′2

The expression of Π̃, Ũ and Ũ′ are also derived from the two non-zero eigenvalues and the associated eigenvectors of the

rank two matrix S̃ = σ2
s(ã1, ã2)

ãH1 + ρ′ãH2

ρ′ãH1 + ãH2

. The non-zero eigenvalues of S̃ are derived from the roots of the quadratic

polynomial: λ2−Tr(S̃)λ+ det

σ2
s

ãH1 + ρ′ãH2

ρ′ãH1 + ãH2

 (ã1, ã2)

, which give the eigenvalues λ1 = 2Nσ2
s(1− β)(1− ρ) and

λ2 = 2Nσ2
s(1+β)(1+ρ), and its associated eigenvectors are ṽ1 = ã1− ã2 and ṽ2 = ã1 + ã2. This allows us to deduce the

expressions of Ũ =
(
σ2
n

λ1
+

σ4
n

λ2
1

)
ṽ1ṽ

H
1

‖ṽ1‖2 +
(
σ2
n

λ2
+

σ4
n

λ2
2

)
ṽ2ṽ

H
2

‖ṽ2‖2 and Ũ′ =
σ4
n

λ2
1

ṽ1ṽ
H
1

‖ṽ1‖2 +
σ4
n

λ2
2

ṽ2ṽ
H
2

‖ṽ2‖2 . Then the blocks U1, U2, U′1

and U′2 follow from the block decompositions of ṽ1ṽ
H
1 =

 a1e
iφ1 − a2e

iφ2

a∗1e
−iφ1 − a∗2e

−iφ2

 (aH1 e
−iφ1−aH2 e

−iφ2 ,aT1 e
iφ1−aT2 e

iφ2)

and ṽ2ṽ
H
2 =

 a1e
iφ1 + a2e

iφ2

a∗1e
−iφ1 + a∗2e

−iφ2

 (aH1 e
−iφ1 +aH2 e

−iφ2 ,aT1 e
iφ1 +aT2 e

iφ2). Similarly the bocks Π1 and Π2 follow from

Π̃ = I− Ã(ÃHÃ)−1ÃH with Ã =

 a1e
iφ1 a2e

iφ2

a∗1e
−iφ1 a∗2e

−iφ2

.
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