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Third-order Volterra MMSE receivers for

enhanced single and multiple antenna interference

cancellation
Mustapha Sadok, Jean-Pierre Delmas, and Pascal Chevalier

Abstract

Data-like interference mitigation in wireless communications systems, and in mobile cellular networks in

particular, has always been a challenging problem which is becoming even more so for 5G networks and beyond

including the Internet of things (IoT), to support a massive number of low data rate devices for given spectral

resources. A promising solution to this problem consists in using one dimensional signalling (i.e., real-valued

modulations) jointly with widely linear (WL) processing at the receiver, which has the capability to process up

to 2N −1 data-like interference from N antenna receivers, and to fulfill, for N = 1, single antenna interference

cancellation (SAIC) of a one-dimensional interference in particular. However, when the signal of interest (SOI)

and observations are jointly non-Gaussian, which is the case for most of digital radiocommunications systems,

WL receivers become sub-optimal and optimal receivers become non-linear. It is then of interest to propose new

non-linear receivers to improve performance of WL receivers. In this context, the paper aims at introducing,

for small-scale systems, third-order complex Volterra (CV) minimum mean square error (MMSE) receivers,

for the reception of a digital linearly modulated SOI whose waveform is known, corrupted by potentially non-

Gaussian and non-circular interference, omnipresent in practical situations. Properties, performance and adaptive

implementation of these receivers in the presence of non-Gaussian and potentially non-circular interference up to

the 6th-order are analyzed in this paper. In particular, some of these receivers are shown to enhance WL receiver

performance for SAIC of one rectilinear interference such as binary phase-shift keying (BPSK) interference.

Whereas some other receivers allow us to fulfill SAIC of 4th-order non-circular interference such as quadrature

phase-shift keying (QPSK) interference, which is not possible using WL receivers. These new receivers open
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new perspectives for cancellation of non-Gaussian and potentially non-circular interference up to 6th-order in

radiocommunication networks.

Keywords: Non-linear, non-Gaussian, non-circular, widely linear, third-order Volterra, interference, MMSE,

radiocommunications, SAIC.
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I. INTRODUCTION

Data-like interference mitigation in wireless communications systems, and in mobile cellular networks in

particular, has always been a challenging problem which is becoming even more so for 5G networks and

beyond, including the IoT, to support a massive number of low data rate devices for given spectral resources. A

promising solution to this problem consists in using one dimensional signaling (i.e., real-valued modulations)

jointly with WL processing at the receiver [1], which has the capability to process up to 2N − 1 data-like

interference from N antenna receivers, and to fulfill, for N = 1, SAIC of a one-dimensional interference in

particular [2]–[4]. Extension of the SAIC concept to multiple antennas is called multiple antenna interference

cancellation (MAIC). Let us recall that one-dimensional modulations are also called rectilinear (R) modulations

and corresponds, for example, to BPSK or amplitude shift keying (ASK) modulations.

However WL receivers are only optimal when the SOI and observations are zero-mean, jointly Gaussian

and non-circular [5]. When the SOI and observations are jointly non-Gaussian, WL receivers then become

sub-optimal and optimal receivers have a more general non-linear structure. Such situations are omnipresent in

practice. Indeed, most of digital communications signals are non-Gaussian and many of them are non-circular

either at the second order (SO) and/or at a higher order (HO). For example, an ASK signal is non-Gaussian and

at least non-circular at all even orders. A phase shift keying signal with M states (M -PSK) is non-Gaussian

and non-circular at an order 2q such that 2q ≥M [6]. A square quadrature amplitude modulated (QAM) signal

with 4M2 states (4M2-QAM) is non-Gaussian and at least fourth-order (FO) non-circular. In this context, it

becomes to interest to propose new non-linear receivers to improve performance of WL receivers.

More precisely, when the SOI and observations are jointly non-Gaussian (jointly circular or not), the optimal

receiver becomes a non-linear function of the observations, which depends on the joint probability distribution

of the SOI and the observed data. However in practice, this probability distribution is generally not known

a priori. A first philosophy then consists in trying to estimate it in order to optimize the non-linearity of the

receiver. This estimation may be implemented through stochastic techniques, based, for example, on particle

filtering [7], [8] or through a parametric model of the non-Gaussian observations, such as the Gaussian mixture

model [9], well-suited to modelize non-Gaussian/non-circular noise [10]. However, in all cases, this philosophy
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is generally costly and difficult to implement. A second philosophy, much easier to implement, consists in

imposing a particular non-linear structure to the receiver, including the linear one, and to compute a MMSE

receiver having this imposed structure. Although sub-optimal, this receiver is built to generate a performance

improvement with respect to the linear one in non-Gaussian contexts. A particular non-linear structure, including

both the linear and the WL structures, corresponds to the pth-order (p ≥ 2) complex Volterra structure [11],

[12]. Such a structure is able to improve the performance of linear receivers in non-Gaussian and potentially

non-circular contexts, by exploiting both the non-Gaussiannity and the complete potential non-circularity of the

observations up to the order 2p. Note that research to reduce computational complexity of Volterra filtering is

still active (see e.g., [13]). Let us recall that Volterra filtering [14] has been considered in signal processing

for a long time for many applications such as for example detection and estimation [15], system identification

[16], echo cancellation [17] or non-linear channel equalization [18] but mainly for real-valued observations. The

main use of Volterra filtering for complex data concerns both the modeling and the predistortion processing of

the baseband input-output relationship of power amplifiers operating close to saturation for power efficiency in

radiocommunications [19], [20]. The scarce other works about complex Volterra filtering mainly concern blind

identification of some linear-quadratic systems [21], mean square estimation and detection from linear-quadratic

[22] or pth-order systems [11], [12] and beamforming [23]–[25]. [23] introduces a particular third-order Volterra

MVDR beamformer for non-Gaussian interference rejection improvement. However, this beamformer requires

a multiple antenna reception, does not include the WL structure, does not take into account the potential

non-circularity of the interference and may generate lower performance than the WL beamfomers. In contrast,

[24] and [25] introduce more general third-order Volterra beamformers, exploiting both the non-Gaussiannity

and the potential non-circularity of the interference. However [24] concerns coded division multiple access

(CDMA) cellular networks, whereas [25] requires a multiple antenna reception and exploits the potential non-

circularity of the interference only. Note that the FO non-circularity of observations has been used by a WL

MMSE beamformer in [26] to compensate I/Q imbalance effects at reception but not to improve the steady-

state performance of WL beamformers. In addition, the non-Gaussiannity and both the sub-Gaussiannity and

non-circularity of observations have already been used in [27] and [28] respectively, through the development

of the linear minimum dispersion beamformer (MDB) and the WL MDB respectively, to boost the convergence

speed of linear and WL beamformers respectively, but not to improve their steady-state performance. Finally

note that some preliminary results of the paper have been presented in [29].

In this context, the first purpose of this paper is to introduce several third-order Volterra MMSE receivers

for the reception of a digital linearly modulated SOI, whose waveform is known, corrupted by potentially

non-Gaussian and non-circular interference. All these receivers are third-order extensions of the linear MMSE
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receiver, whereas some of them are third-order extensions of the WL MMSE receiver [2], [30], [31]. All

the proposed receivers exploit the potential non-Gaussian nature of the interference, whereas some of them

exploit, in addition, their non-circularity up to order 4 or 6. It is important to note that the proposed receivers

have no interest for large-scale systems, such as massive multiple-input and multiple-output (MIMO) systems

for 5G mobile cellular networks, for which the linear receivers are quasi-optimal since the sources can be

assumed to be approximately orthogonal to each other for the array. On the contrary, the proposed receivers are

mainly developed for small-scale systems, with a small number of antennas and low spatial aperture in number

of wavelengths, which are low spatial resolution systems for which the linear MMSE receiver has limited

performance in the presence of interference. For such systems the idea is to replace the missing hardware (or

antennas) by clever software with a moderate complexity, to improve the interference cancellation. The analysis

of the properties, performance in terms of signal to interference plus noise ratio (SINR) and symbol error rate

(SER), and adaptive implementation of the proposed third-order receivers constitute the second purpose of this

paper. In particular, some of these receivers are shown to enhance WL receivers performance for SAIC of

one rectilinear interference, whereas some other receivers allow us to fulfill SAIC of 4th-order non-circular

interference such as QPSK interference, result which is not possible from WL receivers. These new receivers

open new perspectives for cancellation of non-Gaussian and potentially non-circular interference up to 6th-order

in radiocommunication networks.

The paper is organized as follows. After the introduction of some hypotheses, data statistics and problem

formulation are given in Section II. Enlightening interpretations and related generic output (SINR) performance

of the M th-order CV MMSE receiver are given in Section III. Then the new third-order Volterra MMSE

receivers are introduced. An analytical performance analysis with SINR and SER illustrations at the output

of some of the proposed MMSE receivers is presented in Sections IV and V in the presence of one and two

interferences, respectively. An adaptive implementation and a complexity analysis of the proposed receivers are

briefly investigated in Section VI. Finally Section VII concludes this paper.

The following notations are used throughout the paper. Matrices and vectors are represented by bold upper

case and bold lower case characters, respectively. Vectors are by default in column orientation, while T , H

and ∗ stand for transpose, conjugate transpose and conjugate, respectively. E(.) is the expectation operator and

? is the convolution product. ⊗ and � denote, respectively, the usual Kronecker product and the symmetric

Kronecker product between identical vectors that contains only all the distinct products of their components to

avoid any redundancies. a�q means a� a...� a with q − 1 symmetric Kronecker products.
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II. HYPOTHESES, DATA STATISTICS AND PROBLEM FORMULATION

A. Hypotheses

We consider an array of N narrow-band antennas receiving the contribution of an SOI corrupted by

interferences and a background noise. Assuming propagation channels with no delay spread and perfect time

and frequency synchronization of the SOI, which are acceptable hypotheses for example for some satellite

communication applications [32], the complex envelope of the observation vector at the output of the antennas

can then be written as

x(t) = µs
∑
k

akv(t− kT )hs +

P∑
p=1

jp(t)hjp + n(t) ∈ CN , (1)

where ak are zero-mean i.i.d. random variables corresponding to the symbols of the SOI, jp(t) are zero-mean

and potentially non-Gaussian and/or non-circular co-channel interferences (CCI), and n(t) is the background

noise, assumed to be zero-mean, Gaussian, stationary, circular and spatially white. The random variables ak,

jp(t), p = 1, . . . , P and n(t) are independent to each other. T is the symbol period and v(t) is the impulse

response of the pulse shaping filter of the SOI whose µs controls its amplitude. hs and hjp are the channel

vectors (whose module of the first component is unity) of the SOI and CCI, respectively. Assuming that v(t)

is a raised cosine 1/2 Nyquist filter and denoting by xk the sampled observation, at the symbol rate, at time

kT at the output of a matched filtering operation to the pulse shaping filter, we obtain:

xk = µsakr(0)hs +

P∑
p=1

jp,khjp + nk, (2)

where r(t) def
= v(t)?v∗(−t) is the real-valued impulse response of a Nyquist filter, whereas jp,k, for p = 1, . . . , P

and nk are respectively the CCI and background noise contribution at the output of the matched filter sampled

at symbol rate. The sequences jp,k, p = 1, . . . , P are assumed stationary to the second-order. Consequently, the

components of nk are zero-mean, spatially white, Gaussian and circular with power η2. If a′k and j′p,k denote

the normalized SOI symbols and CCI, respectively, such that E|a′2k | = E|j′2p,k| = 1, (2) takes the form

xk =
√
πsa
′
khs +

P∑
p=1

√
πjpj

′
p,khjp + nk, (3)

where πs
def
= µ2

sπar
2(0) with πa

def
= E|a2

k| and πjp
def
= E|j2

p,k|.

B. Data statistics

1) Presentation: To study the statistical performance of the third-order Volterra MMSE receivers, we need

to introduce the SO, FO and sixth-order (SIO) statistics of the SOI and CCI. If uk denotes the normalized SOI
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or CCI components, the real-valued FO and SIO circular statistics of uk assumed second-order stationary, are

respectively

κu,c
def
= E|u4

k| and χu,c
def
= E|u6

k| (4)

and the generally complex-valued SO, FO and SIO non-circular statistics of uk are respectively

γu
def
= E(u2

k), κu,nc,i
def
= E(u5−i

k u
∗(i−1)
k ), i = 1, 2 and χu,nc,i

def
= E(u7−i

k u
∗(i−1)
k ), i = 1, 2, 3. (5)

2) Particular cases: To be able to quantify and illustrate the performance of the proposed third-order Volterra

MMSE receivers that are presented in Sections IV and V, we consider hereafter three particular cases of CCI

jp(t).

In the first case, jp(t) corresponds to the complex envelope of a digital linearly modulated signal, defined

by:

jp(t) = µjp
∑
`

bp,`v(t− `T − τjp), (6)

where bp,` are i.i.d. zero-mean CCI symbols, τjp ∈ [0, T ) is the delay of the CCI w.r.t. the SOI and µjp controls

the amplitude of the CCI. In this case, the samples jp,k in (2) become

jp,k = µjp
∑
`

bp,`r((k − `)T − τjp) =
√
πjpj

′
p,k, (7)

where πjp = µ2
jp

E|b2p,`|
(∑

` r
2((k − `)T − τjp)

)
. The expressions of the SO, FO and SIO statistics of j′p,k

depend on the nature of the symbols bp,`. For real-valued symbols, γjp = 1 and the FO and SIO statistics

reduce to

κjp
def
= E(j

′4
p,k) = E(b4p,k)

∑
`

r4
p,` + 6[E(b2p,k)]

2
∑
j<`

r2
p,jr

2
p,` (8)

χjp
def
= E(j

′6
p,k) = E(b6p,k)

∑
`

r6
p,` + 30E(b2p,k)E(b4p,k)

∑
j<`

r4
p,jr

2
p,` + 90[E(b2p,k)]

3
∑
i<j<`

r2
p,ir

2
p,jr

2
p,`. (9)

where rp,i
def
= r(iT − τjp)/

√
E|b2p,k|

∑
` r

2(`T − τjp). For symmetric (w.r.t. the origin) SO circular symbols,

we obtain:

κjp,c = E|b4p,k|
∑
`

r4
p,` + 4[E|b2p,k|]2

∑
j<`

r2
p,jr

2
p,`

κjp,nc,1 = E(b4p,k)
∑
`

r4
p,`

κjp,nc,2 = E(b2p,k|b2p,k|)
∑
`

r4
p,` (10)
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χjp,c = E|b6p,k|
∑
`

r6
p,` + 18E|b2p,k|E|b4p,k|

∑
j<`

r4
p,jr

2
p,` + 36[E|b2p,k|]3

∑
i<j<`

r2
p,ir

2
p,jr

2
p,`

χjp,nc,1 = E(b6p,k)
∑
`

r6
p,`

χjp,nc,2 = E(b4p,k|b2p,k|)
∑
`

r6
p,` + 10E(b4p,k)E|b2p,k|

∑
j<`

r4
p,jr

2
p,`

χjp,nc,3 = E(b2p,k|b4p,k|)
∑
`

r6
p,` + 16E(b4p,k)E|b2p,k|

∑
j<`

r4
p,jr

2
p,`. (11)

In the second case, jp(t) is assumed to be zero-mean stationary and Gaussian. It is then straightforward to

prove, from SO, FO and SIO cumulant expressions [33], that the FO statistics of j′p,k are given by

κjp,c = 2 + |γjp |2, κjp,nc,1 = 3γ2
jp and κjp,nc,2 = 3γjp , (12)

whereas the SIO statistics are given by

χjp,c = 3(2 + 3|γjp |2), χjp,nc,1 = 15γ3
jp , χjp,nc,2 = 15γ2

jp and χjp,nc,3 = 3γjp(4 + |γjp |2). (13)

Finally, in the third case, jp(t) are impulsive CCI, where jp,k = ρp,ke
iθp,k where ρp,k and θp,k are independent

random variables. ρp,k is Bernoulli distributed, taking amplitude µ with probability q and 0 with probability

1 − q, and θp,k is uniformly distributed either on [0, 2π], or drawn from the set of two values {0, π}. In the

first case, jp,k is circular at any order, whereas in the second case jp,k is rectilinear. In both cases, we obtain :

κjp,c =
1

q
and χjp,c =

1

q2
, (14)

whereas in the second case, we obtain

κjp,nc,1 =
1

q
, κjp,nc,2 =

1

q
, χjp,nc,1 =

1

q2
, χjp,nc,2 =

1

q2
and χjp,nc,3 =

1

q2
. (15)

C. Problem formulation

The problem addressed in this paper is to detect the symbols ak from the observations xk through an MMSE

approach. Naturally, the best estimate yk of ak according to the MMSE criterion is the conditional expectation

yk = E(ak|xk). Note that for respectively circular or non-circular mutually Gaussian distributions of (ak,xk),

this conditional expectation becomes linear or widely linear [5]. But for non-Gaussian distribution of (ak,xk),

the derivation of this conditional expectation becomes generally non-linear in xk and needs this distribution,

which is unknown in practice. For this reason, we consider in this paper an approximation of this conditional

expectation through the analysis of a particular class of non-linear filters corresponding to the complex Volterra

(CV) filters, introduced for the first time in [11] and [12] in the context of detection and estimation. The general
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model of a memoryless full M th-order time invariant CV filter is defined by

yk =

M∑
m=0

m∑
q=0

wH
m,q(x

�(m−q)
k ⊗ x∗�qk ). (16)

Assuming w0,0 = 0, (16) defines a WL filter [5] for M = 1 and a full complex linear-quadratic filter [22] for

M = 2. (16) can be compactly written in the form

yk = w̃H x̃k, (17)

where w̃
def
= (wT

0,0,w
T
1,0,w

T
1,1,w

T
2,0,w

T
2,1,w

T
2,2, ...,w

T
M,M )T and x̃k

def
= (1,xTk ,x

H
k ,x

T
k � xTk ,x

T
k ⊗ xHk ,x

H
k �

xHk , ...,x
∗�M
k )T is the non-redundant augmented observation. The problem of the optimal M th-order CV filter

is then to find w̃ minimizing the MSE between yk and ak.

III. THIRD-ORDER COMPLEX VOLTERRA MMSE RECEIVER

A. M th-order complex Volterra MMSE filter

The full M th-order CV MMSE filter corresponds to the filter w̃ which minimizes the criterion MSE(w̃) =

E|ak − w̃H x̃k|2. For stationary second-order signals (ak, x̃k), this filter is classically given by

w̃CV−MMSE = R−1
x̃ rx̃,a, (18)

with Rx̃
def
= E(x̃kx̃

H
k ) and rx̃,a

def
= E(x̃ka

∗
k). Note that in the case of linear and WL MMSE filters [31], for

which w0,0 and 1 have been removed from w̃ and x̃k, respectively, (18) reduces respectively to

w̃L−MMSE = R−1
x rx,a and w̃WL−MMSE = R−1

x̄ rx̄,a, (19)

where Rx
def
= E(xkx

H
k ) and rx,a

def
= E(xka

∗
k), Rx̄

def
= E(x̄kx̄

H
k ) and rx̄,a

def
= E(x̄ka

∗
k) with x̄k = [xTk ,x

H
k ]T ,

and where

rx,a = µs,ahs and rx̄,a = µs,ah̃s,γ ,

with µs,a
def
= µsπar(0) and h̃s,γ

def
= [hTs , γ

∗
ah

H
s ]T where γa

def
= E(a2

k)/E|a2
k| is the SO non-circular coefficient

of the SOI symbol. However, in the general case, we obtain:

rx̃,a = µs,ah̃s,n, (20)

where the first two vectorial components of h̃s,n are hs and γ∗ah
∗
s, but the others depend on hs and the statistics

of both ak and nk of orders less or equal to M . This vector h̃s,n plays the role of an extended steering vector
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and w̃CV−MMSE is also written in the form

w̃VC−MMSE = µs,aR
−1
x̃ h̃s,n. (21)

The MSE obtained with the full M th-order CV MMSE filter (18) is given by

MMSE
def
= MSE[w̃CV−MMSE] = πa − rHx̃,aR

−1
x̃ rx̃,a. (22)

If some components of the full M th-order CV MMSE filter (16) are withdrawn, we obtain partial M th-order

CV MMSE filters. The increase ∆CV−MMSE of MMSE obtained by such partial M th-order CV filters can be

derived by partitioning x̃k into the retained, x̃1,k and the discarded, x̃2,k parts. Applying the matrix inversion

lemma to the partitioned augmented covariance matrix Rx̃ written as

Rx̃ =

 Rx̃11
Rx̃12

RH
x̃12

Rx̃22

 ,
where Rx̃ij

def
= E(x̃i,kx̃

H
j,k), i, j = 1, 2, the increase of MMSE given by the partial M th-order CV MMSE filter

that only uses x̃1,k is given by

∆CV−MMSE = (rHx̃2,a − rHx̃1,aR
−1
x̃11

Rx̃12
)
(
Rx̃22

−RH
x̃12

R−1
x̃11

Rx̃12

)−1
(rx̃2,a −RH

x̃12
R−1
x̃11

rx̃1,a) ≥ 0, (23)

where rx̃i,a
def
= E(x̃i,ka

∗
k), i, j = 1, 2. Consequently, the term x̃2,k does not bring any information

(∆CV−MMSE = 0) if in particular, it is not correlated with both ak and x̃1,k. An example of such a situation,

in the presence of zero-mean signals with symmetric distributions, is the case where x̃1,k and x̃2,k gather

the odd and even terms m of (16), respectively. Consequently, only M th-order CV MMSE filters such that

M is odd containing only polynomial terms of odd order m ought to be used. For such filters, w̃ and x̃k

are reduced to w̃ = (wT
1,0,w

T
1,1,w

T
3,0,w

T
3,1,w

T
3,2,w

T
3,3...,w

T
M,M )T and x̃k = (xTk ,x

H
k , (x

�3
k )T , (x�2

k )T ⊗

xHk ,x
T
k ⊗ (x�2

k )H , (x�3
k )H ..., (x�Mk )H)T . In this case, the components of x̃k can be rearranged in order as

x̃k = [x
′T
k ,x

′H
k ]T where x

′

k = (xTk , (x
�3
k )T , (x�2

k )T ⊗ xHk , .., (x
�(M+1)/2
k )T ⊗ (x

�(M−1)/2
k )H ]T . Then, the

partial M th-order CV MMSE estimate yk of ak can be interpreted as the WL-MMSE estimate of ak given x
′

k

and thus the partial M th-order CV MMSE estimate inherits the properties of the WL-MMSE estimator [5].

In particular, for real-valued SOI symbols ak, the estimate yk given by the full M th order CV MMSE filter

(17) is real-valued. This property extends to any partial CV MMSE filter if x̃k contains the same terms as x̃∗k.

For partial CV MMSE structures that do not satisfy this condition, the estimate yk of real-valued SOI symbols

is complex-valued and the simple post processing consisting to take the real part zk of yk allows us to reduce

the MMSE (22) because |ak −Re(yk)| ≤ |ak − yk|. Using (18) associated with such partial CV MMSE filters,
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we straightforwardly get:

MSEz
def
= E

(
ak − Re(w̃H

CV−MMSEx̃k)
)2

= πa −
3

2
rHx̃,aR

−1
x̃ rx̃,a +

1

2
Re
(
rHx̃,aR

−1
x̃ Cx̃R

−T
x̃ r∗x̃,a

)
≤ MMSE, (24)

with Cx̃
def
= E(x̃kx̃

T
k ).

In contrast, if x̃1,k gathers the terms (xk,x
∗
k) and x̃2,k the odd higher order terms, the terms x̃2,k are generally

correlated with ak and x̃1,k and thus contribute to decrease the MMSE with respect to that of the WL-MMSE

filter. This proves the better performance, in terms of MMSE, of the partial M th-order CV MMSE filter with

only odd order terms with respect to the WL-MMSE filter.

Finally, note that in practice, Rx̃ and rx̃,a are not known a priori and have to be estimated from a training

sequence correlated with the SOI symbols and uncorrelated with the total noise, using a least square approach.

B. Orthogonal decomposition

To give an enlightening interpretation of a full or partial CV MMSE filter allowing one to understand its

better behavior w.r.t. to the WL-MMSE filter, we extend the interpretation of the latter introduced in [30], [31]

using the orthogonal projection theorem. To this aim, we note that all the terms of x̃k contain a SOI component

through the orthogonal decomposition deduced from the definition of rx̃,a:

x̃k =

(
rx̃,a
πa

)
ak + ĩk = µsr(0)h̃s,nak + ĩk, (25)

where ak and ĩk are uncorrelated. From (25), the ratio of the powers of the SOI component and the associated

global noise component at the output of an arbitrary CV filter w̃, defines an SINR at its output, given by:

SINR(w̃) =
|w̃Hrx̃,a|2

πaw̃HRĩw̃
, (26)

where Rĩ
def
= E(̃ik ĩ

H
k ) is the covariance matrix of the second component of x̃k (25) which gathers all its terms

uncorrelated with the SOI symbol ak. From (25) and (26), it is straightforward to deduce the following general

relation linking the MSE and the SINR at the output yk of an arbitrary CV filter w̃:

MSE(w̃) = πa

∣∣∣∣1− w̃Hrx̃,a
πa

∣∣∣∣2 +
|w̃Hrx̃,a|2

πaSINR(w̃)
. (27)

We deduce from (27) that the CV filter w̃, which minimizes MSE(w̃) under the constraint w̃Hrx̃,a = πa is

also the CV filter which maximizes SINR(w̃) under the same constraint. This shows that under the constraint

w̃Hrx̃,a = πa, MSE minimization and SINR maximization are equivalent criteria, which gives a physical

interpretation of the SINR criterion (26) in term of MSE minimization. Without this constraint w̃Hrx̃,a = πa,
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(27) shows that the MSE minimization is no longer equivalent to SINR maximization, but w̃CV−MMSE, which

minimizes MSE(w̃) also maximizes SINR(w̃). In this case it is no longer the only one.

It is easy to prove that the CV filters w̃ which maximize this SINR (26) are collinear to Rĩ
−1rx̃,a. Applying

the matrix inversion lemma to Rĩ = Rx̃ − π−1
a rx̃,ar

H
x̃,a derived from the orthogonal decomposition (25), it is

easy to verify that R−1
ĩ

rx̃,a and R−1
x̃ rx̃,a are collinear. Consequently the CV filters w̃ which maximize the

SINR (26) are collinear to w̃CV−MMSE (18). The maximun of the SINR (26), denoted SINRCV−MMSE is thus

given by:

SINRCV−MMSE =
1

πa
rHx̃,aR

−1
ĩ

rx̃,a =
π−1
a rHx̃,aR

−1
x̃ rx̃,a

1− π−1
a rHx̃,aR

−1
x̃ rx̃,a

. (28)

By applying the inversion matrix lemma to Rx̃ = π−1
a rx̃,ar

H
x̃,a +Rĩ in (22) and the constraint w̃Hrx̃,a = πa

in (27), we obtain using the first equality of (28):

MMSE =
πa

1 + SINRCV−MMSE
≤ πa

SINRCV−MMSE
= MSE(w̃CV−MVDR2

), (29)

where MSE(w̃CV−MVDR2
) denotes the MSE at the output of the CV beamformer which minimizes w̃HRx̃w̃

under the constraint w̃Hrx̃,a = πa. We see from (29) that MSE(w̃CV−MVDR2
) approaches MMSE as

SINRCV−MMSE�1.

Finally, we note that the different filters w̃L−MMSE and w̃WL−MMSE (19) studied in [2], w̃L−MVDR,

w̃WL−MVDR1
and w̃WL−MVDR2

introduced respectively in [34], [35] and [31], and the CV beamformers

w̃CV−MVDR1
[25], w̃CV−MVDR2

and w̃CV−MMSE all minimize the output power w̃HRx̃w̃ but under different

constraints. Using the inclusion property of these constraints, we straightforwardly prove for both full and

partial WL CV filters that generally

SINRL−MVDR = SINRL−MMSE ≤ SINRWL−MVDR1
≤ SINRWL−MVDR2

= SINRWL−MMSE (30)

SINRCV−MVDR1
≤ SINRCV−MVDR2

= SINRCV−MMSE. (31)

Furthermore, using the inclusion principle in the minimization of the MSE(w̃), we deduce:

SINRL−MMSE ≤ SINRWL−MMSE ≤ SINRCV−MMSE. (32)

But there is no generic relation between SINRWL−MVDR2
= SINRWL−MMSE and SINRCV−MVDR1

.

For partial CV MMSE filters for which the estimate yk is complex-valued for real-valued ak, the SINR

(denoted SINRz) associated with the MSEz (24) obtained by taking the real part of yk is no longer related to
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MSEz by the relation (29). But simple algebraic manipulations allow us to prove the following expression:

SINRz =
2π−1

a rHx̃,aR
−1
x̃ rx̃,a

1− 2rHx̃,aR
−1
x̃ rx̃,a +

Re(rHx̃,aR
−1
x̃ Cx̃R

−T
x̃ r∗x̃,a)

rHx̃,aR
−1
x̃ rx̃,a

. (33)

Comparing (33) to (28), we see that

SINRz ≥ SINRCV−MMSE (34)

because MSEz ≤ MMSE implies from (24) that Re(rHx̃,aR
−1
x̃ Cx̃R

−T
x̃ r∗x̃,a) ≤ rHx̃,aR

−1
x̃ rx̃,a.

C. Third-order complex Volterra MMSE filter

For reasons of implementation complexity, we only consider in the following M th-order CV MMSE filters

with M = 3 and odd order terms only (i.e. m = 1, 3), whose input/output relation is given by

yk =

L︷ ︸︸ ︷
wH

1,0xk +wH
1,1x

∗
k︸ ︷︷ ︸

WL

+wH
3,0[xk � xk � xk]︸ ︷︷ ︸

C(0)

+wH
3,1[(xk � xk)⊗ x∗k]︸ ︷︷ ︸

C(1)

+ wH
3,2[xk ⊗ (x∗k � x∗k)]︸ ︷︷ ︸

C(2)

+wH
3,3[x∗k � x∗k � x∗k]︸ ︷︷ ︸

C(3)

def
= w̃H x̃k, (35)

where w̃ is defined by (18), but where w̃ and x̃k are now restricted to w̃ = [wT
1,0,w

T
1,1,w

T
3,0,w

T
3,1,w

T
3,2,w

T
3,3]T

and x̃k = [xTk ,x
H
k ,x

�3
k ,x�2

k �xTk ,x
T
k �x∗�2

k ,x∗�3
k ]T , respectively. A filter defined by (35) is called a full WL

cubic filter or a WL-C(0,1,2,3) filter, i.e., a WL-Cubic filter taking into account the cubic terms 0, 1, 2 and 3.

We will see in Section IV that partial linear or WL-Cubic MMSE filters with a single or double third-order

term 0, 1, 2 or 3 in (35), called L-C(q1), L-C(q1, q2), WL-C(q1) (qi = 0, 1, 2 or 3) allow us to obtain an MSE

equal or close to the MMSE (22) of the full CV structure, depending on the statistics of the signals. If we

denote by Nq, the number of components of the term C(q), q = 0, 1, 2, 3, which are non-redundant, then it is

easy to prove that N0 = N3 = N(N+1)(N+2)
6 and N1 = N2 = N2(N+1)

2 .

IV. PERFORMANCE IN THE PRESENCE OF ONE INTERFERER

We analyze in this section the performance of different CV MMSE receivers for the observed model (3) with

a single interferer (P = 1):

xk =
√
πsa
′
khs +

√
πjj
′
khj + nk. (36)

In particular, we compare the SINRCV−MMSE (28) to the SINRL and SINRWL given by the linear and WL

MMSE beamformers (19), respectively.
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A. SINR at the output of linear and WL receivers

In this scenario, the SINR at the output of the linear MMSE beamformer is straightforwardly given by

SINRL = εs

(
1− εj

1 + εj
|α|2

)
, (37)

where εs and εj are defined by εs
def
= ‖hs‖2πs/η2 and εj

def
= ‖hj‖2πj/η2, while SNR and INR denote the signal

to noise ratio πs/η2 and the interference to noise ratio πj/η2 per antenna. α, such that 0 ≤ |α| ≤ 1, is the

spatial correlation coefficient between the interference and the SOI, defined by

α
def
= |α|eiφ def

= hHs hj/‖hs‖‖hj‖. (38)

We clearly see from (37) that SINRL tends to zero for a strong CCI (εj � 1) for |α| = 1 and thus cannot

perform SAIC.

For arbitrary rectilinear SOI and CCI signals, the SINR at the output of the WL MMSE beamformer is given

[31] by:

SINRWL = 2εs
1 + 2εj − εj |α|2(1 + cos(2φ))

1 + 2εj
(39)

and is approximated for strong CCI (i.e., for εj � 1) [2] by:

SINRWL ≈ 2εs
(
1− |α|2 cos2 φ

)
. (40)

Relation (40) shows that the WL-MMSE receiver performs SAIC (for which |α| = 1) if φ 6= 0 thanks to a

phase diversity between the SOI and CCI, with decreasing performance as |φ| decreases to zero. Furthermore,

we note that by averaging w.r.t. uniform φ, we get:

SINRWL ≈ εs for |α| = 1 and εj � 1. (41)

B. Theoretical SINR at the output of CV receivers

In contrast to rels. (37) and (39), the derivation of the SINR at the output of the CV MMSE receivers is

much more intricate. But using MATLAB symbolic algebra and calculus tools, we have proved that this output

SINR follows the rational fraction form:

SINRCV =
aDπ

D
j + ...+ a1πj + a0

bD+1π
D+1
j + ...+ b1πj + b0

, (42)

where D depends on the considered partial CV MMSE structure and the coefficients a0, .., aD, b0, .., bD+1

are functions of πs, η2, γs, γj κs,c, κj,c, κs,nc,i, κj,nc,i for i = 1, 2, χs,c, χj,c, χs,nc,i, χj,nc,i for i = 1, 2, 3,

|α|, φ, ‖hs‖2 and ‖hj‖2. To enlighten (42), we have to specify the statistics of the involved signals. SOI
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and interference, both rectilinear and SO circular are only considered in the following because of the space

limitation.

1) Rectilinear signals: For real-valued a′k and j′k, bD+1 = 0 and the coefficients a0, .., aD, b0, .., bD depend

only on πs, η2, κs
def
= κs,c = κs,nc,i, κj

def
= κj,c = κj,nc,i, χs

def
= χs,c = χs,nc,i, χj

def
= χj,c = χj,nc,i, |α| and

φ. It is easy to prove by following decomposition (23), that discarding the WL or any cubic terms in (35)

contribute to increase the MMSE and thus to decrease the SINR w.r.t. the full CV structure. This property

will be illustrated in Subsection IV-C where it is shown that the SINR of the partial WL-C(i) (i = 0, 1, 2

or 3) MMSE receivers are nevertheless close of that of the full CV MMSE structure. For these structures,

the maximum value of D in (42) is 4 and we have proved the following asymptotic results, for arbitrary N

according to the values of χj − κ2
j ≥ 0:

For χj − κ2
j = 0, which occurs i.i.f. j′k = ±1/

√
q with probability q > 0 and 0 with probability 1− q (see

Appendix), we get:

lim
πj→∞

SINRWL−C(i) =
a3

b3
= 2εs, for i = 0, 1, 2, 3 and for all α = |α|eiφ. (43)

For q = 1, this case corresponds to synchronized BPSK CCI (τj = 0) (see Appendix) for digital linearly

modulated CCI (7) and for 0<q<1, it corresponds to rectilinear Bernoulli distributed CCI for impulsive CCI.

For χj − κ2
j > 0, i.e., for arbitrary rectilinear CCI, neither synchronized BPSK modulated, nor Bernoulli

distributed:

lim
πj→∞

SINRWL−C(i) =
a4

b4
= 2εs

(
1− |α|2 cos2 φ

)
, for i = 0, 1, 2, 3. (44)

Relation (43) shows that for synchronized BPSK CCI and rectilinear Bernoulli distributed CCI, the CCI is

completely removed and the SAIC occurs, but without any SINR loss whatever the phase difference φ contrary

to WL filters (40) for which a loss of (1−|α| cos2 φ) occurs. In this case, the performance gain with respect to

the WL MMSE receiver (40) increases with |φ|. This power’s discrimination is generally strong in full-duplex

systems [36]. For non-synchronized BPSK modulated CCI, despite the absence of gain brought by WL-C(i)

MMSE receivers with respect to WL MMSE receivers for infinitely strong CCI, it is possible to show still

significant gains in SINR for strong but not infinitely strong CCI as shown in Subsection IV-C.

Furthermore our MATLAB symbolic tools allow us to refine (43) for both εs � 1 and εj � 1 with εs/εj � 1,

for which we get for |α| = 1:

SINRWL−C(0) = SINRWL−C(3) ≈ 2εs −
εs
εj

((20εs + 9) cos(2φ) + 2εs cos(4φ) + 18εs + 9) , (45)

SINRWL−C(1) = SINRWL−C(2) ≈ 2εs −
εs
εj

((12εs + 3) cos(2φ) + 2εs cos(4φ) + 10εs + 3) , (46)
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which gives by averaging w.r.t. uniform φ

SINRWL−C(0) = SINRWL−C(3) ≈ 2εs −
εs
εj

(18εs + 9) , (47)

SINRWL−C(1) = SINRWL−C(2) ≈ 2εs −
εs
εj

(10εs + 3) . (48)

Consequently the partial structures WL-C(1) and WL-C(2) are preferred w.r.t. the partial structures WL-C(0)

and WL-C(3). All these partial structures WL-C(i) naturally outperform the WL filter for which SINRWL ≈ εs
for εj � 1 (41).

Finally, note that for φ = 0 and |α| = 1, for which SINRWL ∼ εs
εj

when εj →∞ (39), we have proved that

lim
πj→∞

SINRWL−C(i)/SINRWL = 1 +
(3− κj)2

χj − κ2
j

. (49)

There is naturally no gain for real-valued Gaussian distributed CCI for which κj = 3 (see (12)) and an

asymptotic infinite gain for synchronized BPSK modulated or rectilinear Bernoulli distributed CCI.

2) Second-order circular signals: We consider here only second-order circular a′k and j′k invariant with

rotation of π/2, which correspond for example to M -PSK (M > 2) or 4M2 QAM (M > 1) symbols ak and bp,k

or to circular Bernouili distributed CCI, for which κs,nc,2 = χs,nc,1 = χs,nc,3 = κj,nc,2 = χj,nc,1 = χj,nc,3 = 0,

κs,nc,1 6= 0, χs,nc,2 6= 0, κj,nc,1 6= 0 and χj,nc,2 6= 0. For these signals, we straightforward prove using

decomposition (23), that the conjugate, C(0) and C(2) terms in (35) do not contribute to decrease the MMSE,

and thus the partial structure L-C(1,3) is optimal for the MMSE criterion.

For the structures L-C(1), L-C(3) and L-C(1-3), we have proved that D = 7 in (42) and b8 = 0 i.i.f.

χj,c − κ2
j,c = 0, which occurs i.i.f. |j′k| = 1/

√
q with probability q > 0 and 0 with probability 1 − q (see

Appendix). For q = 1, this case corresponds to synchronized (τj = 0) M -PSK CCI with M > 1 (e.g., QPSK)

(see Appendix) for digital linearly modulated CCI (7) or to non-filtered constant modulus modulations, and for

0 < q < 1, it corresponds to circular Bernoulli distributed CCI for impulsive CCI. We have proved in particular

that for synchronized QPSK modulated SOI and CCI:

lim
πj→∞

SINRL−C(1) =
a7

b7
= εs

(
(1− 1

2 |α
2|) + (1− |α2|)εs

1 + (1− 1
2 |α2|)εs

)
, (50)

lim
πj→∞

SINRL−C(3) =
a5

b5
= εs

(
1 + εs(1− |α2|)

1 + εs + |α2|(8εs + 9)

)
, (51)

lim
πj→∞

SINRL−C(1,3) =
a7

b7
= εs, ∀α, (52)
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where (50) and (51) reduce for |α| = 1 (including for N = 1) to

lim
πj→∞

SINRL−C(1) =
a3

b3
=

εs
εs + 2

,∀φ (53)

lim
πj→∞

SINRL−C(3) =
a3

b3
=

εs
9εs + 10

, ∀φ. (54)

For χj,c − κ2
j,c > 0, i.e., for either non-synchronized circular M -PSK CCI or non-filtered constant modulus

modulations, we have for these structures b8 6= 0 in (42) and

lim
πj→∞

SINRL−C(1) = lim
πj→∞

SINRL−C(1,3) = εs(1− |α2|). (55)

Relations (53) and (54) prove that the LC-(1) and LC-(3) MMSE receivers perform SAIC because SINRL−C(1)

and SINRL−C(3) do not decrease to zero when πj →∞. Relation (52) is the SINR given by the linear MMSE

receiver without CCI (see (37)) which shows that for synchronized QPSK SOI and CCI, the CCI is completely

removed at the output of L-C(1, 3) receiver whatever α (including for N = 1 for which |α| = 1) thanks to an

power’s discrimination between the SOI and CCI. In this case, the performance gain with respect to the linear

MMSE receiver (37) increases with εj . For non-synchronized QPSK modulated CCI, despite the absence of

gain brought by the L-C(1, 3) MMSE receivers with respect to the linear MMSE receiver for infinitely strong

CCI, it is possible to show still significant gains in SINR for strong but not infinitely strong CCI as shown in

Subsection IV-C.

C. SINR Performance illustrations

We start by focusing on the case of a single antenna to evaluate the enhancement of the SAIC given by third-

order MMSE CV receivers. In all the illustrations, the SNR is fixed to εs = πs/η2 = 10dB. Fig. 1 compares

the SINR at the output of the WL-C(i), i = 0, 1, 2, 3 and WL-C(0,1,2,3) receivers for BPSK SOI and CCI in

the worst situation (τj = 0, φ = 0) as a function of the INR = πj/η2 = εj . We see that the partial structures

almost achieve the SINR of the full CV structure and the WL-C(1) and WL-C(2) structures are slightly better

than the WL-C(0) and WL-C(3) structures (as predicted by (45), (46)) that outperform the WL filter.

As described in Subsection III-B, there is a possible improvement of the partial WL-C(i), i = 0, 1, 2, 3

structures for BPSK SOI symbols by using a post processing consisting to take the real part zk of CV MMSE

receiver output. Fig. 2, confirms our theoretical analysis (34), but the modified structure WL-C(1) presents a

small improvement w.r.t. the same partial structure based on yk.

Figures 3 and 4 show the SINR at the output of the WL-C(1) and WL receivers for BPSK SOI and CCI

as a function of φ for different values of τj/T for a roll-off of 0.3, and as a function of τj/T for different

values of the roll-off ω for φ = 0, respectively. In the same way, Figs. 5 and 6 show the SINR at the output
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of the L-C(1, 3) and linear receivers for QPSK SOI and CCI. For all these figures, INR = εj = πj/η2 = 30dB.

These four figures show still significant gain in SINR which decreases when the roll off ω of v(t) decreases

and τj ∈ [0, T/2] increases. This is explained by the presence of increasing inter-symbol interference due to

the pulse shaping filter, which Gaussianizes the CCI component j′k due to the central limit theorem and for

which the gain strongly decreases. Furthermore, comparing Fig. 3 to Fig. 5, we see that the SINR at the output

of the WL-C(1) receiver for BPSK SOI and CCI is sensitive to φ, in contrast to the SINR at the output of the

L-C(1,3) receiver for QPSK SOI and CCI, which is not sensitive.
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Fig. 1. SINR at the output of the WL-C(i) and WL-C(0,1,2,3) MMSE receivers as a function of the INR

for N = 1, BPSK SOI and CCI with τj = 0, φ = 0 and SNR = 10dB.
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Fig. 2. SINR and SINRz at the output of the WL-C(1) and WL-C(0) MMSE receivers as a function of the INR

for N = 1, BPSK SOI and CCI with τj = 0, φ = 0 and SNR = 10dB.
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Fig. 3. SINRWL−C(1) and SINRWL as a function of φ for BPSK SOI and CCI for N = 1,ω = 0.3 and SNR = 10dB.
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Fig. 4. SINRWL−C(1) and SINRWL as a function of τj/T for BPSK SOI and CCI for N = 1, φ = 0 and SNR = 10dB.
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Fig. 5. SINRL−C(1,3) and SINRL as a function of φ for QPSK SOI and CCI for N = 1 and SNR = 10dB.
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Fig. 6. SINRL−C(1,3) and SINRL as a function of τj/T for QPSK SOI and CCI for N = 1, φ = 0 and SNR = 10dB.

For the multiple antennas scenario, all performance behaviors of the CV MMSE receivers described in Figs.

2-6 are maintained with increasing SINR as |α| decreases and with an SINR enhancement due to spatial diversity

because εs = ‖hs‖2πs/η2, except a significant increasing of SINR observed in the neighborhood of τj/T = 0.5

w.r.t. Figs. 4 and 6.

We compare now in Fig. 7, the theoretical SINR at the output of the linear, WL and WL-C(1) MMSE

beamformers against their equivalent MVDR1 beamformers, which take into account the non-circularity and/or

the non-Gaussiannity of the interference only (i.e., linear MVDR or Capon [34], WL MVDR1 [35] and WL-C(1)
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MVDR1 beamformers [25], [37]) for N = 2, BPSK synchronized SOI and CCI symbols (τj = 0) in the worst

case φ = 0, as a function of |α| for SNR πs/η2 = 10dB, INR πs/η2 = 30dB and a roll-off ω = 0.3. Note that

for the MVDR1 beamformers, the comparison is shown with the time-averaged theoretical SINR because these

beamformers have no knowledge of the SOI. This figure also shows the theoretical SINR at the output of the

WL-C(1) MVDR1 beamformer for a square pulse shaping filtering [25]. This figure confirms the inequalities

(30)-(32). It illustrates that the exploitation of the non-circularity and/or the non-Gaussiannity of the SOI, in

addition to that of the CCI allows one to improve the performance of the MMSE beamformers with respect

to the associated MVDR1 beamformers. We also see that the power’s discrimination effect of the WL-C(1)

MMSE beamformer makes it possible to maintain a strong SINR for a module of the spatial correlation close

to 1, unlike the other beamformers.
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Fig. 7. SINR as function of |α| for different MVDR and MMSE beamformers for N = 2, BPSK SOI and CCI

with τj = 0, φ = 0, SNR = 10dB and INR = 30dB.

D. Symbol error rate performance

To complete the SINR performance analysis, we present in this subsection the SER of the SOI symbols

ak ∈ A obtained by simple threshold detectors at the output yk of different CV MMSE filters:

yk = w̃H x̃k = µsr(0)(w̃H h̃s,n)ak + w̃H ĩk
def
= αsak + w̃H ĩk, (56)
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deduced from (25). Using the ML1 receiver under the false assumption of both circular Gaussian total noise

w̃H ĩk and independent symbol ak and noise part w̃H ĩk, the detected SOI symbol is given by

âk = Arg min
a∈A
|yk − αsa|. (57)

The derivation of the theoretical SER of such detector is very intricate, because, the noise part is not

Gaussian distributed and not independent (although uncorrelated) from the symbol. Furthermore, we note the

approximation deduced from the central limit theorem is not justified although w̃H ĩk is the sum of a large

number of random variables, because the variance of these random variables can be of different orders of

magnitude, depending on πs, πj and η2.

Consequently, we can only deduce the SER by Monte Carlo experiments. These SER are then compared to

those of the optimal ML or MAP detector which knows all the parameters πs, πj , η2, hs and hj , given for

synchronized symbols (τj = 0) by:

âk = Arg max
a∈A

∑
b∈A

exp

(
−
||xk − a

√
πshs − b

√
πjhj ||2

η2

)
. (58)

These SER have also been compared to those of the joint detector given by:

âk = Arga∈A min
(a,b)∈A2

||xk − a
√
πshs − b

√
πjhj ||2, (59)

with very similar SER.

We illustrate these SER in Figs. 8 and 9 as a function of the INR for an SNR equal to 9dB for a single

antenna (N = 1) for respectively BPSK and QPSK synchronized SOI and CCI symbols (τj = 0) in the worst

condition φ = 0.

In Fig. 8(a), the SER given at the output of the WL-C(1) and WL MMSE filters are compared to those of

the MAP receiver. The SINR at the outputs of the WL-C(1) and WL MMSE filters are also plotted in Fig.

8(b). This figure illustrates the power’s discrimination allowed by the WL-C(1) MMSE receiver, for which its

output SINR and SER practically reach their maximum 2εs = 2πs/η2 and minimum respectively for INR �

SNR. For INR ≈ SNR, the SOI and CCI symbols constellations of the input signal xk overlap, so the output

SINR reaches its minimum where the SER is maximum. Note also a rebound in the SER for INR ≈ SNR +

6dB which is explained by a geometric ambiguity in the constellation of the observation yk with respect to the

reference constellation of the SOI.

Fig. 9(a) shows the SER at the output of the L-C(1,3), L-C(1) and linear MMSE filters which are compared to

those of the MAP receiver. Compared to the SINR exhibited in Fig. 9(b), these figures also exhibit the power’s

1We note that the implementation of the CV MMSE beamformer before the ML detection, although suboptimal allows one to break
free from the knowledge of the parameters πs, πj , η2, hs and hj .
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discrimination allowed by the L-C(1,3) MMSE receiver, for which its output SINR attains its minimum for INR

≈ SNR and its maximum εs for strong CCI where the SER is minimum. So the SER and SINR obtained by

the different CV MMSE receivers have consistent behaviors. This reinforces the meaning of the SINR defined

by the orthogonal decomposition (26). Furthermore, we note that although the MAP receiver outperforms the

WL-C(1) and L-C(1,3) MMSE receivers, their SERs are very close for strong CCI.
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Fig. 8. SER (a) and SINR (b) at the output of the WL, WL-C(1) MMSE and MAP receivers as a function of INR

for N = 1, BPSK SOI and CCI with τj = 0, φ = 0 and SNR = 9dB.
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Fig. 9. SER (a) and SINR (b) at the output of the Linear, LC(1), LC(1,3) MMSE and MAP receivers as a function of INR

for N = 1, QPSK SOI and CCI with τj = 0, φ = 0 and SNR = 9dB.

V. PERFORMANCE IN THE PRESENCE OF TWO INTERFERERS

In the presence of two interferers, the derivation of the SINR is very complicated and exceeds the capabilities

of our MATLAB symbolic and calculus tools, so we limit our analysis to orthogonal interferers for which

hHj1hj2 = 0, for both rectilinear or SO circular CCI and SOI.
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A. SINR at the output of linear and WL MMSE receivers

Under these assumptions, the SINR at the output of the linear MMSE beamformer is straightforwardly given

by

SINRL = εs

(
1− |α1|2εj1

1 + εj1
− |α2|2εj2

1 + εj2

)
, (60)

where εji
def
= ‖hji‖2πji/η2 and αi

def
= |αi|eiφi = hHs hji/‖hs‖‖hji‖, i = 1, 2, whereas the SINR at the output

of the WL MMSE beamformer is also straightforwardly given by

SINRWL = 2εs

(
1− 2|α1|2 cos2(φ1)εj1

1 + 2εj1
− 2|α2|2 cos2(φ2)εj2

1 + 2εj2

)
, (61)

for arbitrary rectilinear SOI and CCI. This SINR is approximated for strong CCI (εj1 � 1 and εj2 � 1) by

SINRWL ≈ 2εs
(
1− |α1|2 cos2 φ1 − |α2|2 cos2 φ2

)
. (62)

B. SINR and SER at the output of CV MMSE receivers

In the scenario of two orthogonal interferers, the derivation of the SINR at the output of CV MMSE receiver

is very involved by our MATLAB’s symbolic math toolbox. However, in the particular case of N = 2 for

which ‖hs‖2 = |hj1‖2 = |hj2‖2 = 2, |α1|2 + |α2|2 = 1, with πj1 = πj2
def
= πj and φj1 = φj2

def
= φj , τj1 = τj2 =

τj = 0, we have proved the following limits for BPSK SOI/CCI and QPSK SOI/CCI symbols, respectively:

lim
πj→∞

SINRWL−C(1) = lim
πj→∞

SINRWL−C(0) = 2εs, (63)

lim
πj→∞

SINRL−C(1,3) = εs, (64)

for all φj and α1. These limiting values of SINR are those obtained for a single interference (see (43) for BPSK

CCI and (52) for QPSK CCI). Both relations (63), (64) prove that these CV MMSE receivers completely remove

the two interference terms with only N = 2 antennas thanks to a power’s discrimination between the SOI and

CCI.

To complete the SINR performance analysis, we present under the assumptions given in Section IV-D with

here SNR = 5dB, a comparison of the behavior of the SINR and the SER at the output of the WL-C(1) and WL

MMSE receivers with BPSK SOI and CCI as a function of the INR also defined by πj/η2. Similarly to Figs.

8 and 9, Fig. 10 illustrates the power’s discrimination allowed by the WL-C(1) MMSE receiver, for which its

output SINR reaches its minimum for two CCI when INR ≈ SNR and its maximum 2εs = 4πs/η2 for strong

CCI where the SER is minimum. Note also the rebound in the SER for two CCI when INR ≈ SNR + 6dB

because of the ambiguity of the SOI constellation in xk compared to those of the CCI.
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Fig. 10. SER (a) and SINR (b) at the output of the WL, WL-C(1) MMSE receivers as a function of INR for

N = 2, BPSK SOI, SNR = 5 dB and P = 2 orthogonal CCI with φj = 0, τj = 0 and |α1| =
√
2/2.

VI. ADAPTIVE IMPLEMENTATION

A. Presentation

In practical situations, the correlation matrix Rx̃ and the intercorrelation vector rx̃,a are not known a priori,

whereas a training sequence (a1, ..., aK) uncorrelated with the interference is available after a synchronization

process. Several adaptive implementations can be developed in this case. Assuming the observations xk are
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stationary over blocks including Ktraining symbols and L data symbols, we propose here to use an extension

of the sample matrix inversion (SMI) algorithm [38] to implement (18). It consists to estimate the CV MMSE

filter w̃ from K observations associated with the training sequence (a1, ..., aK) by

̂̃w = R̂
−1

x̃ r̂x̃,a, (65)

where R̂x̃ and r̂x̃,a are the empirical means 1
K

∑K
k=1 x̃kx̃Hk and 1

K

∑K
k=1 x̃ka∗k, respectively.

In this per block strategy of adaptation, the CV MMSE filter is estimated only on time per block of K

training symbols and L data symbols (located for example on either side of the training symbols). To illustrate

the role of K, we will consider the rate of convergence.

B. Rate of convergence

The rate of convergence of the SMI algorithm has been theoretically analyzed in many papers (see e.g. [38]

for linear receivers. But the theoretical analysis of the CV SMI algorithm is beyond the scope of this paper

and we simply illustrate its convergence through a Monte-Carlo experiment. For this purpose, we consider the

case of BPSK synchronized SOI and CCI symbols (τj = 0) in the worst condition φ = 0 for N = 2, P = 1,

SNR = 13dB and INR = 33dB. The SINR at the output of the third-order CV receiver implemented by the

SMI algorithm from K observations is defined by:

SINR(K) =
|̂̃wH

rx̃,a|2

πa ̂̃wH
Rĩ
̂̃w =

|̂̃wH
rx̃,a|2

πa ̂̃wH
(Rx̃ − π−1

a rx̃,arHx̃,a)
̂̃w . (66)

Under these assumptions, Fig. 11 shows the variation, as a function of K, of the estimated mean value of

SINR(K), Ê(SINR(K)) computed over 1000 runs, at the output of the WL-C(1) MMSE and WL-C(1) MVDR

beamformers, compared to the WL MMSE and WL MVDR1 beamformers. We verify that the steady state

performance of the WL MVDR1, WL MMSE and WL-C(1) MVDR1 beamformers are upper bounded by the

performance of the WL-C(1) MMSE beamformer, consistently with Fig. 7.

We see that in this scenario the necessary numbers of snapshots required to achieve optimal performance

for high INR, are about 100 snapshots for the WL-C(1) MMSE and WL-C(1) MVDR1 beamformers and 40

snapshots for the WL MMSE and WL MVDR1 beamformers. Naturally the rate of convergence decreases

for WL-C(1) beamformers w.r.t. WL ones because the number of entries is larger [38]. More precisely, the

numbers of inputs of these receivers are Ni = 2N = 4 and Ni = 2N +N2(N + 1)/2 = 10 for the WL MMSE

and WL-C(1) MMSE beamformers, respectively, and the required number K of training symbols is roughly

K = 10Ni.
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Fig. 11. Ê(SINR(K)) as a function of K for BPSK SOI and CCI, N = 2, P = 1 and |α| = 0.95,

with τj = 0, φ = 0 and SNR = 10dB.

C. Complexity elements

We now give some complexity elements of some proposed third-order MMSE receivers compared to the

linear and WL MMSE receivers. Denoting by Ni the number of input of these receivers, we get from the

analysis presented at the end of Subsection III-A:

• Ni = N for a linear receiver,

• Ni = 2N for a WL receiver,

• Ni = N +N2(N + 1)/2 for a L-C(1) receiver,

• Ni = N +N2(N + 1)/2 +N(N + 1)(N + 2)/6 for a L-C(1,3) receiver,

• Ni = 2N +N2(N + 1)/2 for a WL-C(1) receiver,

• Ni = 2N +N2(N + 1) +N(N + 1)(N + 2)/3 for a WL-C(0,1,2,3) receiver.

Assuming the adaptation is done from a per block strategy as explained in Subsection VI-A, the complexity of

a receiver corresponds to the number of complex operations (comps) required to compute one estimated data

symbol. Under these assumptions, the number of comps required to compute L receiver outputs from the L
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data symbols of a block, jointly with the associated complexity, are presented in the following:

R̂x̃ : Ni(Ni + 1)(2K − 1)/2 comps

r̂x̃,a : Ni(2K − 1) comps

R̂−1
x̃ : 8N3

i /3 comps

̂̃w = R̂
−1

x̃ r̂x̃,a : Ni(2Ni − 1) comps

yk = ̂̃wH
x̃k (1 ≤ k ≤ K + L) : (K + L)(2Ni − 1) comps

overall number of operations :
8N3

i

3
+

(
K +

3

2

)
N2
i +

(
5K + 2L− 5

2

)
Ni −K − L comps.

In practical situations, K is often chosen as a multiple of Ni, which means that K = γNi, where γ is an integer

such that γ ≥ 1 to ensure the invertibility of the estimated correlation matrix of x̃k. Otherwise, the number

δ
def
= L/K of data symbols per training symbol is of the order of a few units, depending on the stationarity of

the observations. Under this assumption, the complexity (number of comps per data symbol) is given by

Complexity =
1

δ

(
1 +

8

3γ

)
N2
i +

(
2 +

5

δ
+

3

2δγ

)
Ni −

(
1 +

1

δ
+

5

2δγ

)
. (67)

We deduce from these expressions that the complexity with respect to N is:

• O(δ−1[1 + (8/3γ)]N2) for a linear receiver,

• O(δ−1[1 + (8/3γ)]4N2) for a WL receiver,

• O(δ−1[1 + (8/3γ)]N6/4) for a L-C(1) receiver,

• O(δ−1[1 + (8/3γ)]4N6/9) for a L-C(1,3) receiver,

• O(δ−1[1 + (8/3γ)]N6/4) for a WL-C(1) receiver,

• O(δ−1[1 + (8/3γ)]16N6/9) for a WL-C(0,1,2,3) receiver.

To quantify the expressions of the complexity (67), Fig. 12 shows the variations of the complexity of several

first and third-order MMSE receivers as a function of N for δ = 4 and γ = 20. We note in particular

from this figure, a very acceptable complexity of most of the proposed third-order MMSE receiver for

small-scale systems (1 ≤ N ≤ 5) because the number of comps required by most of the receivers to

generate an estimated data symbol does not exceed 500. Clearly large values of γ = K/Ni and δ = L/K

are of interest for the complexity point of view, whereas large values of γ improve the steady state

performance of the estimated receiver and decrease the estimation variance of the latter. But γ and δ must

be upper-bounded because the observations must be stationary over K + L = γ(1 + δ)Ni symbols. A

tradeoff must therefore be found between (complexity and performance) and stationarity duration assumption.
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Fig. 12. Complexity of several first-order and third-order beamformers as a function of N , γ = 20, δ = 4.

VII. CONCLUSION

Enlightening interpretations and related generic output SINR performance of the M th-order CV MMSE

receiver have been given in this paper using an orthogonal decomposition. A family of third-order CV MMSE

receivers for the reception of digital linearly modulated SOI whose waveform is known corrupted by potentially

non-gaussian and non-circular interference has been introduced. Performances in term of SINR depending on the

symbols constellation, the pulse shaping filter and relative phase and delays between the SOI and the CCI have

been theoretically analyzed and comparisons w.r.t. output SER have been shown by Monte Carlo experiments. It

has been proved that some of these receivers that exploit FO and SIO non-circularity of SOI and CCI, enhance

WL receiver performance for SAIC of one rectilinear interference such as BPSK interference, whereas some

other receivers allow us to fulfill SAIC of FO non-circular interference such as QPSK interference, by power’s

discrimination between SOI and CCI, result which is not possible from WL receivers. These results open new

perspectives for enhanced SAIC in non-Gaussian and non-circular contexts, omnipresent in practice.

APPENDIX

Proof of condition of χj − κ2
j = 0 in Subsection IV-B

Applying the Cauchy Schwarz inequality to the random variables |j′3k | and |j′k|, we get: [E|j′4k |]2 ≤

E|j′6k |E|j′2k |. Thus χj − κ2
j ≥ 0 with equality if and only if |j′3k | and |j′k| are proportional, i.i.f. and

|j′k|(|j′2k |−c) = 0 with c constant, i.i.f j′k = 0 or |j′2k | = c. With E|j′2k | = 1, this is equivalent to |j′k| = 1/
√
p with

probability p and 0 with probability 1−p. For p = 1, this is equivalent to j′k = ±1 and |j′k| = 1 for real-valued
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and second-order circular CCI, respectively. For digital modulated CCI, for which j′k =
∑

` b`r((k−`)T−τj)√∑
` b`r((k−`)T−τj)

,

this corresponds to r(iT − τj) = 0, except for a value i0 of i and because r(t) is a Nyquist pulse i0 = 0 and

τj = 0.
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