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Incidence dynamics of emerging infectious diseases are essentially non-linear: in a 
population with no pre-existing natural immunity, a horizontally-transmitted pathogen 
spreads more than linearly (and exponentially in the purely theoretical situation 
where each case infects the same number of individuals). Conversely, healthcare 
capacities can only grow linearly, which means that after some time they are bound 
not to cope with disease incidence. Quantitative epidemiology and modelling can 
shed light on different scenarios on near and medium future trends and help us 
better understand the past to describe the present 1,2.

The COVID-19 pandemic caught the vast majority of countries unawares in early 
2020, thereby challenging public health actors. In France, the first lockdown was 
implemented on Mar 17th 2020. At that time, population RT-qPCR testing was not 
sufficient to accurately estimate the true size of the epidemic but it was sufficient to 
detect an near-exponential growth that had been going on for weeks. The main 
questions raised by hospital staff, public health authorities, and the general public (or
the media) revolved around the date and height of the peak in hospital capacity 
strain, the actual cumulative incidence (following the hypothesis of hidden herd 
immunity), and the lockdown efficiency. These created an urgent need for 
mathematical epidemiology insights.

In a popularisation of science’s perspective, our team was the first public estimate of 
the COVID-19 basic reproduction of COVID-19 in France3. We also published an 
online simulator (April 6th 2020) to allow users to explore a variety of control 
scenarios that could differ from the full lockdown implemented at the time4. This 
counterfactual exploration made it possible to qualitatively apprehend the impact of 
anticipating or delaying the implementation of non-pharmaceutical measures. It could
also be used to explore an earlier lockdown release, e.g. in the context of an 
implementation of a series of short lockdowns. One of the important goals was to 
help define, once the urgency of the first wave had passed, an optimal strategy (in 
terms of timing and intensity, or even age stratification, see e.g. 5,6) for the use of 
non-pharmaceutical interventions (NPIs) that would be less restrictive than the long 
and strict national lockdown. Therefore, contrary to what the media exposure 
suggested, detailed mathematical models were intended as a tool for anticipating 
and exploring less drastic solutions, at least in terms of their spatio-temporal 
application.

Our simulator involves a discrete-time model and is designed to be as parsimonious 
as possible while capturing the memory effect of infectious history7. Its inferential 
statistical component, which relies on hospital time series, has been refined over 
time and adapted to subnational levels as well 8. Hospital time series are less subject
to fluctuations in the testing effort than screening time series and their lag behind the
events of associated infections is on average two weeks, which is less than mortality 
time series. The projections provided by our framework were used as support to 
political decision-makers and hospital service planning, especially the Montpellier 
University Hospital.

In Figure 1, we show a retrospective view of the ICU occupancy projections we 
made since early September 2020. In general, the median of the simulations 
(dashed line) anticipates hospital dynamics on a monthly basis (plain line). In two of 



the seven phases considered, however, none of the simulated scenarios was 
compatible with the observations after one month. In both cases, these were 
situations where the signal characterising the effect of newly introduced measures 
was still insufficient: introduction of the national curfew on Jan 16 th 2021, third 
lockdown on 5 April 2021. Based on then-current estimates of the number of 
reproductions, the most optimistic assumptions overestimated the future dynamics. 
Note that in both cases, analyses performed with the updated data less than two 
weeks after the drop-out accurately anticipated the following trends.

Let us focus on the projections published in the June issue of Anaesthesia Critical 
Care and Pain Medicine9. These investigated the end of the third lockdown, which 
was initiated on 3 April 2021 (with a tolerance until the 5th due to the Easter 
weekend) and released in several stages three weeks later. On the day the 
projections were made, 29 April, hospital data could only reflect the first ten days of 
the lockdown (there is an average 14-day delay between infections and critical care 
admissions7). For the first two lockdowns, this period was sufficient to reach the full 
effect of the lockdown and, therefore, formulate an appropriate working hypothesis to
simulate the further dynamics. As shown in Figure 2, the kinetics of the impact of the 
third lockdown measures on the estimated temporal replication number - calculated 
on daily critical care admissions nationally - was much slower than the first two, and 
the virus circulation minimum was reached only 21 days (compared to 11 and 9 for 
the first two) later.

Retrospective analyses stratified by age and space, including various contextual 
variables, will be necessary to shed light on the interrelated phenomena and their 
relative contributions to this particular kinetics. However, some hypotheses can be 
put forward such as a delayed effect of school closures in the transmission chains or 
weather conditions less favourable to virus transmission. The fact that the 
successive lifting of the measures did not give rise to a rebound (even if a signal 
attributable to the reopening of schools could be detected) and gave rise to the most 
optimistic scenario envisaged testifies to the effectiveness of the vaccination 
campaign and the low risk of transmission of SARS-CoV-2 in the open air (possibly 
amplified by the gradual realisation of the contribution of the airborne route in its 
transmission10).

Deviations between observations and simulations are always informative and 
provide opportunities to improve the model. In this particular case, the readjustment 
of the dynamics once the viral circulation during the 3rd lockdown was well-
estimated shows that the problem came from the hypotheses choice and not from 
the model itself. Indeed, from a formal point of view, models are analogous to a 
logical implication: if condition A is fulfilled, then situation B can be expected to 
occur. If the working hypotheses are not satisfied, the scenarios produced become 
invalid and the simulations must be updated. This issue mainly arises when the 
signal of public health policy change is still incomplete in the hospital data.

Although at the time the extrapolation of the dynamics using the latest data was a 
reasonable choice under the parsimony principle and leaning on the experience from
the two previous lockdowns, it is important to ask whether models could have done 
better. One possibility could have been to access robust early signals of epidemic 
trends such as weather variations, population Ct values11,12, or random screening in 



the population. In the United Kingdom, for example, epidemiological surveillance in 
schools, monitoring of contact chains, random population screening, and sequencing
provide valuable sources of signal enrichment and model parametrisation. However, 
such complementary, dense, and stratified datasets are not available for France. 
Another option could have been to add even more mechanistic details in the model, 
e.g. explicitly capturing school attendance dynamics. This sounds appealing on 
paper but this is extremely hard to achieve with a parsimonious model. Indeed, it 
could be that adding a specific component to the model perfectly captures the effect 
of the third lockdown but very poorly that of the previous ones or even the rest of the 
epidemic. More generally, and somehow paradoxically, moving away from the 
parsimony principle informs us on global trends but also moves us away from the 
possibility to use data to make relevant scenarios.

Even if they are not the most accurate in the short term, parsimonious models can 
easily explore all the possibilities in the medium term, a time frame that is of 
particular interest for decision-making. In this respect, they are suitable for informing 
anticipation strategies, particularly in the context of an epidemic outbreak, where a 
delay can translate near-exponentially into a health impact, even if it means re-
evaluating the timetable every fortnight as the estimates are consolidated. This 
consolidation can moreover be accelerated if the spatial heterogeneity of the 
epidemic allows delaying the implementation or the lifting of measures depending on
the territory, a source of valuable data to improve the models and inform decision-
making.

Even when they are mechanistic, i.e. here based on the explicit dynamics of 
transmission, all models are wrong because they greatly simplify the studied 
phenomena. Their ambition is, therefore, not to predict precisely how many 
hospitalizations there will be within a given number of days in a given place, but 
rather to know, for example, how much slack can be allowed without fearing ICU 
overload or the potential morbi-mortality impact of a fourth (and last?) wave.



Figure 1. COVIDSIM projections of the French COVID-19 ICU bed occupancy 
confronted to data (September 2020 – September 2021). The solid blue line 
shows the 7-day rolling averaged nationwide COVID-19 bed occupancy from the 
Santé Publique France (SI-VIC) database. The shaded areas and the dotted lines 
(when provided) correspond respectively to the range spanned by 95% of the 
COVIDSIM simulations and the median projection of future ICU bed occupancy. 
Among the pool of (2.5 on average) scenarios investigated for each period, only the 
closest to reality is shown and the color of the projection indicates whether the 
scenario was the most optimistic (green), the most pessimistic (pink) or based on 
intermediate assumptions (orange) within the pool of projections performed the day 
corresponding to the vertical dashed orange line on the left. When projections 
overlap, the former projections are depicted in lighter color. Only the main 
projections publicly released (in 9, 16, the French media, or on social networks) are 
here shown and no simulation was performed more than a day after that of the last 
available data point. The blue arrows shows the duration the current projection 
accurately anticipates the ICU dynamics within the range of the simulations. Note 
that the model was improved over time, which explains the strong confidence interval
reduction from the second projection and that each run of the model simulates the 
whole epidemic curve from January 2020, explaining why the inferred values are not 
always centred on the data corresponding to the initial time point of the projection.



Figure 2. ICU-based COVID-19 reproduction number dynamics around 
lockdown implementations. The solid curves represent the mean temporal 

reproduction number Rt estimated by the Wallinga & Tenuis approach13 , in R14 with 
the R0 package15) from the daily COVID-19 ICU admissions in France provided by 
Santé Publique France (7-day rolling averaged to smooth weekly artefacts and 14-
day earlier shifted to recover the mean infection time7). The shaded areas 
correspond to the daily 95 % confidence interval of the mean. To compare the 

dynamics of estimated Rt around each of the three metropolitan France lockdowns, 
the times series are here overlapped and synchronised on their associated 
implementation day (vertical dashed black line), i.e. Mar 17th 2020, Oct 30th 2020 
and Apr 5th 2021 respectively (though the third lockdown officially began on Apr 3th 
2021, inter-regional mobility was tolerated during the Easter weekend). The 

horizontal dashed black line represents the Rt = 1 threshold under which the 
epidemic is under control. We see that the lag between lockdown implementation 

and its maximum effect (i.e. the minimum value reached by the estimated Rt shown 
with a vertical dotted line) varies.
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