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Abstract

A two-species Lotka-Volterra model extended with an arbitrary number of indirect interactions through10

diffusible and renewable compounds is presented according to its relevance in microbial community

modelling. After the determination of the system’s fixed points and a short discussion over their local

asymptotic stability, Lyapunov’s second method is applied to derive a sufficient condition of global

asymptotic stability. Biologically, this condition indicates the necessity for one microbial type to show

strong self-inhibition and the compounds to be fastly replaced.15

Keywords: global stability, Lyapunov’s Second Method, competitive Lotka-Volterra, exploitative

competition, public goods, spite.
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1 Introduction

Non-linear dynamical systems hardly ever show closed-form solutions. Usually, their behaviour is20

investigated by determining their fixed points and studying their stability after linearisation in their

neighbourhood [1, 2]. This straightforward method, however, cannot be applied to non hyperbolic

fixed points and is usually inefficient to investigate the dynamics far from and between fixed points.

Linearisation is especially unable to predict which locally asymptotically stable (LAS) fixed point the

solution will eventually converge to or to detect non fixed point attractors such as limit cycles or chaos.25

These questions can be addressed using a global stability analysis, for which a suitable approach is

known as Lyapunov’s Second Method [3]. This method is based on the definiteness properties of a

so-called Lyapunov function that needs to be identified for each fixed point of the dynamical system

under study. The existence of such a function thus provides a sufficient condition for the global

stability of the system.30

Lyapunov functions have been widely used in mathematical biology and especially to model eco-

logical communities [4, 5] for two reasons. The first one is that the dynamics of these systems emerge

from the interactions between numerous individuals hence, assuming a well-mixed community, the

encounters follow the classical non-linear mass action law [6, 7]. The second reason is that biologists

seek for global asymptotic stability because it guarantees the convergence of the systems towards the35

same point whatever the initial conditions (which are poorly known in natural phenomena). Moreover,

if a closed-form value of this globally asymptotically stable (GAS) fixed point can be found, the focal

dynamics can be nested into long-term processes such as evolution, by means of a timescale separation

assumption [8, 9].

Since their first formulations [10, 11], the Lotka-Volterra equations have been a fruitful source of40

models and generalizations and constitute undoubtedly one of the most studied theoretical frameworks

in population biology and even beyond [5, 12]. Nowadays, Lotka-Volterra equations continue to

receive a strong interest in the study of the stability of ecological communities [13] and are especially

investigated within the popular topic of microbiome [14, 15].

In contrast with macroscopic free living organisms that often interact directly by contact (pre-45

dation, competition or mutualism) [16], an important part of the interactions between symbiotic

micro-organisms, may they be commensal, mutualist or parasitic, is carried through soluble com-

pounds secreted in the medium which may have negative as well as positive effects on their growth

[17, 18, 19].

Some bacteria for instance, secrete siderophores chelating molecules that harvest iron in the50

medium, which can be then imported within the cell provided that the bacterium possesses the
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matching receptor [20, 21]. Cheating bacteria may not produce siderophores but still benefit from the

siderophores produced by other bacteria [22]. On the other side, bacteriocins are secreted enzymes

that break the bacterial wall. This detrimental compound may even affect the producing bacteria [23].

If pathogenic, the reproduction of the bacteria elicits the production of host defense molecules such55

as lactoferrin and siderocalin [24]. Analogous examples can be found for other microbes such as virus

and protozoans [17]. It results from here that the dynamics of microbial communities are not shaped

by simple direct competitive interactions but by a great set of indirect interactions with various effects

on each microbe type [25, 26]. Such indirect interactions are lacking in the Lotka-Volterra equations,

which would need structural modifications to fit to microbial dynamics.60

In this article, we consider the classical Lotka-Volterra equations to which we add an arbitrary

number of indirect interactions through diffusible compounds, for which we seek a sufficient global

stability condition and biologically interpret its closed-form expression. We restrict the model to two

microbe types in order to derive the less stringent condition suited for major theoretical ecology and

evolutionary biology frameworks that rely – by virtue of their game theory origins [?, 8].65
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2 Model formulation

Let us consider two microbe types (may they be strains or species) labeled 1 and 2. Hereafter, unless

stated otherwise, i will indifferently refer to 1 or 2 and k to the other type – that is the quantification

∀ (i, k) ∈ {1, 2}2 , i 6= k will be implied or simply reminded as i = 1, 2; k = 2, 1.

The microbial densities are non-negative variables Xi ∈ R+ that vary through time t ∈ R+70

according to several processes. The first is an intrinsic growth quantified by the rate %i ∈ R, which

can be negative if the microbe is unable to grow without collective help. The second is the self density

dependent effect emerging from direct interactions between individuals that belong to the same type

and is quantified by ηi,i ∈ R. Likewise, a cross density dependent effect can be defined as describing

the consequences of the inter-type direct interactions and is quantified by ηi,k ∈ R where the first75

index indicates the type that undergoes the interaction and the second index the one that produces

it.

Finally, we consider that an arbitrary number n ∈ N of diffusible compounds modulate microbial

growth according to their non-negative concentration Yp ∈ R+ and their respective effect γi,p ∈ R on

microbial type i’s growth. Whether they are microbial or host secretions, these compounds are likely80

to be produced at non-negative rates that are proportional to microbial densities through a positive

factor denoted by ui,p ∈ R+. Note that ui,p = 0 if microbial type i does not contribute to compound p

production. We moreover assume that these compounds are mostly removed from the medium through

processes that are not related to their activity, such as self-denaturation, host degradation, dilution –

which is the case of a large class of secreted molecules namely those with a renewable activity such as85

enzymes (bacteriocins) or chelates (siderophores, lactoferrin). Their clearance is therefore proportional

to their concentration through a positive factor denoted by vp > 0 [27]. In the end, the microbial

growth of the two types conforms to the following set of ODEs, with i = 1, 2; k = 2, 1; p = 1, . . . , n:


dXi
dt =

(
%i + ηi,iXi + ηi,kXk +

n∑
p=1

γi,pYp

)
Xi =: fi (w) ,

dYp

dt = ui,pXi + uk,pXk − vpYp, =: gp (w) ,
(1)

where w :=
[
X1 X2 Y1 · · · Yn

]T
. For the sake of concision, we hereafter denote by Ri (w) the

quotient fi (w) /Xi which can be interpreted as the instantaneous per capita growth rate of microbial
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type i. The Jacobian matrix associated to (1) is

J (w) := ∂

∂w

[
f1 f2 g1 · · · gn

]
(w) ,

=



R1 (w) + η1,1X1 η1,2X1 γ1,1X1 · · · γ1,nX1

η2,1X2 R2 (w) + η2,2X2 γ2,1X2 · · · γ2,nX2

u1,1 u2,1 −v1 0T
p−2 0

...
... 0p−2

. . . 0p−2

u1,n u2,n 0 0T
p−2 −vp


, (2)

where 0d denotes the zero vector of Rd.

Because of the biological meaning of variables Xi and Yi, we restrict the initial conditions (con-90

sidered at t = 0) of (1) to the positive orthant W ≡ (R+)p+2. It is straightforward to see that W

is positively invariant. Indeed, Xi (t) = Xi (0) exp
(∫ t

0 Ridτ
)
, therefore Xi (t) ≥ 0,∀t ≥ 0. Therefore,

dYp

dt ≥ −vpYp, from which it follows that Yp (t) ≥ Yp (0) exp (−vpt) ≥ 0,∀t ≥ 0. Hereafter, global

properties are understood with respect to W.
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3 Fixed point determination95

The sets Xi :=
{
w ∈ Rp+2 : fi (w) = 0

}
and Yp :=

{
w ∈ Rp+2 : gp (w) = 0

}
define the i-th microbial

density nullcline and the p-th compound concentration nullcline respectively. A fixed point w of (1)

is such that ∀ (i, p) ∈ {1, 2} × {1, . . . , n} , fi (w) = 0 = gp (w). The set of fixed points F is thus the

intersection of all nullclines [28], F = X1 ∩ X2 ∩
n⋂
p=1
Yp.

On one hand, all points of F satisfy100

Yp = 1
vp

(u1,pX1 + u2,pX2) , p = 1, . . . , n (3)

which allows us to rewrite Ri on F such as

w ∈ F =⇒ Ri (w) = %i +mi,iXi +mi,kXk, i = 1, 2, k = 2, 1, (4)

with

mi,j := ηi,j +
n∑
p=1

γi,puj,p
vp

. (5)

On the other hand, all points of F satisfy (Xi = 0) ∨ (Ri = 0) for i = 1, 2, where ∨ denotes the

logical disjunction (or). By canceling either Xi or Ri for each type, it follows that there exist at most

four different fixed points hereafter denoted by wh, h = 0, 1, 2, 3. Note that here and below we denote105

by Xi the microbial density i nullcline (Xi = 0).

The origin 0p+2 is the trivial null fixed point w0 . The monomorphic fixed point 1, w1, is given

by solving the system (R1 = 0) ∧ (X2 = 0), where ∧ denotes the logical conjunction (and). Hence,

w1 =
[
x1 0 u1,1x1

v1
· · · u1,nx1

vn

]T
, where x1 := − %1

m1,1
is the stationary i-th monomorphic microbial

density, provided that m1,1 6= 0 (hereafter assumed). Analogously, the monomorphic fixed point 2 is110

w2 =
[
0 x2

u2,1x2
v2

· · · u2,nx2
vn

]T
, where x2 := − %2

m2,2
, provided that m2,2 6= 0 (hereafter assumed).

The fourth fixed point is the dimorphic fixed point w3, which satisfies (R1 = 0)∧ (R2 = 0). These two

equations represent the linear system

m1,1 m1,2

m2,1 m2,2

 .
X1

X2

 = −

%1

%2

 , (6)

the solutions of which is
[
ξ1 ξ2

]T
with ξi := mi,k%k−mk,k%i

m1,1m2,2−m1,2m2,1
, provided that m1,1m2,2 6= m1,2m2,1

(hereafter assumed). It results from above that w3 =
[
ξ1 ξ2

1
v1

(u1,1ξ1 + u2,1ξ2) · · · 1
vn

(u1,nξ1 + u2,nξ2)
]T

.115

We say that a fixed point is feasible when it belongs to W. While w0 is always feasible, the three
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other fixed points may not. Their feasibility conditions are sgn%1 6= sgnm1,1, sgn%2 6= sgnm2,2 and

sgn (m1,2%2 −m2,2%1) = sgn (m2,1%1 −m1,1%2) = sgn (m1,1m2,2 −m1,2m2,1) respectively, where sgn is

the sign function.
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4 Local asymptotic stability120

Fixed point local asymptotic stability is addressed, as classically, through the sign of the real parts

of the eigenvalues of the Jacobian matrix evaluated at the given point. In the case of the null fixed

point, J (w0) is a lower triangular matrix the diagonal of which is simply
[
%1 %2 −v1 · · · −vp

]T

hence w0 is LAS whenever (%1 < 0) ∧ (%2 < 0).

One can also derive the necessary and sufficient condition of local asymptotic stability of the125

monomorphic fixed points w1 and w2 provided that they are LAS in their respective monomophic

space Wi := (W ∩Xk) \ Xi. (Note that Wi is the subspace of W where the focal microbial density is

positive while the other microbial type is constrained to zero.) Indeed, J (w2) is a lower triangular

block matrix of the form R1 (w2) 0p+1

u1 J1,1 (w2)



where u1 =
[
u1,1 · · · u1,p

]T
and J1,1 (w2) is the sub-matrix of J (w2) without the first row and130

the first column. Therefore, assuming that w2 is LAS in W2 (which is equivalent to the statement

that J1,1 (w2) has only negative real part eigenvalues), w2 is LAS in W \ X2 as well if and only if

R1 (w2) < 0 that is equivalent to %1 < −m1,2x2. Likewise and by permutation, w1 is LAS in W \ X1

provided that is LAS in W1 if and only if %2 < −m2,1x1.

It is straightforward that (1) can show bistability in W. Indeed, in the simplest case of n = 0, the135

matrices J (w1) and J (w2) become

−%1 −η1,2
η1,1

%1

0 %2 − η2,1
η1,1

%1

 and

%1 − η1,2
η2,2

%2 0

−η2,1
η2,2

%2 −%2



respectively. Therefore, w1 and w2 are both feasible and LAS whenever
(
0 < %2 <

η2,1
η1,1

%1
)
∧
(
0 < %1 <

η1,2
η2,2

%2
)
.

(Note that for n ≥ 1, bistability in W can easily be found numerically.)

Nonetheless, the necessary and sufficient condition for the non-trivial fixed points to be LAS

cannot be determined in the most general case. For this reason, given an intial condition, the long140

term behaviour of the solution of system (1) cannot be predicted in the general case unless an identified

global asymptotic stability condition is satisfied.
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5 Global asymptotic stability condition

If deriving the global asymptotic condition for the Lotka-Volterra model for two competing species

to be globally stable is a classical textbook exercise [29], one cannot extrapolate this condition to145

the present model as the arbitrary number of compounds do influence the dynamics of the system.

Following [3], it is well known that a feasible fixed point w? ∈ F ∩W is GAS in W? :=W \ (X1 ∪ X2)

(to be understood as its attraction basin equalsW?) if there is a Lyapunov function V ∈ C 1 (W?,R+)

such that 
(α) V (w?) = 0 and ∀w ∈ W? \ {w?} , V (w) > 0,

(β) dV
dt (w?) = 0 and ∀w ∈ W? \ {w?} , dV

dt (w) < 0.

For the sake of concision, we refer to these properties using their respective labels α and β from now150

on.

In the following, we focus on the case of the dimorphic fixed point w3 and show in the appendix

that the global asymptotic stability condition that emerges also applies to the three other fixed points.

Inspired by the previous works [4, 30], we define V as

V (w) := a1

(
X1 −

(
1 + logX1

ξ1

)
ξ1

)
+ a2

(
X2 −

(
1 + logX2

ξ2

)
ξ2

)

+ 1
2

n∑
p=1

bp

(
Yp −

1
vp

(u1,pξ1 + u2,pξ2)
)2

, (7)

where a1, a2, b are arbitrary positive real numbers.

The function V is obviously continuously differentiable on W?. Moreover, its first two terms155

are of the form h (x) := x − c − c (logx− logc) with c > 0. Given that the first derivative of h is

h′ (x) = 1 − c
x and its second derivative is f ′′ (x) = c

x2 > 0, it follows that argmin
R?

+

(f) = c and

min
R?

+
(f) = 0. Therefore, and since V is a separable function in each component of w, it follows that

V (w) > 0 for all w ∈ W? \ {w3} and V (w3) = 0, condition(α) holds.

Before calculating the time derivative of V , let us remind that Ri (w3) = 0 for i = 1, 2. Therefore,

the following holds for all w ∈ W, and i = 1, 2,

Ri (w) = Ri (w)−Ri (w3) ,

= ηi,1 (X1 − ξ1) + ηi,2 (X2 − ξ2) +
n∑
p=1

γi,p

(
Yp −

1
vp

(u1,pξ1 + u2,pξ2)
)
. (8)
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It follows from here that

dV
dt (w) = a1 (X1 − ξ1)R1 (w) + a2 (X2 − ξ2)R2 (w)

+
n∑
p=1

bp

(
Yp −

1
vp

(u1,pξ1 + u2,pξ2)
)

(u1,pX1 + u2,pX2 − vpYp) ,

=
2∑
i=1
aiηi,1 (Xi − ξi) (X1 − ξ1) + aiηi,2 (Xi − ξi) (X2 − ξ2)

+
n∑
p=1

(
(a1γ1,p + bpu1,p)

(
Yp −

1
vp

(u1,pξ1 + u2,pξ2)
)

(X1 − ξ1)

+ (a2γ2,p + bpu2,p)
(
Yp −

1
vp

(u1,pξ1 + u2,pξ2)
)

(X2 − ξ2)

−bpvp

(
Yp −

1
vp

(u1,pξ1 + u2,pξ2)
)2
 ,

which is equivalent to the following quadratic form160

dV
dt (w) = 1

2 (w−w3)T .
(
D.P + PT.D

)
. (w−w3) , (9)

where D is the diagonal matrix diag (a1, a2, b1, . . . , bp) and

P =



η1,1 η1,2 γ1,1 · · · γ1,n

η2,1 η2,2 γ2,1 · · · γ2,n

u1,1 u2,1 −v1 0T
p−2 0

...
... 0p−2

. . . 0p−2

u1,n u2,n 0 0T
p−2 −vp


.

It follows from (9) that property (β) holds if and only if D.P + PT.D is negative definite (which

is equivalent to the negativity of its associated quadratic form).

A theorem from [31](p. 137) allows the existence of such a positive diagonal matrix D provided

that the matrix P is strictly row diagonally dominant. It formally states that

∀q ∈ N?,∀A = (ai,j)(i,j)∈{1,...,q}2 ,

(diag (A) � 0) ∧

∃ (kj)j∈{1,...,q} > 0 : ∀i ∈ J1; qK , kiai,i >
∑

j∈{1,...,q}\{i}
kj |ai,j |


=⇒ ∃C = diag (cj)j∈{1,...,q} > 0 :

(
C.A + AT.C

)
is positive definite. (10)

Applying this theorem to −P with the particular set of positive real numbers (kj)j∈{1,...,p+2} :=

10



(κ, 1, κ, . . . , κ) (the biological relevance of which is exposed in the discussion), it results that if there165

exists a scaling quantity κ > 0 such that



−η1,1 > 1
κ |η1,2|+

n∑
p=1
|γ1,p| ,

−η2,2 > κ |η2,1|+ κ
n∑
p=1
|γ2,p| ,

vp > u1,p + 1
κu2,p, ∀p ∈ {1, . . . , n} ,

(11)

then there exists (a1, a2, b1, . . . , bp) ∈
(
R?+
)p+2 that ensures property (β).

Overall, provided that w3 ∈ W?, the set of inequalities (11) represents a sufficient condition for V

to be a Lyapunov function hence a sufficient condition for w3 to be GAS on W?. In the appendix, we

show that this condition also guarantees the global asymptotic stability of the three other fixed points170

in relevant subspaces of W provided that they are LAS in these spaces.
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6 Discussion

In this work we present an extension of the two-species Lotka-Volterra equations that captures indirect

interactions through a potentially large number of diffusible and renewable compounds which are

relevant for investigating microbial communities [18].175

As the classical Lotka-Volterra model without compounds (n = 0), the vector field shows four

fixed points that identify to no microbial persistence (w0), two monomorphic equilibria (w1 and w2)

and one dimorphic equilibrium (w3), the closed form expressions of which can be found (which is

not the case for a higher number of microbial types). However, accounting for compounds increases

the dimensionality of the system hence it prevents the derivation of closed form expressions for local180

asymptotic stability conditions of the fixed points in the general case. These conditions are, moreover,

not enough to prove their global asymptotic stability as in the without compound model [29].

Using an argument of generalized row diagonal dominance, we here identify a region of the param-

eter space in which global asymptotic stability of the extended model is achieved. In this region, all

attractors are fixed points and there is at most one attracting fixed point. Moreover, the identification185

of the globally attracting fixed point reduces to at most two simple algebraic conditions (related to

feasibility, see section 3, or local asymptotic stability, see appendix).

The sufficient condition for global asymptotic stability provided here has a clear biological inter-

pretation. Indeed, considering a small positive scaling quantity κ (0 < κ � 1), the three conditions

in (11) read as first, microbial type 1 undergoes a strong self density-dependent inhibition and is190

hardly affected by external interactions, second, microbial type 2 undergoes a self density-dependent

inhibition that may be very low and third, the turn-over of the diffusible compounds is high and the

microbial type 2 contributes less to their production. This result conforms to the rule that the geo-

metric mean of the intra-type competition has to be greater than the geometric mean of the inter-type

competition to insure the global stability of the coexistence equilibrium in the classical Lotka-Volterra195

model [13]. Here, microbial type 1 is responsible for the high intra-type and the low competition

geometric means, thus leaving a certain freedom to the traits of microbial type 2.
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Appendix

A Global asymptotic stability of the null and monomorphic fixed

points265

Here, we show that if conditions (11) are satisfied, then w0, w1 and w2 are GAS in their relevant

spaces, namely W ∩ X2,W ∩ X1 and W for w0, and Wi and W \ Xi for wi, i = 1, 2, as long as they

belong and are LAS in these spaces. A distinct Lyapunov function has to be defined for each fixed

point and the global asymptotic stability has to be separately investigated on each space.

Let us start by the null fixed point, for which one can consider the following function defined on270

Rp+2

V0 (w) := a1X1 + a2X2 + 1
2

n∑
p=1

bpY
2
p (12)

Property α clearly holds on W1,W2 and W. As for property β, the calculation of dV0
dt gives

dV0
dt (w) = a1R1 (w)X1 + a2R2 (w)X2

+
n∑
p=1

bpYp (u1,pX1 + u2,pX2 − vpYp) ,

=
2∑
i=1
ai%iXi + aiηi,iX

2
i + aiηi,kXiXk

+
n∑
p=1

((a1γ1,p + bpu1,p)YpX1

+ (a2γ2,p + bpu2,p)YpX2

−bpvpY 2
p

)
,

hence dV0
dt (w) can be written as

dV0
dt (w) = 1

2wT.
(
D.P + PT.D

)
.w + a1%1X1 + a2%2X2.

Now, let us recall from section 4 that w0 is LAS on W iff (%1 < 0) ∧ (%2 < 0). Therefore, if w0

is LAS on W, dV0
dt (w) < 1

2wT.
(
D.P + PT.D

)
.w, hence if (11) then V0 is a Lyapunov function than

proves the global asymptotic stability of w0 on W.275

If stability is investigated on W ∩ Xk, then all occurrences of Xk vanish, only %i < 0 is required

for local asymptotic stability and the quadratic form reduces to dimension p+ 1. The application of

1



theorem (10) then provides sufficient conditions of the form

∃κ′ > 0 :

−ηi,i > κ′
n∑
p=1
|γi,p|

 ∧ (κ′vp > ui,p, p = 1, . . . , n
)

(13)

with κ′ > 0. It is straightforward to see that these conditions are weaker than, and therefore implied

by, (11).280

As for the monomorphic fixed points wi, i = 1, 2, one can consider the following function defined

on Wi \ Xi

Vi (w) := ai

(
Xi −

(
1 + logXi

xi

)
xi

)
+ akXk + 1

2

n∑
p=1

bp

(
Yp −

ui,p
vp

xi

)2

. (14)

It is straightforward to see that property α holds on Wi and W \ Xi.

The derivation of Vi with respect to time leads to

dVi
dt (w) = ai (Xi − xi)Ri (w) + akRk (w)Xk

+
n∑
p=1

bp

(
Yp −

ui,p
vp

xi

)
(u1,pX1 + u2,pX2 − vpYp) .

Restricting the investigation to Wi, and applying relation (8) to Ri (w), it follows that

dVi
dt (w) = aiηi,i (Xi − xi)2 +

+
n∑
p=1

(aiγi,p + bpui,p)
(
Yp −

ui,p
vp

xi

)
(Xi − xi)− bpvp

(
Yp −

ui,p
vp

xi

)2
 ,

which is analogous to the aforementioned reduced quadratic form of dimension p + 1. Hence, Vi

satisfies property β on Wi under the conditions (13) which are implied by (11), that is wi is GAS in285

Wi, provided wi ∈ Wi.

Finally, coming back to W \ Xi leads to dVi
dt (w) = 1

2 (w−wi)T .
(
D.P + PT.D

)
. (w−wi) +

akRk (wi)Xk. Now recalling that wi is LAS inW\Xi if and only if wi is LAS inWi and Rk (wi) < 0,

it results that if conditions (11) hold and Rk (wi) = %k −
mk,i

mi,i
%i < 0, then

dVi
dt (w) < 1

2 (w−wi)T .
(
D.P + PT.D

)
. (w−wi) < 0, hence wi is GAS in W \ Xi as well.290
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