
Developing SEooC – Original Concepts and

Implications when Extending to ADS

Rolf Johansson

Astus AB

Mölndal, Sweden

rolf@astus.se

Håkan Sivencrona

Zenseact AB

Göteborg, Sweden

hakan.sivencrona@zenseact.com

Abstract— Reference life-cycle models as prescribed in safety

standards shall never be interpreted as a timeline, but as depicting

dependencies. In this paper we describe how we many years ago

made this explicit to the ISO 26262 community, by introducing the

concept of safety element out of context (SEooC). As the term then

has become widely used, and sometimes filled with another

meaning than what is the intention, this paper elaborates what is

necessary to constitute an SEooC, emphasising the importance of

of semantically unambiguous safety requirements, and reminding

about that SEooC never can be used as an excuse not to follow a

proper development process, i.e. it is never a “26262 light”. SEooC

is a form of component-based safety argumentation, and this

paper shows how using the SEooC concept as a pattern all over a

complex product structure, it fits well in modern agile product

development with continuous integration and continuous

deployment (CI/CD). Looking into the future, we claim that

automated driving can never become successful without a strict

formalization of a fine-grained product structure realized by

SEooC in every piece.

Keywords—SEooC, component-based design, safety case, agile

development, safety contracts, continuous assessment, automated

driving systems

I. INTRODUCTION

During the authoring of the first version of ISO 26262 [1], it
became more and more evident for us that there were different
understandings among the different experts what would be the
full connotation of the reference life cycle of that standard. At
the time, we were working for (competing) tier2 suppliers and it
became clear that the international expert committee was
dominated by OEMs and Tier1 suppliers having the full “Item”
in their business offer. To ensure that the component perspective
was visible in the safety argumentation, and especially the
situation that a supplier tries to be ahead of its customer, we
introduced the concept of Safety-Element-out-of-Context
(SEooC). In short this means that you describe how to perform
the life cycle activities of the full reference life cycle (the V
model) out of order, still guaranteeing that all dependencies
between these are met.

To clarify, SEooC was never intended to be a “26262 light”,
rather it is by all aspects as strict when it comes to complying
with all normative requirements in the standard. Throughout the
years we have met many different references to the SEooC term,
and not all of these have been in-line with the original intent.
This paper has partly the goal to more clearly describe what

SEooC actually means, and it also explains how this can be used
in future challenging contexts.

The paper is organized as follows: Section II gives a
background about the ISO 26262 reference life cycle and its
relation to the safety argumentation. In section III we give the
background to SEooC, and explain some of the fundamentals of
the concept. In section IV SEooC is compared to other concepts,
which sometimes might have been mixed up with SEooC. Then
in section V, we describe some challenges that come with the
very big software intensive automotive products of today, and
we elaborate how SEooC can become an advantage in the
modern world of agile development with CI/CD and the
autonomous features of tomorrow. Then follows an analysis of
the possibilities that can follow if the pattern of SEooC is
implemented to its extreme, opening up for a formalization that
can significantly reduce the complexity of generating full safety
cases for very complex features. Finally, conclusions are drawn
in section VII.

II. ISO 26262 LIFE CYCLE AND SAFEY ARGUMENTATION

The reference life cycle is often referred to as the ISO 26262
V-model. For each phase of the V, there are prescribed activities
generating output (“Work products”) based on inputs (“Work
products” from previous phases). The inputs contain, among
other things, safety requirements, and each safety requirement
has an integrity attribute (ASIL value). The prescribed activities
in each phase have process requirements that are depending on
these integrity attribute values.

The scope of ISO 26262 is to give a framework on how to
argue that an automotive functional feature (“Item”) is safely
implemented. It is however outside the scope of ISO 26262 to
argue whether the specified feature is safe as it is specified to the
driver, and only deviations from this are inside the scope of
functional safety. Whether it is safe to define a certain variant of
an automated emergency brake (AEB) feature, is not a
functional safety issue, but only if the deployed implementation
deviates from the promised one (false negative, false positive,
too late, too early, too little, too much etc).

For the ISO 26262 safety framework, there is a reference
lifecycle prescribing a safety requirement hierarchy, where the
set of safety requirements on a lower level (further down on the
left leg of the V) shall completely cover the safety requirements
on the level above. The complete safety of an Item is achieved
by arguing that;

• All steps are complete and consistent in the safety
requirement identifications (from Safety Goals down to
atomic HW and SW safety requirements).
 “Left leg of V has a complete and consistent set of
safety requirements”.

• All safety requirements (independent of refinement
level) are verified: The restricted failure modes are
shown not to occur with a confidence that is in line with
the integrity attribute value of the corresponding safety
requirement.
 “Right leg of V has a complete set of verifications of
the corresponding left leg requirements”.

• All process requirements related to the corresponding
integrity attribute values (ASIL) are fulfilled.
 “All activities in the full V have been made using
proper processes”.

• All organizations involved in fulfilling the processes
requirements constitute appropriate environments.
“All organizations of the full V have a safety culture”.

There is no strict ISO 26262 terminology for these four
aspects, but the first aspect above is denoted design-phase
verification in part six, as opposed to other verification that are
mainly addressing the second aspect. The first aspect is also very
clearly prescribed as essential throughout the standard,
expressed as it is prescribed that every safety requirement
refinement shall be complete and consistent, ISO 26262-8:2018,
6.4.3.1. c), d) [2], which is referred to from all over the
LiveCycle. Birch et al [3] denotes these four aspects above as
Core, Layer 1, Layer 2, and Layer 3, respectively. Their very
valid point is that each layer is supporting the arguments of the
inside layers, and you cannot on an outer layer compensate for
incompleteness in an inner layer. An outer layer contributes by
bringing confidence to the layers inside, but it cannot replace
their role. This means that;

• Safety culture arguments only bring value by adding
confidence that the processes are executed as stated in
the process arguments. They have no other direct value
to the safety argumentation.

• Process arguments only bring value by adding
confidence that verification of requirements is correct
and complete; and by adding confidence that all safety
requirements are identified completely and correctly.
They have no other direct value to the safety
argumentation.

• “Right-leg” verification arguments only bring value by
adding confidence that the safety requirements are
fulfilled. They have no other direct value to the safety
argumentation.

• “Left-leg” verification arguments are the core in the
safety argumentation telling why fulfilling all these
requirements, by definition makes the Item Safe.

These dependencies are important to remember and
acknowledge when we more in detail analyze Safety-Element-
out-of-Context in the following sections.

III. SEOOC – WHY AND HOW

A. Advantages of SEooC

The reason why we don’t want to execute the entire 26262
lifecycle in one long sequence, is mainly the same reason why
component-based design, CBD, in general is seen as attractive.
The SEooC concept of ISO 26262 can be interpreted as a
component-based safety argumentation pattern. Main
advantages of CBD are that the actual system design can be less
complex if there are known building blocks, and one supplier
can address several customers at the time even if their system
designs differ from each other.

From a safety point of view, it is particularly important to
point out that innovation can be stimulated among suppliers this
way, as it enables the supplier to make the development before
getting all safety requirements from the customer(s). A safety
framework not allowing the supplier to always be ahead, would
be problematic for an industry branch where innovation is key
to success. Allowing any supplier to perform development
compliant with ISO 26262, and fully covering all needs for the
customer to build a safety case, was a key reason why SEooC
was originally proposed to become part of ISO 26262.

B. Developing SEooC

When all inputs of a specific ISO 26262 phase are possible
to trace all the way to the related Safety goals and Item
definition, we denote this as we are developing completely in-
Context. In reality, this is rare for real automotive development
for the HW and SW phases. Still, it is easy to get the impression
when reading some parts of the standard that the entire lifecycle
is executed in order, and that the actual safety goals would be
known in every life-cycle phase.

Even if we are not in an absolute and complete in-Context,
we could still be locally either in-Context or out-of-Context. If
we are locally in-Context, this means that the activities of the
actual activity at hand is provided with real inputs produced
from the activities in previous life-cycle phases. If there is at
least one SEooC in the trace up to related safety goals, we say
that we can be at the same time locally in-Context and globally
out-of-Context. This means that even if a given activity is not
handled as an SEooC, it can still be impossible to trace it to
actual safety goals. In the following we are focusing on
describing the local SEooC, where neither tracing to the safety
goals can be done, nor to the locally assumed inputs from
previous phases of the reference life cycle of ISO 26262.

If at least one assumed input is absent when starting the life
cycle of a certain activity, we are developing locally out-of-
Context (ooC). The missing input we compensate for by
defining a place holder. Such placeholders containing safety
requirements, we denote safety contracts. In general, the safety
contracts consist of both Assumed input requirements, and
Guaranteed output requirements. This means that the safety
contracts with safety requirements in both the roles of Assume
and Guarantee, respectively, are essential for constructing the
Core argument why a SEooC will safely fit in an actual context.
Safety contracts for safety argumentation have been around for
quite a while, and can be read about in for example [4], [5], [6],
[7], and [8].

When performing any life-cycle phase, there is no difference
between doing this in-Context and out-of-Context. In both cases
we have a full set of inputs where the applicable safety
requirements are found. It is never a question of just following
some “safety process” according to a certain ASIL value. The
process arguments are as always, a second supporting layer, that
are dependent on a specific core, and a specific first layer, for
bringing value to the overall safety argumentation. This means
that the safety contracts are essential for the validity of the safety
assessment of an SEooC. The Guarantee part of the safety
contract, tells what should be fulfilled by a layer 1 argument,
which is the design verification that all Guarantee safety
requirements are fulfilled by the SEooC. If we change the Safety
Contract of an SEooC, we need to redo the corresponding life-
cycle activities which produces the layer 1 arguments that
address the particular safety requirements for the life-cycle
phase. In this aspect, there is no difference compared to in-
Context development, where this is also the case.

To summarize, both for development in-Context and out-of-
Context, all required inputs of the actual life-cycle phase need to
exist, including the applicable safety requirements. The life
cycle activities are performed with these inputs, and if they need
to be changed, the life-cycle activities need to be redone. Any
process argument is related to the specific safety requirements
of the corresponding life-cycle activity. Process arguments
without such connection are of no value for that safety element.

C. Bring an SEooC into a Specific Context

When integrating an SEooC it goes from being out-of-
context to in-Context. This integration shall fulfil all layers of
arguments, as is always the case in safety argumentation.

The core argument of safely integrating an SEooC is that its
safety contract fulfils the safety requirements of the higher-level
context (left leg consistency and completeness). This is a
bidirectional check, as the safety contract contains safety
requirements both in the role of Assume and of Guarantee,
respectively. The assumptions on fulfilled safety requirements
on the inputs of the SEooC as expressed in the safety contract,
shall cover what is expressed in the real context. The guarantees
on fulfilled safety requirements on the outputs of the SEooC as
expressed in the safety contract, shall cover what is needed in
the context to generate a complete core argument for that level.

The layer 1 argument of safely integrating an SEooC, is the
integration verification of this SEooC (right leg completeness).
For the corresponding integration activity where the SEooC is
one of the parts, the verification shall show that this is a safe
integration of safe parts. Remember that the parts are considered
safe, comes with each of the SEooC safety case fragments. And
when bringing an SEooC into context, it is only the layer 1
argument of the integration itself that is to be generated.

The layer 2 argument of safely integrating an SEooC, is that
both the core argument and the layer 1 argument of this
integration, are produced with adequate processes for the
applicable ASIL values, i.e. methods.

The layer 3 argument of safely integrating an SEooC, is that
the integrating organisation producing the layer 2 argument
about a safe process, has evidence of a safety culture.

IV. SEOOC IN RELATION TO OTHER CONCEPTS

In the latest version of ISO 26262-8 [2] there are the
concepts of;

• Qualification of Software components

• Evaluation of hardware elements

• Proven in use argument

• Interfacing an application that is out of scope of
ISO 26262

• Integration of safety-related systems not developed
according to ISO 26262

Note that none of those are related to SEooC at all. SEooC
is, in contrast to these, describing how to develop the safety
element according to ISO 26262, and how to do the integration
of that safety element also fully according to rules of ISO 26262.
For SEooC all the layers of argumentation apply, and this means
that it is essential that there is a core argumentation relating to
the specific safety requirements both to the SEooC and to the
context when integrating the SEooC.

All the five concepts listed above are instead dealing with a
situation when there is no full compliance to the ordinary 26262
argumentation structure. This means that none of these listed
concepts fully covers all four layers of argumentation presented
above, and hence they are disqualified as SEooC.

V. SEOOC, CI/CD AND AUTOMATED DRIVING SYSTEMS

In general, the automotive industry goes in a direction of
continuous integration and continuous deployment (so called
CI/CD). This is especially true for automated driving systems
(ADS). In CI/CD, the idea is to continuously evolve the product
in frequent increments so that all these can be deployed to the
end customer. CI/CD is enabling that the vehicles already being
out on the roads, will get updates at a significantly higher pace
than today (which mostly have contained bug fixes), enabling a
real DevOps.

The change, compared to traditional development cycles,
means that instead of producing safety argumentation for the
start of production (SOP) of a certain platform model, there will
be a need for a complete safety case at every CD release. If all
the elements that are subject for the continuous integration (CI)
are developed SEooC, the way to build the full safety
argumentation can harmonize with the general CI pattern. Such
argumentation calls for a granularity of the SEooC to be as fine-
grained as is expected in the ordinary CI/CD way of building a
large complex product. We could say that building component-
based safety argumentation fitting CI/CD is to take the SEooC
pattern to its extreme. And there is nothing problematic with that
at all. It is just to say that if we want to make ground for large-
scale agile development, we need to implement the safety
argumentation completely component based. From an ISO
26262 perspective there is no extra problem with this. If the
SEooC is used once or a million times for an Item, is still the
same argumentation pattern. On the other hand, a traditional
approach, starting with defining an item and then breaking down
the safety requirements would be a task impossible to handle
with so many different stake holders and components.

VI. SEOOC EVERYWHERE – FULL COMPONENT-BASED SAFETY

Similar to component-based design, CBD, safety
argumentation can also be made bottom-up, i.e. component-
based. This means that every life-cycle activity is made SEooC,
and then everything is integrated and put in-Context. Note that
there is a main difference between integrating a product in CI
and integrating a safety case in CI, and that is that the latter
requires all levels of abstraction to become part of the
integration. For safety argumentation, it is not only to integrate
the implemented product, but to bring information from all kinds
of activities in the entire reference life cycle (the full V).

As pointed out in [9], a reference life cycle can be interpreted
by the two dimensions of abstraction and aggregation. When
taking the SEooC concept all the way to fully component-based
safety argumentation, this means that for each SEooC it should
be confined to one single position in such a “coordinate” system.
Every applicable coordinate needs to be covered by at least one
SEooC, and each SEooC stays inside exactly one coordinate.

When integrating an SEooC in a CI process, there is an
essential merge condition related to the core safety
argumentation. This implies that the safety contracts need to be
checked in both dimensions of aggregation and abstraction,
respectively. For an SEooC to be allowed to get integrated to the
main branch, it is a necessary, but not a sufficient, condition that
its safety contracts in this integration would fulfil the core
arguments of completeness and consistency among safety
requirements. If this cannot be proven, that SEooC will not
become allowed to get integrated in the CI. By assuring the core
safety argumentation this way, every update of the main branch,
can guarantee that the safety case fragments of each SEooC,
together always can build a complete safety case, as a result of
the CI.

While the core argument of bringing the SEooC in-Context
is completely produced in the CI itself, for the safety arguments
of layers 1, 2 and 3, the CI has two different tasks. The one is to
check their existence for each of the SEooC. And the second is
to produce them, but only for the integration. This means that
the layer 1, 2, and 3 arguments of the SEooC themselves are
produced out-of-Context, but for bringing them in-Context these
arguments are produced in the CI. Note that what is said about
producing the arguments, is including the full implication of
these arguments, including the safety assessment of the SEooC
in relation to its contract.

Taking the SEooC concept to its full potential implies that a
SEooC also can bring its own safety case fragment, which means
that integrating all SEooC, also would construct a complete
safety case from the safety case fragments together with the
safety case fragment from the CI itself. With carefully chosen
formalism in the safety contracts and the safety case fragments,
such a generation of the full safety case can be automatised in
the CI framework.

VII. CONCLUSIONS AND FUTURE WORK

We have described the origin and the future of Safety-
Element-out-of-Context, which is a pattern enabling

component-based safety argumentation, separating the
dependencies between customer and suppliers or between teams
in a large organisation. The concept of SEooC is very well suited
to form the base for automatically generating complete safety
cases at a high pace for very complex features, as is the
automotive needs today and in the future. Especially the
automated driving systems, ADS, are dependent on high rigour
of safety cases that can be produced at high pace in a
development environment of CI/CD (continuous integration /
continuous deployment). A challenge for the future is to find a
high enough rigour in expressing safety contracts and safety-
case fragments, to enable an automatization of generating safety
cases in the modern development process of CI/CD.

In the domain of road vehicles equipped with automated
driving systems (ADS), there is an ongoing ISO activity to
define an application standard for safety (TS 5083), considering
all root causes for becoming unsafe. Even if this will go beyond
what is today prescribed by ISO 26262, the same pattern of
SEooC and component-based safety argumentation may still
apply. As long as this standard will prescribe a core
argumentation of completeness and consistency in refinement of
requirements, and give guidance what level 2 and 3 arguments
that are applicable for a certain level 1 claim, the pattern of
SEooC can be adapted, thus enabling using CI/CD when
bringing automated driving to the market.

VIII. ACKNOWLEDGEMENT

The authors would like to thank the other creators of the
SEEooC concept, coined in Munich in April 2009, especially
Simon Fürst, Matthias Maihöfer and Jürgen Sauler. We also
would like to thank Jonas Borg for many fruitful discussions on
this topic.

REFERENCES

[1] ‘ISO 26262:2011 - Road vehicles -- Functional safety’.

[2] ‘ISO 26262:2018 - Road vehicles -- Functional safety’.

[3] J. Birch et al., ‘A Layered Model for Structuring Automotive Safety
Arguments’, in Proceedings of the Tenth European Dependable
Computing Conference (EDCC), 2014.

[4] I. Bate, R. Hawkins, and J. McDermid, ‘A Contract-based Approach to
Designing Safe Systems’, in Proceedings of the 8th Australian Workshop
on Safety Critical Systems and Software - Volume 33, 2003, pp. 25–36.

[5] J. Westman, M. Nyberg, and M. Törngren, ‘Structuring Safety
Requirements in ISO 26262 Using Contract Theory’, in Computer Safety,
Reliability, and Security, 2013, pp. 166–177.

[6] A. Benveniste et al., ‘Contracts for Systems Design’, RR-8147, INRIA,
2012.

[7] E. Denney, G. Pai, and I. Habli, ‘Dynamic Safety Cases for Through-Life
Safety Assurance’, in Proceeding of the 37th IEEE International
Conference on Software Engineering, 2015, pp. 587–590.

[8] I. Sljivo et al., ‘A Method to Generate Reusable Safety Case Fragments
from Compositional Safety Analysis’, in Software Reuse for Dynamic
Systems in the Cloud and Beyond, vol. 8919, I. Schaefer and I. Stamelos,
Eds. Cham: Springer International Publishing, 2014, pp. 253–268.

[9] F. Warg et al., ‘A Continuous Deployment for Dependable Systems with
Continuous Assurance Cases’, in Proceedings of the 2019 IEEE
International Symposium on Software Reliability Engineering Workshops
(ISSREW).

