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In this paper, we are interested in the robustness analysis of an elementary logistic system having a fixed loss factor on the inventory level and uncertainties on the production delay. The problem is treated in control theory domain, where the model is considered as an input time delay system characterized by positivity and saturation constraints, and an external disturbance. Indeed, we apply a prediction state feedback control strategy using an affine control law, where the prediction of the future inventory level is based on a delay estimation of the delay uncertainty. Hence, the objective of the study is to quantify the impact of the uncertainty induced by this estimation on the performance of the controlled system. First, we use a frequency-domain technique to identify the robust stability condition in the set of parameters. In particular, we specify the range of the delay deviation such that the closed-loop system stability is guaranteed. Then, we move on to define the input-output flow variations that allows to check the system constraints, based on the invariance properties. Finally, a comparative simulation is provided to highlight the advantages of this study.

INTRODUCTION

The dynamic behavior of many engineering processes, especially supply chains and production systems, contains time delays that are linked directly to the flow movements. In the past years, great attention has been paid to stability and robustness of time delay systems. Indeed, several studies have been done introducing the notions of inputoutput stability, as well as the stability by state estimation or state prediction for systems with uncertain time delay as [START_REF] Moon | Delay-dependent robust stabilization of uncertain statedelayed systems[END_REF], [START_REF] Chiasson | Applications of time delay systems[END_REF], [START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF], [START_REF] Sipahi | Stability and Stabilization of Systems with Time Delay[END_REF] and [START_REF] Wang | Stability analysis of constrained inventory systems with transportation delay[END_REF]. In this paper, we are interested on the inventory regulation problem for an elementary logistic system, that is composed of a production unit and a storage unit. The production system is characterized by the presence of a production delay that is defined with uncertainty. Moreover, the storage unit presents losses on the inventory level due to the manufacturing of perishable products. Furthermore, positivity and saturation constraints are imposed due to the specifications on the production and storage capacities. The main goal is to compromise between low storage level deterioration and high customer demands satisfaction. Such problems can be treated using different frameworks. In our study, we deal with a control theory approach where the system is considered as an input time-delayed system, with delay uncertainties. [START_REF] Simon | On the application of servomechanism theory in the study of production control[END_REF] was the first to study the dynamics of logistics systems by a Servomechanism approach. Through the years, different studies were based on differential equations and feedback structures, to model and control production systems, see [START_REF] Ignaciuk | Smith predictor based control of continuous-review perishable inventory systems with multiple supply alternatives[END_REF], [START_REF] Abbou | On stability of uncertain time-delay systems: robustness margin for the inventory control[END_REF] and Bou [START_REF] Bou Farraa | Necessary and sufficient conditions for the stability of input-delayed systems[END_REF]. The first contribution of this work provides a robust control law which guarantee the stability of the closedloop system, using a feedback-predictor control structure. Different studies have treated the robustness with respect to delay uncertainty. Sufficient conditions for system stability with an input delay are obtained in [START_REF] Mondié | Delay robustness of closed loop finite assignment for input delay systems[END_REF], and similar conditions are also obtained in [START_REF] Gu | On stability crossing curves for general systems with two delays[END_REF], for the stability crossing curves for systems with two delays. While in our study, necessary and sufficient conditions for the existence of a robust control are defined and expressed in terms of the delay deviation. The second contribution remains in specifying the inputoutput flow variations, in order to find the conditions that verify the system constraints. The main advantage in this study, is to apply the invariance principle introduced in [START_REF] Blanchini | Feedback control for linear timeinvariant systems with state and control bounds in the presence of disturbances[END_REF]recently used in Bou Farraa, B. et al. (2018), on the exact prediction of the inventory level and in the presence of delay uncertainty. The paper is organized as follows. Section 2 introduces the problem formulation. In Section 3, we recall some preliminary results. Then, the inventory control structure is described in Section 4. Section 5 is dedicated for the robust study in frequency domain. After, we identify the dynamics of the constrained input-output flow variables, in Section 6. Finally, we end the study by a simulation example in Section 7 and a brief summary in Section 8.

PROBLEM FORMULATION

Model description

In this study, we consider a logistic system composed of a production unit and a storage unit. The production unit is characterized by the incoming flow of production orders denoted by uptq, and by a constant lead time θ which corresponds to a specified duration of the production task. Moreover, the function ϕptq corresponds to the production work in progress in the initial phase. The storage unit is characterized by the inventory level denoted by yptq, whose outgoing flow satisfy the customers demand and sales made denoted by dptq. The generic model for the inventory level dynamics is described by the following first order delayed differential equations:

9 yptq " "
´σyptq `upt ´θq ´dptq , for t ě θ, ´σyptq `ϕptq ´dptq , for 0 ď t ă θ.

(1)

In our case of study, we are interested in the inventory dynamics of perishable products, so that the losses are modeled by a fixed expiration rate noted σ. This latter is a particular case of interest of the function σptq with 0 ď σ ă 1. Indeed, the elementary logistic system is considered as an input time-delay system, where uptq is the control input, dptq is the perturbation, and yptq is the system output.

Constraints and objective

Since the production unit and the storage unit are limited resources, the system is subject to positivity and saturation constraints that are defined as follows.

0 ď y min ď yptq ď y max , (2) and 0 ď u min ď uptq ď u max .

(3) The customer demand dptq is supposed to be unknown but bounded by a minimum and a maximum demand rates, such that 0 ď d min ď dptq ď d max .

(4) The problematic is to find a robust control strategy using a predictor state feedback structure, so that the operating constraints, (2) and (3), are satisfied for any customer demand verifying (4).

BACKGROUNDS AND PRELIMINARY RESULTS

Convolution systems

Given the input-output systems of the form yptq " ph ůqptq " ş t 0 hpt ´τ qupτ qdτ , an important family of causal systems is characterized by convolution kernels of the form hptq " h a ptq `8 ÿ i"0 h i .δpt ´ti q, for t ě 0.

(5) Hence, every system with kernel defined on A is said to be Bounded Input Bounded Output (BIBO)-stable. It means that for every bounded input to the system, results a bounded output for t ě t 0 . Moreover, for a convolution system ph 1 ˚h2 qptq with only one positive kernel, the following property holds true:

||h 1 ˚h2 || A ď ||h 1 || A .||h 2 || A .
(8) These properties are powerful tools to identify the BIBO stability conditions for input-output systems, as presented in the sequel.

D-invariance properties

In our work, we are interested in the invariance and Dinvariance principles, in the context of solving constrained control problems for logistic systems. Indeed, we formulate the explicit conditions for closed intervals D-invariance in the case of single-variable systems studied in [START_REF] Blanchini | Feedback control for linear timeinvariant systems with state and control bounds in the presence of disturbances[END_REF], in the following theorem.

Theorem 1. We consider a system defined by 9

xptq " f pxptqq´dptq where xp0q P Ω with Ω " rα, βs, and dptq P D with D " rγ, δs. The interval Ω is said to be D-invariant for this system if and only if the following conditions are fulfilled.

f pαq ě δ, and f pβq ď γ.

(9) This result is very basic in control theory. It answers as well to the issues of existence of feasible controllers for constrained systems. Hence, it is very useful in our study for reachable bounds identification and constraints meeting is such delayed systems.

INVENTORY CONTROL STRUCTURE

In this paper, the proposed approach to control the inventory dynamics for the logistic system (1) having an input delay, is based on a prediction state feedback structure that was first studied by [START_REF] Olbrot | Stabilizability, detectability, and spectrum assignment for linear autonomous systems with general time delays[END_REF]. The basic issue is to compensate the time delay by generating a control law that uses directly the corresponding delay-free system, as developed in Bou [START_REF] Bou Farraa | Necessary and sufficient conditions for the stability of input-delayed systems[END_REF] and [START_REF] Abbou | On stability of uncertain time-delay systems: robustness margin for the inventory control[END_REF]. However, the system delay presents some uncertainties that are expressed by the following range:

θ P rθ min , θ max s, (10) where θ min and θ max are positive values. Hence, the future state of the inventory level is predicted according to an estimated delay that we note θ 0 . Thus, the predictive control structure is defined by an affine control law uptq and a prediction zptq, based on the delay estimation θ 0 such that uptq " Kpz 0 ´zptqq, (11) and zptq " e ´σθ0 yptq `ż t t´θ0 e ´σpt´τ q upτ qdτ , for t ě θ 0 . (12)

The static gain K adjusts the production rate, and z 0 is the reference value for the estimated storage level. In addition, due to the uncertainty of the delay, zptq is no longer an exact prediction but an estimation of the future storage level. Furthermore, the dynamics of the prediction zptq can be expressed as follows:

9 zptq " ´σzptq`uptq´e ´σθ0 dptq`e ´σθ0 pupt´θq´upt´θ 0 qq.

(13) The dynamics of the controlled system being defined by the above delayed differential equation, that depends on two non commensurable delays θ and θ 0 , we can move to the robust stability analysis in the following section.

ROBUST STUDY IN FREQUENCY DOMAIN

The objective of the robustness study is to quantify the impact of the delay uncertainty on the performance of the inventory controlled system. The study consists of finding the conditions on the control parameters K and z 0 as well as θ 0 , so that the closed loop system is stable. Indeed, we start by the closed-loop stability analysis.

Stability analysis of the closed loop transfer

In the frequency domain, the system output and the control law are described respectively by ps `σqŷpsq " e ´sθ ûpsq ´dpsq, and ûpsq " ĈpsqpKz 0 ´Ke ´σθ0 ŷpsqq, where Ĉpsq " We identify in the following proposition, the closed loop characteristic quasi-polynomial when the system delay θ is different from the design delay θ 0 .

Proposition 1. Given the system (1) with a control design (11 -12) based on a delay estimation θ 0 , the closed loop characteristic quasi polynomial is equal to

1 ĝpsq " s `σ `K ´Ke ´σθ0 pe ´sθ0 ´e´sθ q. ( 14 
)
The proof is well-known in the control theory domain.

Looking at the expression of ĝpsq, we notice that the transfer depends explicitly on the gain parameter K and the two delays θ and θ 0 . Indeed, a robust study in terms of the delay deviation between θ and θ 0 allows us to find the stability condition of the closed loop system. Thus, we express ĝpsq as a product of two transfers, in the following form ĝpsq " ĝ1 psqĝ 2 psq.

(15) The first transfer ĝ1 psq " 1 s`σ`K , corresponds in the time domain to the Kernel g 1 ptq " e ´pσ`Kqt , whose norm is equal to ||g 1 || A " 1 σ`K . The second transfer is ĝ2 psq " 1 1´εpsq , with εpsq " K e ´σθ 0 pe ´sθ 0 ´e´sθ q s`σ`K

. The function εptq is equal to zero for θ " θ 0 . Following this analysis, we will introduce the stability condition of the transfer ĝpsq, in terms of the BIBO stability.

Proposition 2. Considering the following factorization,

ĝpsq " 1 s `σ `K 1 1 ´εpsq ,
the transfer ĝpsq is stable if and only if 1 1´εpsq is stable.

Proof. We first remark that ĝ1 psq is BIBO-stable. As consequence, if ĝ2 psq is also stable, we obtain

||g|| A ď ||g 1 || A .||g 2 || A .
This shows the sufficiency of Proposition 2. Reversely, we can write ĝ2 psq " 1 `ĝ 3 psq.ĝpsq, with ĝ3 psq " Ke ´σθ0 pe ´sθ0 ´e´sθ q. Int the time domain, the kernel associated with the transfer ĝ3 psq is g 3 ptq " Ke ´σθ0 pδpt θ0 q ´δpt ´θqq, and that of ĝ2 psq is g 2 ptq " δptq `Ke ´σθ0 pgpt ´θ0 q ´gpt ´θqq. The latter is integrable if gptq is also integrable, which completes the proof.

In the following, we will introduce a basic result that was introduced in Hille, E. and Phillips, R.S. ( 1957 Proof. This result is deduced from Proposition 2 and Lemma 1. The condition in Lemma 1 reaches its maximum on the imaginary axis for s " jw, and is equivalent to sup wPR ˇˇˇK e ´σθ0 e ´jwθ0 jw `pσ `Kq ˇˇˇˇˇˇp 1 ´e´jwpθ0´θq q ˇˇă 1.

The proof is achieved having that ˇˇK e ´σθ 0 e ´jwθ 0 jw`pσ`Kq ˇˇ" Ke ´σθ 0 ? w 2 `pσ`Kq 2 , and ˇˇp1 ´e´jwpθ0´θq q ˇˇ" 2 ˇˇsin wpθ´θ0q 2

ˇˇ.

We notice that when the delay is known exactly, for θ " θ 0 , sin wpθ´θ0q 2 " 0 and the closed loop spectrum is equal to 1 ĝpsq " s `σ `K. Hence, the condition ( 16) is checked for every w P r0, π pθ´θ0q s, and the closed-loop system is stable. Following the result of Proposition 3, we identify in the following theorem the conditions that guarantee the robustness of the controlled system against the delay uncertainty.

Theorem 2. Given a system of the form (1), the feedback control structure (11 -12) is robust stabilizing with respect to the delay uncertainty, for

$ ' ' & ' ' % θ ě 0 , if e ´σθ0 ď 1 2 σ `K K , θ Psmaxp0, θ 0 ´∆q, θ 0 `∆r , if e ´σθ0 ą 1 2 σ `K K , ( 17 
) where ∆ " π 2K ? pe ´σθ 0 q 2 ´p 1 2 σ`K K q 2 .
Proof. Using the condition (16) of Proposition 3, we notice that 2Ke ´σθ 0 ? w 2 `pσ`Kq 2 is a decreasing function, and that ˇˇsin wpθ´θ0q 2 ˇˇď minp wpθ´θ0q 2 , 1q and it is satisfied at least if w P r0, π pθ´θ0q s. We can therefore deduce the upper bound for the condition ( 16), which is equal to 2Ke ´σθ 0 ?

w 2 0 `pσ`Kq 2 . The condition ( 16) is therefore expressed by

2Ke ´σθ0 a w 2 0 `pσ `Kq 2 ă 1.
It is checked for any positive value of w 0 if e ´σθ0 ď 1 2 σ`K K , which implies in particular that the gain K must be bigger enough. Hence, the system is stable for any value of θ ě 0. On the contrary, for e ´σθ0 ą 1 2 σ`K K , the upper bound of the condition ( 16) is obtained for w 0 " π pθ´θ0q . So, the transfer ĝpsq is stable if and only if

|θ ´θ0 | b 4K 2 e ´2σθ0 ´pσ `Kq 2 ă π.
Indeed, the size of the delay deviation can be defined by ∆ such that |θ ´θ0 | ă ∆ with θ ě 0, which leads to the stability conditions of Theorem 2.

The necessary and sufficient conditions that are obtained in Theorem 2, allow to quantify the range of the delay deviation such that closed-loop system is stable. Indeed, we will move to specify in the following section the choice of the control parameters pK, θ 0 q, for which the control structure is robust and the condition ( 17) is verified.

Choice of the control parameters

The conditions of Theorem 2, depend on the set of parameters pK, σ, θ 0 q, where σ is an intrinsic parameter, and pK, θ 0 q are the control parameters. The reference value z 0 does not appears in the stability analysis of the closed loop. In this section, we will identify the choice of the set of parameters pK, θ 0 q, for which the conditions of the robust stability are always satisfied. Indeed, the conditions on K are specified as follows.

Proposition 4. Given the closed-loop system of the form (1 -11 -12), the robust stability conditions (17) are verified for σ ą 0, by choosing the control parameter K as follows:

$ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % K ě 0 , for e ´σθ0 ď 1 2 , K P r0, σ 2e ´σθ0 ´1 s , for 1 2 ă e ´σθ0 ď 1 2 σ `K K , K Ps σ 2e ´σθ0 ´1 , σ 2e ´σθ0 ´1 αr , for e ´σθ0 ą 1 2 σ `K K ,
where α " ¨1`c4e ´2σθ 0 `p4e ´2σθ 0 ´1q π 2 σ 2 pθ´θ 0 q 2 2e ´σθ 0 `1 '.

Proof. Using the results of Theorem 2 to solve first the most complex case, the system is stable for θ Psmaxp0, θ 0 ∆q, θ 0 `∆r, which implies a choice of the control parameter K verifying p4e ´2σθ0 ´1qK 2 ´2σK ´pσ 2 `π2 pθ ´θ0 q 2 q ă 0. This inequality is satisfied only if e ´σθ0 ą 1 2 , for a choice of K Ps σ 2e ´σθ 0 ´1 , σ 2e ´σθ 0 ´1 αr. In addition, for 1 2 ă e ´σθ0 ď 1 2 σ`K K , the system is stable @θ ě 0 verifying K ď σ 2e ´σθ 0 ´1 . Following this analysis, we deduce one more case, for e ´σθ0 ď 1 2 , where the system is stable @θ ě 0 and K ě 0.

We introduce in the following corollary the choice of the delay estimation θ 0 , that allows to satisfy the conditions (17) given the interval of the delay variation (10).

Corollary 1. Given the system delay θ P rθ min , θ max s, the choice of the delay estimation θ 0 that satisfy the stability conditions ( 17) for ∆ as defined in Theorem 2, is given by: $

' ' ' ' & ' ' ' ' % θ 0 ě 1 σ log 2 , for K ě 0, θ 0 ă 1 σ log 2 , for K ď σ 2e ´σθ0 ´1 , ∆ ą M , for K P r σ 2e ´σθ0 ´1 , σ 2e ´σθ0 ´1 βr,
where M " maxpθ max ´θ0 , θ 0 ´θmin q, and β " ˜1`b1`p4e ´2σθ 0 ´1qp1`π 2 σ 2 M 2 q 2e ´σθ 0 `1

¸.

Proof. The first case on the choice of θ 0 is deduced from Proposition 4 for e ´σθ0 ď 1 2 . Moreover, the second case is obtained from proposition 3, using that 1 2 ă e ´σθ0 ď 1 2 σ`K K . Thus, the interval of variation of the system delay rθ min , θ max s, is a stabilizing solution in the two previous cases, for e σθ0 ď 1 2 σ`K K . In the third case, for e ´σθ0 ą 1 2 σ`K K , the closed-loop is stable if and only if θ P rθ min , θ max s Ăsmaxp0, θ 0 ´∆q, θ 0 `∆r, which implies that ∆ ą M . Hence, this condition is guaranteed for K ě σ 2e ´σθ 0 ´1 and bounded by σ 2e ´σθ 0 ´1 β. This section gives the conditions for which the control strategy is robustly stable in the presence of a delay uncertainty. However, the issue of the controller is to keep the production order and the inventory level, as far as possible within their limits, in order to forbid any overruns of the system constraints. So, the design of an admissible control law returns to define the conditions for which the closed-loop system would meet the system constraints in the presence of delay uncertainty. Hence, we will study the variation of the flow variables in the following section.

CONSTRAINED INPUT-OUTPUT SYSTEM

This section is dedicated for the study of the inputoutput variations using the predictive control structure, in order to satisfy the system constraints. As we have seen previously, the dynamics of the predictive control structure (13) corresponds to a delayed differential equation that depends on two different delays θ and θ 0 . So, let us consider in this section, the exact prediction pptq of the storage level, given by pptq " e ´σθ yptq `ż t t´θ e ´σpt´τ q upτ qdτ, for t ě θ. (18)

Using the definitions of pptq and zptq, and the properties of Artstein reduction as developped in [START_REF] Artstein | Linear systems with delayed controls: A reduction[END_REF], we introduce the following proposition.

Proposition 5. For zptq and pptq being defined by ( 12) and ( 18) respectively, the following properties hold true.

piq pptq " ypt `θq `ż t`θ t e ´σpt`θ´τ q dpτ qdτ, piiq pptq " e ´σpθ´θ0q zptq `eptq, piiiq 9 pptq " Kz 0 ´pσ `Ke ´σpθ0´θq qpptq `Ke ´σpθ0´θq eptq ´e´σθ dptq, where eptq " p1 ´e´σpθ´θ0q q ż t t´θ0 e ´σpt´τ q upτ qdτ `ż t´θ0 t´θ e ´σpt´τ q upτ qdτ.

Proof. The assertion piq is obtained using the definition of pptq between t and t`θ, and the system dynamics (1). The second assertion is deduced from the definitions ( 18) and ( 12) of pptq and zptq respectively. Finally, the assertion piiiq is obtained based on the Artstein reduction of (18), 9 pptq " ´σpptq `uptq ´e´σθ dptq, and using assertion piiq and the definition of uptq (11).

Referring to the assertion piiq of Proposition 5, the amount eptq allows to quantify the error on the prediction that is introduced by the delay uncertainty. In fact, when θ 0 " θ, we obtain eptq " 0 and zptq " pptq as consequence. Moreover, knowing that uptq is bounded by u min and u max , and that θ P rθ min , θ max s, we can find the exact bounds e 1 and e 2 of the variation of eptq. Hence, the error of the prediction eptq P re 1 , e 2 s, where

e 1 " ˆ1 ´e´σθmin σ `e´σθmax p 1 ´eσθ0 σ q ˙umin , e 2 " ˆ1 ´e´σθmax σ `e´σθmin p 1 ´eσθ0 σ q ˙umax . ( 19 
)
In the following, we use the D-invariance properties in order to find the variation of the prediction pptq, and then to define properly the interval of variations of uptq and yptq.

Theorem 3. Given the system (1) with a disturbance dptq verifying (4), subject to a control strategy (11 -12) with a delay uncertainty verifying (10), the following invariant sets of the input-output flow variables are satisfied.

uptq P ru 1 , u 2 s, yptq P ry 1 , y 2 s,

where u 1 , u 2 , y 1 , and y 2 are defined by the following identities: Proof. First, we apply the D-invariance principle to the Artstein reduction expressed in assertion piiiq of Proposition 5. Using that 9 ppd max , θ min q ě 0 and that 9 ppd min , θ max q ď 0, we find the D-invariant interval of the prediction pptq, such that pptq P rp 1 , p 2 s, where the bounds are given by

u 1 " K σ `
p 1 " Kz 0 ´e´σθmin d max σ `Ke ´σpθ0´θminq `Ke ´σpθ0´θminq e 1 σ `Ke ´σpθ0´θminq , p 2 " Kz 0 ´e´σθmax d min σ `Ke ´σpθ0´θmaxq
`Ke ´σpθ0´θmaxq e 2 σ `Ke ´σpθ0´θmaxq . Using the above bounds of pptq and the assertion piiq of Proposition 5, we find the bounds of variation of zptq. As consequence, we deduce the bounds u 1 and u 2 of uptq that is already defined by (11). In addition, one can check that for θ and dptq verifying (10) and (4) respectively, the integral ş t`θ t e ´σpt`θ´τ q dpτ qdτ evolves between 1´e ´σθ min σ d min , and 1´e ´σθmax σ d max . Therefore, we can find easily the exact bounds y 1 and y 2 of yptq by replacing both p 1 , p 2 and ş t`θ t e ´σpt`θ´τ q dpτ qdτ by their expressions of evolution in the assertion piq of Proposition 5.

In the end of this paper, we have found the exact and reachable bounds for both the input uptq and the output yptq. These intervals allow to satisfy the system constraints, (2) and (3), given a customer demand verifying (4) and a delay uncertainty verifying (10).

SIMULATION EXAMPLE

This simulation illustrates the system response and highlights the effects of the delay uncertainties on the system stability and constraints verification. A co-design methodology is used to identify both system and control parameters. Indeed, for d min " u min " y min " 0 and σ " 0.02, the control parameters are K " 0.4468 and z 0 " 2800. In addition, the system initialization is given by yp0q " 2400 and ϕptq " 70. The results for either delay uncertainty or not, are given in the figures (2) and (3) for a rectangular signal of dptq limited by d max " 240. We can notice that when dptq " 0, the controlled structure makes it possible to replenish the storage level in order to reach the reference value z 0 . Otherwise, the control input follows the variation of the demand, so that it is completely satisfied, and the storage level does not undergo a shortage. Hence, the system constraints are checked for both yptq and uptq verifying ( 20) and ( 21). In addition, the system responses when θ " θ 0 " 6 are very smooth, while they show some fluctuations and small variations when we introduce an delay uncertainty with θ 0 " 7. Moreover, the robust stability conditions (17) are guaranteed for ∆ " 5.06, such that θ P rθ 0 ´5.06, θ 0 `5.06s, and K P r0.0271, 2.2187r. Our work deals with the problem of inventory level management of an elementary logistic system, subject to a constant loss factor and a lead time uncertainty. The main advantage remains in the study of the robust stabilization using a predictive and affine feedback control structure. Indeed, necessary and sufficient conditions for which the robust stability of the controlled system is guaranteed, are given in terms of the size of delay deviation. In addition, we have identified the bounds of input-output variations, so that the system constraints are verified for any customer demand. In the continuity, different topics have worth future investigation. First, the robust analysis can be developed for variable input delays, and uncertain loss factor. Moreover, the losses can be modeled using a date of expiry instead of a preemption factor. Finally, it would be interesting to extend this study for distributed systems, that present real applications for logistic networks.
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