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bInstitut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS,
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Abstract

The modeling of the fluidization or sedimentation velocity of a suspension of

solid particles is revisited by examining experiments conducted in either a liq-

uid or a gas. A general expression is found in the case of negligible fluid inertia,

i.e. at low Reynolds or Archimedes number. It is built as the product of the

velocity of an isolated particle by three non-dimensional corrections that each

takes into account a specific physical mechanism. The first correction reflects

the variation of the buoyancy with the particle concentration. The second cor-

rection describes how the drag force increases with the concentration in case

of negligible particle inertia. The third one accounts for the further increase

of the drag when the particle inertia is increased. Remarkably, each correction

only relies on a single of the three independent non-dimensional groups that

control the problem: (1) the particle volume fraction Φs; (2) the ratio Φs/Φpack

where Φpack is the bed packing concentration; (3) the Stokes number St0, which

characterizes the inertia of the particles and controls their agitation. Moreover,

the onset of the instability that separates the homogeneous regime from the

heterogeneous one is found to be controlled similarly by the Stokes number.

Empirical expressions of the corrections are given, which provide a reliable tool

to predict fluidization and sedimentation velocities for all values of the three

non-dimensional numbers. The present results emphasize the crucial role of
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particle inertia, which is often disregarded in previous modeling approaches,

such as that of Richardson and Zaki.

Keywords: Fluidization velocity, Sedimentation velocity, Liquid-solid fluidized

beds, Gas-solid fluidized beds, Particulate suspensions.

1. Introduction

This article revisits two closely related fundamental problems: the fluidiza-

tion of solid particles by an upward flow of fluid and the sedimentation of pop-

ulation of solid particles in a fluid at rest. The physics of these configurations

is complex because of the intricate interplay between the continuous fluid phase5

and the dispersed solid phase. Especially, the interactions between the parti-

cles may involve hydrodynamic forces, shocks between particles, solid friction,

short-range adhesion forces... In this work, we focus on the case where hydro-

dynamic forces are predominant, shocks possibly play a significant role, whereas

the other effects are negligible. This situation is achieved when the continuous10

phase is liquid, provided that the particles are not too small to avoid colloidal

or Brownian effects, and that their concentration is not too close to packing to

avoid solid friction and jamming. It can also be obtained in a gas that is heated

in order to prevent capillary forces resulting from moisture. In this context,

there exists a range of solid volume fractions in which the flow is homogeneous.15

Apart from a narrow region close to the wall, the average particle velocity, fluid

velocity and volume fraction Φs are spatially uniform. The sedimentation and

fluidization processes thus only differ by a Galilean change of reference frame, so

that the fluidization velocity Uf and the sedimentation velocity Used are equal,

and will be referred as U in the following of this paper. This range is limited by20

an upper boundary Φup and a lower boundary Φlow. Let us consider a fluidiza-

tion experiment in which the fluidization velocity is regularly increased while

the concentration of the mixture decreases. Concentration Φup is reached when

the solid friction between the particles ceases to play a significant role and the

influence of the walls becomes negligible. It is close to the concentration of the25

2



bed at the minimum fluidization velocity and corresponds to the end of the jam-

ming state. Concentration Φlow is reached when strong large-scale fluctuations

of the particle concentration develop, giving birth to the well-known bubbling

regime in gas-solid fluidized beds. Within the homogeneous regime, the dynam-

ics is controlled by four main forces: (1) the effective weight of the particles,30

which depends on the density difference between the two phases; (2) the viscous

stresses within the fluid, which control the dissipation of mechanical energy; (3)

the fluid inertial stresses, which influence the flow between the particles; (4) the

particle inertia, which determines the intensity of particle-velocity fluctuations

relative to those of the fluid. The relative magnitude of these forces depends35

on the physical parameters that characterize the two phases, which makes it

difficult to provide a unified description, valid for a wide range of situations,

and to find a universal law capable of describing the relation between U and Φs.

Historically, two different ways have been opened to address the problem.

The first, initiated by Richardson and Zaki [1, 2] considers the dilute state as a40

starting point, whereas the second, developed by Abrahamsen and Geldart [3],

starts from the packing state.

Let’s begin with the Richardson-and-Zaki’s approach. The average velocity

U is modeled as a correction to the velocity Ui of an isolated settling particle

in the corresponding flow regime,45

U = Ui (1− Φs)
n
, (1)

where n is an exponent that is expected to depend on the particle Reynolds

number Re, being equal to 4.65 in the limit of vanishing Re. This approach

has become very popular and many studies have shown that eq. 1 describes

experimental results well, provided that Ui and n are adequately chosen (see

[4] and references therein). Then, several works have investigated how this50

law can be extended to account for more complex effects, such as suspensions of

binary particles [5], adhesion forces depending on temperature [6], magnetic field

[7], multisized irregular particles [8]... However, even considering the simplest

case of a monodisperse homogeneous suspension of spheres in the absence of
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adhesion forces, this approach has limitations. First, eq. 6 predicts that the55

sedimentation velocity U becomes null at Φ = 1 although it actually vanishes

when the jamming occurs, at a concentration which is less than unity. As a

consequence, such a law necessarily ceases to be valid when approaching the

packing state. On the other hand, the homogeneous regime is destabilized at a

concentration Φlow, which is not necessarily small. There is hence no reason to60

expect that a law that is relevant for Φ > Φlow would still be valid in the limit of

vanishing concentration, and the value of Ui involved in eq. 6 does not represent

the terminal velocity of an isolated settling particle, as it will be shown later. In

addition, by following the original dimensional analysis of Richardson and Zaki

[2], the proposed expressions for n and Ui [4] generally do not account for the65

particle inertia, which questions their validity when the particle-to-fluid density

ratio can significantly vary from one case to another.

The alternative approach is more specific to the fluidized-bed configuration.

The fluidization velocity is modeled as a correction to the minimum velocity

Umf required to fluidize the bed [3],70

U = Umf +
g (ρs − ρf ) d2

210 µf

[
(1− Φs)

3

Φs
− (1− Φpack)3

Φpack

]
, (2)

where g is the gravitational acceleration, ρs the density of the particle, ρf the

density of the fluid, d the particle diameter, µf the fluid dynamic viscosity

and Φpack the particle volume fraction of the bed just before expansion. This

approach is based on the description of the flow through a porous medium of

porosity ε = 1−Φs, and can be seen as an extension of the original work of Ergun75

[9]. Being based on the properties of the bed at Umf , it is expected to be relevant

at concentrations close to Φup. But it can hardly constitute a universal law, since

its evolution away from Φpack does not involve parameters that may account

for the variations, between the many possible different fluid/particle systems, of

the magnitude of the four main forces listed above. Nevertheless, this approach80

emphasizes that a model that intends to describe the entire homogeneous regime

should probably involve Φpack.

Suspensions are often described as an equivalent continuous medium of ef-
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fective viscosity µm. Since the pioneering work of Einstein in 1905, which dealt

with the dilute limit, and that of Krieger and Dougherty [10], which proposed85

a way to continuously connect the dilute and the concentrated regime, many

authors have been attempted to model the effective rheology of a suspension

(see [11] for a recent review). The definition of an effective viscosity requires to

consider a volume that contains enough particles so that the average particle

volume concentration can be considered as a relevant parameter at this scale90

[12]. Consequently, if the effective viscosity is suitable to predict the sedimen-

tation velocity of a large body falling in a suspension of small particles, it is

questionable to relate it to the settling velocity of the small particles that make

up the suspension. For that reason, although both problems are closely related,

the literature on sedimentation/fluidization velocity is disconnected from that95

on suspension rheology, except in rare cases as [13]. Considering an effective vis-

cosity determined from the mean sedimentation velocity of the particles, which

differs from that measured in large-scale sheared suspensions, is however not

without interest. This important issue has been recently addressed by two of

the authors [14], who defined the effective mixture viscosity µm by balancing100

the buoyancy force acting on a spherical particle, g(ρs − ρf )π6 d
3, to the Stokes

drag, 3π µm d
U

1−Φs
, acting on a particle that moves at velocity U

1−Φs
relative to

a fluid of viscosity µm. This definition turns out to be the only way to gather the

experimental values of U , measured for three different types of small particles

fluidized by a gas, on a master curve of the form105

µm
µf

=
U0(1− Φs)

U
= F

(
Φs

Φpack

)
, (3)

where

U0 =
g(ρs − ρf )d2

18µf
(4)

is the Stokes velocity for an isolated settling particle, and F is an empirical func-

tion that is independent of the nature of the particles. This equation describes

non-cohesive fine particles suspended by a gas all over the homogeneous regime.

In particular, this law is expected to be valid for fluid catalytic cracking (FCC)110

or volcanic ash which are both able to generate highly expanded suspensions at
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high temperature [15, 16]. However, the question of its generalization to lower

particle-to-fluid density ratios, as those corresponding to particles in liquids,

remains open and represents the principal objective of this present paper.

In the present work, a fluidization column is used to measure the fluidization115

and the sedimentation velocities of a suspension of solid particles in a liquid. A

series of experiments were carried out for various particle sizes, particle densities

and liquid viscosities. Combined with experimental results of our previous work

[14] which were performed by using a gas, this amounts to exploring a wide

range of the control parameters. From the analysis of these data, we propose an120

expression able to accurately predict the value of U for any systems involving

a suspension of particles all over the homogeneous regime ranging from Φlow to

Φup, provided that the inertia of the fluid is negligible. This law relies on the key

physical parameters that describe the particle/fluid system, namely the Stokes

velocity of an isolated particle, the particle volume fraction, a specific packing125

concentration, and a Stokes number. In addition, the values of Φup and Φlow are

also determined and found to be simple functions of the Stokes number, which

provides a prediction of the achievable expansion in a fluidization column.

This paper is organized as follows. Section 2 reviews the involved physical

parameters and introduces the relevant dimensionless groups. Section 3 de-130

scribes the experimental setup and presents the investigated systems. Section 4

analyzes the results by means of Richardson-Zaki’s and Abrahamsen-Geldart’s

approaches. Section 5 describes our approach and introduces a new sedimen-

tation/fluidization law. Section 6 examines the boundaries of the homogeneous

range. Finally, concluding remarks are given in Section 7.135

2. Dimensional analysis

We consider the fluidization and the sedimentation of a homogeneous sus-

pension of non-cohesive particles in a fluid. Each particle is characterized by its

density ρp, its equivalent diameter d = (6ϑp/π)
1/3

, and its shape. In the case

where all particles do not have the same size, we consider that d is either the140
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mean or median of the diameter distribution. The solid particles are made of a

homogeneous material of density ρs, so that ρp = ρs.

The concentration of the suspension is characterized by the particle (or solid)

volume fraction, Φs, or equivalently by the fluid volume fraction (or bed poros-

ity), ε = 1 − Φs. In order to be able to describe large concentration cases, it145

is useful to introduce a packing concentration, Φpack, which is defined as the

particle volume fraction of a fluidized bed just below the minimum fluidization

velocity or that of a settling suspension at the point where the sedimentation

velocity vanishes. Note that, in a fluidized bed, Φpack/Φs corresponds to the

bed expansion, which can be measured from the ratio between the fluidized bed150

height and the initial bed height, without knowing the value of Φpack. It is also

worth mentioning that, when considering a population of particles with non-

uniform distributions of size and shape, Φpack embeds important information

about these distributions, which can be enough to determine the sedimenta-

tion/fluidization velocity U in certain cases, such as those of heated volcanic155

ash in a gas [14, 17].

Then, we consider a Newtonian fluid which is characterized by its density,

ρf and dynamic viscosity, µf . Finally, we account for a uniform gravity field of

acceleration g. Since gravity is only involved in weight and buoyancy, it is better

to consider the effective weight g(ρp − ρf ). Also, since the particles are moving160

relatively to a fluid, it is better to consider their effective inertia, ρp + CMρf ,

where CMρf represents for the mass of fluid entrained by a particle while CM

is the added-mass coefficient, which is equal to 1/2 for a sphere.

The problem is thus controlled by seven parameters, two non-dimensional

ones (Φs, Φpack) and five dimensional ones (ρf , µf , d, ρp + 1/2ρf , g(ρp − ρf )),165

and involves three physical dimensions (length, mass, time). The problem is

thus fully characterized by 7− 3 = 4 independent non-dimensional groups. We

thus need to build two non-dimensional groups in addition to Φs and Φpack.

Since numerous practical configurations involve fine particles, viscous forces are

often dominant. It is thus relevant to introduce non-dimensional numbers that170

compare inertial forces to viscous ones.
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Let us begin by considering the inertia of the fluid. The Reynolds num-

ber, Re = ρfdU/µf , is the non-dimensional group that compares fluid inertial

stresses to viscous ones. However, U being not an initial parameter, we need to

replace it by a velocity scale that is built on the control parameters. Considering175

the settling velocity U0 of a single particle in the Stokes regime (Eq. 4), we get

the Archimedes number, Ar =
ρf (ρp−ρf )gd3

18µ2
f

.

Evaluating the importance of the particle inertia force is more delicate. In-

deed, this force does not play any role when a particle moves at a constant

velocity and is therefore associated with the velocity fluctuations that take180

place in a settling or fluidized suspension. We thus introduce the Stokes num-

ber, St = τp/tf , which compares the particle response time, τp, to the time

scale of the fluctuations of the fluid velocity, tf . By balancing particle inertia,

(ρp+1/2ρf )πd3U
6τp

and Stokes drag, 3πµfdU , τp is found to scale with
(ρp+1/2ρf )d2

µf
.

Then, tf can be estimated as d/U , which leads to St =
(ρp+1/2ρf )dU

µf
. Finally,185

by replacing U by U0, we obtain a Stokes number that depends only on the

initial control parameters: St0 =
(ρp+1/2ρf )(ρp−ρf )gd3

18µ2
f

.

The problem is then fully characterized by Φs, Φpack, Ar and St0. Note that

Ar is the only non-dimensional group that can be constructed from the three

physical parameters when ρp+1/2ρf is removed, while St0 is the only one when190

ρf is disregarded. Therefore, in cases where Ar (or Re) is small, the inertia of

the fluid can be neglected, whereas in cases where St0 (or St) is small, that is

the inertia of the particle that is negligible.

3. Experimental setup, procedures and regime characterization

We report fluidization and sedimentation experiments that were carried out195

in the experimental setup schematized in figure 1. It includes a transparent

vertical column of height H = 0.7 m which has a rectangular cross-section of

sides x0 = 0.2 m and w0 = 0.3 m. A liquid, supplied by a centrifugal pump, can

be injected at the bottom of the column through an array of straws discharging

in a stack of large glass pebbles and smaller lead beads, all covered by a mesh200
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filter. This injection system ensures a uniform liquid flow and prevents the

solid particles from leaving the column. At the top, an evacuation system is

connected to an external tank which allows a closed-loop flow.

The experimental procedure can be described as follows. The column is

filled with a mixture of solid particles and a liquid. The particles being denser205

than the liquid, they form a bed of initial height h0. The bed consists of a

loose random packing at a concentration Φpack. The total volume of solid ϑs

having been preliminarily measured, the initial concentration is determined as

Φpack = ϑs

x0w0h0
. Then, the liquid is injected from the bottom at a given flow

rate Q, corresponding to a fluidization velocity Uf = Q
x0w0

, determined with210

an accuracy of ± 2%. Provided Uf is larger than the minimum fluidization

velocity, the bed expands, reaching a height h > h0 and a concentration Φs,

which correspond to an expansion E = h
h0

, determined with an accuracy of

± 2%. The normalized concentration is thus obtained from Φs

Φpack
= 1

E while

the concentration is given by Φs =
Φpack

E , with an accuracy of ± 4%. When215

the liquid injection is stopped, the sedimentation velocity is measured from the

duration ∆t taken by the bed to settle: Used = h−h0

∆t , with an accuracy of

± 4%. A preliminary fluidization-sedimentation cycle is performed before the

collect of data, so that the initial packing state Φpack is the result of particle

sedimentation and not to an arbitrary configuration following the filling of the220

column. Then, a series of cycles are carried out for different liquid flow rates in

order to measure how Uf and Used evolve with the particle concentration. For

each considered system of a fluid and particles, the boundaries Φup and Φlow of

the homogeneous regime are determined. Practically, Φup, is here determined

as the concentration corresponding to the minimum flow-rate for which a visible225

bed expansion is achieved. Φlow corresponds to the limit of stability of the bed

beyond which visible fluctuations of concentration develop and its surface begins

to be agitated. Note that this transition is quite abrupt, which makes possible

its determination with a good accuracy.

Various systems are investigated (see Table 1 for a summary of their prop-230

erties). Five sets of particles made of three different solid materials have been
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studied, the density of which has been measured by means of a pycnometer: one

set of light PMMA beads, three sets of glass beads of different sizes (GB1, GB2

and GB3), and one set of sand grains. Ten samples of each set of particles have

been analyzed by using a laser granulometer. Figure 2 shows the distributions235

of the particle equivalent diameters (d = (6ϑp/π)
1/3

). Beside, the shape of the

particles was observed using a microscopic image of each sample, also shown

in fig. 2. PMMA beads are almost spherical with a narrow size distribution.

Glass beads are also almost spherical with a size distribution that is broader

for the sets of larger particle sizes. Sand particles are less spherical and have a240

rather broad size distribution. In what follows, the particle size of each set will

be characterized by the median diameter d50 of the distribution, we will thus

be assimilated to d. In any case, the liquid is water but two different operating

temperatures are used in order to vary the viscosity: µl=1.00×10−3 Pa s at

20◦C or µl=0.72×10−3 Pa s at 35◦C.245

In addition to these new experiments, the present analysis will also consider

results obtained in a recent study [14]. This previous work investigated two sets

of non-spherical ash particles (Ash1 and Ash2) and one set of almost spherical

FCC particles, which were fluidized in air at 170◦C [15]. The physical parame-

ters of these experiments are also reported in Table 1. Even though two different250

setups are used, the experimental procedures of the previous and present exper-

imental campaigns are similar and their results can thus be compared without

limitations. Combining results obtained in either a liquid or a gas allows us to

explore a very broad range of the Stokes number and thus to reveal the role of

the particle inertia.255

Figure 3 shows the measured fluidization velocity Uf and sedimentation ve-

locity Used as a function of the normalized concentration Φs

Φpack
over the whole

range of the stable homogeneous regime between Φlow

Φpack
and

Φup

Φpack
for all the sys-

tems under investigation. In all cases, Uf and Used are equal within the measure-

ment accuracy, which confirms that wall effects are negligible. In what follows,260

we will no longer distinguish them and consider a single velocity U , the value of

which is set equal to the sedimentation velocity Used. Velocity U decreases with
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the concentration, but depending on the system under consideration, its values

differ greatly. In particular, light PMMA particles in water feature the lowest

values, the weakest decrease and the broader homogeneous range, whereas the265

reverse is true for particles in gas. Considering non-dimensional quantities is

therefore necessary to interpret the results.

Table 1 gives the non-dimensional control parameters Ar and St0 for all sets

of solid particles in water at 20◦C and in air at 170◦C. The Archimedes number

remains moderate (Ar < 30) while the Stokes number reaches very large values270

(St0 >1000). Disparities between the values of U of the different fluid-and-

particle systems are thus rather expected to be associated with variations of

particulate inertia than to fluid one. However, since Ar and St0 are based on

the Stokes velocity U0 of an isolated settling particle, it is not straightforward

to determine the flow regime within a concentrated suspension from their val-275

ues. This can be better done by examining the Reynolds number Re and the

Stokes number St which are based on the actual velocity U corresponding to

each concentration. Figure 4 shows the evolution of Re and St with the nor-

malized concentration. For comparison purposes, the value of Ar (respectively

St) corresponding to each fluid-and-particle system are reported at Φs

Φpack
= 0280

in fig. 4a (respectively in fig. 4b).

The maximal value of Re, which is reached for the largest glass beads in

water at 35◦C and at a concentration Φs

Φpack
around 0.6, is about 4. The classic

Schiller and Nauman correlation [18] predicts that the terminal velocity of a solid

sphere falling at Re = 4 is only decreased by 17% compared to the case at Re=0.285

Furthermore, it must be taken into account that the particles are not isolated,

but immersed in a suspension whose effective viscosity µm is higher than that

of the suspending fluid. As we will see later in this paper, µm/µf is about 10,

which leads to an effective particle Reynolds number less than 0.4 and a velocity

decrease from the Stokes value by less than 4%. However, we will observe, in the290

limit of small concentrations, a reduction of the sedimentation or fluidization

velocity relative to the Stokes velocity by a factor of 3 for the cases at the lowest

Reynolds number (Re=0.004). In these experiments, it is therefore reasonable
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to conclude that fluid inertia plays a minor role regarding the fluidization or

sedimentation velocity. We will thus disregard the Archimedes number in our295

analysis of the results

Varying the particle-to-fluid density ratio from 1.2, for PMMA particles in

water, to more than 2000, for ash particles in hot air, allows us to investigate

an unprecedented range of Stokes numbers (1.6 ≤ St0 ≤ 1200, 0.015 ≤ St ≤ 70)

while keeping a low Reynolds number. Little is known about the effect of the300

Stokes number on the fluidization or sedimentation velocity, so that it is difficult

to foresee whether this range is large enough to reveal the whole evolution of

U(St0). It is indeed one of the main objective of this work to investigate this

effect in situations where the fluid inertia plays a negligible role.

In the following, we will therefore examine the data by considering the three305

non-dimensional groups: St0, Φs and Φpack. This choice will be proved to

be relevant since all data can be modeled by accounting for these only three

parameters.

4. Discussion of existing laws

In this section, we confront the two classical approaches with our results.310

We begin with that of Abrahamsen and Geldart. Fig. 5 compares the predic-

tions of eq. 2 with experimental results. Eq. 2 involves a free parameter that

is the minimum fluidization velocity Umf for which we used the value of Uf

measured at Φup, so that experiments and predictions necessarily match at this

concentration. For particles in gas, Eq. 2 follows rather the evolution of U at315

high concentrations. However, it fails at low concentrations and is clearly not

suitable for particles in water. Therefore, we do not think that this approach is

relevant to gather the data, obtained from configurations of contrasted proper-

ties, into a unique description.

Now we examine the popular approach of Richardson and Zaki. Eq. 6 in-320

volves two parameters: velocity Ui and exponent n. As it is usually done, the

experimental results have been represented in Fig. 6a under the form log10( UUi
)
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as a function of log10(1−Φs). The value of Ui corresponding to each experimen-

tal system has been determined such that the extrapolation of the best fit of the

data by Eq. 6 intercepts U
Ui

= 1 at Φs = 0. Fig. 6a shows that the data of all325

systems gather on a straight line of slope n = 3.75 within values of log10(1−Φs)

ranged from approximately -0.3 to -0.05. This exponent is expected to depend

on the Reynolds number. Since the exponent turns out to be the same for all

considered systems, which include some cases at very low Re, the value found

here should correspond to the low-Re limit. However, the present value n = 3.75330

is significantly lower than the low-Re value n = 4.65 proposed by Richardson

and Zaki. This is nevertheless not so surprising since, as pointed by [4], various

exponents have been reported in the literature. Fig. 6b shows the values of

Ui, normalized by the Stokes velocity U0 of an isolated settling particle, as a

function of St0. They are observed to vary from 0.3 U0 to 0.6U0 depending on335

the system under consideration. According to Richardson and Zaki, Ui can be

affected by the column dimension or the Reynolds number. Here the ratio x0/d

between the minimum column side and the particle diameter is between 600 and

3000, which is enough to ensure that the results are independent of this param-

eter. By the way, it is worth mentioning that the existence of a dependence of340

U on the column dimension is incompatible with the homogeneity of the flow

in the transverse direction. Regarding the Reynolds number, we note that the

gas cases show the largest deviations to the Stokes velocity although they cor-

respond to the lowest Re, which is much less than unity. On the other hand, Ui

U0

can be described as a regular monotonous function of St0, which indicates that,345

in agreement with the flow regime characterization presented in the previous

section, particle inertia is the main cause of discrepancy between the various

systems. Yet, the inertia of a particle does not affect its motion when moving

at a constant speed. It is thus clear that the value of Ui that allows the results

to gather do not correspond to the velocity of an isolated particle. To conclude,350

the Richardson-Zaki approach, with an appropriate value of n and a value of Ui

which depends on St0, allows us to model the present results, provided that we

renounce to describe the evolution of U at too small or large concentrations.
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5. A more universal approach

Our objective is to gather the results obtained for all systems of materials355

over the entire homogeneous regime. We reconsider the idea presented in our

previous study [14] that dealt with solid particles in a gas and thus was limited to

high Stokes numbers. Let us consider that the mixture of fluid and particles seen

by an individual test particle of diameter d can be considered as a homogeneous

fluid of density ρm and viscosity µm = µ∗µf . The force balance on a test360

spherical particle settling at velocity U under the action of gravity within in

this fluid is, in the regime of negligible fluid inertia,

πd3

6
(ρp − ρm)g = 3πµ∗µfdU . (5)

Knowing that the mixture density is of ρm = Φsρp+(1−Φs)ρf and introducing

the Stokes velocity U0 of an isolated particle (Eq. 4), leads to

U0(1− Φs)

U
= µ∗

(
St0,Φs,

Φs
Φpack

)
. (6)

This non-dimensional number a priori depends on the three non-dimensional365

control parameters. It describes the excess of viscous friction acting on the test

particle due to the presence of the other particles. It is therefore greater than

unity. It tends towards one in the dilute limit and diverges towards infinity

when Φs tends toward Φpack. It is also expected to increase with St0 from what

we saw in Fig. 6b.370

Fig. 7 shows experimental values of the non-dimensional viscosity µ∗ =

U0(1−Φs)
U , and its inverse the non-dimensional velocity U∗ = U

U0(1−Φs) , as a

function of Φs

Φpack
. Even if they contain the same information, these two repre-

sentations are complementary. The evolution of µ∗ emphasizes the differences

between the various cases at large concentrations, while that of U∗ highlights375

the differences at low concentration. Each system of materials is characterized

by a specific value of the Stokes number St0. We remark that the evolution of

µ∗ or U∗ against Φs

Φpack
looks similar at all St0. The only differences lie in their

overall magnitude and the limit of stability of the homogeneous regime. The
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values of µ∗ corresponding to solid particles in a gas are above the others and380

defined on a short range, whereas those corresponding to PMMA particles in

water are below and defined on a very broad range. Comparing all systems, we

can claim that the smaller St0, the smaller µ∗ and Φlow. A closer look reveals

that, over their definition range, the curves are proportional and only differ by a

factor, which depends only on St0. It means that there exist a function K(St0)385

so that the evolutions of µ
∗

K can be described by a unique function of Φs

Φpack
. The

expression of µ∗ thus simplifies into

µ∗ (St0,Φs,Φpack) = K (St0)F
(

Φs
Φpack

)
, (7)

where the Stokes number and the concentration are now involved in two sepa-

rate functions, and where Φs and Φpack only appear through their ratio. The

experimental values of K are easily determined from the data. Since it does390

not depend on the concentration, we can chose any given value Φ∗ of φs

φpack
to

calculate them. The ith value is given by

K(Sti0) = c
µ∗
(
Sti0,Φ∗

)
µ∗ (St10,Φ∗)

, (8)

where c is a constant that can be arbitrarily included in K or F without changing

their product, and thus without changing the value of µ∗ according to Eq. 7. We

choose the value of c so that F tends towards unity when
(

Φs

Φpack

)
tends toward395

zero. Fig. 8 represents the experimental data in the form of F
(

Φs

Φpack

)
. The

corresponding values of K(St0), obtained by using Eq. 8, are shown in Fig. 9.

The excellent collapse of all data into a unique master curve seen in Fig. 8

proves the validity of the simple model expressed by Eq. 7. In the absence of

a theory predicting the function F , it is interesting to search for an empirical400

expression. It turns out that it cannot be accurately described by either a

power law or an exponential function. In fact, the low concentration range

shows an exponential increase, whereas the divergence at high concentration

is well described by a power law. These considerations lead us to propose an

expression of the form405

F
(

Φs
Φpack

)
= C0

(
exp

[
−C1

(
1− Φs

Φpack

)]
+ C2

(
1− Φs

Φpack

)−C3
)
, (9)
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where the constants Ci are positive numbers and C0 = 1
exp(−C1)+C2

. This

expression satisfies the two conditions F(0) = 1 and F(1) =∞. The best fit is

obtained with C1 = 3, C2 = 0.08 and C3 = 2/3. It is represented by the pink

curve in Fig. 8 and accurately describes the experimental results.

The evolution of K against St0, plotted in Fig. 9, reveals the effect of the410

particle inertia on the fluidization or sedimentation velocity. The experimental

results show that K(St0) is an increasing function, with a slope that is large

at low St0 but then decreases continuously as St0 increases, finally reaching a

plateau at high St0. Such a behavior can be described by means of a simple

saturation function of the form415

K (St0) = (K∞ −K0) g (St0) +K0 , (10)

where K0 and K∞ are respectively the limits of K (St0) at zero and infinity.

g(x) =
x

x+ 1
, (11)

where x = St0
St0c , St0c characterizing the rate at which transition between small

and large St0 regimes occurs. Now recall that the smaller St0, the smaller

Φlow. With light particles, dilutions strong enough for U to approach U0 can be

achieved while remaining in the homogeneous regime. Thus, if we stand that420

Φlow tends towards zero when St0 tends towards zero, we obtain from Eqs. 6

and 7

µ∗
(
St0 = 0,

Φlow
Φpack

)
= µ∗ (0, 0) = K0F(0) = K0 =

U0(1− 0)

U0
= 1 . (12)

Given that K0 = 1, K∞ and St0c are the two remaining free parameters in

Eq.10. A reasonable fit of the experimental results, shown by the pink curve

in Fig. 9, is obtained by setting K∞ = 3 and St0c=45. (It can be mentioned425

that a slightly better fit of the experimental results is obtained with K0 = 1.5,

K∞ = 3 and St0c=70, but is not consistent with equation 12.)

We finally end up with a general model of the sedimentation/fluidization

velocity U of a suspension that is valid all over the homogeneous range and for

all systems of fluid and particles, provided that the inertia of the fluid can be430
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neglected compared to viscous forces. From Eqs. 6 and 7, U can be written as

a product of four terms

U =
g(ρp − ρf )d2

18 µf︸ ︷︷ ︸
1. Isolated particle, U0

(1− φs)︸ ︷︷ ︸
2. mixture density

1

F
(

φs

φpack

)
︸ ︷︷ ︸

3.bed porosity, Eq. 9

1

K (St0)︸ ︷︷ ︸
4. particle agitation, Eq. 10

,

(13)

which can be interpreted as follows:

1. The first term is the theoretical Stokes terminal velocity U0 of an isolated

sphere of density ρp settling under the action of gravity in a fluid of density435

ρf and viscosity µf . It is the value reached by U when both Φs = 0 and

St0 = 0. The three other terms are non-dimensional corrections to U0

accounting for the various effects associated with the presence of many

particles.

2. The second term simply accounts for the evolution of the density ρm of the440

mixture which affects the buoyancy force acting on each solid particle in

Eq. 5. As noticed in [14], Eq. 5 can also be obtained by considering a test

particle moving at velocity U
1−Φs

relative to the fluid of density ρf instead

of moving at velocity U relative to the mixture of particles and fluid at

density ρm. Thus, the second term can also be interpreted as reflecting the445

increase of the relative velocity between the particle and the fluid when

the concentration increases. It is worth mentioning that this term is not

associated with interactions between particles nor with an increase of the

drag force acting on the particles.

3. As well as in a porous medium, the fluid follows complex paths within450

the interstices between the particles. The friction on each particle and

the corresponding viscous dissipation are therefore increased compared to

the case of an isolated particle. This causes the increase of the average

drag force on the particle and the decrease of U . The third term of Eq. 13,

modeled by Eq. 9, quantifies this effect in the case of particles of negligible455

inertia, i.e. St0 = 0. Function 1
F decreases from unity to zero as φs

φpack

goes from zero (isolated particle) to one (packed state).
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4. In fluidized beds or sedimenting suspensions, both fluid and particle veloc-

ities undergo fluctuations, even at low Reynolds number [19, 20]. These

fluctuations contribute to the dissipation of mechanical energy and thus460

affect the average velocity U . In particular, the fluctuations of the rel-

ative velocity between the fluid and the particles are intimately related

to how U depends on the concentration [21]. However, these fluctuations

do not only depend on the concentration but also on the Stokes number.

Particles of negligible inertia (St0 � 1) instantaneously follow any local465

fluctuations of the fluid that surrounds them, while particles of significant

inertia follow trajectories that differ from those of the fluid. For particles

of negligible inertia, the effect of the fluctuations is already embedded in

1
F and turns out to vanish at strong dilution. The fourth term of Eq. 13,

modeled by Eq. 10, describes the evolution of this effect with the Stokes470

number. It turns out that 1
K is a decreasing function of St0 which reaches

a minimum value of about 1/3 at large St0. The larger St0, the smaller U ,

which is at most three times smaller for high-inertia particles compared

to low-inertia ones.

6. Boundaries of the homogeneous range475

Eq. 13 provides a general relation between U and all the control parame-

ters of the problem. To achieve a complete description, we need henceforth to

determine the boundaries of the homogeneous range in which this law is valid.

Fig. 10a shows the upper boundary,
Φup

Φpack
, as a function of St0. Note that

Φup is defined as the maximum concentration below which the bed of particles480

is fully fluidized, i.e. Uf = Used. In principle, this point may differ from the

concentration Φmf corresponding to the minimum fluidization velocity, where

the presence of the wall can still play a significant role and cause Uf to be larger

than Used. However, it turned out that Uf was approximately equal to Used at

the first point where measurable expansion was detected. We can thus make485

no distinction between Φup and Φmf in the present experiments. This is not
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surprising since the ratio between Φup and Φpack remains in any case ranged

from 0.94 and 1, without showing any clear correlation with St0.

The study of the lower boundary Φlow is much more interesting, since it

characterizes the limit of stability of the homogeneous regime when the concen-490

tration is decreased as well as the bed expansion. Above Φlow, the bed shows

no noticeable fluctuations. Below Φlow the surface of the bed becomes strongly

agitated and visible fluctuations of concentration at large scales compared to d

are visible. Fig. 10b shows Φlow

Φpack
as a function of St0. It is immediately notice-

able that this behavior is similar to that of K (St0) presented in Fig. 9 and can495

thus be described by an expression similar to Eq. 10,

Φlow
Φpack

(St0) =

([
Φlow
Φpack

]
∞
−
[

Φlow
Φpack

]
0

)
g (St0) +

[
Φlow
Φpack

]
0

, (14)

where function g is still given by Eq. 11 with St0c=45. The best fit of the

experimental results, given by
[

Φlow

Φpack

]
0

= 0 and
[

Φlow

Φpack

]
∞

= 0.8, is represented

by the pink curve in Fig. 10b. Considered together, the evolutions of K (St0)

and Φlow

Φpack
(St0) draw an interesting picture. First, it is worth recalling that500 [

Φlow

Φpack

]
0

= 0 means that a bed of particles of negligible inertia should be ex-

panded without limit while remaining homogeneous. At St0 = 0, there is no

discontinuity between the case of an isolated particle (Φs = 0) and the onset

of the transition towards jamming (Φs = Φpack), U being determined by the

three first terms of Eq. 13. At St0 > 0, the velocity U is divided by a factor505

K (St0) > 1 and, concurrently, the homogeneous regime is restricted to concen-

trations larger than Φlow (St0) > 0. In this case, the existence of a bifurcation

at Φlow limits the evolution of U that cannot be extrapolated towards Φs = 0

to recover the value U0 corresponding to an isolated particle. Increasing St0
leads to the increase of K and Φlow

Φpack
by following a similar law, which indicates510

that the same mechanism related to the inertia of the particles is responsible

for both the instability of the suspension and the decrease of U .
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7. Conclusion

From a thorough examination of experimental results conducted with sys-

tems of contrasted properties, we have established a general law (Eq. 13) for the515

sedimentation/fluidization velocity U of a non-cohesive suspension of particles

in a low-inertia fluid, either gaseous or liquid. This law takes into account all

the physical parameters that control the flow. It is valid over the whole range

of particle volume fractions where a fully fluidized homogeneous suspension is

stable, between the lower limit Φlow below which large-scale fluctuations of con-520

centration develop, and the upper limit Φup above which solid friction starts to

play a significant role. A major finding of this work is that the expression of U

can be decomposed into the product of four terms, each of them accounting for

a different physical mechanism: (1) the settling velocity of an isolated particle,

(2) the effective particle weight, (3) the effect of the concentration of particles525

of negligible inertia (4) the effect of particle inertia. Remarkably, the function

F
(

Φs

Φpack

)
modeling term (3) is independent of function K (St0) modeling term

(4). Also, the flow instability beyond a given concentration is directly related

to the inertia of the particles. A bed of inertialess particles (St0 = 0) can be

indefinitely expanded while remaining stable. Increasing St0, Φlow

Φpack
and K (St0)530

both increase by following the same law. Thus, the larger the Stokes number,

the lower U and the less the maximum stable bed expansion.

Combined to general expression 13, empirical laws 9, 10 and 14 provide a

reliable tool for engineers needing to predict the behavior of a fluidized bed.

Note that this expression is valid in the homogeneous regime and cannot be535

extrapolated to values of Φs that are lower than Φlow.

Now, let us discuss two possible limitations of the present result. We can

wonder whether there could be an effect of the width of the size distribution.

Although the particle sets investigated in a liquid (Fig. 2) as well as those inves-

tigated in a gas (Fig. 1 of [16], [14]) have various size distributions, our model is540

able to describe them by only accounting for the average diameter of the parti-

cles. We thus think that the particle distribution can be disregarded, provided
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that its width is narrow enough to prevent size segregation from occurring [22].

Note that the mixture was made with the same material and also prevents the

density segregation. Moreover, in experiments made in gas, one set of roughly545

spherical FCC particles and two sets of non-spherical randomly shaped volcanic

ash were studied (see pictures in Fig. 1 of [16], [14]). In experiments made in

liquid, glass beads and PMMA particles are spherical, whereas sand grains are

not (see pictures in Fig. 2). Since the present model is found to work with

all the considered materials, it seems that Φpack embeds the most important550

information about the particle shape, at least for shapes that are moderately

anisotropic.

Lastly, it is important to recall that the present model described situations

where the effect of the fluid inertia can be neglected, i.e. small Reynolds num-

bers. To deal with all possible cases, a model must provide the dependence of555

U with all four non-dimensional parameters: Φs and Φpack, St0 and Ar. Is it

possible to extend the present model to include the Archimedes number ? A

more general expression for the velocity of the isolated particle (term 1) could

be considered in oder to account for a finite-Reynolds-number drag. Also, the

effect of the concentration on the mixture density (term 2) should remain un-560

changed. However, it is more difficult to anticipate about the two other terms.

In particular, it would be interesting to know whether a separation of variables

as that expressed by Eq. 7 is still relevant when the role of Ar is considered.

A Future work based on further experimental investigations will address these

issues.565
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Figure 1: Scheme of the fluidization column.
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Experimental parameters PMMA GB1 GB2 GB3 Sand Ash1 Ash2 FCC

Particle density ρp [kg m−3] 1200 2500 2500 2500 2650 1600 1490 1420

Mean particle diameter d [µm] 210 160 240 335 310 80 65 70

Fluid density ρf [kg m−3] 998 998 998 998 998 0.79 0.79 0.79

Fluid viscosity µf [Pas] 10−3 10−3 10−3 10−3 10−3 2.45 10−5 2.45 10−5 2.45 10−5

Packing concentration Φpack 0.64 0.60 0.60 0.58 0.56 0.58 0.60 0.58

Limit of fluidization
φup

φpack
0.987 0.955 0.966 0.972 0.967 0.94 0.95 0.95

Limit of stability φlow

φpack
0.06 0.16 0.38 0.62 0.47 0.70 0.71 0.82

Range of homogeneous regime
φup

φlow
16.45 5.97 2.54 1.80 1.57 1.34 1.34 1.16

Ar =
ρf (ρp−ρf )gd3

18µ2
f

1 3 11 31 28 0.6 0.3 0.4

St0 =
(ρp−ρf )(ρs+ 1

2ρf )gd3

18 µ2
f

1.6 10 34 94 88 1176 545 655

Table 1: Experimental parameters for both liquid-solid suspensions (PMMA; GB1; GB2;

GB3; Sand) at 20oC and gas-solid suspensions (Ash1; Ash2; FCC) at 170oC.
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Figure 8: Non-dimensional function F
(

Φs
Φpack

)
= µ∗

K(St0)
, which reflects the dependence

of U on the concentration due to the enhanced viscous dissipation in the presence of many

particles. Symbols represent experiments, the pink curve shows empirical law 9.
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Figure 9: Non-dimensional function K (St0), which reflects the increase of viscous dissipation

due to the difference between instantaneous motions between inertial particles and the carrier

fluid. Symbols represent experiments, the pink curve shows empirical law 10.
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