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The medium voltage direct current (MVDC) technology is emerging in electricity networks including point-to-point transmission, distribution networks and collection networks for renewable energy sources. In this article the MVDC break-even distance (with respect to AC distribution) is calculated according to the overall energy efficiency criteria. The break-even distance is found to vary from less than 10 km to several tens of kilometres depending on power and voltage ratings and network topology.

Introduction

In recent years, the electrical power system has started to evolve from a centralized architecture, with large power plants, to a more distributed architecture integrating many smaller power sources, mainly wind and photovoltaic (PV). The power transmission and distribution systems have to face this evolution and adapt accordingly. The high voltage direct current (HVDC) technology is expanding in the transmission grids. It offers an economically viable solution for long-distance transmission of bulk power, especially when underground or underwater cables are used. Similar reasons that have made the HVDC technology gain momentum in power transmission networks are now causing the medium voltage direct current (MVDC) technology to emerge for power distribution. Recently, Siemens has proposed a product for MVDC links, offering among other advantages lower overall losses and power flow controllability [START_REF] Siemens | siemens.com Global Website[END_REF]. ABB makes a similar analysis in [START_REF] Abb | MVDC and Grid Interties: enabling new features in distribution, sub-transmission and industrial networks[END_REF]. The "Angle DC" project in United Kingdom is an example of converting two existing MVAC circuits to operate as MVDC circuits [START_REF] Yu | Initial designs for the ANGLE DC project; converting existing AC cable and overhead line into DC operation[END_REF], with, as a result, an expected 23% increase in transmitted power capacity. Moreover, the converter stations supplied by General Electric will provide reactive power control capability on both AC networks, which will improve the power quality in the local region and hence reduce the operating losses in the networks. CIGRÉ has provided some foundations for the MVDC grid development in [START_REF]Medium voltage direct current (MVDC) grid feasibility study', e-cigre[END_REF] and the efforts continue in the ongoing working group C6/B4.37. In large offshore wind farms the distance between the wind turbines and the HVDC converter station may exceed tens of kilometres. Since underwater cables are used, then MVDC may be considered [START_REF] Prada Gil | Feasibility analysis of offshore wind power plants with DC collection grid[END_REF], [START_REF] Métayer | Unidirectional thyristor-based DC-DC converter for HVDC connection of offshore wind farms[END_REF]. Large solar power plants, some of which spread over kilometres may also benefit from MVDC, especially because PV modules are inherently producing DC power [START_REF] Cabrera-Tobar | Topologies for large scale photovoltaic power plants[END_REF], [START_REF] Siddique | DC collector grid configurations for large photovoltaic parks[END_REF]. The electrified railway infrastructure may see a new standard of MVDC power supply at 9 kV [START_REF] Verdicchio | New Medium-Voltage DC Railway Electrification System[END_REF]. Ships are also getting more electric and the standards include the MVDC power distribution networks up to 35 kV [START_REF]IEEE Recommended Practice for 1 kV to 35 kV Medium-Voltage DC Power Systems on Ships[END_REF]. All the above clearly shows that MVDC technology have advantages for some specific applications. The criteria for an application to switch to DC will depend strongly on the result of a cost-benefit analysis. One of the important performance indicators is the energy efficiency which is a component of the operational expenditure (OPEX). Power losses in DC cables are lower than in AC cables, as there is no circulation of reactive current in DC and therefore no corresponding Joule losses in the conductors. However, considering that the DC system has to be connected at some point to an existing AC system, a DC-AC converter station is required. This station comes at a given cost and adds power losses. For high voltage links, it has been demonstrated that a break-even-distance exists, where HVDC becomes advantageous over HVAC. The HVDC/HVAC break-even-distance is approximately 50 km in case of submarine cables [START_REF] Schavemaker | Electrical Power System Essentials[END_REF]. In this paper, an MVDC/MVAC break-even distance is calculated according to the overall energy efficiency criteria. The power losses in underground cables and DC-AC converter stations are considered, assuming some hypotheses, in particular regarding the equivalent voltage and power between AC and DC. This study strictly focuses on the efficiency criteria, as accurate cost estimations are not within the scope of the authors' work. Three case studies are presented. The first one is a point-to-point transmission, the elementary block of electricity networks. The second one is a distribution network, a common type of network in today's grid. Third one is a collection network for a large PV installation, to give an example of a network with a particular production profile. The novel aspects of this work are as follows:

-The calculation of break-even distances for MVDC, with clear underlying hypotheses, -The study of the effect on the break-even distance of the power repartition in a multi-terminal network, -The study of the effect of the production profile on the break-even distance.

Methodology

The DC electricity networks are expected to develop together with AC networks following similar principles. The elementary electricity interconnection unit is the point-to-point (P2P) transmission line and it can be realised in AC or DC as presented in Fig. 1a. In the current AC grid, a distribution network is commonly realised as a ring where the individual loads are supplied from a ring main unit (RMU) [START_REF] Leeuwerke | Developments in ring main unit design for improved MV network performance[END_REF]. A normally open point (NOP) separates the system into two radial networks as presented in Fig. 1b. The same ring network architecture can be considered for the collection network of renewable energy sources such as PV or wind. A symmetric monopole line configuration with high impedance grounding is selected for the MVDC line. It offers a good robustness to fault events while reducing isolation constraints. Considering voltage source converter (VSC) AC-DC stations with sinusoidal pulse width modulation, the MVDC voltage is defined as:

> 2 2 3 ≈ 1.6 (1) 
where UDC is the DC line-line voltage and UAC is the 3-phase AC line-line RMS voltage. Then, for the comparative analysis of AC and DC, the transmission voltages equivalence between both options can be assumed to be described by [START_REF] Siemens | siemens.com Global Website[END_REF]. A complementary approach to define the equivalence on voltages is to consider the DC voltage that a cable insulation can withstand compared to its AC ratings. In [START_REF] Buchner | Review of CIGRE TB 496 regarding Prequalification Test on Extruded MVDC Cables[END_REF] a 12/20 kV MVAC cable was reported to pass a 55 kV DC test. The conclusion of [START_REF]Medium voltage direct current (MVDC) grid feasibility study', e-cigre[END_REF] is that a MVAC cable rated for X kV AC nominal voltage is recommended for ±X kV DC. The authors follow this recommendation for the choice of the voltage levels.

The comparative analysis of power losses takes into account the cable and AC-DC stations. Other elements of the network are not considered in this analysis. In particular, the transformers (Fig. 1) are assumed to have the same efficiency in both AC and DC systems. The same cables are considered for the DC and AC lines assuming that the MVDC market demand will not allow the development of specific technologies in the short term. One should note that three conductors are used in AC systems while only two are used in DC. This fact should be taken into account when analysing the cost. The cable parameters are presented in Table I, according to [START_REF] Nexans | Underground Power Cables Catalogue 03-2010[END_REF]. For both AC and DC, it is considered the use of single-core, unarmoured copper cables. For the AC case the resistance is calculated taking into account the skin effect [START_REF] Riba | Analysis of formulas to calculate the AC resistance of different conductors' configurations[END_REF]. The cable temperature is assumed to be 70°C. Cable losses calculations are performed based on load flow analysis [START_REF] Macqueen | Time based load-flow analysis and loss costing in electrical distribution systems[END_REF]. The nominal power of the network for each voltage level is calculated according to the maximum cable current. In this analysis a value of Imax = 1 kA is retained. The value of 1 A/mm 2 is a typical current density according to [START_REF] Nexans | Underground Power Cables Catalogue 03-2010[END_REF]. Therefore, the nominal power is calculated as the minimal power between DC and AC transmission that gives the maximal current per cable as expressed in [START_REF] Abb | MVDC and Grid Interties: enabling new features in distribution, sub-transmission and industrial networks[END_REF]. Table II presents the nominal power obtained for each voltage level. The AC-DC converter stations are only required in the MVDC systems. The efficiency of each AC-DC station is assumed to be that presented in [START_REF] Nagel | A 24 MVA inverter using IGCT series connection for medium voltage applications[END_REF]. The reported efficiency of the studied 24 MW 3-level neutral point clamped (NPC) inverter based on IGCTs is approximately 99.1% at low fractions of the nominal power. In this article, the conservative value of efficiency at 99% is considered in the entire power range of the AC-DC converter station.

= √3 , (2) 
In the distribution or collection network, if the load or the energy source requires a power conversion equipment then it is assumed that this equipment has the same efficiency in both AC and DC. For example, considering a PV source, the PV inverter and transformer required for the MVAC network is assumed to have the same efficiency as the step-up DC-DC converter needed for the MVDC network.

Point-to-point transmission

In this section the break-even distance for a point-to-point transmission is studied. In order to calculate it, the power losses in the cables are calculated for the different voltage levels defined in Table II.

The power losses are calculated for different distances using the nominal power defined for each voltage level (Table II) and cable parameters (Table I). The results are presented in Fig. 2. The figure shows the losses obtained in the cable for the AC and DC interconnection, as well as the total losses for the DC case if the AC-DC station losses are included. In this case, two AC-DC stations are considered, one at each side of the interconnection, which increases losses by 2 percentage points. It is observed that for all the distances, the losses in the cable are lower in DC. However, because the added losses of the AC-DC stations, the overall losses in the DC installation are higher for distances shorter than the break-even distance (crossing point of red and green curves in the figure). Above this point, DC presents lower losses compared to AC. It is observed how the break-even distance changes with the voltage level. As the voltage increases, the break-even distance shifts to longer distances.

The dashed black line in the figure represents 5% of losses related to the nominal power in each case. This line is shown as reference and gives an idea of the maximum allowed distance for each configuration in terms of losses. Selecting a higher voltage level could be interesting to decrease the losses to an acceptable value. The limit of 5% is given as reference but another limit could be taken from a technical and economic analysis.

The results of Fig. 2 were obtained at the nominal power level of the line. However, according to the application, it could be expected that the line does not operate at nominal power all the time. This is the case when interconnecting renewable sources for example. Then, it is worth analysing the losses for a fixed distance in function of power. Fig. 3 shows the results of this analysis for a given case. It is observed that, for low power loads, AC offers lower losses than DC. However, above a break-even power point the losses in the DC installation are lower than in AC. Therefore, the load profile of the application influences as well the interest of DC transmission over AC. It is observed that the breakeven power changes according to the length of the line. Fig. 4 shows the break-even distance and break-even power for each voltage level. The curves represent the distances and powers for which the losses of the point-to-point transmission are the same for AC and DC. The area above each break-even curve (dashed zone) represents the zone where DC transmission gives lower losses. The area below each curve (coloured zone) represents the zone where AC transmission gives lower losses. The dashed lines for each case represent the limits of the transmission scheme. The maximal power is given for the maximal current allowed in the cable (1 kA is considered), and the maximal distances are given by a limit of 5% of losses. Above these limits the transmission should be done at a higher voltage level.

It can be observed that as the power decreases, the transmission distance becomes longer and the breakeven distance increases. However, at low power the trend for the break-even curve is inversed. This is due to the predominant influence of the capacitive current in the cable (see Table I). In AC transmission at low power and long distance, the capacitive current can be of the same order of magnitude as the active current, causing the corresponding Joule power loss in the conductors to degrade efficiency noticeably. 

Distribution network at constant load

The ring or radial distribution network differs from the previous case of point-to-point transmission by the fact that the total power of the installation does not transit through the total length of the cable. Indeed, for a radial network, the power in the cable decreases at each RMU to reach its minimum in the last segment of cable. This means that the losses in the cables of a radial network, of total power P, running along a distance d, will be lower than its point-to-point counterpart. Contrary to the point-topoint configuration the distribution of loads along the line matters in the resulting power losses.

In this section only the 10 kV 17.3 MW configuration is studied according to Table II. The power of a load PRMU is fixed to 250 kW giving in total 69 power loads. A constant-in-time power load is considered. In order to have representative values, a stochastic approach is taken. The power losses in the cables are calculated based on load flow analysis [START_REF] Macqueen | Time based load-flow analysis and loss costing in electrical distribution systems[END_REF] for different total network length. For each total network length, 1000 random RMU repartitions are evaluated. Random distributions are generated while keeping a condition of minimum distance of 60 m between two RMUs. Fig. 5 -Power losses in the 10 kV distribution network over increasing distance: solid line -average power losses, dashed line -min and max power losses according to the random distribution of loads.

It can be observed that, compared with the same voltage/power than in the point-to-point case, the average break-even distance is farther away for the distribution network. This can be explained by the fact that the full power doesn't transit through the whole line. As shown in the previous section, in the case of the point-to-point transmission, the break-even distance gets farther away when the transmitted power decreases. It should be noted that the DC radial distribution network only requires one AC-DC station where two are required in the point-to-point transmission.

The dotted lines in Fig. 5 correspond to the extreme distribution cases giving the minimum and maximum losses. The extreme losses in AC and DC come from the same distribution cases respectively. Thus the break-even distance range calculated for the 1000 random distribution cases in Fig. 5 is between 7.5 km and 13 km. It can be observed that, for the extreme cases, the deviation from the mean is larger in AC than in DC. Fig. 6 illustrates this point. The efficiency of the cable transmission for AC and DC is represented for the 1000 random distribution cases, for a total network length of 30 km. The significant deviation is more noticeable with the increase of distance. The AC transmission efficiency ranges from 91.6% to 96.1% where the DC transmission efficiency ranges from 97.4% to 98.6%. It is observed again from Fig. 5 that for higher losses (low efficiency cases) the break-even distance is shorter. Fig. 7 shows the repartition of RMUs along one total network length (30 km), sorted by increasing efficiency. The density of black dots is higher at long distance and low efficiency, and at short distance and high efficiency. Indeed, when most of the RMUs are located at the other end of the distribution network, the network tends to behave more like a P2P network (with the total power transmitted through the complete distance), with higher losses and shorter break-even distance. 

PV collection network with varying power production

Just as in the P2P case, the power transmitted through a distribution network is not necessarily constant over time. As seen in the point-to-point transmission section, the variation in efficiency of the cable transmission with transmitted power should be taken into account in the comparison between AC and DC networks. The previous section presented the distribution network transmitting power to loads but the same ring or radial network can be used for the collection of power from sources. The example of PV collection is taken here to illustrate a network with varying transmitted power. The nature of PV energy production is that the power varies in a wide range according to the irradiation. In order to observe the effect of the variable irradiation, the same random repartition cases of RMUs as in the previous section are considered and the losses are evaluated for different power levels delivered by the sources. All sources are considered to produce the same power.

The statistical study of irradiance rates gave different weighted average efficiencies that can be used to evaluate the performance of a PV system depending on its geolocation [START_REF] Salam | Efficiency for photovoltaic inverter: A technological review[END_REF]. The "European efficiency" [START_REF] Salam | Efficiency for photovoltaic inverter: A technological review[END_REF] is used here. By applying its coefficients to the losses calculations, the "European efficiency-based" break-even distance can be found. The knowledge of the production profile enables to find a break-even distance directly accounting for variable transmitted power, contrary to the general case presented in the previous section where break-even powers had to be calculated. = 0.03 * "% + 0.06 * %&% + 0.13 * '&% + 0.1 * (&% + 0.48 * "&% + 0.2 * %&&% (3) Fig. 8 -European efficiency-based efficiency of the 10 kV PV collection network over increasing distances: solid line -average power losses, dashed line -min and max power losses according to the random distribution of sources It can be observed that taking into account the power variation of the sources results in a break-even distance farther away than in the constant power case. One should note that this procedure can be done in a similar manner for a wind energy installation by using wind speed distributions [START_REF] Lagier | Potential of silicon carbide MOSFETs in the DC/DC converters for future HVDC offshore wind farms[END_REF].

The results of this study can be used as a guideline for the design of the DC-DC converter used in the RMU of the DC architecture. The base hypothesis of the presented break-even distances is the equivalence of the RMU efficiency in both DC and AC architecture. Thus, by taking into account the efficiency of a state of the art AC RMU (in the PV example: string inverter and 50Hz transformer), one can estimate the target efficiency for the DC RMU corresponding to a target break-even distance.

Conclusion

The break-even distance for HVDC has been studied extensively in literature. This paper proposed an efficiency-based break-even distance for MVDC considering different case studies. The point-to-point case showed that the MVDC break-even distance is typically shorter than its HVDC counterpart and depends on voltage and power levels. Compared to HVDC, multi-terminal MVDC are much more commonplace. The case study of the distribution network showed that the low utilization factor of the line pushes the break-even distance farther away than in the point-to-point case. Finally it was observed that light load conditions of renewable energy applications such as PV drives away the break-even distance even more. These consideration can be used to define target efficiencies of future DC-DC converters interfacing MVDC network sources and loads. If the MVDC network was considered without any connection to AC network then the benefits of DC would be significant and the break-even distance would be much shorter. The economic study still needs to be addressed in order to have an equivalent to the existing HVDC break-even distance.
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 1 Fig. 1 -Studied architectures in MVAC and MVDC: a) point-to-point transmission; b) distribution/collection ring network (two radial networks)
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 2 Fig. 2 -Power losses in function of the distance for the point-to-point transmission at 3 different voltages. The dashed black line represents 5% of losses related to the nominal power.
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 3 Fig. 3 -Power losses in function of the power for the point-to-point transmission at fixed distances for the voltage level of 10 kVac / ±10 kVdc.
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 4 Fig.4-Break-even distance and power of point to point transmission in terms of losses for different voltage levels. Dashed area represents the power and distance range where DC transmission results in lower losses. The dashed line represents the limits of the transmission scheme (maximal current or maximal losses).
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 6 Fig. 6 -Cable transmission efficiency of the 10 kV, 30 km distribution network in function of repartition of RMUs: AC (red) and DC (blue)
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 7 Fig. 7 -Random repartition cases of RMUs along a total network length of 30 km. Each black dot represents an RMU. The 1000 configurations are stacked along the vertical axis, ranked from lower (bottom) to higher (top) efficiency.

Table I : Cable parameters

 I 

	Network nominal voltage	Cable rating	Section [mm²]	DC resistance @ 20°C [Ω/km]	DC resistance @ 70°C [Ω/km]	AC resistance @ 70°C [Ω/km]	Inductance [mH/km]	Capacitance [µF/km]	Capacitive current [A/km]
	10 kVac / ±10 kVdc	12 kV 1000	0.0176	0.0211	0.0273	0.268	0.904	1.80
	20 kVac / ±20 kVdc	22 kV 1000	0.0176	0.0211	0.0273	0.283	0.584	2.33
	33 kVac / ±33 kVdc	36 kV 1000	0.0176	0.0211	0.0273	0.290	0.380	2.52

Table II : Nominal power at different voltages

 II 

	10 kV	±10 kV	17.3 MW
	20 kV	±20 kV	34.6 MW
	33 kV	±33 kV	57.2 MW
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