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Powders or cohesive granular materials are widely handled in industries. However, our understanding of
the rheology of these materials is limited. Here, we provide a comprehensive analysis of the rheology of a
cohesive granular medium, sheared in a normal-stress-imposed plane shear cell over a wide range of shear
rate, employing numerical simulations. At high imposed shear rates, the flow is homogeneous, and the
rheology is well described by the existing scaling laws, involving the inertial number and the “effective”
cohesion number [S. Mandalet al., Insights into the Rheology of Cohesive Granular Media, Proc. Natl.
Acad. Sci. U.S.A. 117, 8366 (2020)]. However, at low imposed shear rates, the flow is inhomogeneous,
exhibiting the coexistence of flowing and nonflowing regions in the material, popularly known as shear
banding. We thoroughly analyze the crucial features of this shear-banded flow regime and discuss
striking similarities between the shear banding for granular media and other complex fluids. We reveal
that the occurrence of shear banding is related to the existence of a nonmonotonic intrinsic rheological
curve and that increasing adhesion increases the nonmonotonicity and the tendency toward shear
localization. A simple theoretical model based on a nonlocal rheological model coupled with a
nonmonotonic flow curve is proposed and is shown to successfully reproduce all the key features of the
shear banding observed in the numerical simulations. The results have important implications for the
handling of powders in industries.

DOI: 10.1103/PhysRevX.11.021017 Subject Areas: Fluid Dynamics, Soft Matter

I. INTRODUCTION

Many industrial processes handle powders or cohesive
granular media and are confronted with flow and jamming
problems in production lines. The notion of “flowability”
based on standardized tests [1–3] has been introduced to
characterize the ability of powders to flow and to help
improve designing of industrial processes. However, the
physical basis of this concept remains unclear. Hence, a
detailed understanding of the flow properties and rheology
of cohesive granular media would be useful. In this paper,
we fill this gap by performing intensive numerical simu-
lations of the flow of a cohesive granular medium in a plane
shear configuration.
In the absence of adhesion between the grains, the

rheology of rigid granular media is well described, at first
order, by the simple μðIÞ rheology [4–6]. When an
assembly of rigid grains of (mean) diameter d and density
ρp is sheared at a shear rate _γ under a confining normal
stress σzz, the resulting shear stress and volume fraction are

controlled by a single dimensionless number called the
inertial number I ¼ _γd=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σzz=ρp

p
, and the constitutive laws

are reduced to a friction coefficient μðIÞ and a volume
fraction ϕðIÞ, which are functions of I. To understand how
this picture is modified in the presence of adhesion between
the grains, several numerical studies [7–12] have simulated
the flow of cohesive grains using different models for the
adhesive forces (capillary attraction, van der Walls force,
etc.) between the grains. A key parameter of these models is
the adhesion force Nc, defined as the force necessary to
detach two particles in contact. The introduction of this new
force scale Nc introduces a new dimensionless number
called the cohesion number C ¼ Nc=ðσzzd2Þ [7–12], which
compares the detachment force to the typical compression
force due to the confining normal stress. The friction
coefficient and the volume fraction are then assumed to
be functions of both I and C, and it has been shown that
μðI; CÞ and ϕðI; CÞ increase and decrease, respectively,
with increasing I and C [7–11]. Scaling laws have been
proposed, allowing for a simpler description of these
functions in terms of a modified inertial number [12].
In our previous study [13] involving the flow down a

rough inclined plane, we have shown that this description
of the rheology of cohesive granular media is incomplete.
While the cohesion number C was shown to control the
cohesive properties of the material at incipient failure, it
failed to describe the rheology in the dynamic regime
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completely, as the material properties of the grains like
the stiffness kn and the inelasticity, quantified through the
quality factor Q, also came into the picture by affecting the
flow. For the same interparticle adhesion Nc, stiffer (high
kn) and less dissipative (high Q) grains yielded a less
cohesive flow. We showed that an “effective” adhesion Neff

c
could be defined to collate the effects of Nc, kn, and Q and
proposed modified constitutive relations as μ ¼ μðI; CeffÞ
and ϕ ¼ ϕðI; CeffÞ, where Ceff ¼ Neff

c =ðσzzd2Þ is the effec-
tive cohesion number. However, using the inclined plane
geometry, wewere unable to show the bridging between the
static rheological branch controlled by C and the dynamic
branch controlled by I and Ceff . Here, using the plane shear
cell, we probe the dynamic branch at low inertial numbers,
where we discover a rich dynamics with a systematic
development of shear bands.
Shear banding (SB) is a phenomenon which leads to the

coexistence of regions of different shear rates in a material,
sheared under a homogeneous shear stress distribution. It is
commonly observed in a broad class of complex fluids like
emulsions, colloidal suspensions, polymer solutions,
wormlike micelles, or foams [14–18] and is a subject of
intense research activity in soft matter physics [17]. Some
soft glassy materials (colloidal suspensions, adhesive
emulsions) exhibit permanent (steady-state) SB, which is
complemented by a strong shear-history-dependent rheo-
logical behavior [15–33]. Other simple yield stress fluids
(nonadhesive emulsions, polymer solutions, wormlike
micelles, foams) show transient SB during the flow start-
up [34–36]. The occurrence of shear bands, their stability,
the selection of their size, and the timescales involved in
their development are nontrivial issues, which have moti-
vated many theoretical studies [16,37–41]. It has been
shown there that the existence of an unstable branch in the
flow curve, where the shear stress decreases with the shear
rate and the existence of nonlocal effects related to the
microstructure of the glassy materials are two crucial
factors to yield the rich dynamics of SB.
SB in granular materials is less observed [9,10,42] and

lacks a thorough understanding. Some studies [4,43,44]
observed static regions in cohesionless or cohesive granular
materials flowing in configurations like wide-gap cylindri-
cal or split bottom Couette shear cells and reported this
phenomenon as SB. However, this phenomenon is nothing
but a usual solid-liquid coexistence [15], caused by the
presence of heterogeneous shear stress profiles and a yield
criterion. Here we exhibit true SB in cohesive granular
media in the plane shear configuration, where the stress
distribution is homogeneous, and present a detailed
analysis.
The paper is organized as follows. Section II presents the

details of the geometry and numerical simulations.
Section III contains simulation results and is divided into
five subsections. Section III A gives the preliminary rheo-
logical data, showing the evidence of two different flow

regimes: the homogeneous flow regime at high inertial
numbers and the shear-banded flow regime at low inertial
numbers. Section III B comprises the analysis of the
rheology of homogeneous flows. Section III C reports
the crucial features of SB. Section III D shows the evidence
of a shear-weakening rheological branch, which is behind
the flow heterogeneity. Section III E includes the measure-
ments of the (flow) starting and (flow) stopping friction
coefficients from stress-imposed simulations. Section IV
contains the theoretical analysis of SB based on a nonlocal
rheological model [45], where a nonmonotonic rheological
curve is introduced. Finally, conclusions and perspectives
are detailed in Sec. V.

II. DISCRETE ELEMENT METHOD (DEM)
SIMULATIONS

The material used in the simulations is an assembly of
frictional, inelastic, cohesive spherical grains of (mean)
massm and (mean) diameter d with a size polydispersity of
20%. The grains experience contact forces upon overlap,
which are computed using the Hookean spring-dashpot
model with a frictional slider and a Johnson-Kendall-
Roberts-like [46], yet nonhysteretic, short-range, adhesive
force model [7]; see Ref. [13] for more details. The normal
contact force between two grains i and j has three
contributions: (i) an elastic contribution Nel

ij ¼ −knδ, where
kn is the normal stiffness and δ is the normal overlap, (ii) a
viscous contribution Nvis

ij ¼ −γnmeffcnij, where cnij is the
normal relative velocity, meff ¼ mimj=ðmi þmjÞ is the
effective mass, and γn is the normal damping coefficient,
and (iii) an adhesive contribution Nad

ij ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4knNcδ

p
, which

is assumed to be proportional to the area of contact, where
Nc is the minimum pull-off force necessary for the detach-
ment of two contacting grains, as evident from Fig. 1(a).
Note that the adhesive force vanishes when two grains are
not in contact [47,48], unlike in wet capillary bridges. The
tangential contact force has only an elastic contribution
Tel
ij ¼ −kts, where kt is the tangential stiffness and s is the

relative tangential overlap from the beginning of a contact.
It is set as Tij ¼ μpðNel

ij þ Nvis
ij Þ (μp is the interparticle

friction coefficient) when sliding of the contact occurs. The
total contact force is the sum of the normal and tangential
forces. Equations of motion are solved using the Verlet
algorithm with a (dimensionless) time step dt ≈ 3 × 10−5,
which is nearly 1=70 of the typical collision time for a pair
of equal-sized cohesionless grains.
The three-dimensional plane shear cell [shown in

Fig. 1(b)] comprises two rough walls of the cross-sectional
area A ¼ 20d × 20d and height 1.8d, made of randomly
glued grains; the choice of such boundaries rules out the
possibility of wall slip. The system has periodic boundaries
in the flow (x) and vorticity (y) directions.Gravity is absent in
the system. The grains are first arranged in a simple cubic
lattice in the shear cell and are assigned random velocities.
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Three different shearing protocols are then followed, main-
taining a constant confining vertical stress σextzz on the topwall
and keeping the bottom wall fixed. In the first one, named
here as steady shear rate up sweep, the shear rate is gradually
increased by increasing the topwall velocityU in a small step
ΔU and allowing the system to reach a steady state after each
increment. A steady state is signified by a constant gap H
between the twowalls and a constant vertical stress σzz across
the gap, equal to σextzz ; three different numbers of grains yield
differentH:H=d ≈ 8 forn ¼ 2400,H=d ≈ 15 for n ¼ 4800,
and H=d ≈ 34 for n ¼ 12 000 at a low shear rate for the
largest value of Nc used (given below). In the second
protocol, named here the shear rate jump, a particular shear
rate is directly reachedbymoving the topwallwith a constant
velocity U, skipping the intermediate steady states at lower
shear rates. After reaching a sufficiently high shear rate, the
third protocol, named here the steady shear rate down sweep,
is followed where the shear rate is gradually decreased by
decreasingU in a similar stepΔU and allowing the system to
reach a steady state after each decrement. The steady velocity
[vxðzÞ], volume fraction [ϕðzÞ], and stress [τxzðzÞ, σzzðzÞ]
profiles are recorded in bins of 20d (in x)×20d (in y) ×1d (in
z) over a strainwindow of 2. The inertial number IðzÞ and the
friction coeffcient μðzÞ ¼ τxzðzÞ=σzzðzÞ are extracted from
these raw data. The data are averaged over four sets and are
reported in dimensionless forms, considering d as the length
scale, ðm=σextzz dÞ1=2 as the timescale, and σextzz as the stress
scale. Some additional stress-imposed simulations are per-
formed to measure the (flow) starting (μstart) and (flow)
stopping (μstop) friction coefficients, and the details are
given below.

Unless otherwise specified, the model parameters used in
the simulations are normal spring constant kn=ðσextzz dÞ ¼
2 × 105, tangential spring constant kt ¼ 2=7kn, and quality
factor Q ¼ 0.94 (Q ¼ ffiffiffiffiffiffiffiffiffiffiffi

kn=m
p

=γn is a function of the
restitution coefficient in the cohesionless case [13]; the
higher the Q, the lesser the inelastic dissipation), sliding
friction coefficient μp ¼ 0.5, and various adhesion
Nc=ðσextzz d2Þ from 0(cohesionless) to 17.1.

III. RESULTS

A. Typical flow curves and preliminary observations

Figure 2 shows the two classical rheological curves, as
generally used for the characterization of the rheology of
dry granular materials, namely the macroscopic friction
coefficient μ and the volume fraction ϕ as a function of the

Homogeneous flow

(a)

(b)

FIG. 2. Typical flow curves. Variation of (a) the friction
coefficient μ and (b) the volume fraction ϕ with the inertial
number I for “effective” cohesion number Ceff ¼ 0.06 for three
different sets of model parameters ðNc; kn;QÞ. Data are obtained
using n ¼ 12 000 grains during the steady shear rate up sweep.
Error bars show the standard deviations over four sets. The solid
lines are guides to the eye. The dashed line, corresponding to a
critical inertial number Ic, demarcates the regime of steady,
homogeneous flows from the regime of shear-banded flows.

ext

eq

(b)

(a)

FIG. 1. Numerical model. (a) The normalized nonviscous
normal contact forces (N�

ij=Nc) as a function of the normalized
overlap δ=δeq: elastic component Nel

ij (green line), adhesive
component Nad

ij (blue line), and the sum of the two Ntot
ij (red

line). Nc is the pull-off force, and δeq is the equilibrium overlap,
as in Ref. [13]. (b) A simulation snapshot, showing a homo-
geneous flow in the normal-stress-imposed plane shear cell. Red
particles constitute the rough boundaries.
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inertial number I for three different sets of the model
parameters (Nc, kn, Q). The curves are made of the local
data for different U, obtained during the steady shear rate
up sweep. Consider first the black curves, which are
obtained using one set of parameters. At first sight, two
different behaviors are evident. On the right-hand side of
the dashed line, denoting a critical inertial number
Ic ≈ 0.23, μ increases, and ϕ decreases with increasing
I, which are typical trends reported for the cohesive as well
as dry cases [4,5,7–12,49–51]. We call this regime the
homogeneous flow regime as the material here is homo-
geneously sheared, resulting in nearly constant I, μ, and ϕ
across the gap, as apparent from the data clouds. On the
left-hand side of the dashed line, a plateau in the value of μ
is observed, together with a nonmonotonic behavior of
ϕðIÞ. We call this regime the shear-banded flow regime as
the material here is inhomogeneously sheared across the
gap, resulting in shear-banded velocity vxðzÞ and nonuni-
form IðzÞ and ϕðzÞ profiles. We discuss in detail below the
features of these two flow regimes for various adhesion.
Before that, we must note that kn and Q also influence the
rheology, as found in the inclined plane [13]. Following our
earlier approach [13], we, therefore, define the effective
adhesion Neff

c and the effective cohesion number Ceff as

Neff
c ¼ Nc

��
Nc

knd

�
a 1

Qb

�
; ð1Þ

Ceff ¼ Neff
c

σzzd2
; ð2Þ

where a and b are unknown constants to be determined. For
this purpose, we obtain various μðIÞ and ϕðIÞ curves
(following the same protocol) for different values of
(Nc, kn, Q). Considering first the subset of μðIÞ and
ϕðIÞ curves for a constant Q, we detect the ones which
yield good collapses and determine a such that Ceff

[Eq. (2)] is the same for those. Similarly, considering the
subset of μðIÞ and ϕðIÞ curves for a constant kn, we detect
the ones which yield good collapses and determine b such
thatCeff is the same for those. We show in Fig. 2 such a data
collapse for a given Ceff ¼ 0.06 with a ¼ 0.5 and b ¼ 0.7,
resulting from different (Nc, kn, Q). This validates the
newly proposed constitutive relations involving Ceff . Note
that the value of a ¼ 0.5 determined here is the same as in
the inclined plane study, but b are different in the two cases:
b ¼ 0.7 in the present case and b ¼ 0.25 in the
inclined plane.

B. Rheology of homogeneous flows

We first analyze the rheology of homogeneous flows
observed at high I. Figure 3 shows the variation of μ and ϕ
with I for different values of Ceff . For a given I, μ increases,
and ϕ decreases with increasing Ceff , which agrees with

previous studies [7–11,13]. Note that the range of inertial
number for which homogeneous flows are observed seems
to decrease with increasing Ceff , a point which is dis-
cussed later.

C. Shear-banded flow regime

We discuss here in detail the salient features of the shear-
banded flow regime observed at low I. Figure 4(a) shows
velocity profiles vxðzÞ obtained for sufficiently small
wall velocities U for an intermediate value of adhesion
(Ceff ¼ 0.1) during the steady shear rate up sweep. A shear
band is first seen to appear near the top wall at a small U,
which gradually expands in size when increasing U, until a
homogeneous flow develops at a higher U. The local shear
rate _γloc in the shear band remains roughly the same when
increasing U [Fig. 4(a)], in accordance with the so-called
lever rule [15] for soft glassy materials. However, when
analyzed in more detail, a more complex scenario emerges
than the one depicted in Fig. 4(a), which is high-
lighted below.

(a)

(b)

FIG. 3. Rheology of homogeneous flows. Variation of (a) the
friction coefficient μ and (b) the volume fraction ϕ with the
inertial number I for different values of the effective cohesion
number Ceff. Data are obtained using n ¼ 12 000 grains during
the steady shear rate up sweep. Dotted lines are guides to the eye.
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(a) (d)

(e)(b)

(f)(c)

FIG. 4. Shear-banded flow regime in discrete (left-hand column) and continuum (right-hand column) simulations. (a) Evolution of the
steady shear-banded velocity profile vxðzÞ with increasing U, following the steady shear rate up sweep, for Ceff ¼ 0.1 and (n ¼ 12 000.
Inset in (a): velocity profiles, obtained following different shearing protocols; (left) the steady shear rate up sweep, (middle) the shear
rate jump, (right) the steady shear rate down sweep. (b) The local inertial number Iloc as a function of the apparent inertial number Iapp
for different system sizes (n) for Ceff ¼ 0.1. Data for very high Iapp are not shown for clarity. Data are extracted from steady vxðzÞ,
obtained following the steady shear rate up sweep (open symbols) and the steady shear rate down sweep (filled symbols). Orange
hexagons enclosed in black hexagons correspond to the data obtained following the shear rate jump. Vertical lines in different colors,
aligning with circular symbols, correspond to the data for the velocity profiles of the respective color shown in (a). The arrows give the
directions for the sweep. The dashed lines indicate the value of the critical inertial number Ic above which a fully developed flow is
established for the largest system (n ¼ 12 000). (c) Friction coefficient μðIappÞ for the same simulations as in (b). The plateau in μ,
μplateau, and the minimum of the intrinsic rheological curve, μmin, are indicated by dashed lines. Inset in (c): Ic as a function of Ceff . The
solid line is a linear least-squares fit to the data with a slope of 3.6. (d)–(f) Similar plots as in (a)–(c) from the continuum simulations,
obtained for β ¼ 1, introducing the intrinsic rheological curve μintðIÞ [solid line in (f)] measured in DEM for Ceff ¼ 0.1, n ¼ 2400.
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Location of the shear band.—The location of the shear
band at a given U is not always fixed near the moving top
wall as shown in Fig. 4(a). However, it is highly dependent
on the initial condition and the shearing protocol followed,
as manifested in the inset of Fig. 4(a). The band at
U=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σextzz d3=m

p
¼ 5.0 is located near the fixed bottom wall

(purple) during the steady shear rate down sweep, starting
from a homogeneously presheared sample. Moreover, the
band splits into two, one localizing near the top and the
other near the bottom, when U=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σextzz d3=m

p
¼ 5.0 is

reached following the shear rate jump, starting from the
unsheared sample. However, the value of _γloc remains the
same in all three cases.
Domain of existence of the shear band.—To define

precisely the domain of existence of the shear band, we
consider a wide range ofU. For eachU, we extract the local
shear rate _γloc from a linear least-squares fitting of vxðzÞ
data over the shear zone.Then we plot in Fig. 4(b) the local
inertial number Iloc ¼ _γlocd=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σzz=ρp

p
as a function of the

imposed apparent inertial number Iapp ¼ _γappd=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σzz=ρp

p
,

where _γapp ¼ U=H. Data for three different system sizes n,
corresponding to different protocols, steady shear rate up
sweep (open symbols) and steady shear rate down sweep
(filled symbols), are given. Consider first the case of the
largest system (n ¼ 12 000) during the up sweep (red open
symbols). For very small Iapp, we surprisingly observe
homogeneous flows, not SB, as indicated by the Iloc ¼ Iapp
relation (the diagonal line). Then with increasing Iapp until
Iapp ≈ 0.09, we notice anomalous SB, for which the band
expands with a variable Iloc with increasing Iapp, disobeying
the lever rule. With increasing Iapp above Iapp ≈ 0.09, the
band keeps on expanding, maintaining a constant Iloc,
which is the typical behavior, as per the lever rule, shown in
Fig. 4(a). Finally, the flow becomes homogeneous, fully
developed for Iapp ≳ 0.34, which is taken as the critical
inertial number Ic. The corresponding transition in the
μðIappÞ rheology is shown in Fig. 4(c); data for very small
Iapp are not given for clarity. For small values of Iapp, μ is
significantly higher than that given in Fig. 3(a) for
homogeneous flows. With increasing Iapp, μ decreases
sharply before reaching a plateau for Iapp ≳ 0.09, similar
to the one in Iloc. A similar plateau in the shear stress value
is often considered as the signature of SB for soft glassy
materials [16,17]. The behavior of μðIappÞ for Iapp ≳ 0.34 is
then the same as shown in Fig. 3(a). A similar overall
scenario is noticed for other values of Ceff . However, the
domain of SB, delineated by Ic, increases with increasing
Ceff , as manifested in the inset of Fig. 4(c). This implies that
the stronger the adhesion, the higher the tendency toward
shear localization, which agrees with a similar conclusion
made for other soft glassy materials [22,25,27,28,30,31].
Moreover, the value of the plateau in μ, μplateau, increases
near linearly with increasing Ceff , as shown in Fig. 6(c).

Manifestation of hysteresis.—The above description
concerned the data obtained during the steady shear rate
up sweep. When the down sweep of the shear rate (filled
symbols) is performed starting from the homogeneously
presheared sample at high Iapp, the system manifests
hysteresis [Figs. 4(b) and 4(c)]. SB appears for
Iapp ≲ 0.21, exhibiting bistability for 0.21≲ Iapp ≲ 0.34,
which means that the system may exhibit either a homo-
geneous or a shear-banded flow depending on the initial
condition over this range of Iapp. For example, the system
shows a homogeneous flow at Iapp ≈ 0.30 (orange hex-
agon) during the shear rate jump. A similar hysteresis in the
localization of shear bands has been reported in the
literature for soft glassy materials [29,31,32].
Influence of the system size.—The above characterization

of SB is given for a large system size (n ¼ 12 000).
Considering a smaller system size (n ¼ 4800) (green sym-
bols), a similar scenario of SBappears,with the existence of a
plateau for Iloc and μ and the manifestation of hysteresis
[Figs. 4(b) and 4(c)]. However, in this case, SB occurs over a
smaller range of Iapp. In otherwords, homogeneous flows are
observed over a wider range. Ultimately, for the smallest
system size (n ¼ 2400) (blue symbols), SB is seen to be
entirely suppressed. In such small systems, corresponding to
a layer thickness H=d ≈ 8, the shear rate is observed to be
uniform across the gap, as given by Iloc ¼ Iapp [Fig. 4(b)]. μ
no longer exhibits a plateau but shows a nonmonotonic
variation with increasing Iapp with a minimum μmin

[Fig. 4(c)]. Interestingly, the value of μmin is lower than
the value of μplateau observed in large systems. The suppres-
sion of SB in a small system is also observed for other values
of Ceff and is also reported for soft glassy materials [30,31].
In Sec. IV, we reveal that the gradual disappearance of the
shear band with decreasing system size is due to increasing
nonlocal effects.

D. Shear-weakening rheological branch

Employing the data for a small system (n ¼ 2400), it is
then possible to obtain the intrinsic μðIÞ and ϕðIÞ rheo-
logical curves for allCeff . Before that, we characterize these
curves for a given Ceff ¼ 0.06 in Figs. 5(a) and 5(b).
Consider first the black curves, which are obtained using
one set of parameters. Both the curves are strikingly
nonmonotonic, exhibiting a strong shear-weakening behav-
ior—μ decreases, and ϕ increases remarkably with increas-
ing I until I ≈ 0.12. Beyond this value of I, μ increases, and
ϕ decreases, exhibiting a usual shear-strengthening behav-
ior. We have checked that these constitutive curves change
within 5% when considering even a smaller system size
(n ¼ 1600). The existence of such shear weakening rheo-
logical branch is commonly assumed to give rise to flow
heterogeneity [16,26,30,37,38,40,41] in soft glassy
materials.
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We showed in our previous study [13] that the initiation
of flow down an inclined plane and the (flow) starting
friction coefficient μstart ¼ μðI ¼ 0Þ are controlled by the
cohesion number C, not the effective cohesion number Ceff,
unlike in the dynamic case. It is then compelling to know if
the rheology in the shear-weakening branch, adjacent to the
static rheological branch, is also controlled by C. However,
we have checked that this is not true, as changing kn and Q
modify the rheological curves. The rheology in the shear
weakening branch is indeed controlled by the same Ceff

[Eq. (2)] as μðIÞ and ϕðIÞ for different (Nc, kn,Q), resulting
in the same Ceff , collapse together [Figs. 5(a) and 5(b)].
Looking at Figs. 5(a) and 5(b), one can also wonder if a
unique relation between μ and ϕ exists considering both
the shear-weakening and shear-strengthening branches
together. Figure 5(b) (inset) reveals that it is not true.
We have not been able to put in evidence the expected

breakdown of this scaling for I → 0, as we notice that the
simulations for very small inertial numbers in the presence
of cohesion require a very small time step for ensuring
convergence. We restrict our study to I > 0.01 to stay
within a reasonable computing time.
Figures 5(c) and 5(d) show the intrinsic μðIÞ and ϕðIÞ

curves for different values of Ceff . With increasing Ceff , the
minimum friction coefficient μmin and the corresponding
maximum volume fraction ϕmax are noted to increase and
decrease, respectively [see Fig. 6(c)]. Moreover, the mini-
mum I, Imin, for which μ ¼ μmin (orϕ ¼ ϕmax) also seems to
increase with increasing Ceff . A nonmonotonicity, although
much smaller than that for the cohesive case, is also observed
for the cohesionless case [52,53] in both plots. For such small
nonmonotonicity, we have not observed any SB even in our
largest system (n ¼ 12 000, H=d ≈ 29). However, we have
checked that SB tends to appear in the cohesionless case

(a) (c)

(b) (d)

FIG. 5. Nonmonotonic intrinsic rheological curves. (a) The friction coefficient μ and (b) the volume fraction ϕ as a function of the
inertial number I for effective cohesion number Ceff ¼ 0.06 for three different sets of model parameters ðNc; kn;QÞ. Inset: μ as a
function of ϕ for the same data as given in (a) and (b), except for the first set of parameters (black circles), for which additional data are
included for high I. Solid lines are guides to the eye. (c) μðIÞ and (d) ϕðIÞ for different values of Ceff . Data are obtained for different U
during the steady shear rate up sweep using n ¼ 2400. Error bars in (a) and (b) show the standard deviations over four sets.
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once the system size is sufficiently large (n ¼ 16 000,
H=d ≈ 38) at very small Iapp. The rheology of cohesionless
grains is usually not probed in such a large system. This fact
a posteriori explains why SB is usually not reported for
cohesionless grains.

E. Stress-imposed simulations

Utilizing shear-rate-imposed simulations in the previous
section, we were able to extract the rheological curves. The
(flow) starting μstart and the (flow) stopping μstop friction
coefficients [Fig. 6(a)] are two additional parameters of
interest from the rheological perspective. For determining
these, we perform shear-stress-imposed simulations, where
a shear stress τ is imposed on the top wall instead ofU. The
measurements are carried out for different ðNc; kn;QÞ. We
first obtain a static random configuration by gradually
stopping the flow from a homogeneously sheared configu-
ration in the shear-rate-imposed simulations. Then we
impose τ on the top wall to shear the material and increase
it gradually until the wall starts moving at τ ¼ τstart. The
flow is then continued until a steady state is reached. The
value of τ is then gradually lowered until the wall stops
moving at τ ¼ τstop. μstart and μstop are then computed as
μstart ¼ τstart=σzz and μstop ¼ τstop=σzz.
Starting friction coefficient.—Before giving the values of

μstart for different adhesion, we confirm in this study also
that it depends only on the interparticle adhesionNc, not on
the material properties (kn, Q), as found in the inclined
plane study [13]. Hence, μstartPS is given as a function of C in
Fig. 6(b), along with those measured from the inclined
plane, using μstartIP ¼ 0.48þ 0.07C [13]. μstartPS is seen to
increase linearly with increasing C, following the cohesive
Mohr-Coulomb model (solid line). μstartPS for the plane shear
is significantly smaller than μstartIP for the inclined plane,
except for the cohesionless case, for which these two values

are identical. This anomaly may arise from different stress
distributions in the two geometries—the stress distribution
is homogeneous in the shear cell but inhomogeneous with
the highest stress values at the bottom in the inclined plane.
This difference in stress distribution affects the scenario of
yielding. In the inclined plane, the yield criterion is most
likely satisfied first at the bottom only (for the cohesive
grains), whereas it is simultaneously satisfied everywhere
in the plane shear cell, which explains why μstartPS < μstartIP .
Out of curiosity, we locate μstartPS and μstartIP in the intrinsic
μðIÞ curve for one Ceff ¼ 0.1 in Fig. 6(a) and observe that
μstartPS is strikingly lower than μðI ≈ 0.01Þ, the maximum μ
we have measured. Moreover, μstartIP rather seems to well
define the end of the intrinsic curve [μðI ¼ 0Þ]. A similar
scenario is noticed for other Ceff.
Stopping friction coefficient.—Figure 6(c) gives μstopPS as

function of Ceff , along with the measurements from the
inclined plane, using μstopIP ¼ 0.44þ 1.31Ceff [13]. μstopPS

also increases linearly with increasing Ceff , following the
cohesive Mohr-Coulomb model (solid line). In this case
also, we notice some difference between the values of μstopPS

and μstopIP with μstopPS > μstopIP . Locating again μstopPS in the
intrinsic μðIÞ curve in Fig. 6(a), we observe that μstopPS is
surprisingly higher than theminimumofμ, μmin [see Fig. 6(c)
also], but μstopIP ≈ μmin [Fig. 6(c)]. Interestingly, the value of
μstopPS is the same as thevalue ofμplateau [Fig. 6(c)], as observed
in the case of soft glassy materials [23,25,27]. These two
facts signify that the stress- and shear-rate-imposed rheo-
logical measurements differ below μstopPS ðIcÞ, as usually
reported for soft glassy materials [23,25,27]. These also
imply that SB appears before hitting the unstable branch
below Imin, as reported for soft glassy materials [16].
Note that the values of μstartPS and μstopPS have no size

dependency, unlike in the case of the inclined plane.

(a) (b) (c)

FIG. 6. Stress-imposed rheological measurements. (a) The starting μstartPS and the stopping μstopPS friction coefficients for Ceff ¼ 0.1,
measured using the plane shear cell, along with the intrinsic μðIÞ rheological curve, measured from shear-rate-imposed simulations. The
brown line depicts the flow starting and stopping paths. The dashed line indicates μmin. The starting friction coefficient μstartIP , measured
using the inclined plane, is also given. (b) μstart as a function of the cohesion number C for both the shear cell and the inclined plane (data
from Ref. [13]). (c) Stopping μstopPS , plateau μplateau, minimum μmin friction coefficients measured using the shear cell, and μstopIP measured
using the inclined plane (data from Ref. [13]) as a function of the effective cohesion number Ceff. The solid lines in (b) and (c) are the fits
of the Mohr-Coulomb failure equation.
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The degree of hysteresis (nonmonotonicity), estimated as
Δμ ¼ μðI ¼ 0Þ − μmin [μstartIP is taken as μðI ¼ 0Þ] from
Figs. 6(b) and 6(c), seems to increase with increasing
adhesion, causing more prominent SB in cohesive granular
media.

IV. NONLOCAL THEORETICAL MODEL FOR
DESCRIBING SHEAR BANDING

We have provided a comprehensive picture of SB and
have revealed that many features of this phenomenon
observed in our case are similar as in soft glassy materials.
As mentioned in the introduction, several theoretical
studies [16,37–41] reproduce the crucial features of SB
observed with soft glassy material, by incorporating a non
monotonic constitutive flow curve and a nonlocal stress
diffusion term. Inspired by these studies, we take a similar
approach and present a simple theoretical model based on
the nonlocal model of Bouzid et al. [45], generally used for
describing the rheology of dry granular flows, by intro-
ducing a nonmonotonic intrinsic rheological curve μintðIÞ
(see the Appendix A). Since the work of Aranson and
Tsimring [54], who developed a phenomenological non-
local model with hysteresis based on a Ginzburg-Landau
formalism, different theoretical continuum descriptions
have been proposed to capture both the μðIÞ rheology of
dry granular flows and nonlocal effects [55]. The two most
popular approaches are based either on the concept of
fluidity [56] or on an extension in gradients of the inertial
number [45]. Although differences exist between the two
approaches [55,57], specifically in terms of stability [58],
for the one-dimensional plane shear configuration of
interest in this paper, they are equivalent. For the sake
of simplicity, we adopt here the model proposed by Bouzid
et al. [45], in which the implementation of intrinsic
cohesive rheology is straightforward. The model stands
on the following constitutive law, relating the local friction
coefficient μðzÞ ¼ τxzðzÞ=σzzðzÞ to the local inertial number
IðzÞ (assuming that all the flow properties vary only in the z
direction) as

μ ¼ μintðIÞ
�
1 − β2

∂2I=∂z2
I

�
; ð3Þ

where β is a characteristic length, defining the range of the
nonlocal effects and is typically of the order of few particle
diameters (β=d ¼ 1 in the following). The nonlocality is
embedded in the second term on the right-hand side, which
incorporates the idea of the long-range dynamical cooper-
ativity [59,60] and helps the neighborhood of a flowing
region to flow by reducing the friction whenever there
exists a gradient of the inertial number. The equation is
solved numerically using a finite difference scheme (see
Appendix A) to obtain the steady velocity profiles vxðzÞ for
different wall velocities U. No-slip conditions on the two

boundary walls and a zero gradient of the inertial number
across the interfaces of the boundaries are used as boundary
conditions. Note that the nonlocal model is solved (see
Appendix A), taking into account the inertia of the system,
closely mimicking the discrete simulation methodology in
terms of the time development of the flow.
Figure 4 presents the results obtained from the model

alongside the discrete simulations results. Figure 4(d)
shows the velocity profiles for different U for a large
system (H=d ¼ 47), obtained following the steady shear
rate up sweep. A shear band is seen to be localized near the
top, as seen in the discrete simulations. The growth of the
band, maintaining a constant local shear rate _γloc, with
increasing U is again similar as in the discrete simulations.
The location of the band depends on the initial condition
(inset) as in the discrete simulation—the band localizes
near the bottom when the down sweep of the shear rate is
performed. Figure 4(e) shows the local inertial number Iloc
as a function of the apparent inertial number Iapp over a
wide range. The appearance of homogeneous flows at very
small Iapp, anomalous SB at small Iapp, SB obeying the
lever rule at sufficiently higher Iapp, and finally, the
reappearance of homogeneous flows at higher Iapp are
again similar as in the discrete simulations. The corre-
sponding μðIappÞ are given in Fig. 4(f); the data for very
small Iapp, falling on the μintðIÞ curve, are not given for
clarity. The plateau in the value of the friction coefficient
above the minimum of the μintðIÞ curve is also reproduced
successfully. This implies that the combination of a non-
monotonic flow curve and the nonlocality is enough for the
selection of a well-defined friction coefficient for the shear-
banded flow regime [37]. The features of the rheological
hysteresis, depending on the initial condition and the
shearing protocol followed, are also captured by the model
[Figs. 4(e) and 4(f)]. Finally, the gradual suppression of SB
and the corresponding transition in the rheology on
decreasing the system size are also predicted by the model.
Note that the measured μðIappÞ for the smallest system size
(H=d ¼ 5) coincides with the intrinsic rheological curve
μintðIÞ (solid line) introduced in the nonlocal model. This
justifies a posteriori the use of a small system size in
extracting the intrinsic rheological curve in the discrete
simulations. The influence of β on the results is shown in
Fig. 8. With increasing β, i.e., increasing nonlocal effects, a
similar dynamics is noticed as on decreasing H. Thus, this
simple nonlocal model remarkably reproduces crucial
features of SB observed in the discrete simulations, and
puts in evidence the roles of nonlocal effects and hysteresis
(nonmonotonicity) in SB. However, it fails to make
quantitative predictions. With μintðIÞ taken as an input,
the only free parameter of the model is β. We observe that
on varying β over a reasonable scale from β ¼ 1 to 0.5 (see
Fig. 8), the plateau of Ilocal (Ic) and the plateau of μ (μplateau)
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(not shown) do not change and stay at lower levels
compared to discrete element method (DEM) simulations.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have numerically investigated the
rheology of a model cohesive, frictional granular medium,
in which a short-range interparticle adhesive force is active
when two particles overlap. The material is sheared in a
normal-stress-imposed plane shear cell over a wide range of
shear rate, for various interparticle adhesion. Here we list
the main results. First, the interparticle adhesion causes a
systematic development of shear bands in the material, and
the range of imposed shear rate over which the localization
is observed increases with increasing adhesion. Second, the
occurrence of SB is related to the existence of a non-
monotonic rheological curve, where the friction coefficient
first decreases with increasing inertial number down to a
minimum before increasing again at high inertial number.
The existence of this intrinsically unstable shear-weakening
branch is evidenced using a small system, where SB is
stabilized. Third, the adhesion influences these nonmono-
tonic constitutive curves through an “effective” cohesion
number, introduced in Ref. [13], combining the interpar-
ticle adhesion and the stiffness and inelasticity of the
particles. Lastly, a theoretical model based on a nonlocal
rheological model coupled with a nonmonotonic flow
curve successfully reproduces the crucial features of SB
observed in numerical simulations. It predicts the disap-
pearance of shear bands in small systems or at very low
shear rates. It captures the occurrence of rheological
hysteresis during the upward and downward sweeps of
the shear rate. It also yields a unique plateau in the friction
coefficient above the minimum of the intrinsic rheological
curve, although at a lower level compared to discrete
simulations.
Interestingly, the scenario of SB exhibited for our

cohesive, frictional granular material is qualitatively similar
to that for other complex fluids. More prominent SB with
increasing adhesion [22,25,27,28,30,31], rheological hys-
teresis depending on the initial configuration [29,31,32],
and a system size dependence [30,31] are also observed for
soft glassy materials. Moreover, the two main ingredients
of the theoretical analysis to capture the rich dynamics are
also a nonmonotonic flow curve and nonlocality. However,
the analogy between the two cases has to be drawn with
care, considering that SB in our granular medium is
investigated in the framework of pressure-imposed rheol-
ogy, not the classical volume-imposed rheology.
An open question remains about the physical origin of

the nonmonotonic flow curve in the cohesive granular
media. In most complex fluids, the interplay between the
shear-induced rejuvenation and the restructuration [18,26]

is behind the existence of a critical shear rate and a shear-
weakening flow curve. However, for our cohesive granular
material, it is not clear which time could play the role of a
restructuring timescale, given the fact that a long-range
attraction is absent and the material is athermal. Recently,
Macaulay and Rognon [42] provided an interpretation of
the nonmonotonic flow curve in the cohesive granular
media from a microscale analysis. They showed that the
friction coefficient comprises two parts: static and inertial.
The static component, arising from balanced contact forces,
decreases sharply from a high value with increasing inertial
number, while the inertial one, arising from unbalanced
forces, increases slowly from a low value with the inertial
number. The resultant then ensures a minimum at an
intermediate inertial number.
The existence of the hysteresis and a nonmonotonic flow

curve in granular materials has been recently studied by
Perrin et al. [61]. Using non-Brownian, viscous granular
suspensions in which the interparticle friction could be
tuned, they showed that the interparticle friction was

(a)

(b)

FIG. 7. Effect of the interparticle friction on the constitutive
rheological curves. (a) μðIÞ and (b) ϕðIÞ for μp ¼ 0.5 and μp ¼ 0

for Ceff ¼ 0.1.
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necessary (contrary to inertia, which was not necessary) to
obtain the hysteresis and a shear-weakening rheological
branch. In the same line, we show here that the interparticle
friction is indeed essential to introduce the nonmonoto-
nicity in the rheological curve for our cohesive granular
medium. No shear-weakening branch is obtained for a
frictionless yet highly cohesive granular medium (Fig. 7).
Hence, no SB is observed even in a large system. It will be
interesting to know if the hysteresis observed in our
cohesive granular medium has the same origin as in other
cohesionless systems [53,61] with the adhesion amplifying
an already existing hysteresis, or if a different mechanism is
involved.
Nevertheless, the existence of a strong hysteresis in

cohesive granular media has important implications for the
handling of powders in industries. In situations where the
flow is unsteady and nonuniform, as encountered in
industrial processes, instabilities and shear localization
may lead to frequent clogging and jamming. The new
insights into the rheology of cohesive granular materials
provided by our study may suggest new roads for a better
characterization of the “flowability” of powders.
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APPENDIX A: CONTINUUM SIMULATIONS
USING THE NONLOCAL MODEL

A nonmonotonic intrinsic rheological curve μintðIÞ of the
following shape is introduced in the model:

μintðIÞ ¼ c1 − ðc1 − c2Þ½1 − expð−c3IÞ� þ c4Ic5 ; ðA1Þ
where c1 ¼ 1.36, c2 ¼ 0.56, c3 ¼ 53.75, c4 ¼ 0.43, and
c5 ¼ 2 are constants. This μintðIÞ closely approximates the
intrinsic rheological curve for Ceff ¼ 0.1 [Fig. 6(a)] in the
range I ∈ ð0; 0.45Þ. Combining Eqs. (3) and (A1) and
approximating the derivative by a finite difference, we get

τxz½i�½t� ¼ σzzfc1 − ðc1 − c2Þ
× ½1− expð−c3I½i�½t�Þ� þ c4I½i�½t�c5g

×

�
1−

β2

I½i�½t�
ðI½iþ 1�½t�− 2I½i�½t� þ I½i− 1�½t�Þ

Δz2

�
;

ðA2Þ
where indices t and i, pertaining to any quantity, represent
the current time and the index of the spatial node, and Δz is
the spacing between two nodes. The simulation for a given

small U is initialized by taking a continuous shape of the
velocity profile across the gap H ¼ ðn − 2ÞΔz (n is the
number of nodes), for example, a slightly perturbed linear
profile vx½iþ 1=2�½0� ¼ U=Hði − 0.5ÞΔzþ v0, where v0 is
a small random velocity. Shear rate is then calculated as
_γ½i�½0� ¼ ðvx½iþ 1=2�½0� − vx½i − 1=2�½0�Þ=Δz, followed by
inertial number I½i�½0� ¼ _γ½i�½0�d= ffiffiffiffiffiffiffiffiffiffiffiffiffi

σzz=ρp
p

. After that, the
shear stress τxz½i�½0� is calculated from Eq. (A2). The
following equation of motion is then solved (to get updated
velocity) using the fourth-order Runge-Kutta method,

vx½iþ 1=2�½tþ dt�

¼ vx½iþ 1=2�½t� þ ðτxz½iþ 1�½t� − τxz½i�½t�Þ
ρΔz

dt; ðA3Þ

where ρ ¼ ϕρp is the bulk density and dt is the size of the
time step. The whole algorithm is repeated until a steady
state, indicated by a uniform shear stress profile, is reached.
The simulation is done taking ϕ ¼ 0.55, ρp ¼ ð6=πÞm=d3,
and Δz=d ¼ 1.0. A steady shear rate up sweep is then
performed by increasingU in a small step ΔU, and a steady
state is ensured after each increment. After reaching a
sufficiently high apparent shear rate (_γapp=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σextzz d=m

p
≈

0.25), a down sweep of the shear rate is performed by
decreasingU in a similar step. Thewhole set of simulations is
repeated for different β and H.

APPENDIX B: EFFECT OF β

Figure 8 shows the variation of the local inertial number
Iloc with the apparent inertial number Iapp for different
values of β for H=d ¼ 29; the trend is similar for other H
considered in the main text.

FIG. 8. The local inertial number Iloc as a function of the
apparent inertial number Iapp for different values of β for
H=d ¼ 29. Data are extracted from steady vxðzÞ, obtained
following the steady shear rate up sweep.

RHEOLOGY OF COHESIVE GRANULAR MEDIA: SHEAR … PHYS. REV. X 11, 021017 (2021)

021017-11



[1] M. V. V. Antequera, A. M. Ruiz, M. C. M. Perales, N. M.
Munoz, and M. R. J.-C. Ballesteros, Evaluation of an
Adequate Method of Estimating Flowability According to
Powder Characteristics, Int. J. Pharm. 103, 155 (1994).

[2] D. Geldart, E. C. Abdullah, A. Hassanpour, L. C. Nwoke,
and I. Wouters, Characterization of Powder Flowability
Using Measurement of Angle of Repose, Chin. Particuol. 4,
104 (2006).

[3] H. Shi, R. Mohanty, S. Chakravarty, R. Cabiscol, M.
Morgeneyer, H. Zetzener, J. Y. Ooi, A. Kwade, S. Luding,
and V. Magnanimo, Effect of Particle Size and Cohesion on
Powder Yielding and Flow, KONA Powder Part. J. 35, 226
(2018).

[4] G. MiDi, On Dense Granular Flows, Eur. Phys. J. E 14, 341
(2004).

[5] F. da Cruz, S. Emam, M. Prochnow, J. N. Roux, and F.
Chevoir, Rheophysics of Dense Granular Materials: Dis-
crete Simulation of Plane Shear Flows, Phys. Rev. E 72,
021309 (2005).

[6] P. Jop, Y. Forterre, and O. Pouliquen, A Constitutive Law for
Dense Granular Flows, Nature (London) 441, 727 (2006).

[7] P. G. Rognon, J. N. Roux, D. Wolf, M. Naaïm, and F.
Chevoir, Rheophysics of Cohesive Granular Materials,
Europhys. Lett. 74, 644 (2006).

[8] P. G. Rognon, J. N. Roux, M. Naaim, and F. Chevoir, Dense
Flows of Cohesive Granular Materials, J. Fluid Mech. 596,
21 (2008).

[9] S. Khamseh, J. N. Roux, and F. Chevoir, Flow of Wet
Granular Materials: A Numerical Study, Phys. Rev. E 92,
022201 (2015).
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