Implementation of an incoherent broadband cavity-enhanced absorption spectroscopy technique in an atmospheric simulation chamber for in situ NO<sub>3</sub> monitoring: characterization and validation for kinetic studies - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Atmospheric Measurement Techniques Année : 2020

Implementation of an incoherent broadband cavity-enhanced absorption spectroscopy technique in an atmospheric simulation chamber for in situ NO<sub>3</sub> monitoring: characterization and validation for kinetic studies

Résumé

Abstract. An incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) technique has been developed for the in situ monitoring of NO3 radicals at the parts per trillion level in the CSA simulation chamber (at LISA). The technique couples an incoherent broadband light source centered at 662 nm with a high-finesse optical cavity made of two highly reflecting mirrors. The optical cavity which has an effective length of 82 cm allows for up to 3 km of effective absorption and a high sensitivity for NO3 detection (up to 6 ppt for an integration time of 10 s). This technique also allows for NO2 monitoring (up to 9 ppb for an integration time of 10 s). Here, we present the experimental setup as well as tests for its characterization and validation. The validation tests include an intercomparison with another independent technique (Fourier-transform infrared, FTIR) and the absolute rate determination for the reaction trans-2-butene + NO3, which is already well documented in the literature. The value of (4.13 ± 0.45) × 10−13 cm3 molecule−1 s−1 has been found, which is in good agreement with previous determinations. From these experiments, optimal operation conditions are proposed. The technique is now fully operational and can be used to determine rate constants for fast reactions involving complex volatile organic compounds (VOCs; with rate constants up to 10−10 cm3 molecule−1 s−1).
Fichier principal
Vignette du fichier
amt-13-6311-2020.pdf (2.48 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04283930 , version 1 (21-11-2023)

Licence

Paternité

Identifiants

Citer

Axel Fouqueau, Manuela Cirtog, Mathieu Cazaunau, Edouard Pangui, Pascal Zapf, et al.. Implementation of an incoherent broadband cavity-enhanced absorption spectroscopy technique in an atmospheric simulation chamber for in situ NO<sub>3</sub> monitoring: characterization and validation for kinetic studies. Atmospheric Measurement Techniques, 2020, 13 (11), pp.6311-6323. ⟨10.5194/amt-13-6311-2020⟩. ⟨hal-04283930⟩
83 Consultations
11 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More