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Abstract 

The microscale physical characteristics of microbial habitats considerably affect the 

decomposition of organic matter in soils. One of the challenges is to identify 

microheterogeneities in soil that can explain the extent of carbon mineralization. The aim of 

this study was therefore to identify descriptors of µm-scale soil heterogeneity that can explain 

CO2 fluxes obtained at the mm scale. A suite of methods and models that visualize soil 

heterogeneity at scales relevant to microorganisms has been developed over the last decade. 

Among the existing 3D models that simulate microbial activity in soils, Mosaic is able to 

simulate, within a short computation time, the microbial degradation of organic matter at the 

microhabitat scale in soil using real 3D images of soil porosity. Our approach was to generate 

scenarios of carbon mineralization for various microscale environmental conditions and 

determine how the descriptors of soil structure could explain CO2 evolution. First, we verified 

that the simulated diffusion of solutes in the soil samples obtained with Mosaic were the same 

as those obtained using the same parameter set from a robust 3D model based on a lattice 

Boltzmann approach. Then, we ran scenarios considering different soil pore architectures, water 

saturations and microorganism and organic matter placements. We found that the CO2 

emissions simulated for the different scenarios could be explained by the distance between 

microorganisms and organic matter, the diffusion of the substrate and the concentration of the 

available substrate. For some of the scenarios, we proposed a descriptor of accessibility based 

on the geodesic distance between microorganisms and organic matter weighted by the amount 

of organic matter. This microscale descriptor is correlated to the simulated CO2 flux with a 

correlation coefficient of 0.69.  



 
 

1. Introduction 

Reducing greenhouse gas emissions by improving the efficiency of agricultural systems 

through robust ecologically based management practices represents one of the most important 

challenges facing agriculture today. Models are needed to evaluate the effects of soil properties, 

climate conditions, and agricultural management practices on the soil carbon and nitrogen 

transformations responsible for greenhouse gas emissions and carbon sequestration. However, 

models of carbon and nitrogen cycles in soils are not predictive enough because they ignore the 

high level of microbial habitat heterogeneity at the pore scale where microorganisms transform 

organic substrates by mineralizing carbon and nitrogen (Manzoni and Porporato, 2009, Dungait 

et al., 2012). 

The distribution of the heterogeneity of minerals, pores, organic matter and 

microorganisms in soil occurs at fine scales of a few µm (Rawlins et al., 2016, Kravchenko and 

Guber, 2017, Baveye et al., 2018). The access of microorganisms to macromolecular soil 

organic matter is dependent on the hydrolysis of organic molecules by exoenzymes and the 

diffusive transport of the resulting assimilable carbon in the soil solution from locations of 

exoenzymatic action to microorganisms (Pagel et al., 2020). The properties of the pore space, 

such as pore connectivity and tortuosity, affect the water distribution and consequently the 

diffusion pathways that may control the access of decomposers to organic substrates (Vogel et 

al., 2015). Several experimental studies (e.g., Juarez et al., 2013, Pinheiro et al., 2015) suggest 

that there is a link between the local accessibility of microbial degraders to substrates and 

carbon mineralization fluxes. 

One of the challenges in this area is to identify key descriptors of soil 

microheterogeneity that can explain the extent of CO2 emissions. Several authors have already 

contributed to the search for suitable descriptors. Garnier et al. (2008) proposed a parameter 

that takes into account the contact surface between organic matter and soil, and organisms were 



 
 

assumed to be distributed in the soil around the organic matter. Rawlins et al. (2016) tried to 

determine the accessibility of organic matter by using 3D-µCT images of stained organic matter 

in a soil structure and compute the transition probabilities between adjacent organic matter and 

pore voxels. They used the organic matter-pore transition probabilities as an index of soil 

organic matter accessibility. However, they found a weak linear correlation between this 

organic matter accessibility index and the microbial respiration measured on the same soil 

samples. Using a simple 2D model of organic matter decomposition, Chakrawal et al. (2020) 

proposed an analytical scale transition approach in which microscale heterogeneities affect the 

mean respiration rate through second-order spatial moments. However, their biological model 

did not consider diffusive fluxes, and further research may therefore be needed to develop a 

more realistic model, which at that stage may, however, become too complex to handle with 

the volume-averaging technique they were employing. Another possibility to identify the 

relevant descriptors of soil microstructure would be to use existing 3D pore-scale models of 

soil organic matter mineralization to run a series of scenarios with contrasting microscale 

conditions and test which descriptors of soil microheterogeneity correlate with the evolved CO2. 

In the last decade, several innovative 3D models have been developed to describe the 

physicochemical processes occurring in soil pores at scales directly relevant to microorganisms 

(see Baveye et al., 2018). These models are able to explicitly describe pore geometry and 

topology using 3D computed tomography (CT) images of soils and simulate numerous spatial 

interactions between physical, chemical and biological components of soil within and between 

pores. They can calculate the 3D distribution of water, diffusion of carbon, and microbial 

growth in soil pores, as well as the CO2 flux due to respiration. Some models, based on the 

lattice-Boltzmann method, can directly use the voxel-based description of the soil porosity 

extracted from 3D CT images as model input (e.g., Falconer et al., 2012; Vogel et al., 2015). 

However, simulating the dynamics of microbial activity from 3D images with 3D models is 



 
 

very challenging because this approach faces limitations due to the computational cost of 

describing the 3D heterogeneities of soil at the µm scale to produce output at the cm core scale. 

The management of large numerical data sets is one of the key factors determining the ability 

to run 3D numerical models using real soil images. The Mosaic model tackles this problem 

using a different approach based on advanced 3D computer vision and shape modelling 

algorithms (Ngom et al., 2011, Monga et al. 2014). To do so, the Mosaic model approximates 

a soil’s pore space using a limited number of geometrical shapes or primitives. 

Such pore-scale models have been used to simulate various scenarios, which showed 

that the microscale organization explained the simulated cm-scale CO2 fluxes, thereby 

generating a range of scenarios in which microorganisms and substrates are distributed in a 

variety of ways, more or less heterogeneously, in the pore space of different soil structures. For 

example, using a lattice Boltzmann approach, Vogel et al. (2015) found that the interactions 

between water content, pore geometry and substrate-microorganism distance could explain the 

variability in the amount of organic carbon mineralized. In particular, low water contents led to 

disconnection between pores that limited the access of microorganisms to organic matter. 

Falconer et al. (2012), while simulating 3D fungal propagation in soil, showed that increasing 

the water saturation of soil samples decreased fungal colonization because of the decrease in 

connected air-filled pores in which fungi spread preferentially. They found that fungal spread 

in soil was more sensitive to the local water distribution than to the bulk degree of water 

saturation. Portell et al. (2018; using an individual-based approach) and Pagel et al. (2020; using 

a trait-based model) found that the degree of spatial heterogeneity of microbial communities 

determined the mineralization degree of carbon from soil samples. The question is whether, 

with this type of scenario modelling, we can propose and test descriptors of soil microscale 

organization to explain macroscopic CO2 fluxes. 



 
 

In this general context, the objective of the research described in this manuscript was to 

carry out simulation scenarios at the 3D-pore scale and find factors that allow us to link the 

simulated flux and microscopic organization of soil. For this, we used the 3D µm-scale Mosaic 

model, which has the advantage of requiring a low computation time, even when using large 

3D images of soil porosity. In the first step, we improved the Mosaic model to better describe 

the soil pore connectivity by comparing its outputs with those from a lattice Boltzmann model 

already tested for its ability to describe this process (Genty & Pot, 2014). We built scenarios 

using published 3D CT images of soil compacted at different densities (Juyal et al., 2018) in 

which we distributed the microorganisms using the model of Raynaud & Nunan (2014). We 

used the biological parameters calibrated from incubation experiments (Monga et al., 2014). 

The factors that we modified in the scenarios were the soil bulk density, water content, and 

spatial distribution of microorganisms and organic matter. Finally, from some of the model 

outputs, we proposed and calculated accessibility coefficients that we correlated to CO2 

evolution. 

2. Material and methods 

2.1. Mosaic Model 

2.1.1 Presentation 

Because of its compact representation of pore spaces, the Mosaic model (Monga et al. 

2008) can be run for a large number of modelling scenarios during a reasonable computing 

time. It has already been tested for its ability to distribute water in the pore space of unsaturated 

soil (Pot et al., 2015) and simulate the decomposition of organic matter in sand (Monga et al., 

2014). In both studies, a comparison between simulated and experimental results was 

successfully carried out. However, its ability to simulate diffusion has not yet been tested. 

In the Mosaic model, pore space is approximated by a set of geometric primitives (spheres) 

using algorithmic geometry based on Delaunay triangulation (Monga et al., 2008). In the 



 
 

procedure used to define the spheres, the first step is to determine the set of maximum-sized 

spheres contained in the pixels associated with the pore space in the 3D tomographic image of 

a soil sample. Then, a minimum set of maximum spheres is extracted to obtain a representation 

of the pore space that is as compact as possible. From this set of spheres, an attributed adjacency 

valuated graph is calculated in which each node is attached to a sphere and each arc corresponds 

to an adjacency between two spheres. The union of all spheres recovers the pore space up to 

rounded errors due to numerical approximation. 

2.1.2. Model improvement 

In the work described here, the pore network’s connectivity has been increased 

compared to previous research using Mosaic (Monga et al., 2014) to obtain diffusion curves 

that are as close as possible to those simulated with the lattice Boltzmann model (LBM model 

in the following) of Genty and Pot (2014), which was already tested for diffusion. First, a graph 

with an initial connectivity was calculated from the 3D image (Fig. 1a). To improve the 

connectivity, we proceeded to a second 3D Delaunay triangulation of the centres of the spheres, 

linking each sphere to the closest sphere (the first Delaunay triangulation was used to obtain 

the maximum balls). We obtained a tetrahedron between the centres of neighbouring spheres 

with a greater connectivity than that previously reported (Fig. 1b with black connections) 

because Delaunay triangulation provided a complementary set of adjacencies compared to the 

initial situation (Fig. 1c). Finally, a postprocessing treatment was applied (Fig. 1d), during 

which the connections that did not belong to the pore space were removed. This new algorithm 

increased the connectivity of the Mosaic model compared to previous versions (Monga et al., 

2014) by connecting spheres that could reach up to a few voxels of distance. The calibration 

step of diffusion described later in the manuscript (2.3.2) allowed us to adjust the maximum 

distance we need to take to properly simulate the diffusion (3.2). 



 
 

In Mosaic, diffusion takes place between two connected nodes i and j of the graph. The 

diffusive flux 𝐽𝐽𝑖𝑖𝑖𝑖 is proportional to the diffusion coefficient 𝐷𝐷𝑖𝑖𝑖𝑖 between the connected spheres 

i and j, to the area of contact 𝑆𝑆𝑖𝑖𝑖𝑖 and the difference in concentration 𝛥𝛥𝐶𝐶𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖 − 𝐶𝐶𝑖𝑖 and is 

inversely proportional to the 𝑑𝑑𝑖𝑖𝑖𝑖 , Euclidean distance between the two centres of the spheres: 

        𝐽𝐽𝑖𝑖𝑖𝑖 = −𝐷𝐷𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖𝛥𝛥𝐶𝐶𝑖𝑖𝑖𝑖
𝑑𝑑𝑖𝑖𝑖𝑖

  (1) 

Since the spatial model embodied in Mosaic is discrete in both space and time, the 

assessment of the diffusion on each sphere i can be expressed as: 

     𝑑𝑑𝐶𝐶𝑖𝑖
𝑑𝑑𝑑𝑑

= ∑ 𝐷𝐷𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖 𝑆𝑆𝑖𝑖𝑖𝑖

𝛥𝛥𝐶𝐶𝑖𝑖𝑖𝑖
𝑑𝑑𝑖𝑖𝑖𝑖

   (2) 

where 𝑑𝑑𝐶𝐶𝑖𝑖 is the concentration variation within sphere i during time 𝑑𝑑𝑑𝑑, 𝑛𝑛 is the number of 

spheres connected to i, and the sum is taken on all spheres j adjacent to i. 

If i and j have the initial connectivity (in blue Fig. 1a), the surface of the area 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝜋𝜋𝑅𝑅𝑖𝑖𝑖𝑖2 . 

When i and j have additional connectivity (in black Fig. 1d), 𝑆𝑆𝑖𝑖𝑖𝑖 can be equal to a few pixels 

that we estimated (subsection 3.2) by fitting the diffusion curves with that of the LBM. 

2.1.3. Biological component of Mosaic model 

In biological components (See figure in SI 1), dissolved organic matter (DOM) comes from the 

hydrolysis of SOM (soil organic matter) and POM (particulate organic matter). Bacteria grow 

by assimilating DOM and respire by producing carbon dioxide (CO2). Bacterial cells are then 

transformed into SOM and DOM when they die. The parameters used to describe bacterial 

dynamics include the respiration rate, mortality rate, proportion of bacteria returning to DOM 

(the other fraction returning to SOM), decomposition rate of POM and SOM, maximum growth 

rate of bacteria, and constant of the half saturation of DOM (see Monga et al. 2014). The 

biological model does not consider the O2 limitation of respiration under anaerobic conditions. 

2.2. CT soil images 



 
 

Soil CT images, taken from Juyal et al. (2018), were obtained from the same soil brought 

at two different bulk densities. The resolution of the intermediate value (size of the pixel 24 

µm) is large enough to represent a set of pore classes related to microbiological activity and 

small enough to simulate diffusion on a millimetric image. 

The soil used in this study is a sandy loam soil (sand, silt, clay: 71, 19 and 10% soil 

mass, respectively) from the Bullion Field, which is an experimental site situated at the James 

Hutton Institute in Invergowrie (Scotland). A detailed description of the soil samples and 

methods used to produce CT images can be found in Juyal et al. (2018). Briefly, cylindrical 

containers (3.4 cm3; diam. 1.5 cm, height 1.7 cm) were packed with sieved soil to obtain bulk 

densities of 1.2 and 1.6 g cm−3. The soil samples were scanned with a high-resolution X-ray 

micro-Computed Tomography machine (μSIMCT Equipment: SIMBIOS Centre University of 

Abertay Dundee, Scotland) at 105 kV, 96 μA, and 2,000 angular projections with 2 frames per 

second. Radiographs were reconstructed into 3D volumes at a resolution of 24 μm. Data were 

imported into VGStudiomax (Volumegraphics, Heidelberg, Germany) and converted into 24 

µm voxel-thick stacks and 8-bit greyscale bmp images. For the numerical simulations, an image 

consisting of 512*512*512 voxels was extracted from the 3D stack (corresponding to a soil 

sample of 1.8 cm3). Segmentation of the solid and pore phases was performed with an indicator 

kriging method (Houston et al., 2013). The segmented image had a total visible porosity of 17% 

for the soil sample with a bulk density of 1.2 g cm-3 and 8% for the soil sample with a bulk 

density of 1.6 g cm-3. 

2.3. Modelling water distribution and diffusion with Mosaic 

2.3.1. Modelling pore space and water distribution 

Water saturations of 20, 50, 80 and 100% pore volume were selected. With Mosaic, the 

spheres were emptied of their water until the appropriate water saturation was reached. For this, 

we imposed different matric potentials, calculated the equivalent radius thresholds given by the 



 
 

Young-Laplace law, and then simulated the water saturation (Monga et al., 2008). From the 3D 

images, several indicators, such as primitive number, cluster number (cluster=set of connected 

pores), and connectivity, were calculated for each degree of water saturation and both bulk 

densities. The connectivity index was calculated as follow: 

CI=(Number of Balls-Number of clusters)/(Number of balls-1) (3) 

For the subsequent simulations considering diffusion and mineralization, only water-filled 

pores were considered. 

2.3.2. Modelling and calibrating diffusion 

We simulated a DOM diffusion experiment (without microbial degradation) for the four 

water saturations and two soil bulk densities. We compared the Mosaic simulations with the 

simulated results obtained with the lattice Boltzmann model (LBM) of Genty and Pot (2013, 

2014) because of its ability to simulate diffusion. For the LBM, the water distribution simulation 

was compared very favourably using synchrotron-based measurements of air-water interfaces 

at equilibrium for different water saturations (Pot et al., 2015), while the simulation of diffusion 

was compared favourably with the analytical solution of the diffusion equation in cubic sphere 

packing (Genty and Pot, 2014). The LBM was taken as the reference for testing the diffusion 

process in the Mosaic model. 

We took a 512x512x300 area of the initial 512x512x512 CT image. As an initial 

condition, we imposed a DOM concentration of 426 µg cm-3 for the different water saturations 

and bulk densities. DOM was located in pores on the upper edge of the image at a thickness of 

two voxels for the LBM and in the adjacent spheres for the Mosaic model (the average diameter 

of spheres was 2 voxels). We simulated diffusion for 14 h. In both models, we used a molecular 

diffusion coefficient of DOM in water of 6.73 10-6 cm2 s-1 (GRC, 1986). We compared the 

simulated diffusion profiles obtained with the LBM to those simulated with the two versions of 



 
 

Mosaic before and after the improvements described above (subsection 2.1.2). The only 

parameter fitted with Mosaic was the distance between non-adjacent spheres. 

2.4. Modelling organic matter mineralization with Mosaic 

2.4.1 Organic matter distribution 

Different scenarios were carried out with dissolved organic matter or particulate organic 

matter (Table 1). For scenarios with DOM, 0.2895 mgC of DOM was added to the water in the 

water-filled pores of the 3D images (1.8 cm3). This value corresponds to a concentration of 

0.134 mgC g-1 soil for a soil density of 1.2 g cm-3, which is the same as the concentration used 

in the experiments described in Monga et al. (2014). We kept the mass of DOM the same 

regardless of the degree of water saturation and the soil density, which implies that the 

concentrations increased with decreasing water saturation degrees. DOM was distributed in all 

pore space homogeneously. The concentration of DOM was identical in all spheres. For 

scenarios with POM, POM was added in the same quantity as in the DOM scenarios, i.e., 0.2895 

mgC for 1.8 cm3. POM was distributed in 1, 10, or 100 patches or in all pore spaces 

(“homogeneous” treatment) of identical mass regardless of the scenario. For DOM, the amount 

of POM was the same regardless of the degree of water saturation or the soil density. Moreover, 

we ensured that POM was always placed in water-filled primitives, regardless of the degree of 

water saturation. 

2.4.2. Bacterial distribution 

We considered two scenarios of bacterial distribution into pore space: homogeneous and 

heterogeneous placement. 

In the homogeneous distribution case, we assumed a random distribution of bacteria 

with a density of 108 cells g-1 soil, corresponding to the density of Juyal et al. (2019) for the soil 

used to obtain the CT images. This first scenario is called ‘homogeneous placement” in which 

108 spots are occupied by bacteria. Each water-filled pore voxel contains a few bacterium. In 



 
 

the heterogeneous distribution case, we chose the model of bacterial distribution described in 

Raynaud & Nunan (2014) because it was built on real observations of 2D soil thin sections. 

Briefly, their analysis indicated that bacterial distribution was aggregated in soils and could be 

modelled using the log Gaussian Cox process (LGCP), which is a point process with a random 

intensity measure. The approach used LGCP simulation for the initial distribution of bacteria, 

with parameters measured by Raynaud & Nunan (2014). To start, the bacteria were put 

everywhere in the 3D space including in the solid phase. It was then necessary to remove those 

which were in the solid phase. Consequently, we had to change the initial bacteria density that 

we gave to the statistical model LGCP in order to obtain the same density as in the 

“homogeneous placement” case (108 bacteria g-1 soil).   Moreover, to produce more visually 

realistic distributions with dense cell aggregates and empty spaces, cells were kept only if they 

belonged to the first 1000 voxels with the highest biomass. This second scenario is called 

“heterogeneous placement.” 

In the homogeneous scenario, there were bacteria in each Mosaic sphere (around 

300 000 balls for saturation scenarios, see Table 2). In the heterogeneous scenario, bacteria are 

aggregated and spread only in 1000 balls in saturation scenarios. We kept the same number of 

bacteria regardless of the degree of water saturation and the soil bulk density, which implies 

that the concentrations of bacteria increased when the water saturations decreased. To obtain 

the same number of bacteria by decreasing the saturation, we had to reposition the bacteria in 

the water-filled pore. The bacteria were repositioned in the water-filled sphere having the 

shortest distance from the empty water sphere containing the bacteria. 

2.4.3. Biological parameters 

We selected the biological parameters of the Mosaic model presented in Monga et al. 

(2014) because they were already used to simulate carbon mineralization by microbial 

degradation in real conditions successfully. Microbial parameters of the model (see 2.1.3) were 



 
 

taken from Arthrobacter sp. 9R (Monga et al., 2014). The respiration rate was set to 0.2 d-1, and 

the mortality rate was set to 0.5 d-1. The proportion of bacteria that was returned to DOM was 

set to 0.55. The maximum growth rate of bacteria and half saturation were set to 9.6 d-1 and 

0.001 gC g-1, respectively. The values of the decomposition parameters were taken from Iqbal 

et al. (2014) obtained by parameter calibration from carbon mineralisation during incubation of 

Maize residues mixed to a loamy soil. They found decomposition rates of POM and SOM set 

to 0.3 d-1 and 0.001 d-1, respectively. The decomposition of crop residues is not very sensitive 

to the soil texture but the decomposition of the soil organic matter (SOM) is sensitive to the 

clay content. Our soil is mostly sandy compare to the soil of Iqbal et al. (2014). As we studied 

the decomposition over a very short time (few days), the SOM has decomposed very little. 

2.4.4. Simulation of scenarios 

The scenarios were simulated with the Mosaic model because of its shorter computation 

time using the initial 512x512x512 CT image. The scenarios related to the placement of organic 

matter and microorganisms as described previously are presented in Table 1 for the two soil 

densities and the four water saturations (8 simulations for each placement scenario). We chose 

to simulate the cumulative CO2 value at 5 days to be able to carry out a large number of 

simulations. 

2.4.5. Proposal of a new indicator: the accessibility coefficient of POM for 

bacteria 

We proposed a new parameter called the accessibility coefficient (ACC) of organic 

matter for bacteria that we applied for the POM scenario with Mosaic. For its calculation, we 

considered the geodesic distance of POMs for the microorganisms. The shorter geodesic 

distance between bacteria and POM is the shorter water filled pore pathway that links bacteria 

and POM. In some cases, there is no such shortest pathway because there is a disconnection 

between the pores where POM is and the pores where bacteria are. Our results (3.3) showed the 



 
 

importance of the OM local concentration; therefore, we weighed the factor by the amount of 

POMs. We used the following equations: 

For each POMj: 

𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖=𝑀𝑀𝑖𝑖 ∑ 1

𝑥𝑥𝑖𝑖
𝑖𝑖

𝑁𝑁𝑖𝑖
𝑖𝑖=1   (4) 

For all POMj: 

𝐴𝐴𝐶𝐶𝐶𝐶= 1
∑ 𝑀𝑀𝑖𝑖
𝑁𝑁
𝑖𝑖=1

∑ 𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑁𝑁
𝑖𝑖=1  (5) 

where x
j

i
 is the shortest geodesic distance between POM

j
 and bacteria

i
, N

j
 is the number of 

bacterial patches connected with POM
j
, Mj is the mass of POM

j (mg C) and N is the number of 

POM particles. All scenarios had the same POM mass of 0.2895 mgC for 1.8 cm3 of soil. A 

programme based on Dijkstra’s algorithm was used to calculate the shorter geodesic distance 

and the accessibility coefficient. 

3. Results 

3.1. Modelling pore space and water distribution 

The Mosaic outputs showed distinct visual differences in porosity depending on the bulk 

densities and water saturations (Fig. 2). The low bulk density soil (1.2 g cm-3) had more 

connected pores, whereas the high bulk density soil (1.6 g cm-3) had a smaller and more 

fragmented porosity, with many small, isolated pores. The connectivity index increased with 

the degree of water saturation and with the bulk density (Table 2). 

3.2. Modelling and calibrating diffusion 

Pot et al. (2015) have already shown the ability of Mosaic and LBM to similarly simulate 

the location of water in pores (as shown in SI 2 and 3). Because the LBM was already tested 

for its ability to correctly model diffusion (Genty and Pot, 2014), its predictions have been taken 



 
 

as a reference to assess diffusion in the Mosaic model. By fitting the diffusion curves obtained 

with Mosaic on that of LBM, we optimized the distance between two adjacent balls for the 

Mosaic model. We found that this distance had to be equal to two voxels. 

With the old version of Mosaic (Monga e al., 2014), the DOM mass profiles calculated 

with the LBM and Mosaic models were not close (SI 4). For example, diffusion in the LBM 

was faster than that in Mosaic for a soil bulk density of 1.6 g cm-3 and 100% water saturation. 

The summary of model efficiencies for all situations provided in Table 3 (2 soil bulk densities 

* 4 water saturations) also shows that model efficiencies were higher when Mosaic was run 

with the corrections described in paragraph 2.1 of this study. The correction of Mosaic, which 

consisted of increasing the connectivity between the spheres, made it possible to obtain a DOM-

mass profile curve very close to that of the LBM (Fig. 3) and increase the model efficiencies to 

0.9 (Table 3). The results presented in Fig. 3 show that the diffusion of DOM was higher for 

high water saturations and low soil bulk densities in both models. 

3.3. OM decomposition: Scenario with Mosaic 

3.3.1. DOM decomposition 

The simulation results suggest that more mineralization occurred when microorganisms 

were distributed everywhere in a homogeneous way (Fig. 4 A and B) than when they were 

distributed in a heterogeneous and patchy way (Fig. 4 C and D). This is explained by the greater 

accessibility of the microorganisms to the substrate in the first case. Soil bulk density had little 

effect on mineralization rates for the homogeneous distribution of bacteria (comparison 

between Fig. 4A and B). However, when microorganisms were heterogeneously distributed, 

we found less mineralization in soil samples with a high bulk density than in soil with a low 

bulk density (Fig. 4 D and C, respectively). This may be due to the lower diffusion rate of DOM 

under higher soil densities. We have shown previously that diffusion is indeed more limited 

when the bulk density of the soil is 1.6 g cm-3 compared to a bulk density of 1.2 g cm-3 (Fig. 3). 



 
 

The effect of water saturation on the mineralization curves changed according to the soil 

bulk density and microbial distribution. In Fig. 4A, the lower the degree of water saturation, the 

more mineralization increased. In this case, the concentration may play an important role 

because the decrease in the moisture content increased the local DOM concentration, as the 

total amount of DOM was the same in all simulations. The difference between the 

mineralization curves remained small in Fig. 4B, where the soil bulk density was higher, 

indicating that the influence of moisture content was lower in this situation. In Fig. 4C, 

mineralization curves are not ranked according to the degree of water saturation, which can be 

explained in this case by a combination of two effects: diffusion and concentration. The increase 

in moisture content increased diffusion but decreased the DOM concentration. The first factor 

has a positive effect on mineralization, whereas the second factor has a negative effect. The 

differences in mineralization rates between the different water saturations are larger for the 

heterogeneous microbial distribution (Fig. 4 C, D) than for the homogeneous distribution (Fig. 

4A, B). This suggests that the impact of water saturation and soil bulk density on diffusion was 

higher in the case of heterogeneous bacterial distribution compared to a homogeneous 

distribution. 

In summary, three factors were important in controlling the rate of mineralization in 

these scenarios. The ease of access of bacteria to the resource was influenced by their spatial 

distribution, diffusion and concentration of DOM, the last two influenced by the degree of water 

saturation. 

3.3.2. POM decomposition 

Similar to DOM, carbon mineralization was higher in the case of a homogeneous 

distribution of microorganisms than in the case of a heterogeneous distribution (Fig. 5A, B). In 

Fig. 5A, for the homogeneous distribution of microorganisms, the more concentrated the POM 

was, the greater the extent of C mineralization. As mentioned earlier, the fact that the 



 
 

concentration is high induces more mineralization, but the curves remain relatively close to 

each other. The red curve corresponding to the homogeneous distribution of the organic matter 

appeared to exhibit a slightly longer lag period at the onset of mineralization than in the other 

cases; however, over time, the curve tended asymptotically to the same mineralization rate. 

In Fig. 5B, for the heterogeneous distribution of microorganisms, concentration alone 

could not explain the ranking of the mineralization curves. The scenario with a single POM 

spot had a higher CO2 mineralization rate because the organic matter concentration was very 

high, and we could check that a spot of bacteria was present in the same pore cluster as the 

organic matter spot. However, for the other cases, the order was reversed compared to the 

concentration. Mineralization rates were higher when the POM was dispersed because the 

probability that POM and bacteria occurred in the same pore cluster and were hence colocalized 

was higher for higher POM dispersion. 

In summary, two factors were important in describing the extent of mineralization in 

these scenarios: the accessibility of microorganisms to the organic resource and the 

concentration of organic matter via its initial placement. 

3.4. Accessibility coefficients in POM placement scenarios 

In the scenarios of POM decomposition, we calculated the accessibility coefficient ACC 

presented in Eq. (6) (Fig. 6). We found that the greater the accessibility was, the greater the 

carbon mineralization was, with a linear correlation between the accessibility coefficient and 

the cumulative CO2 at 5 days. We found a correlation coefficient r2 of 0.6975. In appendix 4, 

we can see that for a given bulk density and water content, the rankings of accessibility 

coefficients and cumulative CO2 were very similar. The choice of a cumulative CO2 value at 5 

days is an arbitrary choice that we made at the beginning in order to carry out a large number 

of simulations. A longer period might have led to a correlation that is more accurate. 

4. Discussion 



 
 

Microbial degradation of organic matter in soil depends on the accessibility of the substrate 

to bacteria. More specifically, it depends on 1) their respective distance, 2) the diffusion of the 

substrate in the environment and 3) the amount of available substrate. The distance between 

bacteria and organic matter depends on their initial spatial distribution in soil. If this distance is 

high, then accessibility is limited by the diffusion process, which depends partly on the chemical 

species as well as on the local properties of the pore system, such as its connectivity, tortuosity 

and the degree of water saturation. The quantity of available resources depends on their local 

concentration. 

4.1. Factors impacting the accessibility 

4.1.1. Impact of initial distance between bacteria and organic substrates: 

Diffusion length 

The initial spatial distribution of bacteria in the soil had a large influence on the 

mineralization rate, as shown by the differences between curves Figs. 4A-4C, 4B-4D, and 5A-

5B. In the case where DOM and bacteria were uniformly located, decomposition was optimal. 

When bacteria were distributed heterogeneously, the spatial separation between them and OM 

led to longer diffusion lengths, and consequently, biodegradation was limited by diffusion. 

Indeed, diffusion curves (Fig. 3) showed that the diffusion of DOM after 14 hours could be 

limited to a 1-2 mm distance for a low degree of water saturation or a high soil bulk density. 

Several studies in the literature have shown that maximizing the contact between 

degrading bacteria and substrates increases the mineralization degree. In contrast, when bacteria 

and substrate were heterogeneously distributed in a soil, the key factor controlling 

biodegradation was diffusion. Recous & Angers (1997) and Iqbal et al. (2014) found that the 

smaller the particle sizes for the same overall amount of OM added were, the higher the 

mineralization rate was at the beginning. They attributed this to the closer contact of OM with 

the soil aggregates where bacteria are located. For a uniform distribution of SOM, Pagel et al. 



 
 

(2020) showed that a strong spatial clustering of microbial communities induced diffusion-

limited C availability, which translated to lower decomposition degrees of C compounds. 

Pinheiro et al. (2015) found that bacteria could not degrade the solute after a few weeks when 

initially separated in soil by a distance of 1.7 cm, although they could mineralize it when they 

were colocalized. A Euclidean distance of 4-5 mm separating bacteria and POM has been found 

to be beyond which the bacteria have difficulty accessing their resources (Gaillard et al., 1999; 

Portell et al., 2018). 

  In our scenarios, the water content did not change during simulations, and we always 

placed bacteria in the water-filled pores so that they were always active. In reality, the activity 

of bacteria can vary with the degree of water saturation because as the soil dries out, pores with 

larger diameters empty of water, thus rendering some of the bacteria inactive. Ruamps et al. 

(2011) showed that the degree of activity of bacteria varied according to the diameter of the 

pores in which they were located. 

It should be noted that the behaviour predicted by these simulations applies strictly to 

bacteria for which biokinetics parameters were available and have been used as input in this 

modelling exercise. The situation may be different from other microorganisms. Modelling 

results obtained by Falconer et al. (2012, 2015) suggest that the behaviour of fungal hyphae is 

drastically different because hyphal growth can overcome high distances. 

4.1.2. Impact of diffusion in situations where degraders and substrate are not 

initially colocalized 

Our simulation results show that the heterogeneous localization of bacteria in a pore 

space limits the degradation of the OM (Fig. 4C and 4D, Fig. 5B). On the one hand, the decrease 

in the degree of water saturation from 100 to 20% led to lower mineralization rates via 

decreased diffusion (Fig. 4C). On the other hand, the increase in soil bulk density led to a 

decrease in mineralization (difference between Fig. 4C and 4D) because the pore space was 



 
 

more disconnected, as shown in Table 2. As seen in the diffusion curves of Fig. 3, the diffusion 

of DOM after 14 hours was lower for low water saturations and for low soil densities and could 

be limited to a distance of only 1-2 mm. 

For conditions where degraders and the substrate are not initially colocalized, Babey et 

al. (2017) showed that degradation is higher under wet conditions when higher diffusion 

delivers substrate towards bacterial hotspots. Vogel et al. (2015), in their simulations of 

dissolved organic carbon at the pore scale, also noted that an increased delay in DOM transport 

by diffusion, stemming from a lower degree of water saturation or a higher pore tortuosity, 

results in limited degrader activity when the initial distance between DOM and degraders is 

high. 

Simulations of a DOM diffusion front initially distributed homogeneously on one face 

of the cube in the direction perpendicular to this face (Fig. 3) suggest that the diffusion front is 

virtually unidirectional, although the simulation was done in 3D space. Diffusion of the DOM 

in 3D space induces a greater limitation of DOM transfer because of its dilution, as already 

underlined by Babey et al. (2017). This is also the case in our scenario of heterogeneously 

distributed bacteria. If diffusion is limited to 1-2 mm in 1D space (as shown in Fig. 3), then in 

3D space, an even greater limitation of diffusion may occur. 

A notable limitation of our modelling approach comes from the CT image resolution, 

which is 24 µm; therefore, it does not allow the viewing of pores with diameters smaller than 

this resolution. These small pores can in principle participate in diffusion even if their diameter 

is very small. As all the scenarios have this resolution, we can assume that the comparison 

between the scenarios is not affected. 

4.1.3. Impact of local substrate concentration 

In our scenarios, the initial OM concentration was different between treatments due 

either to the increase in the degree of water saturation, which concentrated the DOM (in Fig. 



 
 

4A), or to the initial distribution of the POM in the pore space (Fig. 5A). Higher OM 

concentrations increased C mineralization (Fig. 4A and 5A). The Mosaic model uses Monod 

kinetics to simulate the growth rate of the microbial population as a function of organic matter 

concentration with an increasing logarithmic function. 

In the DOM scenarios (Fig. 4A), the DOM concentration increased with decreasing 

degrees of water saturation and was multiplied by a factor of five when the water saturation 

decreased from 100 to 20%. Regarding the bacterial growth curve relative to the DOM 

concentration of the Monod kinetic curve, these samples plot on the part of the curve where the 

bacterial growth rate increases proportionally to the DOM concentrations. This appears to 

explain why the mineralization curves of Fig. 4A decreased as the degree of saturation 

increased. 

For the POM scenarios at a water saturation of 100% (Fig. 5A), the homogeneous POM 

treatment distributed POM in 361874 patches (number of spheres at 100% water saturation for 

a soil bulk density of 1.2 g cm-3), although the other scenarios distributed the same amount of 

POM in either 1, 10 or 1000 spheres. If we consider the microbial growth curve relative to the 

OM concentration using Monod kinetics, we obtain a very low microbial growth rate for the 

concentration calculated under the “homogeneous POM” distribution treatment and higher 

microbial growth rates close to the maximum for 100, 10 and 1 patch(s) treatments. This 

appears to explain why the mineralization curves of Fig. 5A decreased as the number of patches 

increased. 

4.1.4. Impact of all factors: distance between OM and bacteria, diffusion 

coefficient and OM concentration 

In the context of the scenarios that have been carried out, we can classify the impact of 

the three factors in order of importance: the distribution of bacteria, the concentration of OM, 

and the diffusion rate. 



 
 

For most of our scenarios, the distribution of bacteria determined the magnitude of 

carbon mineralization. Babey et al. (2017) also showed that the initial separation distance 

between the substrate and degraders is the major control of degradation. In our results, the 

influence of water saturation on mineralization is comparatively smaller. The diffusion remains 

on the same order of magnitude even if we change the water saturation and soil density. 

However, we obtained antagonistic effects between the different factors. For example, 

the negative effect of the larger transit time of the substrate to the hotspot may be compensated 

by the positive effect of a higher concentration, as shown in Fig. 5B, where the mineralization 

of a single POM spot was higher than the mineralization in the homogeneous POM distribution. 

Portell et al. (2018) also found, in some scenarios, that bacterial growth was higher when 

bacteria were placed far from the POM compared to other scenarios where the bacterial spot 

was placed near the POM because the concentration of POM was greater in the first scenarios. 

4.1.5. Limitation of our approach 

The identification of accessibility parameters through scenario modelling, which we 

have described above, is admittedly limited in scope at this stage by the fact that the model, in 

its current version, does not encompass a number of microbial processes that we know, or at 

least strongly suspect, to be of significance. To a large extent, we did not want to make the 

model excessively complex in order to be able to analyse clearly the steps involved in the 

scenario modelling and the subsequent identification of accessibility parameters. To that end, 

we opted to focus our attention to a limited number of factors such as water content, soil 

structure, and the initial location of microorganisms. The model does not take into account 

bacterial motility, because we do not have enough information on this process at this stage to 

parameterize it in the model. Clearly, this process could change accessibility on a very fine 

scale (Valdes Parada et al., 2009). In addition, the model does not simulate the production of 

extracellular enzymes by microorganisms. They can diffuse to the organic matter, be degraded, 



 
 

and be adsorbed on the soil minerals, rendering them inactive. To explicitly simulate the action 

of enzymes would require that a number of parameters be added to the model, which we do not 

know very well. We have chosen instead to consider a decomposition rate of POMs, which 

implicitly simulates the solubilization of POMs by enzymes. A further limitation of the model 

is that it takes only one microbial species into account. Using the same model, we have already 

tested several species of bacteria (with different mineralisation and growth rates) but separately 

from each other (Monga et al., 2014). The presence of several species of microorganisms would 

indeed have led to interactions such as competition and mutualism. Portell et al. (2018) carried 

out modeling scenarios also in a 3D space to look at the influence of the spatial distribution of 

organic matter and bacterial diversity on the carbon mineralization activity. Their simulations 

evinced little influence of bacterial competition on the global simulated carbon mineralisation 

of organic matter. The experiments carried out by Banerjee et al. (2016) showed that the rate of 

organic matter decomposition remained similar while the abundance of different bacterial and 

fungal groups changed up to 300-folds under different soil treatments, indicating high 

functional redundancy in soils. In our model, we can only simulate the action of bacteria. 

Indeed, to simulate the mineralization activity of fungi, we should place the fungi in several 

spheres each, while each sphere of Mosaic represents a biological entity containing bacteria. 

Fungal propagation in soil porosity and the effect of water on their behaviour is very complex. 

Falconer et al. (2012) simulated in 3D the effect of soil architecture and water distribution on 

fungal propagation in the soil. They showed that the increase of water content decreased fungal 

colonization, because of the decrease of connected air-filled pores in which fungi spread 

preferentially. These processes linked to fungal properties would require significant changes in 

the structure of the model. In future studies, we will improve the representation of 

microorganisms in order to look at the assumptions that it is reasonable to make for more 

accurate carbon mineralization simulations. 



 
 

4.2. Accessibility coefficient 

In this study, we have shown that i) our Mosaic mineralization model is very sensitive 

to the localization of bacteria and, consequently, 2) there is a relationship between 

mineralization and the distance between OM and bacteria. We found a linear relationship 

between the accessibility coefficient and the cumulative mineralized CO2 (Fig. 6). This 

accessibility coefficient represents an average geodesic distance between the OM and the 

bacteria, weighted by the OM concentration (Eq. 4 and 5). Pinheiro et al. (2015) also showed, 

through an experimental approach, that the greater the distance between organic compounds 

and decomposers was, the less intense the mineralization. 

In our modelling approach, OM is arbitrarily placed, and bacteria are placed using the 

model of Raynaud & Nunan (2014). In the future, we could validate our approach by measuring 

the accessibility coefficient with 3D images of stained OM, on which we could also locate the 

presence of microorganisms around the OM. For OM, it is possible, through staining methods 

(as developed by Peth et al., 2014), to look at their location in 3D pore space. However, it is 

more complicated to visualize microorganisms in 3D pore space. The approach developed by 

Raynaud & Nunan (2014), for example, is quite difficult to implement. 

Rawlins et al. (2016) attempted to calculate OM accessibility using 3D CT images (6.6 

µm resolution) with stained OM. Accessibility to OM was calculated from the distances to the 

pores that surrounded OM. They implicitly assumed that the microorganisms were in these 

pores. They could not find a relationship between OM accessibility and the microbial 

respiration measured in these same samples. The accessibility calculated as the distance of OM 

to the nearest pores is not equivalent to the distance between OM and microorganisms because 

the latter may not be everywhere or are not active everywhere. 

Iqbal et al. (2014) calculated a contact coefficient between soil and OM for a model using 

first-order kinetics to describe mineralization. They found a relationship between the intensity 



 
 

of mineralization and the specific surface area of added fresh organic matter (FOM). This 

relationship shows that the larger the specific surfaces, the more CO2 emissions there are. They 

successfully simulated the measured CO2. Their approach makes the implicit assumption that 

microorganisms are everywhere around OM and therefore that the larger the specific surface 

area is, the better the contact between the FOM and the microorganisms. Indeed, in their case, 

we can assume that the microorganisms quickly colonize the FOM, coming from crop residues, 

which had recently been added to the soil. In the case of OM already present and that partly 

decomposed, it is possible that the microorganisms are no longer necessarily in the surrounding 

pores, which explains the conclusions of Rawlins et al. (2016). 

5. Conclusion 

In this work, we carried out simulations of carbon mineralization at the µm scale in soil 

with the 3D Mosaic model. The model was improved to better simulate the diffusion process. 

Among the input factors that we considered were the placement of bacteria and organic matter, 

the degree of water saturation, and the soil architecture via the soil bulk density. We proposed 

an accessibility coefficient that encapsulates the microscale distribution. This accessibility 

coefficient was correlated with mineralized carbon flux for different scenarios of particulate 

organic matter placement. In the future, it would be interesting to develop an automatic 

procedure to calculate this accessibility parameter for a large number of scenarios, for example, 

for other soil structures, to verify to what extent it is correlated with carbon mineralization in 

all situations. We should also validate our approach using real 3D images of soil on which we 

could locate the presence of microorganisms around the OM. 

 

Acknowledgements 

The research described in this article was made possible by the financial support of the ANR 

Project Soil-µ3D (Number ANR-15-CE01-0006-01) 



 
 

6. References 

Babey, T., Vieublé-Gonod, L., Rapaport, A., Pinheiro, M., Garnier, P., & de Dreuzy, J-R. (2017). 

Spatiotemporal simulations of 2,4-D pesticide degradation by microorganisms in 3D soil-core 

experiments. Ecological modelling, 344, 48-61. 

Banerjee, S; Kirkby, CA; Schmutter, D; Bissett, A; Kirkegaard, JA; Richardson, AE (2016). Network 

analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities 

during organic matter decomposition in an arable soil. Soil Biology & Biochemistry, 97, 188-198, 

DOI: 10.1016/j.soilbio.2016.03.017 

Baveye, P. C., Otten, W., Kravchenko A., Balseiro Romero, M., Beckers, E., Chalhoub, M., 

Darnault, C., Eickhorst, T., Garnier, P., Hapca S., Monga O., Mueller, C. W., Nunan, N., 

Pot, V., Schlüter, S., Schmidt, H., & Vogel, H.-J. (2018). Emergent properties of microbial 

activity in heterogeneous soil microenvironments: Different research approaches are slowly 

converging, yet major challenges remain. Frontiers in Microbiology, 9, article 1929 

Chakrawal, A., Herrmann, A.M., Koestel, J., Jarsjo, J., Nunan, N., Katterer, T., & Manzoni, S. 

(2020). Dynamic upscaling of decomposition kinetics for carbon cycling models. 

Geoscientific Model Development, 13, 1399-1429, Doi: 10.5194/gmd-13-1399-2020  

Dungait, J.A.J., Hopkins, D.W., Gregory, A.S., & Whitmore, A.P. (2012). Soil organic matter 

turnover is governed by accessibility not recalcitrance. Global Change Biology, 18, 1781-

1796, Doi: 10.1111/j.1365-2486.2012.02665.x  

Gaillard, V., Chenu, C., Recous, S., & Richard, G. (1999). Carbon, nitrogen and microbial 

gradients induced by plant residues decomposing in soil. European Journal of Soil Science, 

50(4), 567-578, Doi: 10.1046/j.1365-2389.1999.00266.x  

Garnier, P., Cambier, C., Bousso, M., Masse, D., Chenu, C., & Recous S. (2008). Modelling 

the influence of soil-plant residue contact on carbon mineralization: Comparison of a 

compartmental approach and a 3D spatial approach. Soil Biology and Biochemistry, 40, 

2754-2761.  

http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=35329708
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=1671841
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=1776644
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=532492
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=30014608
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=35335092
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=598073
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=30183837
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=1274677
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=256810
http://apps.webofknowledge.com/OutboundService.do?SID=F6JSbhWAh53XWXQbHdc&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=7967048
http://apps.webofknowledge.com/OutboundService.do?SID=F6JSbhWAh53XWXQbHdc&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=181716
http://apps.webofknowledge.com/OutboundService.do?SID=F6JSbhWAh53XWXQbHdc&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=317473
http://apps.webofknowledge.com/OutboundService.do?SID=F6JSbhWAh53XWXQbHdc&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=35754790


 
 

Falconer, R.E., Houston, A.N., Otten, W., & Baveye, P.C. (2012). Emergent behavior of soil 

fungal dynamics: Influence of soil architecture and water distribution. Soil Science, 177, 

111-119, Doi: 10.1097/SS.0b013e318241133a  

Falconer, R. E., Battaia, G., Schmidt, S., Baveye, P., Chenu, C., & Otten, W. (2015). Microscale 

heterogeneity explains experimental variability and non-linearity in soil organic matter 

mineralisation. PLoS One 10:e0123774. doi: 10.1371/journal.pone.0123774 

Genty, A., & Pot, V. (2013). Numerical simulation of 3D liquid-gas distribution in porous 

media by a two-phase TRT Lattice Boltzmann method. Transport in Porous Media, 96, 271-

294, Doi: 10.1007/s11242-012-0087-9  

Genty, A., & Pot, V. (2014). Numerical calculation of effective diffusion in unsaturated porous 

media by the TRT Lattice Boltzmann method. Transport in Porous Media, 105, 391-410, 

Doi: 10.1007/s11242-014-0374-8  

Houston, A. N., Otten, W., Baveye, P. C., & Hapca, S. (2013a). Adaptive-window indicator 

kriging: a thresholding method for computed tomography images of porous media. 

Computer & Geosciences. 54, 239–248. doi: 10.1016/j.cageo.2012.11.016 

Iqbal A., Garnier, P., Lashermes, G., & Recous, S. (2014). A new equation to simulate the 

contact between soil and maize residues of different sizes during their decomposition. 

Biology and Fertility of Soils, 50, 645-655.  

Juarez, S., Nunan, N., Duday, A.C., Pouteau, V., Schmidt, S., Hapca, S., Falconer, R., Otten, 

W., & Chenu, C. (2013). Effects of different soil structures on the decomposition of native 

and added organic carbon. European Journal of Soil Biology, 58, 81-90, Doi: 

10.1016/j.ejsobi.2013.06.005  

Juyal, A., Eickhorst, T., Falconer, R., Baveye, P.C., Spiers, A., & Otten, W. (2018). Control of 

pore geometry in soil microcosms and its effect on the growth and spread of Pseudomonas 

and Bacillus sp. Frontiers in Environmental Science, 6, 73, Doi: 10.3389/fenvs.2018.00073 

http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=1205655
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=2793953
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=584567
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=136669
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=2172600
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=1193256
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=2172600
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=1193256
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=4785208
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=616498
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=10529234
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=3468361
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=4511304
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=1572138
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=1205655
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=584567
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=584567
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=181716
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=31502235
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=2314606
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=1205655
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=136669
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=30394289
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=584567


 
 

Juyal, A., Otten, W., Falconer, R., Hapca, S., Schmidt, H., Baveye, P.C., & Eickhorst, T. (2019). 

Combination of techniques to quantify the distribution of bacteria in their soil microhabitats 

at different spatial scales. Geoderma, 334, 165-174, Doi: 10.1016/j.geoderma.2018.07.031  

Kravchenko, A.N., & Guber, A.K. (2017). Soil pores and their contributions to soil carbon 

processes. Geoderma, 287, 31-39, Doi: 10.1016/j.geoderma.2016.06.027  

Manzoni, S., & Porporato, A. (2009). Soil carbon and nitrogen mineralization: Theory and 

models across scales. Soil Biology and Biochemistry, 41, 1355-1379, Doi: 

10.1016/j.soilbio.2009.02.031  

Monga, O., Bousso, M., Garnier, P., & Pot, V. (2008). 3D geometrical structures and biological 

activity: application to soil organic matter microbial decomposition in pore space. 

Ecological Modelling 216 : 291-302.  

Monga O., P. Garnier, V. Pot, E. Coucheney, N. Nunan, W. Otten, C. Chenu. 2014. Simulating 

microbial degradation of organic matter in a simple porous system using the 3D diffusion 

based model MOSAIC. Biogeosciences 11, 2201–2209.  

Ngom FN., Garnier P., Monga O., Peth S. 2011. Extraction of 3-D soil pore space from 

microtomography images using a geometrical approach. Geoderma 163, 127-134.  

Pagel, H., Kriesche, B., Uksa, M., Poll, C., Kandeler, E., Schmidt, V., & Streck, T. (2020). 

Spatial control of carbon dynamics in soil by microbial decomposer communities. Frontiers 

in environmental Science,  8, Article 2. Doi: 10.3389/fenvs.2020.00002 

Peth, S., Chenu, C., Leblond, N., Garnier, P., Nunan, N., Pot, V., Ogurreck, M., & Beckmann, 

F. (2014). Localization of soil organic matter in soil aggregates using synchrotron-based X-

ray microtomography. Soil Biology & Biochemistry, 78, 189-194.    

Pinheiro, M., Garnier, P., Béguet, J., Martin Laurent, F., & Vieublé Gonod, L. (2015). The 

millimeter-scale distribution of 2,4-D and its degraders drive the degradation of 2,4-D at the 

soil core scale. Soil Biology and Biochemistry, 88: 90-100.  

http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=31502235
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=584567
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=1205655
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=1572138
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=4335002
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=136669
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=2314606
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=437289
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=502417
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=311989
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=119293


 
 

Portell, X., Pot, V., Garnier, P., Otten, W., & Baveye, P. (2018). Microscale heterogeneity of 

the spatial distribution of organic matter can promote bacterial biodiversity in soils: Insights 

from computer simulations. Frontiers in Microbiology, 9, Article 1583. 

Pot, V., Peth, S., Monga, O., Vogel, L. E., Genty, A., Garnier, P., Vieuble-Gonod, L., Ogurreck, 

M., Beckmann, F., & Baveye, P C. (2015). Three-dimensional distribution of water and air 

in soil pores: Comparison of two-phase TRT lattice-Boltzmann and morphological model 

outputs with synchrotron X-ray computed tomography data. Advances in Water Resources, 

84, 87-102.  

Raynaud, X., & Nunan, N. (2014). Spatial ecology of bacteria at the microscale in soil. Plos 

One, 9, Article Number: e87217, Doi: 10.1371/journal.pone.0087217  

Rawlins, B.G., Wragg, J., Reinhard, C., Atwood, R.C., Houston, A., Lark, R.M., & Rudolph, 

S. (2016). Three-dimensional soil organic matter distribution, accessibility and microbial 

respiration in macroaggregates using osmium staining and synchrotron X-ray computed 

tomography. Soil, 2, 659-671, Doi: 10.5194/soil-2-659-2016  

Recous, S., & Angers, D.A. (1997). Decomposition of wheat straw and rye residues as affected 

by particle size. Plant and Soil, 189(2), 197-203, Doi: 10.1023/A:1004207219678  

Ruamps, LS; Nunan, N; Chenu, C. (2011). Microbial biogeography at the soil pore scale. Soil 

Biology & Biochemistry, 43(2), 280-286, Doi: 10.1016/j.soilbio.2010.10.010  

Valdes-Parada, F. J.; Porter, M. L.; Narayanaswamy, K.; Ford, R. M.; Wood, B. D. (2009). 

Upscaling microbial chemotaxis in porous media. Advances in Water Resource, 32, 1413–

1428. doi: 10.1016/j.advwatres.2009.06.010 

Vogel, L., Makowski, D., Garnier, P., Vieublé-Gonod, L., Raynaud, X., Nunan, N., Coquet, Y., 

Chenu, C., Falconer, R., & Pot V. (2015). Modeling the effect of soil meso- and macropores 

topology on the biodegradation of a soluble carbon substrate. Advances in Water Resources, 

83, 123-136.   

http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=703180
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=616498
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=630835
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=782131
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=761364
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=647083
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=2793953
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=135406
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=35235760
http://apps.webofknowledge.com/OutboundService.do?SID=E4OuO3DmXmMNtH9p5KF&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=35235760
http://apps.webofknowledge.com/OutboundService.do?SID=F6JSbhWAh53XWXQbHdc&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=8435487
http://apps.webofknowledge.com/OutboundService.do?SID=F6JSbhWAh53XWXQbHdc&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=616498
http://apps.webofknowledge.com/OutboundService.do?SID=F6JSbhWAh53XWXQbHdc&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=181716


 
 

Figures 

Fig. 1: graph with initial connectivity (in blue, a), creation of connectivity with 

Delaunay triangulation (in black, b), graph with initial and additional connectivity 

(in blue and black, c): correction in order to remove the unnecessary arcs (in red, 

d). 

Fig. 2: 2D soil Images of 1.2 and 1.6 g/cm3 densities with water saturations of 0, 

20, 50, 80 % simulated with Mosaic model (grey is the water filled porosity and 

black is the air filled porosity, white is the soil matrix) 

Fig. 3: Profiles of DOM mass over the length of the sample after 14h30 of 

simulation (for the two soil densities and for two water saturations): comparison 

between LBM and Mosaic model (after the corrections of the MOSAIC model). 

In the case of the Mosaic model, the quantity of DOM of each soil layer is 

obtained by summing up the DOM contained in all the spheres whose centres 

belong to the layer. 

Fig. 4: Modelling scenarios with Mosaic of CO2 mineralisation for homogeneous 

distribution of dissolved organic carbon for homogeneous distribution of 

bacteria (Fig. A and B) or heterogeneous distribution of bacteria (Fig. C and D), 

for a soil density of 1.2 g.cm3 (Fig. A and C) and 1.6 g.cm3 (Fig. B and D) and at 

water saturations from 20% to 100% 



 
 

Fig. 5: Modelling scenarios with Mosaic of CO2 mineralisation of particulate 

organic matter distributed in 1, 10, 100 spots or homogeneously with 

homogeneous distribution of bacteria (Fig. A) or heterogeneous distribution of 

bacteria (Fig. B) for a soil density of 1.2 g.cm3 at 100% of water saturation. 

Fig. 6: Relationship between accessibility coefficients of organic matter for 

microorganisms calculated with Mosaic and cumulative CO2 emissions simulated 

at 5 days for the different scenarios of POM distribution for the soil density of 

1.2 g/cm3 and 1.6 g/cm3 at the degree of water saturation of 100% and 50% and 

for heterogeneous distribution of microorganisms (see SI 5).  

 

  
 

 

 

 

  



 
 

Tables 

Table 1: Scenarios for the simulation of organic matter decomposition with 

Mosaic model 

Table 2: Quantitative description of the water filled pore space from Mosaic 

model based on a geometrical approach using the direct segmented images 

(numbers are given from 5123 voxels images with a resolution of 24 µm and a 

total volume of 1.8 cm3).  

Table 3: Model Efficiency (EF)* is calculated for simulations of DOM 

concentrations at 14H30 without and with diffusion correction of MOSAIC, for 

all situations : 2 soil densities × 4 water saturations. LBM results are considered 

as reference to fine-tune Mosaic simulations. 
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Table 1: Scenarios for the simulation of organic matter decomposition with 

Mosaic model

Microorganism distribution

Homogeneous Heterogeneous*

1000 spots

Homogeneous

Scenario 1

2 densities×

4 water saturations

Scenario 2

2 densities×

4 water saturations
DOC

Distribution

Homogeneous

Scenario 3

2 densities×

4 water saturations

Scenario 4

2 densities×

4 water saturations

POM

Distribution Heterogeneous

100 spots

10 spots

1 spots

Scenario 5

2 densities×

4 water saturations

Scenario 6

2 densities×

4 water saturations

*(simulated with the model of Raynaud and Nunan, 2014)A
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Table 2: Quantitative description of the water filled pore space from Mosaic 

model based on a geometrical approach using the direct segmented images 

(numbers are given from 5123 voxels images with a resolution of 24 µm and a 

total volume of 1.8 cm3). 

densité  * Primitive 
Number 

Water 
filled 
Porosity

%

Water 
filled 
Cluster 
Number

Porosity of 
bigger cluster 
(filled of water)

Connectivity 
Index CI

100 361 874 11.92 1616 11.51 0.9956

80 360 535 9.97 1645 9.55 0.9954

50 350 490 6.3 2035 5.57 0.9942

1.2 
g/cm3

20 295511 2.39 12558 0.0017 0.9575

100 282307 5.44 5998 1.47 0.9788

80 280936 4.55 6028 1.01 0.9785

50 267029 2.87 7061 0.02 0.9736

1.6 
g/cm3

20 220494 1.35 18534 0.0006 0.9159

* expressed the percentage of the water filled porosityA
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Table 3: Model Efficiency (EF)* is calculated for simulations of DOM 

concentrations at 14H30 without and with diffusion correction of MOSAIC, for 

all situations : 2 soil densities × 4 water saturations. LBM results are considered 

as reference to fine-tune Mosaic simulations.

Density 1.2 g/cm3 Density 1.6 g/cm3

: 100% : 80% : 50% : 20% : 100% : 80% : 50% : 20%

EF without 
Mosaic 

correction 0.41 0.45 0.45 0.93 0.58 0.61 0.74 0.79

EF with 

Mosaic 
correction

0.90 0.93 0.91 0.95 0.91 0.90 0.87 0.61

*       𝐸𝐹 = 1 ―
∑𝑛

𝑖 = 1(𝑆𝑖 ― 𝑚𝑖)2

∑𝑛
𝑖 = 1(𝑚𝑖 ― 𝑚)2

where Si ,  mi and  are the DOM concentration calculated from MOSAIC in layer i, the DOM m

concentration calculated from LBM in layer i and the mean value calculated from LBM over the n all 

layers of the sample, respectively. 
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