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Abstract

In the standard framework of self-consistent many-body perturbation theory, the skele-
ton series for the self-energy is truncated at a finite order N and plugged into the Dyson
equation, which is then solved for the propagator GN . We consider two examples of
fermionic models, the Hubbard atom at half filling and its zero space-time dimensional
simplified version. First, we show that GN converges when N → ∞ to a limit G∞ ,
which coincides with the exact physical propagator Gexact at small enough coupling, while
G∞ ̸= Gexact at strong coupling. This follows from the findings of [1] and an additional
subtle mathematical mechanism elucidated here. Second, we demonstrate that it is pos-
sible to discriminate between the G∞ = Gexact and G∞ ̸= Gexact regimes thanks to a
criterion which does not require the knowledge of Gexact , as proposed in [2].
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1 Introduction

Self-consistent perturbation theory is a particularly elegant and powerful approach in quantum
many-body physics [3–5]. The single-particle propagator G is expressed through the Dyson
equation

G−1 = G−1
0 − Σ (1)

in terms of the non-interacting propagator G0 and the self-energy Σ, which itself is formally
expressed in terms of G through the skeleton series,

Σ = Σbold[G] ≡
∞
∑

n=1

Σ
(n)
bold[G] (2)

where Σ(n)bold[G] is the sum of all skeleton self-energy Feynman diagrams of order n (these
diagrams are built with bold propagator lines representing G, and remain connected if one
cuts one or two G-lines).

The standard procedure for solving Eqs. (1,2) is to truncate the skeleton series at a finite
order N , and to look for the solution GN of the self-consistency equation1

G−1
N = G−1

0 − Σ
(≤N)
bold [GN ] (3)

with

Σ
(≤N)
bold :=

N
∑

n=1

Σ
(n)
bold .

The natural expectation is that one obtains the exact propagator by sending the truncation
order to infinity: GN → Gexact for N →∞.

However, as was discovered in [1], the series Σ(≤N)
bold [Gexact] can converge when N →∞ to

a result which differs from the exact physical self-energy Σexact = G−1
0 − G−1

exact . This mislead-
ing convergence phenomenon was observed for three fermionic textbook models —Hubbard
atom, Anderson impurity model, and half-filled 2D Hubbard model— in a region of the pa-
rameter space (at and around half filling, at strong interaction and low temperature). Gexact
was computed with a numerically exact quantum Monte Carlo method, and the skeleton series
was evaluated up to N = 6 or 8 by diagrammatic Monte Carlo [6]. Numerous works [2,7–15]
have studied various aspects of the problem found in [1], as well as the related divergences of
irreducible vertices ( [9,11,12,14,16–20] and Refs. therein). In particular, Ref. [8] introduced
an exactly solvable toy model, which has the structure of a fermionic model in zero space-time
dimensions, and features the misleading convergence problem of [1] , as well as the related
multivaluedness of the Luttinger-Ward functional also discovered in [1].

In this article, we study the consequences of this problem for the sequence GN , which is the
crucial question in the most relevant cases where Gexact is unknown. For the toy model of [8],
we find that GN converges when N →∞ to a limit G∞ which differs from Gexact at strong
coupling; for the Hubbard atom, our numerical data strongly indicate that such misleading
convergence of the sequence GN also occurs at large coupling and half filling. This misleading
convergence of GN is the first result reported in this article. Secondly, we present data, again
for the toy model of [8] and for the Hubbard atom, demonstrating that a criterion proposed
in [2] enables one to discriminate between the G∞ ̸= Gexact and G∞ = Gexact regimes without
using the knowledge of Gexact.

1We assume that the solution GN of (3) is unique, or at least that there is no difficulty in identifying a unique
potentially physical solution (e.g., by starting from the weakly interacting limit where GN → G0, and following the
solution as a function of interaction strength).
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The misleading convergence of GN reported here is a non-trivial fact. It comes from a subtle
mathematical mechanism (as we will see), and does not merely follow from the misleading
convergence of Σ(≤N)

bold [Gexact] discovered in [1]. Indeed, a naive reasoning would suggest that

if the misleading convergence of Σ(≤N)
bold [Gexact] takes place, then GN should not converge at

all.2

We restrict here to the scheme (1,2) where G is the only bold element (as in, e.g., Ref. [21]).
Nevertheless, our findings may also be relevant to other schemes containing additional bold
elements, such as a bold interaction line W , or a bold pair propagator line Γ . The scheme built
with G and W is natural for Coulomb interactions, and is widely used for solids and molecules
with a truncation order N = 1 (the GW approximation) and sometimes with N = 2 (see, e.g.,
Refs. [22–25]), while for several paradigmatic lattice models, bold diagrammatic Monte Carlo
(BDMC) made it possible to reach larger N and claim a small residual truncation error [26–29].
The scheme built with G and Γ is natural for contact interactions; truncation at order N = 1
then corresponds to the self-consistent T-matrix approximation [30–32], and precise large-N
results were obtained by BDMC in the normal phase of the Hubbard model [33, 34] and of
the unitary Fermi gas [35–37]. Other BDMC results were obtained for models of coupled
electrons and phonons, where it is natural to introduce a bold phonon propagator [26, 38],
and for frustrated spins [39–41]. Schemes containing three- or four-point bold vertices were
also employed, to construct extensions of dynamical mean-field theory [18,42].

2 Zero space-time dimensional toy-model

2.1 Definitions and reminders

We begin with some reminders from [8] (see [8] for the derivations). While fermionic many-
body problems can be represented by a functional integral over Grassmann fields, which de-
pend on d space coordinates and one imaginary time coordinate [4,43], in this simplified toy
model the Grassmann fields are replaced with Grassmann numbers ϕs and ϕs that do not de-
pend on anything, apart from a spin index s ∈ {↑,↓}. The partition function, the action and
the propagator are then defined by

Z =

∫ �

∏

s

dϕs dϕs

�

e−S

S = −µ
∑

s

ϕsϕs + U ϕ↑ϕ↑ϕ↓ϕ↓

G = −
1
Z

∫ �

∏

s

dϕs dϕs

�

ϕs′ ϕs′ e−S ,

the dimensionless parameters µ and U being the analogs of chemical potential and interaction
strength. Since G is spin-independent, we omit its spin index. We restrict for convenience to
µ > 0 (changing the sign of µ essentially amounts to the change of variables ϕ↔ ϕ ) and to
U < 0 (as in [8] ).

The coefficients of the skeleton series have the analytical expression

Σbold[G] =
∞
∑

n=1

an G2n−1Un with an =
(−1)n−1(2n− 2)!

n!(n− 1)!
.

2The naive reasoning goes as follows: If GN would converge to some G∞ for N →∞, then, from (3), one can
expect G−1

∞ = G−1
0 −Σbold[G∞], and hence, assuming unicity of the solution of the Dyson equation, G∞ = Gexact.

Thus Σbold[Gexact] = Σexact, in contradiction with the misleading convergence of Σ(≤N)
bold [Gexact].
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It is convenient to work with rescaled variables, multiplying propagators with
p

|U | and di-
viding self-energies with the same factor,

g := G
Æ

|U | , σ := Σ/
Æ

|U | . (4)

The rescaled skeleton series is then given by

σbold(g) =
∞
∑

n=1

σ
(n)
bold(g) with σ

(n)
bold(g) = an(−1)n g2n−1

and accordingly σ(≤N)
bold (g) ≡
∑N

n=1σ
(n)
bold(g) .

The exact self-energy and propagator are given by

σexact(g0) = −g0

gexact(g0) =
g0

1+ g2
0

in terms of the rescaled free propagator g0 :=
p

|U |G0 =
p

|U |/µ .
If one evaluates the skeleton series at the exact G, one obtains the correct physical self-

energy for |U |< µ2 and an incorrect result for |U |> µ2. This is directly related to the fact that
the self-energy functional (which reduces to a function in this toy model) has two branches,

σ(±)(g) =
−1±
p

1− 4g2

2g
(5)

as represented in Fig. 1 (this corresponds to the derivative of the two branches of the Luttinger-
Ward functional, restricting to spin-independent G for simplicity). The physical branch is the
(+) branch for g0 < 1, and the (−) branch for g0 > 1; i.e.,σexact(g0) = σ(sign(1−g0))(gexact(g0)) .
On the other hand, the skeleton series, evaluated at the exact physical propagator, always con-
verges to the (+) branch; i.e., σbold(gexact(g0)) = σ(+)(gexact(g0)) for all g0 > 0.

Note that σbold(g) is the expansion of σ(+)(g) in powers of g, and thus from (5) the con-
vergence radius of the series σbold(g) is 1/2.

Figure 1: The two branches of the self-energy as a function of the full propagator,
for the toy model in zero space-time dimensions. The skeleton series converges up
to g = 1/2 and coincides with the (+) branch: σbold(g) = σ(+)(g) for g ≤ 1/2.
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2.2 Limit of the skeleton sequence

We now go beyond Ref. [8] and study the “skeleton sequence” GN defined by Eq. (3). Rescaling
variables as in (4), in particular setting gN := GN

p

|U | , Equation (3) becomes

1
gN
=

1
g0
− σ(≤N)

bold (gN ) . (6)

This equation is readily solved for gN numerically: The solutions are roots of a polynomial of
order 2N , and we observe that there is a unique real positive root, which we take to be gN
(recall that the exact g is always real and positive); alternatively, we solved Eq. (6) by iterations
(with a damping procedure described in the next section), and we found convergence to this
same gN . We find that

• for g0 < 1, gN −→N→∞
gexact(g0)

• for g0 > 1, gN −→N→∞
g∞ ̸= gexact(g0)

i.e., the skeleton sequence converges to the correct physical result below a critical coupling
strength, and to an unphysical result above it.

 0.45

 0.5

 0.55

 0.6

 0  0.1  0.2  0.3  0.4

g N

1/N

Figure 2: Illustrative example of misleading convergence of the skeleton sequence for the
toy model. The rescaled propagator gN , obtained from the self-consistency equation
with the skeleton series truncated at order N , converges for N →∞ to the limit 0.5,
which differs from the exact result (dashed line). This happens when the rescaled
free propagator g0 > 1 (here, g0 = 1.5).

Let us focus on the regime g0 > 1, where the convergence to an unphysical result takes
place (as demonstrated in Fig. 2). The fact that the skeleton sequence converges at all in this
regime is non-trivial. The value of the unphysical limit g∞ = 1/2 of the skeleton sequence gN
is equal to the radius of convergence of the skeleton series σbold(g). This is not a coincidence,
and the reason for this self-tuning towards the convergence radius becomes clear from Fig. 3:
For a large truncation order, the curve representing the truncated skeleton series as a function
of g becomes an almost vertical line above the position of the convergence radius (g = 1/2),
so that it intersects the Dyson-equation curve near this value of g. It also becomes clear that
we are in an unusual situation where

lim
N→∞

σ
(≤N)
bold (gN ) ̸= lim

N→∞
σ
(≤N)
bold (g∞) ≡ σbold(g∞) . (7)
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Figure 3: Explanation for the misleading convergence. The two branches of the self-
energy σ(±)(g), together with the partial sums of the skeleton series σ(≤N)

bold (g) for dif-
ferent values of the truncation order N . Also shown is the curve corresponding to the
Dyson equation, −σ = 1/g − 1/g0. This Dyson-equation curve intersects σ(≤N)

bold (g)
at g = gN , whereas the exact propagator g = gexact is given by the intersection of
the Dyson-equation curve with the physical branchσ(sign(1−g0))(g) . It appears clearly
that for g0 < 1, gN converges to the exact g, while for g0 > 1, gN always tends to
1/2, the convergence radius of the skeleton series.

2.3 Diagnosing the misleading convergence

In the general case where Gexact is unknown, when one observes numerically that GN converges
to some limit, one needs a way to tell whether this limit is equal to Gexact, i.e., whether the
result can be trusted. To this end, we consider

ΣN ,ξ :=
N
∑

n=1

Σ
(n)
bold[GN ] ξ

n. (8)

Assuming that GN → G∞ for N →∞, the following criterion [2] is a sufficient condition for
G∞ to be equal to Gexact :






There exists ε > 0 such that:
For any ξ in the disc D = { |ξ|< 1+ ε } , ΣN ,ξ converges for N →∞;
moreover, this sequence is uniformly bounded for ξ ∈D.







(9)

The derivation of this criterion is contained in [2], and its main steps are reproduced in the
Appendix for convenience.

For all practical purpose, we expect the criterion (9) to be essentially equivalent to the
following simpler one:

There exists ξ > 1 such that ΣN ,ξ converges for N →∞. (10)

Indeed, (9) implies (10), and a situation where (10) would hold while (9) would not hold
seems unlikely to occur. In what follows we will use the simplified criterion (10). We also
introduce an extra factor 1/ξN0 in the definition (8) of ΣN ,ξ , where the value of N0 will be
conveniently chosen; such an N -independent factor does not matter for the criterion (it does
not change whether or not the sequence ΣN ,ξ converges).

6
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For the toy-model, this means that assuming gN → g∞ for N →∞, a sufficient condition
for g∞ to be equal to the correct physical gexact(g0) is that there exists ξ > 1 such that

σN ,ξ :=
N
∑

n=1

σ
(n)
bold(gN ) ξ

n−1 = σ(≤N)
bold (gN

p

ξ ) /
p

ξ

converges for N →∞. As illustrated in Fig. 4, this criterion indeed enables one to detect the
misleading convergence for g0 > 1, and to trust the result for g0 < 1.3

Figure 4: Detecting the misleading convergence for the toy model. Introducing a finite ξ,
the sequence becomes divergent which enables one to detect the problem (left panel),
or remains convergent which enables one to trust the result (right panel).

3 Hubbard atom

We turn to the single-site Hubbard model, defined by the grand-canonical Hamiltonian−µ
∑

s ns
+ U n↑n↓. The propagator can be expressed as a functional integral over β-antiperiodic Grass-
mann fields [4,43],

Gs(τ) = − 〈ϕs(τ)ϕs(0) 〉S ≡ −

∫

DϕDϕ ϕs(τ)ϕs(0) e−S

∫

DϕDϕ e−S
(11)

with the action

S =

∫ β

0

dτ

�

−
∑

s

ϕs(τ)(G
−1
0 ϕs)(τ) + U (ϕ↑ϕ↓ϕ↓ϕ↑)(τ)

�

(12)

and

G−1
0 = µ −

d
dτ

. (13)

We restrict for simplicity to the half-filled case µ= U/2 , which should be the most danger-
ous case, since it is at and around half-filling that the misleading convergence of Σbold[Gexact]
was discovered in [1]. We use the BDMC method [6,35,44,45] to sum all skeleton diagrams

3For the toy model, the criterion is easily understood from Fig. 3. For g0 > 1, gN → 1/2 for N → ∞, so
that for any ξ > 1, limN→∞ gN

p

ξ is strictly larger than the convergence radius 1/2, leading to the divergence of
σ
(≤N)
bold (gN

p

ξ ). On the contrary, for g0 < 1, the gN ’s stay at a finite distance on the left of the convergence radius
1/2.

7
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and solve the self-consistency equation (3) for truncation orders N ≤ 8 (note that at half filling,
Σ
(n)
bold = 0 for all odd n> 1).

The first question is whether the skeleton sequence GN can also converge to an unphysical
result, or equivalently, whether Σ(≤N)

bold [GN ] =: ΣN can converge to an unphysical result. Let us
first consider the double occupancy

D = 〈n↑n↓〉= U−1 tr (ΣG)

and the corresponding sequence DN := U−1 tr (ΣN GN ). At large enough U , our data strongly
indicate that this sequence does converge (albeit slowly) towards an unphysical result, see left
panel of Fig. 5. For small enough U , there is a fast convergence to the correct result, see right
panel of Fig. 5.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.1  0.2  0.3  0.4  0.5

D
N

1/N

βU=8

 0.188

 0.19

 0.192

 0  0.1  0.2  0.3  0.4  0.5

D
N

1/N

βU=1

Figure 5: For the Hubbard atom at half filling, the double occupancy, as obtained
from the skeleton sequence, converges to an unphysical result for large U (left panel)
and to the correct result for small enough U (right panel) when the truncation order
N →∞ (dashed line: exact result).

The next question is whether the criterion (10) enables us to discriminate between these
two situations. We therefore plot the sequence ΣN ,ξ in Figs. 6 and 7. We only show the
imaginary part because in the considered half-filled case, the real part ofΣN (ωn) automatically
equals U/2; moreover we focus for simplicity on the lowest Matsubara frequency ω0 = π/β ,
and we choose N0 = 2.

For ξ= 1, ΣN ,ξ reduces to the original skeleton sequenceΣN , and the behavior is similar to
the double occupancy: The sequence appears to converge, albeit slowly, towards an unphysical
result for βU = 8 (Fig. 6), while fast convergence to the correct physical result takes place for
βU = 1 (Fig. 7). For ξ > 1, the sequence does not appear to converge any more for βU = 8,
see Fig. 6: The data do not satisfy the criterion, indicating that the results cannot be trusted
in this case. In contrast, for βU = 1, the criterion enables one to validate the results, since the
sequence remains convergent at ξ > 1, see Fig. 7.

Regarding the choice of ξ, it should be neither too small in order to have an effect at the
accessible orders, nor too large to avoid making the criterion too conservative. More precisely,
ξ − 1 should not be too small, so that ξN differs significantly from 1 (and hence ΣN ,ξ differ
significantly from ΣN ,1 = ΣN ) at the largest accessible order Nmax . This necessity to work with
a finite ξ−1 implies that the criterion is conservative: It leads to discarding results in a region
of the parameter space near but outside the misleading-convergence region.4 For Nmax = 8, the
choices ξ−1= 0.1 and 0.2 are a priori large enough (since ξ8 ≈ 2 and 4) and Fig. 6 confirms

4The required ξ−1 scales as 1/Nmax; for the toy model this leads to discarding results not only in the misleading-
convergence region g0 > 1, but also for 0≤ 1− g0 ≲ 1/Nmax.

8
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that they allow to detect the divergence of ΣN ,ξ in the misleading-convergence regime, while
on the other hand Fig. 7 shows that βU = 1 is at a sufficient distance from the misleading-
convergence region for ΣN ,ξ to remain convergent for these ξ values.

-3

-2

-1

 0  0.1  0.2  0.3  0.4  0.5

Im
 Σ

N
, ξ

(ω
0)

1/N

βU = 8

ξ=1
exact
ξ=1.1
ξ=1.2

Figure 6: For the half-filled Hubbard atom at large coupling, the original skeleton
sequence (ξ= 1) converges to an unphysical result. At ξ > 1, the sequence does not
converge any more: The data do not satisfy the criterion.

-0.042

-0.04

-0.038

-0.036

 0  0.1  0.2  0.3  0.4  0.5

Im
 Σ

N
, ξ

(ω
0)

1/N

βU = 1

ξ=1
exact
ξ=1.1
ξ=1.2

Figure 7: For the half-filled Hubbard atom at small enough coupling, the original
skeleton sequence (ξ = 1) converges to the correct physical result. At ξ > 1, the
sequence remains convergent: The criterion enables one to trust the result.

We remark that when solving Eq. (3) by iterations, in the case where the convergence to
the unphysical result for N →∞ occurs, convergence as a function of iterations at fixed N
only takes place if we use a damping procedure, where GN at iteration (i + 1) is obtained as
G(i+1)

N = [G−1
0 −Σ

(i)]−1 with Σ(i) a weighted average of Σ(≤N)
bold [G

(i)
N ] and Σ(i−1), while the fixed

point is unstable for the undamped iterative procedure Σ(i) := Σ(≤N)
bold [G

(i)
N ]. Such a damping

procedure is commonly used in BDMC where it also reduces the statistical error [45, 46].
In the toy model, one can easily show that an increasingly strong damping is required when
N is increased, because for N → ∞, the slope [dσ(≤N)

bold (g)/d g]g=gN
diverges, making the

undamped iterative procedure unstable. This observation could also be useful for misleading-
convergence detection.

9
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Finally, we comment on the link with the multivaluedness of the self-energy functional
Σ[G] (i.e., of the Luttinger-Ward functional). In [1], the misleading convergence of the skele-
ton series was found to be towards an unphysical branch of the self-energy functional, in the
sense that if Eqs. (11,12) are viewed as a mapping G0 7→ G[G0], then there exists G0,unphys
such that Σbold[Gexact] = G−1

0,unphys − G−1
exact and G[G0,unphys] = Gexact ≡ G[G0]. As noted in [1],

this G0,unphys does not belong to the set of physical bare propagators which are of the form (13)
for some value of chemical potential; therefore, by looking at G0,unphys , one can tell that the
result is on an unphysical branch, and hence detect the misleading convergence of the skeleton
series. In contrast, the misleading convergence of the sequence GN reported here cannot be
detected in this way. Indeed, the self-consistency equation (3) is enforced with the original
physical G0.

4 Conclusion

We have demonstrated that there is a regime where the solution of self-consistent many-body
perturbation theory converges to an unphysical result in the limit of infinite truncation order
of the skeleton series. This surprising breakdown of the standard framework results from the
findings of [1] combined with an additional subtle mathematical mechanism which we have
elucidated by analyzing the zero space-time dimensional model of [8]. In this problematic
regime, lowest order calculations can be off by one order of magnitude, but access to higher
orders enables one to detect the problem numerically through the divergence of a slightly
modified sequence, whereas seeing convergence of this modified sequence enables one to
rule out misleading convergence and to trust the result, as proposed in [2] and demonstrated
here for the Hubbard atom. Such a proof of principle is relevant for many-body problems
in regimes where, in spite of important progress with non self-consistent frameworks [47–68]
(for which it was shown that misleading convergence generically does not occur [2] ) and with
strong-coupling expansions [69–71], self-consistent BDMC remains among the state of the art
approaches. In particular, during finalization of the present manuscript, its main findings have
been used as a basis to discriminate between physical and unphysical BDMC results for the
doped two-dimensional Hubbard model at strong coupling in a non-Fermi liquid regime [72].
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Appendix: Main steps of the derivation of the criterion

For convenience, we reproduce here the main steps of the derivation of the criterion (9),
see [2,73] for more details. For definiteness, we consider the Hubbard model at finite temper-
ature; the reasoning is also directly applicable to the Hubbard atom (by removing the position
variable) and to the zero space-time dimensional toy model (by also removing the imaginary
time variable). Let Σ∞,ξ := limN→∞ ΣN ,ξ . By making use of Morera’s theorem, Cauchy’s
integral formula and the dominated convergence theorem, the condition (9) allows one to
show the key property

Σ∞,ξ =
∞
∑

n=1

Σ
(n)
bold[G∞] ξ

n , ∀ξ ∈D . (14)

Setting ξ= 1 in (14) yields5

lim
N→∞

Σ
(≤N)
bold [GN ] = Σbold[G∞] . (15)

Substituting (15) into (3) yields

G−1
∞ = G−1

0 − Σbold[G∞] . (16)

The next step is to consider the action

S(ξ)bold := −
∑

r,s

∫ β

0

dτ

�

ϕs

�

G−1
∞ +

∞
∑

n=1

Σ
(n)
bold[G∞] ξ

n

�

ϕs

�

(r,τ)

+ ξ U
∑

r

∫ β

0

dτ (ϕ↑ϕ↓ϕ↓ϕ↑)(r,τ)

and the corresponding propagator G(ξ)bold(r,τ) := −〈ϕs(r,τ) ϕs(0, 0) 〉S(ξ)bold
. The action S(ξ)bold is

designed in such a way that
∂ nG(ξ)bold

∂ ξn

�

�

�

�

�

ξ=0

= 0 , ∀n≥ 1 . (17)

Obviously, G(ξ=0)
bold = G∞ . On the other hand, (16) implies that S(ξ=1)

bold is equal to the physical

action of the Hubbard model, so that G(ξ=1)
bold = Gexact . Now, since S(ξ)bold depends analytically

on ξ in D, we expect (at least for fermions on a lattice at finite temperature) that one of the
following alternatives holds:

(i) G(ξ)bold depends analytically on ξ in D

(ii) G(ξ)bold has a non-removable singularity at a point ξc ∈D (e.g., a phase transition),

and G(ξ)bold is analytic in the disc { |ξ|< |ξc| } .

In case (ii), the convergence radius of the Taylor series of G(ξ)bold at the origin would be |ξc| , in
contradiction with (17). Hence (i) holds, and we have

Gexact = G(ξ=1)
bold = G(ξ=0)

bold +
∞
∑

n=1

1
n!

∂ nG(ξ)bold

∂ ξn

�

�

�

�

�

ξ=0

= G(ξ=0)
bold = G∞ .

This concludes the derivation of the equality G∞ = Gexact under the assumption (9) .

5Equation (15) breaks down for the toy model in the problematic regime (g0 > 1), as pointed out in Eq. (7).
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