
HAL Id: hal-03365948
https://hal.science/hal-03365948v1

Submitted on 14 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

To Be or to Have Been Lucky, That Is the Question
Antony Lesage, Jean-Marc Victor

To cite this version:
Antony Lesage, Jean-Marc Victor. To Be or to Have Been Lucky, That Is the Question. Philosophies,
2021, 6 (3), pp.57. �10.3390/philosophies6030057�. �hal-03365948�

https://hal.science/hal-03365948v1
https://hal.archives-ouvertes.fr


philosophies

Article

To Be or to Have Been Lucky, That Is the Question

Antony Lesage 1 and Jean-Marc Victor 2,*

����������
�������

Citation: Lesage, A.; Victor, J.-M. To

Be or to Have Been Lucky, That Is the

Question. Philosophies 2021, 6, 57.

https://doi.org/10.3390/

philosophies6030057

Academic Editors: Fabien Paillusson

and Marcin J. Schroeder

Received: 21 April 2021

Accepted: 6 July 2021

Published: 9 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux, PHENIX, Sorbonne Université, CNRS,
F-75005 Paris, France; antony.lesage@sorbonne-universite.fr

2 Physique Théorique de la Matière Condensée, LPTMC, Sorbonne Université, CNRS, F-75005 Paris, France
* Correspondence: victor@lptmc.jussieu.fr

Abstract: Is it possible to measure the dispersion of ex ante chances (i.e., chances “before the event”)
among people, be it gambling, health, or social opportunities? We explore this question and provide
some tools, including a statistical test, to evidence the actual dispersion of ex ante chances in various
areas, with a focus on chronic diseases. Using the principle of maximum entropy, we derive the
distribution of the risk of becoming ill in the global population as well as in the population of affected
people. We find that affected people are either at very low risk, like the overwhelming majority of
the population, but still were unlucky to become ill, or are at extremely high risk and were bound to
become ill.

Keywords: ex ante chances; dispersion of chances; chronic diseases; gambling; statistical test; twin
studies; principle of maximum entropy

1. Introduction

“That evening he was lucky”: what do we mean by this? It is even weirder when we
say: “the luck turned”. Does this mean that we could be visited by fortune? Or that some
people are luckier than others on certain days? Of course, we cannot rule out the fact that
some people may bias the chances of success simply by cheating. Yet, is there any way to
assess the dispersion of chances among gamblers (or just the fraction of cheaters)?

This kind of question is part of the field of probability calculus, which aims at deter-
mining the relative likelihoods of events (for a nice historical introduction to probability
theory, see [1]). Probability calculus started during the summer of 1654 with the correspon-
dence between Pascal and Fermat precisely on the elementary problems of gambling [2].
Symmetry arguments are at the heart of this calculus: for example, for an unbiased coin,
the two results—heads or tails—are a priori equivalent and therefore, have the same proba-
bility of occurrence of 1/2. This is why it is not anecdotal that Pascal wanted to give his
treatise the “astonishing” title “Geometry of Chance”. Another illustration of the power
of symmetry arguments is the tour de force of Maxwell who managed to calculate the
velocity distribution of particles in idealized gases [3]. At the time when he derived what is
since called the Maxwell–Boltzmann distribution, there was no possibility to measure this
distribution. It was almost 60 years before Otto Stern could achieve the first experimental
verification of this distribution [4], around the same time when he confirmed with Walther
Gerlach the existence of the electron spin [5], for which he won the Nobel Prize in 1944.
The agreement between theoretical and experimental distributions was surprisingly good.
Since its invention in the middle of the 17th century, probability calculus has accompanied
most if not all new fields of science, especially since the beginning of the 20th century with
the burst of genetics and quantum physics up to the most recent developments of quantum
cognition [6], not to mention its countless applications in finance and economy.

In probability theory, events are usually associated with random variables that are
measurable. For example, in the heads or tails game, heads may be associated with 1 and
tails with 0. Then, for a given number N of draws, one can count the number of times the
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heads are flipped. This number k is between 0 and N and the ratio k/N is the frequency of
the heads. If the coin is unbiased, this frequency fluctuates around 1/2 when the game (N
draws for each game) is played many times. Importantly, the frequency is observed ex post,
i.e., after the game is played; the mean frequency is used as a measure of probability of
getting a head. This is the usual way of assessing probabilities in the frequentist perspective
of statistics. Remember that assessing probabilities for anticipating the outcome of future
events is the very purpose of statistics. However, it is not always possible to deduce
probabilities from frequency measurements. For example, suppose that each coin is tossed
only once. Can we still assess the dispersion of chances among gamblers?

Dispersion of chances is far from being limited to gamblers. Disease risk is another
area where people may be and actually are unequal for genetic or environmental reasons.
In this case, the result of a “draw” is whether or not you have a disease D. The “game” is
then limited to one “draw” per person. Of course, the mean probability to become ill can
still be observed. Yet, can we assess the dispersion of disease risks? Then, if so, how can
we? As a last emblematic example, we mention social opportunities. Measuring inequality
of opportunity is a crucial issue with considerable political stakes, though it is extremely
difficult to assess. On this last point, we postpone the in-depth study of the measure of
unequal opportunities to a further work.

In all these examples, be it gambling, disease, or social opportunity, the ex ante chances
are themselves random variables that cannot be deduced from frequency measurements
nor be induced by symmetry arguments. They are hidden variables. Nevertheless, we
argue here that the probability distribution function (pdf) of the ex ante chances can be
assessed and we propose some tools to (i) first test the existence of some dispersion of
chances in the population; (ii) then, infer the pdf of the ex ante chances; and (iii) explore
more specifically the relevance of those tools to and their consequences in the field of
chronic diseases, i.e., diseases that occur at various ages and persist throughout life [7].
Importantly, we do not assume any hypothetical functional form for the pdf of chances
and then infer its parameters by Bayesian inference as is usually carried out. Here, we first
test the inequality of chances in the population, then infer the functional form of the pdf by
means of the principle of maximum entropy.

2. A Simple Draw Is Not Enough

Let us first assume that there is a sample of n people tossing a coin and that each
of them has a probability pi to win (hence, 1− pi to lose). In an unbiased game, all the
pi are identical and equal to 1/2. Imagine that some gamblers are luckier, others less
fortunate—hence, some pi are greater than 1/2, others less than 1/2. This means that
the pi are random variables that are drawn from a probability distribution f (p) that is
different from δ(p− 1/2), where δ is the Dirac delta function. Let Φ and Σ2 be the mean
and variance of f (p). Let us assume now that each individual plays N times. The result
of each draw j of the individual i is a random variable X j

i , either 1 in cases of success or 0

in cases of failure. This is a Bernoulli process: for each i, the random variables X j
i are i.i.d.

(independent, identically distributed, i.e., the probability of success pi is the same for the N
draws of i). Let us define Si = ∑N

j=1 X j
i as the score over N draws. It is the number of times

the individual i has won. Given the risk pi, Si is a random variable that follows a binomial
distribution B(N, pi). The mean and the variance of Si for a given risk pi are

EN [Si|pi] = Npi
VarN [Si|pi] = Npi(1− pi)

Once every individual has played N times, we obtain an estimation of the distribution
of the n random variables Si as a histogram over the N + 1 values k = 0, 1, 2, . . . , N. These
random variables Si are independent but non-identically distributed, as the pi are different
from one individual to another.
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Just as the pi are drawn from the distribution f (p), the Si are the realizations of
a random variable S (which takes the N + 1 discrete values k = 0, 1, 2, . . . , N). The
underlying distribution is no longer only on the random variable S, but on the joint
probability of S and p. Thus, the marginal probability distribution function of S is given
as follows:

∀k = 0, 1, . . . , N PN [S = k] = E[PN [S = k|p]] = E
[
Ck

N pk(1− p)N−k
]
=
∫ 1

0 dp f (p)Ck
N pk(1− p)N−k (1)

where E[·] is expected value of ·with the probability distribution of p, f (p); and Ck
N = N!

k!(N−k)!
is the binomial coefficient “N choose k”, i.e., the number of k-combinations of N. The mean
of S is

EN [S] = E[EN [S|p]] = E

[
N

∑
k=0

kCk
N pk(1− p)N−k

]
= E[Np]

where EN [·] is the expected value of · with the probability distribution of S, PN(S); and
EN [S|p] is the conditional expected value of S for a given underlying probability p, i.e., the
Bernoulli distribution. Since Φ is the mean of the distribution f (p),

EN [S] = NE[p] = NΦ (2)

and the variance of S is
VarN [S] = EN

[
S2
]
− EN [S]

2

where

EN

[
S2
]
= E

[
EN

[
S2
∣∣∣p]] = E

[
N

∑
k=0

k2Ck
N pk(1− p)N−k

]
= E

[
Np(1− p) + (Np)2

]
hence

EN

[
S2
]
= N

(
E[p]− E

[
p2
])

+ N2E
[

p2
]

and
VarN [S] = N

(
E[p]− E

[
p2
])

+ N2
(

E
[

p2
]
− E[p]2

)
Now, we recall the first two moments of f (p), given its mean Φ and its variance Σ2

E[p] = Φ
E
[
p2] = Σ2 + Φ2

so that

VarN [S] = N
(
Φ(1−Φ)− Σ2)+ N2Σ2 = NΦ(1−Φ) + N(N − 1)Σ2 (3)

Equation (3) gives the variance of the score S as a function of the variance Σ2 of f (p).
In the following for the sake of clarity, we will refer to Σ2 as the dispersion of chances.

Note that within the limit N → ∞ , the probability distribution of the random variable
S/N converges to the distribution f (p).

We simulated two populations of n gamblers each drawing N times. Both populations
have the same mean chance of gain Φ = 1/2. However, in the first population, the chance
distribution is

f0(p) = δ

(
p− 1

2

)
where there is no dispersion of chances, i.e., Σ2 = 0. In contrast, in the second population,
the chance distribution is

f1(p) =
1
2
[δ(p) + δ(1− p)]
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where the dispersion is maximal, i.e., Σ2 = 1/4. The histograms are plotted in Figure 1 for
a number n of gamblers ranging from 10 to 100 and a number N of draws ranging from 1
to 4. Equation (3) shows that if N = 1, the variance Var1[S] = Φ(1−Φ) does not depend
on the dispersion of chances Σ2. As a matter of fact, when N = 1, the gains are either 0
or 1 so that the histogram of gains has only two bins, one at 0, the other at 1. The mean of
gains is Φ and the variance is Φ(1−Φ). Neither the mean nor the variance depends on the
dispersion of chances Σ2. Moreover, according to Equation (1), the histogram of gains itself
depends only on the mean of the distribution f (p):

P1[S = 0] = E[1− p] = 1−Φ

P1[S = 1] = E[p] = Φ (4)

Figure 1. Simulated histograms of gains S for two distributions f0 and f1: on the left-hand side f0(p) = δ(p− 1/2) and on
the right-hand side f1(p) = 1

2 [δ(p) + δ(1− p)]. In each case, the histogram of success is plotted for increasing values of the
number N of draws (N = 1, 2, 3, 4) and for two numbers n of gamblers: n = 10 (in blue) and 100 (in orange). For N = 1,
note that the histogram for f0 is similar to the histogram for f1 and both histograms converge to the same limit as n goes to
infinity. On the contrary, for each N ≥ 2, the histograms for f0 and f1 diverge as n increases.

The histogram of gains, therefore, cannot provide information on the dispersion of
chances, as shown in Figure 1 for the case N = 1 where the histograms for f0 and f1 are
indistinguishable. This means that a simple draw is not enough to extract the variance of f (p)
from the histogram of gains; multiple draws are necessary, though are they sufficient?

3. A Statistical Test of the Dispersion of Chances

We then note in Figure 1 that the histogram of gains for two draws (N = 2) has three
bins, one at 0, the second at 1 and the third at 2, with the following values:

P2[S = 0] = E
[
(1− p)2

]
= (1−Φ)2 + Σ2

P2[S = 1] = E[2p(1− p)] = 2Φ(1−Φ)− 2Σ2 (5)

P2[S = 2] = E
[
p2] = Φ2 + Σ2 (6)

Hence, the histogram of gains now depends on (and only on) both the mean and the
variance of f (p). Note that Equation (5) shows that Σ2 ≤ Φ(1−Φ), since P2[S = 1] ≥ 0;
moreover, Φ(1−Φ) is maximal when Φ = 1/2. For three or more draws, we could
also have access to higher order moments of f (p). Nevertheless, the minimum condition
for the presence of a probability dispersion is that the variance of f (p) is non-zero. We
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therefore propose to design a statistical test that will be able to discriminate between both
following hypotheses:

Null hypothesis H0: everybody has the same probability Φ of gain. This means that
f0(p) = δ(p−Φ) whose mean is E[p] = Φ and dispersion Σ2 = 0.

Alternative hypothesis H1: f has the same mean Φ but there is some dispersion of
chances among the population, so that some people are luckier than others; hence, f has a
non-zero dispersion Σ2.

According to H0, the mean of N draws is Φ and the variance is NΦ(1−Φ), whereas
according to H1, the mean of N draws is also Φ but the variance is N

(
Φ(1−Φ)− Σ2)+

N2Σ2. Hence, if the variance VarN [S] grows linearly with N, then all individuals have the
same probability p of success. If, on the contrary, VarN [S] grows quadratically with N,
then not all individuals have the same chance of success. We can, therefore, rephrase
our hypothesis test as the following alternative based on the dependence of the variance
VarN [S] on the number N of draws:

Null hypothesis H0: the variance VarN [S] grows linearly with N.
Alternative hypothesis H1: the variance VarN [S] grows quadratically with N.
Figure 2 shows how the variance of S varies as a function of the number of draws N

for two typical distributions of mean 1/2: f1 with zero dispersion and f2 with maximum
dispersion 1/4. The distribution f1 (resp. f2) illustrates the case of a variance growing
linearly (resp. quadratically) with N.

Figure 2. Linear regression fits VarN [S] for f0 (blue dotted line), with a0 = 0.251± 0.005 in agreement with Equation (3)
when Σ2 = 0. Moreover, a0 agrees with the expected value Φ(1−Φ) = 1/4. The quadratic fit (blue dashed line) yields
an equivalent result. At odds with f0, the linear regression does not fit VarN [S] for f1 (orange dotted line), whereas the
quadratic fit (orange dashed line) is excellent, with: a1 = 0.01± 0.01 and b1 = 0.244± 0.006. Here, b1 agrees with the
expected value Σ2 = 1/4 and a1 with the expected value Φ(1−Φ)− Σ2 = 0.

A relevant statistical test is needed to discriminate between the two hypotheses H0
and H1, or at least to reject the null hypothesis H0. Moreover, in the remainder of this paper,
we are particularly interested in the case N = 2. It is then necessary to reformulate our
hypotheses because it becomes difficult to discriminate the quadratic behavior from the
linear behavior with only three points. Therefore, we rephrase our hypothesis test, based
on the fact that the number of draws is limited to N = 2:

Null hypothesis H0: the variance of S reads Var2[S] = 2Φ(1−Φ), i.e., Σ2 = 0.
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Alternative hypothesis H1: the variance of S reads Var2[S] = 2Φ(1−Φ) + 2Σ2 with
Σ2 > 0.

To estimate the variance of S from a sample of n individuals, the unbiased variance
estimator is used:

Vn =
1

n− 1

n

∑
i=1

(
Si − S

)2

where S is the mean estimator

S =
1
n

n

∑
i=1

Si

The estimation of the variance of S, Vn, from a sample of finite size n is subject to
statistical fluctuations. Thus, our hypotheses become:

Null hypothesis H0: Vn − 2Φ(1−Φ) is compatible with 0 considering the error bars,
i.e., the standard deviation of Vn.

Alternative hypothesis H1: Vn − 2Φ(1−Φ) = 2Σ2 > 0.
The variance of Vn reads (see Appendix A)

VarΣ2 [Vn] =
2n

(n−1)2

[
Ψ(1− 2Ψ) + 7(1− 4Ψ)Σ2 − 2Σ4]+ 8

(n−1)2

(
Ψ + Σ2)2

(7)

where Ψ = Φ(1−Φ). Its asymptotic expression for n� 1 reads

VarΣ2 [Vn] ∼ 2
n
[
Ψ(1− 2Ψ) + 7(1− 4Ψ)Σ2 − 2Σ4] (8)

Figure 3 compares the expression of the variance VarΣ2 [Vn] (black dashed line) ob-
tained in Equation (7) and its asymptotic expression (grey dashed line) in Equation (8) with
simulations (blue dots) and shows good agreement.

Figure 3. Evolution of the variance of Vn for N = 2 as a function of the number n of players. The blue
dots are simulated with Φ = 0.5 and Σ2 = 0.15. The black dashed line corresponds to the variance of
Vn according to Equation (7). The grey dashed line corresponds to the leading-order term in 1/n of
the expected variance in Equation (8).

It can be noted that the distribution of Vn tends towards a normal distribution
N (EΣ2 [Vn], VarΣ2 [Vn]) of mean EΣ2 [Vn] = Var2[S] and variance VarΣ2 [Vn]. Now, we wish
to estimate the probability of having obtained a value as high as Vn under the null hypothe-
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sis H0, i.e., the p-value. Since Vn follows a normal distribution, the p-value can be expressed
as follows

p-value = 1
2

(
1− erf

(
z√
2

))
= 1

2 erfc
(

z√
2

)
(9)

where erf and erfc are, respectively, the error function and the complementary error func-
tion. By posing E0[Vn] and Var0[Vn] as the mean and the variance of Vn under the null
hypothesis H0, i.e., Σ2 = 0, we have

z =
Vn − E0[Vn]√

Var0[Vn]
=

Vn − 2Φ(1−Φ)√
Var0[Vn]

Within the limit of large sample sizes n� 1, one can write using, again, Ψ = Φ(1−Φ):

z ∼
√

n
Vn − 2Ψ√

2Ψ(1− 2Ψ)

In the context of Figure 2 restricted to the case N = 2 and n = 100, the estimated
variance Vn for the distribution f1 (of mean 1/2 and dispersion 1/4) leads to z = 20, i.e., a
p-value of 10−87. This allows us to reject the null hypothesis in this case.

4. Dispersion of Disease Risks for Twins

Inequality in disease risk is a major public health issue [8,9]. Of course, part of this
inequality is known to depend on genetic and environmental factors. At the turn of the
2000s, a new approach called genome wide association studies (GWAS) was designed to
characterize the genetic predisposition to a chronic disease [10]. GWAS are supposed to
find in particular the genes involved in a given disease, and among these genes, the variants
most at risk, i.e., the DNA sequences of a given gene that are more represented in the people
affected by the disease. Such variants characterize the genetic predisposition to the disease.
The mean frequency that an individual will become ill in a given population, specified
by genetic and environmental factors, can then be measured. As usual, this frequency
can be used as a measure of the probability of becoming ill. However, can we assess the
dispersion of disease risk, if only it exists, in this specific population? More generally, is
there any way to assess the dispersion of risk in a more objective manner, without any
a priori assumption on presumed risk factors? Here comes into play a providential help
from the existence of twins. Identical twins, also called monozygotic (MZ) twins, have the
same genome, shared the same fetal environment and, generally, share the same living
conditions. Therefore, they are most likely to also share the same probability of becoming
ill, whatever the disease. Identical twins are, therefore, like a player betting twice. This is
much related to the gambling question addressed above for N = 2 (two draws). Indeed, as
both twins have the same probability p of having disease D, the status—healthy or ill—of
each of the two twins is equivalent, respectively, to the outcome—loss or gain—of each
of the two draws by one and the same gambler. In this situation, probability p is called a
risk. Let f (p) be the probability distribution function of the risk of having disease D in the
population. We define the random variable S as above, i.e., S = 0 if both twins are healthy,
S = 1 if only one of the two twins is ill and S = 2 if both twins are ill. The mean Φ and
variance of S are given by Equations (2) and (3), respectively, hence for N = 2

E2[S] = 2Φ (10)

Var2[S] = 2Φ(1−Φ) + 2Σ2

Then, if Vn is significantly greater than S
(
1− S/2

)
, which amounts to carrying out

the hypothesis test presented in the above section, we can conclude that there is some
dispersion of the disease risk. As we will see below, the dispersion is in fact unusually
large. However, before that, let us calculate the twin concordance rate of the disease D. In
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genetics, the twin concordance rate is the probability τ that a twin is affected given that
his/her co-twin is affected:

τ = P[X2 = 1|X1 = 1] =
P[X1 = 1, X2 = 1]

P[X1 = 1]
=

P2[S = 2]
P[X1 = 1, X2 = 1] + P[X1 = 1, X2 = 0]

hence

τ =
P2[S = 2]

P2[S = 2] + 1
2 P2[S = 1]

=
2P2[S = 2]

2P2[S = 2] + P2[S = 1]

Note that τ is equal to the probandwise concordance rate, which is known to best
assess the twin concordance rate [11].

Using Equations (4) and (6), we can also reformulate the concordance rate of twins in
terms of the moments of the distribution f (p):

τ = P[X1=1,X2=1]
P[X1=1] = P2[S=2]

P1[S=1] =
E[p2]
E[p]

(11)

Note we can generalize the concordance rate for a N-tuple:

τN =
PN [S = N]

P1[S = 1]
=

E
[
pN]

E[p]

Using Equations (6) and (10), we obtain

τ =
Φ2 + Σ2

Φ

Thus, the relative risk RR = τ/Φ is equal to

RR =
E[p2]
E[p]2

= Φ2+Σ2

Φ2 = 1 + Σ2

Φ2 (12)

The twin concordance rate can also be computed using the probability density function
fa(p) restricted to the population of affected people. Let f (X, p) be the joint probability of
an individual to have a risk p ∈ [0, 1] and to be in the state X ∈ {0, 1}. According to Bayes’
theorem, also known as the theorem of the probability of causes since it was independently
rediscovered by Laplace [12], we write

f (X, p) = f (p|X)P(X) = f (X|p) f (p)

hence

f (p|X) =
f (X|p) f (p)

P(X)

Then, f (p|X = 1) is the distribution of the risk p in the population of affected people

f (p|X = 1) = fa(p)

Now, by definition, we have

f (X = 1|p) = p

and by noting that P[X = 1] = P1[S = 1], we also have

P[X = 1] = E[ f (X = 1|p)] = E[p]
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This leads to the following expression of the risk distribution function among affected
people

fa(p) =
p f (p)
E[p]

Note that fa(p) is the so-called “size-biased law” of the risk p of becoming ill. Size-
biased laws are found in many contexts, notably rare events [13], Poisson point pro-
cesses [14] or familial risk of disease [15].

The mean risk in the affected population is then

Ea[p] =
∫ 1

0
p fa(p)dp =

∫ 1
0 p2 f (p)dp

E[p]
=

E
[
p2]

E[p]

where Ea[·] is the expected value of · among affected people, with the probability distribu-
tion fa(p). Using Equation (11), we obtain

Ea[p] = τ

which proves that the mean risk in the affected population is equal to the twin concordance rate.
We proceed now to evaluate the functional form of the distribution f (p). Using the

prevalence and the twin concordance rate of the disease D, we have access to, and only to,
the mean Φ and dispersion Σ2 of f (p). The principle of maximum entropy then provides
us with the least arbitrary distribution [16,17]. Dowson and Wragg proved [18] that in
the class P of absolutely continuous probability distributions on [0, 1] with given first and
second moments (i.e., given mean and variance), there exists a distribution in P which
maximizes the entropy

H[ f ] = −
∫ 1

0
f (p) ln f (p)dp (13)

and the corresponding density function f (p) on [0, 1] is a truncated normal distribution
f (p; m, s, 0, 1), which may be either bell-shaped or U-type. Dowson and Wragg show that
when Φ� 1 and Σ > Φ, which is usual for most if not all chronic diseases (unpublished
results), the distribution f (p; m, s, 0, 1) is U-type (see Appendix B). This distribution, which
will be simply denoted f (p; m, s) in the following, can then be written

f (p; m, s) =
1

sZ

√
2
π

exp

(
(p−m)2

2s2

)

with

Z = erfi
(

m
s
√

2

)
+ erfi

(
1−m
s
√

2

)
The imaginary error function erfi(x) can be expressed using the Dawson function D(x)

erfi(x) =
2√
π

ex2
D(x)

Therefore, f (p; m, s) can finally be written

f (p; m, s) =
1√
2s

exp
(

p2−2mp
2s2

)
D
(

m
s
√

2

)
+ e

1−2m
2s2 D

(
1−m
s
√

2

)
It is straightforward to express Φ and Σ2 in terms of the parameters m and s:

Φ = m−
√

2
2 s 1−e

1−2m
2s2

D
(

m
s
√

2

)
+e

1−2m
2s2 D

(
1−m
s
√

2

) (14)
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Σ2 = −s2

1− 1
s

√
2

2
m+(1−m)e

1−2m
2s2

D
(

m
s
√

2

)
+e

1−2m
2s2 D

(
1−m
s
√

2

) + 1
2

(
1−e

1−2m
2s2

)2

[
D
(

m
s
√

2

)
+e

1−2m
2s2 D

(
1−m
s
√

2

)]2

 (15)

Inverting this system of equations to obtain the risk distribution function of the disease
D in terms of Φ and Σ2 is a bit trickier and requires a numerical solver. In the next section,
we show the outcome of this general formalism for one specific chronic disease, namely
Crohn’s disease.

5. Application to Crohn’s Disease (CD)

Crohn’s disease (CD) is one of the most well-documented chronic diseases, particularly
in the field of genetics [19]. Its prevalence Φ and twin concordance rate τ are [20]:

Φ ∼= 0.0025
τ ∼= 0.385

Then, the twin relative risk is
RR ∼= 154

hence
Σ2 = Φ2(RR− 1) ∼= 0.00096

Σ ∼= 0.031

which means that
Σ

Φ
∼= 12 (16)

The dispersion of the risk of being affected is, therefore, huge for CD.
It is now necessary to calculate the p-value according to Equation (9) in order to be

able to reject (or not) our null hypothesis H0. To do this, we first need to estimate the
number of twin pairs n that remains unknown in the Swedish study [20]. Nevertheless, the
number of twin pairs with at least one affected twin is known and equal to n1 + n2 = 31.5,
where n1 = 24 and n2 = 7.5 are the number of discordant and concordant twin pairs,
respectively [20]. We can reconstruct the sample size n that would have been needed to
obtain n1 and n2, with probabilities P2[S = 1] and P2[S = 2]:

P2[S = 1] + P2[S = 2] =
n1 + n2

n

By using Equations (5) and (6), we obtain the following sample size

n =
n1 + n2

1− (1−Φ)2 − Σ2
∼= 7809

Equation (9) is used by calculating z within the limit of large sample sizes n� 1. This
results in z ≈ 2.4, which allows us to reject the null hypothesis H0 with the p-value ≈ 8 · 10−3.

It is then legitimate to calculate the parameters m and s of the truncated normal
distribution f (p; m, s, 0, 1), which maximizes the entropy H[ f ] given the mean Φ and
the dispersion Σ2. Solving the system of Equations (14) and (15) for Φ = 0.0025 and
Σ = 0.031 gives

m ≈ 0.505
s ≈ 0.0278

Both probability distribution functions f (p; m, s) and fa(p; m, s) = p f (p; m, s)/Φ for
CD are plotted in Figure 4a and zoomed in in Figure 4b. Quite remarkably, the probability
density function fa(p; m, s) in the population of affected people has two narrow peaks,
one close to p = 0 and the other one close to p = 1. This means that there are two quite
separate categories of people who become ill: in the left peak (close to p = 0), people are
at very low risk, but still have been unlucky to become ill, whereas in the right peak (close
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to p = 1), people are at extremely high risk, hence are unlucky a priori, and indeed, were
bound to become ill. Not having any luck (to become ill because of high risk) or to have
been unlucky (to become ill despite low risk), that is the question!

Figure 4. (a) CD risk distribution function f (p; m, s) among the population (in blue) is narrow peaked at p = 0. The risk
distribution function fa = p f (p; m, s)Φ among affected people (in orange) has two narrow peaks. (b) Zoom in the vicinity
of both peaks p = 0 and p = 1. Concordant twins (almost) all belong to the right peak (at p = 1) whereas discordant twins
(almost) all belong to the left peak (at p = 0).
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Finally, we note that concordant twins are very likely to be in the right peak, whereas
discordant twins are in the left one. Indeed, when two MZ twins have their common risk p
in the left peak, their probability of being concordant is extremely low, of the order of the
mean of p2 restricted to the left peak of fa(p), which is of the order of 10−5. On the contrary,
when two MZ twins have their common risk p in the right peak, their probability to be
concordant is extremely high, of the order of 0.997. Interestingly enough, the fraction of
people in the right peak (area under the curve) is 38.52%, quite similar to the (probandwise)
twin concordance rate of 38.65% [20]. This strongly suggests that concordant twins for a
given disease both have a strong predisposition for this disease, whereas discordant twins
both have no particular predisposition.

6. Conclusions

Assessing the inequality of chances in a given population is a critical problem that has
several issues, notably health and social opportunity. Starting with the simple heads or tails
game, we have shown that, although hidden variables such as ex ante chances of gamblers
(possibly cheating) cannot be assessed, their distribution can actually be assessed whenever
multiple draws are available. For this purpose, we have proposed a hypothesis test to
evidence the inequality of chances in a given population, then infer the functional form
of the probability distribution function of the ex ante chances by means of the principle
of maximum entropy, which gives the least arbitrary distribution given the mean and
variance of the probability distribution function.

We applied this methodology to chronic diseases and found that the distribution
of the risk of becoming ill is usually a U-type truncated normal distribution. We have
computed the parameters of this U-type distribution in the case of Crohn’s disease using
the prevalence and the twin concordance rate of this pathology. Moreover, we have found
that the risk distribution function among affected people is bimodal with two narrow
peaks, one corresponding to people with no liable risk factor and the other one to people
genetically or environmentally destined to become ill. An interesting consequence is that
concordant twins for a given disease both have a strong predisposition for that disease,
while discordant twins both have no particular predisposition.

One should still not over-interpret the results, as they still rely only on estimates
of the prevalence and the twin concordance rate of the disease. It can be thought of
as the best possible interpretation in terms of distribution, based on the available infor-
mation. Nevertheless, maximizing the entropy of the risk distribution function leads to
significantly different conclusions than more arbitrary distributions such as, for example,
beta-distributions [21].

Twins provide a unique means to play twice at the lottery of diseases. Of course, twins
are all the more relevant to assess ex ante chances as they share the same environmental
factors. In the same vein, “social twins” or more generally “social clones” would be of
great help in assessing inequality of opportunities. However, controlling the environment
of such social clones would be rather challenging as the issue of choice comes into play,
which may change people’s lives with the same opportunities. Assessing the inequality of
opportunities is, therefore, one of the most delicate, almost completely open, issues.

Pascal could never complete his treatise “Geometry of Chance”. This never-ending
treatise is still being written, as evidenced in this Special Issue.
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Appendix A. Computing the Variance of Vn

To estimate the variance of S from a sample of n individuals, the unbiased variance
estimator is used:

Vn =
1

n− 1

n

∑
i=1

(
Si − S

)2

where S is the mean estimator

S =
1
n

n

∑
i=1

Si

We first recall the following properties of S:

E
[
S
]
= E[S]

Var
[
S
]
= Var[S]

n

By posing E
[
S
]
= E[S] = m, we can write

Vn =
1

n− 1

n

∑
i=1

(Si −m)2 − n
n− 1

(
S−m

)2

hence

Var[Vn] =
n

(n− 1)2 Var
[
(S−m)2

]
+

n2

(n− 1)2 Var
[(

S−m
)2
]
− 2n

(n− 1)2 Cov

[
n

∑
i=1

(Si −m)2,
(
S−m

)2
]

To simplify the calculation, we consider sufficiently large samples (typically n > 30) so
that the distribution of S tends towards the normal distribution N

(
E
[
S
]
, Var

[
S
])

of mean
E
[
S
]
= m and variance Var

[
S
]
= Var[S]/n, according to the central limit theorem. The

variable S is then independent of Si, which has, as an immediate effect, a null covariance
Cov

[
∑n

i=1(Si −m)2,
(
S−m

)2
]
= 0. Then, Var

[
(S−m)2

]
and Var

[(
S−m

)2
]

remain to be
determined. Let us start with the latter, which is simpler.

Var
[(

S−m
)2
]
= E

[(
S−m

)4
]
− E

[(
S−m

)2
]2

with

E
[(

S−m
)2
]
= Var

[
S
]
=

Var[S]
n

and
E
[(

S−m
)4
]
= E

[
S4
]
− 4E

[
S3
]
m + 6E

[
S2
]
m2 − 3m4

Since S is a Gaussian variable, its moments read

E
[
S2
]
= m2 + Var

[
S
]

E
[
S3
]
= m

(
m2 + 3 Var

[
S
])

E
[
S4
]
= m4 + 6m2 Var

[
S
]
+ 3 Var

[
S
]2
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All the terms in m cancel each other out, hence

Var
[(

S−m
)2
]
= 2 Var

[
S
]2

= 2
(

Var[S]
n

)2

Now all that remains is to determine Var
[
(S−m)2

]
. This term requires expressing

the moments of S as a function of the moments (up to the 4th order) of the distribution f .
First, let us start by explicating the variance.

Var
[
(S−m)2

]
= E

[
(S−m)4

]
− E

[
(S−m)2

]2

with
E
[
(S−m)2

]
= E

[
S2
]
−m2

and
E
[
(S−m)4

]
= E

[
S4
]
− 4E

[
S3
]
m + 6E

[
S2
]
m2 − 3m4

Then, we calculate the `-th moments of S (for ` = 2, 3, 4)

E
[
S`
]
= Ep

[
ES

[
S`
∣∣∣p]] = Ep

[
N

∑
k=0

k`Ck
N pk(1− p)N−k

]

E
[
S2
]
= NE[p] + N(N − 1)E

[
p2
]

E
[
S3
]
= NE[p] + 3N(N − 1)E

[
p2
]
+ N(N − 1)(N − 2)E

[
p3
]

E
[
S4
]
= NE[p] + 7N(N − 1)E

[
p2
]
+ 6N(N − 1)(N − 2)E

[
p3
]
+ N(N − 1)(N − 2)(N − 3)E

[
p4
]

We also have the variance of S expressed with the moments of p:

Var[S] = NE[p](1− NE[p]) + N(N − 1)E
[

p2
]

In general, we need to know the higher order moments of the distribution f if we
want to go further. However, we are only interested here in the case N = 2, where some
welcome simplifications arise. It turns out the higher order moments of the distribution f
do not contribute to the moments of S.

E
[
S2] = 2E[p] + 2E

[
p2]

E
[
S3] = 2E[p] + 6E

[
p2]

E
[
S4] = 2E[p] + 14E

[
p2]

hence,

Var
[(

S−m
)2
]
=

8
n2

(
E[p](1− 2E[p]) + E

[
p2
])2

and

Var
[
(S−m)2

]
= 2E[p](2E[p]− 1)(4E[p]− 1)2 + 4E

[
p2
]2

+ 2
(

7− 28E[p] + 32E[p]2
)

E
[

p2
]

It is further simplified by using E[p] = Φ and E
[
p2] = Φ2 + Σ2.

Var
[(

S−m
)2
]
=

8
n2

(
Φ(1−Φ) + Σ2

)2
Var

[
(S−m)2

]
= 2Φ(1−Φ)

(
1− 2Φ + 2Φ2

)
+ 14(2Φ− 1)2Σ2 − 4Σ4

Then, we obtain the following expression
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Var[Vn] =
2n

(n− 1)2

(
Φ(1−Φ)

(
1− 2Φ + 2Φ2

)
+ 7(2Φ− 1)2Σ2 − 2Σ4

)
+

8

(n− 1)2

(
Φ(1−Φ) + Σ2

)2

Finally, we can simplify further by posing Ψ = Φ(1−Φ):

Var[Vn] =
2n

(n−1)2

(
Ψ(1− 2Ψ) + 7(1− 4Ψ)Σ2 − 2Σ4)+ 8

(n−1)2

(
Ψ + Σ2)2

Appendix B. The Truncated Normal Distribution f (p; m, s, 0, 1) Is U-Type When
Φ � 1 and Σ > Φ

The prevalence Φ of chronic diseases is most generally of the order of 10−3 and the
relative risk RR of MZ twins is then of the order of 100. Thus, according to Equation (12),
Σ/Φ is of the order of 10. As an example, RR ∼= 12 for Crohn’s disease (see Equation (16)).
Therefore, Φ� 1 and Σ > Φ is the rule for chronic diseases.

Dowson and Wragg [18] show that the truncated normal distribution f (p) that maxi-
mizes the entropy H[ f ] (see Equation (13)) with given mean µ1 = Φ and second moment
µ2 = Φ2 + Σ2 is U-type when µ1 and µ2 are above the arc ˆOMA (see Figure 1 and text
below in [18]). This dividing curve separates U-type from bell-shaped distributions. On
this curve, the distribution f (p) that maximizes the entropy H[ f ] is no longer a truncated
normal distribution but becomes a truncated exponential distribution (the arc ˆOMA is the
set of points (µ1, µ2) whose coordinates are the first two moments of truncated exponential
distributions on [0, 1]). A truncated exponential distribution on [0, 1] can be written

fexp(p) =
λ

1− e−λ
e−λp

with λ ∈ ]−∞,+∞[. On the dividing curve ˆOMA, the first and second moments of fexp(p)
are given by

m1 = 1
λ −

1
eλ−1 (A1)

m2 = 2
λ2 −

(
1 + 2

λ

) 1
eλ−1 (A2)

It is easily seen that 0 < m1 < 1/2 when λ ∈ ]0,+∞[ and 1/2 < m1 < 1 when
λ ∈ ]−∞, 0[. The limiting case λ→ 0 corresponds to m1 = 1/2.

The truncated normal distribution f (p) that maximizes the entropy H[ f ] with given
mean µ1 = Φ and second moment µ2 = Φ2 + Σ2 is U-type when µ1 and µ2 are above
the arc ˆOMA, i.e., µ2 > m2 for µ1 = m1. Now, when m1 = Φ � 1, Equation (A1) gives
λ� 1 so that λ ∼ 1/m1. Then, Equation (A2) gives m2 ∼ 2/λ2, hence m2 ∼ 2m2

1, i.e.,
m2 ∼ 2Φ2. Therefore, f (p) is U-type if Φ2 + Σ2 > 2Φ2, i.e., Σ > Φ.
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