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Abstract Trajectory analysis is of crucial importance in several fields as so-
cial analysis, zoology, climatology or traffic monitoring. Over the last decade,
the number of mobile systems and devices recording their positions has grown
significantly generating a deluge of spatial and temporal data to analyze. This
increasing volume of data raises numerous issues in terms of storage, processing
and extraction of information. Previous works considering movement analysis
have been mainly oriented towards either archived data processing and mining
or continuous handling of incoming streams. The research developed in this pa-
per introduces the design principles of a holistic approach combining real-time
processing and archived data analysis to process mobility data ”on the fly”.
This solution aims to provide better results comparing to both purely offline
and online approaches. This research considers distributed data and process-
ing to be more efficient. The design principles are applied to maritime traffic
analysis and a few representative examples are introduced to demonstrate the
relevance of our approach.

Keywords Moving object database · Geostreaming · Maritime monitoring

1 Introduction

Over the past few years, the proliferation of sensors and devices recording po-
sitioning information regularly produces very large volumes of heterogeneous
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data. This leads to many research challenges as the storage, distribution, man-
agement, processing and analysis of the large mobility data repository gener-
ated that is far from being supported by most of current spatial databases.

Mobility analysis is a generic data manipulation functionality that relates
to many scientific and application domains such as traffic monitoring, envi-
ronmental and ecological modeling, urban planning, sociology and robotics.
Often, one of the main challenges when analyzing mobility data is to infer
patterns and outliers in the datasets generated, in order to determine some
novel knowledge regarding the phenomena studied. For instance, in the con-
text of traffic monitoring, regular behaviors and abnormal trajectories can be
inferred [67]. Similarly, in sociology, emerging human mobility patterns can be
inferred and studied, and this according to different social communities [35].
However, most current systems do not completely provide an efficient storage
and analysis of mobility data [82]. Indeed, not only moving objects continu-
ously recorded can produce huge amounts of trajectory data, but they also
need to be continuously updated.

Increasing amount of spatial and moving objects data raise some issues and
challenges to store and analyze it in a good way. The problem is to determine if
handling large volume and high velocities of spatial data need specific solutions
to deal with spatial and mobility analysis specificities or if existing systems
efficient to deal with non spatial data only need to be extended to solve this
problem [8]. Some recent works have pointed out the need for a (re)definition
of the problem of handling the deluge of spatial information [82] [87].

Without pretending to be exhaustive, we believe that the understanding
of the following issues is crucial to build a distributed management system
dedicated to spatial data storage and processing:

Data partitioning. To store and distribute in an efficient way we would like
spatial and spatio-temporal data to be evenly spread over all machines of the
distributed architecture. But a balanced partitioning of spatial data is more
difficult because data and objects are unevenly distributed in space compared
with usual data that can be randomly distributed and thus equally on all ma-
chines available. For spatial data and a fortiori moving objects we would be
able to distribute them in relation to their spatial or spatio-temporal cover-
age area. However, the events and phenomena are not uniformly distributed
spatially or temporally. This makes it difficult to evenly distribute data with
a static grid, while that allocating dynamic coverage areas poses performance
problems because every new record requires to move data to preserve balance
on all machines.

Complexity processing. The processing of spatial and spatio-temporal is
more complex. Indeed, operations on spatial data imply many space objects
and entities, each of which can comprise a large number of points, lines or
polygons. Moreover space operations are not only distances computing between
space objects or topological operations on particular areas, but also complex
analysis and spatial data mining. Mobility analysis increases the range and
complexity of queries, mobile objects requiring to reconstruct each trajectory
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and comparing with each other which is very expensive and generates many
joins in a database.

Data Complexity. Spatial data have a complex and heterogeneous struc-
ture. Indeed, the spatial representation comprises the positions, but also lines,
and polygons that can have very different shapes and sizes. This poses a prob-
lem of indexing space objects compared to non-spatial data. In addition, the
time component adds complexity because if we store only the positions relative
to their geographic coordinates it can lack of efficiency to process spatiotem-
poral queries or queries relative to movements. Many solutions exist index
following certain problems [65] but considering the continuous arrival of data
to be processed it’s difficult to maintain an optimal structure without having
to rebuild the index, which can be costly and can affect performance.

Locality and Granularity aspects. Spatial data is an abstract representation
of observations. While real world has a complex infinite, we cannot extract all
the information, it is often necessary to choose one data representation level for
instance a trajectory can be seen as a set of points or segments. Understanding
and manipulating data is therefore limited by this scale, and following spatial
granularity or spatio-temporal choice, process and information that income will
be irremediably affected. The inclusion of a representation at different levels
of granularity is possible but generate complex process [68]. This raises also
the problem of data relevance and the amount of data needed to give a good
response to a query. Indeed, maybe process all the data stored in the database
is not necessary, but take only a small part is enough to give an approximate
answer with a better time response. Timeliness is often considered in on-line
systems considering that recent data are more relevant than old data.

Spatial and temporal dependance. All the events taking place are at least
partially correlated to time and space which means that a random sampling is
not appropriate for spatial data processing. So it’s more difficult to do statis-
tical analysis on this data or at least necessitates to build specific algorithms
taking into account spatial specificities. In the case of moving objects, for in-
stance a solution to sample a trajectory is to keep only the records that allows
to find the place where the object was located by interpolating, without losing
information rather than random sampling.

Moving objects specificities. Moving objects generate a lot of data records
that need to be processed regularly. That’s why dealing with trajectories is
handling a deluge of spatial information because both volume and velocity
aspects have to be considered. Moreover, while movements are stored in a
discrete way, we have to interpolate and take into consideration uncertainty
of locations. Indeed, if we have to determine the actual position of a moving
object, we need to consider the last record location arrived in database and
infer the position thanks to last heading and speed recorded in the system.

The emergence of new systems and paradigms to deal with huge amount of
data such as map-reduce [19] provide some promising solutions but still do not
completely deal with moving objects [24]. This motivate a few recent works
such as Map-reduce system specifically dedicated to the spatial domain [4] and
particularly moving objects [52]. But still these systems are oriented towards
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”a posteriori analysis” and can lack of efficiency to process data ”on the fly”.
In most of current real-time application contexts, a successful processing sys-
tem for mobility analysis have to be reactive enough and allow for anomalies
detection in real-time, requiring to combine results extracted from historical
data with incoming data.

Given the specificity of the analysis of mobility issues in terms of velocity,
volume and low latency, we aim to design a framework for a hybrid archi-
tecture allowing tracking and analysis of moving objects in real-time. The
components of this infrastructure should take into account the special nature
of spatial data and manage the process of set of trajectories stored in archive
or arriving on the fly. This paper gives the first principles of development of
such an architecture.

The remainder of this paper is organized as follows. Section 2 provides
an overview and discusses existing works oriented towards offline and online
processing of mobility data before introducing hybrid processing related works
concerning no spatial data. Section 3 gives a general presentation of the mar-
itime context and the expectations of our hybrid system to handle moving
objects at sea. In Section 4 we developed the principles of the online process-
ing approach which is the focus of our hybrid-based proposal. In Section 5
we categorize the different queries that our system should be able to process
by instantiating a few examples to show working and abilities of our system.
Finally, Section 6 summarizes and concludes this paper.

2 Related work

Recent research works in the field of mobility analysis have been mainly ori-
ented towards either an offline approach which stores all the data and process
it on demand [75], or an online approach whose goal is to track and predict
the trajectories of moving objects [60].

2.1 Offline and online approaches for handling moving objects

The mining or offline processing of historical data is characterized by a com-
plete storage of the history of mobility data, while data is manipulated to
generally retrospectively study and predict the next stages of the phenom-
ena represented by such mobility data. In many application domains, and due
to the large dataset volumes generated, response-time to any query or anal-
ysis is of crucial importance. Indeed, there is a need for some manipulation
mechanisms (e.g., data structures, partitioning) to provide efficient access to
the data, and in order to prevent continuous updates. Most of current works
oriented to the manipulation of mobility data came from the moving object
database domain [29]. Extended relational or object-oriented approaches have
already integrated specialized data representation and manipulation exten-
sions (e.g., complex data types, operators) to deal with moving objects [75],
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[18]. Usual database functions can be then applied to moving objects such
as data mining techniques: extraction of outliers, aggregation, clustering [36].
Such manipulation functions allow for an identification of typical behaviors or
outliers [67]. Moreover, it appears that mining techniques require the distri-
bution of data and processing when the volume of data increases considerably
[53]. While offline approaches can provide valuable solutions in many cases,
they do not support specific real-time functionalities and for instance how to
react to some specific events.

The main principles of an online approach for trajectory analysis con-
cern continuously tracking of objects in motion, detection and prediction of
some typical behaviors as data is incoming. Such an approach is character-
ized by a memory-based processing where data is processed ”on the fly” for
better response times. Some works extend data stream management systems
(DSMS) for handling spatio-temporal data and addressing the problem of real-
time analysis on moving objects [60]. However this kind of approach is still
constrained by memory-based processing that implies to either sample or ag-
gregate the data using thematic, spatial or temporal criteria [38]. Another
difficult aspect of the management of trajectory data is that a given analysis
should be performed while the considered moving object may change its lo-
cation in the upcoming stream. Meanwhile, and as some continuous queries
are processed, these queries should be re-evaluated continuously as well which
necessitates an incremental processing paradigm to prevent the system from
complete re-evaluations [59]. Moreover, these multiple continuous queries must
be executed and recomputed simultaneously while objects move. This neces-
sitates specific approaches for sharing data manipulation and processing to
bring together moving objects possibly associated to the same moving queries.
Some recent works suggest some distributed processing approach performed
at multiple nodes to deal with moving objects [92]. Such approaches seems
more appropriate taking into account that positioning data is received from
multiple different locations and that a system relying in a centralized system
may be overloaded. The limitations of an online approach is that it often leads
to unsatisfactory situations because some data have been deleted or altered or
not income yet in the system. Indeed, even if the system is able to respond in
sufficient time to a given query, accuracy is not guaranteed because of either
limited amount of data considered, or alteration of the location of the moving
object.

The problems and limitations mentioned above motivate our search for a
hybrid solution whose objective will be to give query responses in sufficient
time while maintaining appropriate accuracy and appropriateness regarding
the dynamism of the system. Then let us introduce the different works related
to hybrid storage and processing. To the best of our knowledge such approach
haven’t been used yet to deal with moving objects.
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2.2 Towards a hybrid approach

The main motivations and principles of a hybrid approach have been described
in [15] in which three types of queries are distinguished: those on archived data,
those related to the data received in real-time, and those so-called ”hybrid”
queries that require to combine real-time data and query results extracted
from archived data. To the best of our knowledge it was the first work to
consider merging of old and recent data to process data in a database. The
solution proposed by the authors of this work is to reduce the amount of
archived data to process when overload occurs. The amount of archived data
needed is reduced by sampling or aggregating old data to answer a hybrid
query. Some others works derive from this approach, in [23] the authors try to
correlate events over live and archived data streams to identify specific event
while handling data that incomes massively in the system. To do this they
mainly cache query results, keep new data in memory and focus on pattern
correlation queries. Then they develop their own idea of events to build their
complex event processing system acting in a hybrid way with financial context
as an application case. Another close work [11] concerns the identification
of patterns over streaming and archived data in a complex event processing
context.

More recently, with the emergence of the big volume and velocity issue, a
new model of architecture has been proposed. The so-called ”Lambda Archi-
tecture” proposes a data management system taking into account both velocity
and volume aspects with the constraint of low latency [54]. This architecture
consists of three layers, a layer which corresponds to the data stored in a
NOSQL database and pre-computed views related to frequently asked queries,
a layer corresponding to real-time processing, and an intermediate layer that
allows to merge the results of the previous two layers.

Existing hybrid systems can be classified as follows: DBMS-based systems,
map-reduce-based systems and DSMS-based systems [37]. DBMS-based sys-
tems deal with high level queries (SQL-like) and encompass query planning
optimization while map-reduce-based systems scale-out with fault tolerance
and process huge amount of data. However, neither DBMS or map-reduce sys-
tems are real-time systems. DSMS-based systems is the only kind of system
that supports real-time requirements. It enables real-time processing with a
context given by the analysis of historical data, but still such systems are non
easy to implement as they have to take into account the processing of large
incoming real-time data with archived data. But nowadays mapreduce sys-
tems have evolved to deal with real-time requirements aspects and then can
be considered as serious candidates for handling moving object processing and
storage.

Indeed, at the beginning, the emergence of hadoop and mapreduce systems
to deal with huge amounts of data allowed to face with high volume and process
challenge. Nevertheless, this kind of system were ill-equipped to take care of
velocity aspect and are not well suited for high iterative processes that is
our main concern. That’s why some systems have been developed to fix these
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problems as Mapreduce online [17] that provide an interactive mapreduce by
pipelining the map and reduce phase or others systems based on a Mapreduce
incremental paradigm [66], [50] where some views are updated while data
income in the system. But these systems are still batch-oriented and don’t
provide sufficient performances to deal with velocity and iterative processes
such as machine learning algorithms.

More recently, Spark [94] had emerged as the successor of hadoop sup-
posed to be hundred time faster than hadoop. Spark is based on RDD (Re-
silient Distributed Datasets) [93] which allows to keep in memory a part of
the intermediate results without writing in on disk and staying fault tolerant
that is really useful to perform iterative processes. Moreover some primitive
operators such as filter, join or partition have been added on RDD to the
mapreduce basis to partition data and process it in a DAG way [9]. With its
extension Spark streaming [95], Spark allows data processing in hybrid way
combining batch and streaming processing. To act as a DSMS (Data Stream
Management System), Spark processes data in a ”micro-batch way”, consid-
ering that a stream is a mini-batch. So in spite of its well admitted efficiency,
Spark stays batch-oriented and can provide poor results. For instance, if you
have some period where no data is incoming in the system, old record may
stay in the system without been processed while the mini-batch length has
not been reached yet. Moreover, the granularity of the answers are bounded
by the batch length chosen for the micro-batch.

Summingbird [13] is an illustration of the Lambda Architecture, with a
batch layer a speed layer and a serving layer. The batch layer, usually works
in a Map-Reduce way to process huge amounts of data whereas the speed layer
process data in real-time as such system like S4 or Storm do it. The serving
layer is responsible for merging the views extracted from the real-time part
with the partial aggregates derived from the batch part. Such an architecture
allows to write a code only once and everything will be executed a different
way considering if it has to process data in online or offline way.

Apache Flink derived from the initial works on Stratosphere [5] is a dis-
tributed stream-oriented system. The systems disposes of a richer set of primi-
tives than mapreduce, it acts as a dataflow system to perform iterative process-
ing [27] [28]. Indeed, with delta iteration it permits to process data and chain
the iterative phase in an incremental way. It includes a query optimizer that
parallelizes and optimizes the workflow processing system considered even for
UDF (User Defined Functions) [46] and reorder the pipelining of the operators
if necessary [45]. Moreover, different kinds of windows and operators on them
are available for instance triggers than are called when some events occurs,
we can then imagine triggers that calls other triggers and operators when a
special value incomes into the system. Finally, contrary to Spark it processes
data incoming ”on the fly” by pipelining directly them trough the dataflow.
Following the ”Flink way of thinking” batch processing is just stream process-
ing concerning a bounded period of time. That’s why Flink seems to be more
stream-oriented than Spark, and thus more suitable to deal with real-time
requirements.
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3 Maritime application context and motivations

Maritime transportation is a domain of increasingly intense traffic (Figure 1).
The monitoring and analysis of mobilities at sea is therefore crucial for safety
and security reasons. For instance, these analysis of mobility and behavior
should be designed to detect illegal or criminal activities, risks at sea (flow of
illicit products, illegal immigration, overfishing, pollution by hazardous mate-
rials, piracy, accidents , etc.), and more generally any violation to regulations.
Traffic monitoring is nowadays largely based on the continuous identification
of vessel positions and trajectories and some additional functionalities such as
pattern and abnormal behavior detections [67].

Fig. 1 Ships’ trajectories, density map in Europe during one month (AIS positions, De-
cember 2010)

Practically, ships are fitted out with almost real-time position report sys-
tems whose objective is to identify and locate vessels at distance (Automatic
Identification System (AIS) for example [2]). The multiplication of vessel po-
sitioning systems such as AIS but also Satellite AIS, Vessel Monitoring Sys-
tem (VMS) or Long Range Identification System (LRIT) contributes to the
real-time availability of large traffic data at sea. The large datasets gener-
ated become difficult to manage and analyze due to the heterogeneity, large
volumes and real-time components of the large datasets generated. Detecting
trends and abnormal behaviors at sea still require such large-scale continuous
collection of vessel positions and the development of specific spatio-temporal
analysis and knowledge extraction methods [88].

Amongst the requirements, not only such a system should be able to ma-
nipulate fresh and historical data separately and jointly but also appropriate
functionalities to respond to any queries in almost real-time. This clearly mo-
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tivates and supports our search for a hybrid system that needs to be stream-
oriented (or DSMS-based), to respond in few seconds to minutes and not hours
to any queries in order to allow a maritime agent to act immediately when any
problem happens. We thus propose a DSMS-based system for vessels mobility
and traffic. The following section introduces the main challenges and principles
retained for the design of such a system.

3.1 Goals and expectations for a monitoring maritime traffic system

In order to manage and monitor maritime traffic, it is necessary to respect
some principles and requirements. Those principles raise some issues to still
consider for processing of mobility data in real-time:

– Using views for real-time analysis. The system should give an answer within
a short time period compared to a purely offline system and of better
accuracy than a purely online one. However, a measure of the quality of
response must be done to evaluate if the system can support execution of
complicated queries and perform trajectory analysis in near real-time. To
deal with real-time requirements such system will store online and offline
views in main memory. The system should be able to take, translate and
merge them with incoming data [33]. Views should be the cornerstone of our
architecture to share processing and results and then reduce the response
time.

– An adaptive system. This system should be reactive and adapt itself grad-
ually as the data and queries are received to be as efficient as possible and
perform incoming queries [21]. The framework must monitor the system
performances and modify itself. For example, changing allocation of pro-
cesses to the different nodes of the architecture to best fit with the queries
already running in the system. Data that are no longer useful must be
aggregated or transferred to the offline part to reduce the amount of data
to process.

– Query understanding to deal with mobility. This system should handle a
large variety of queries, this necessitates algorithms to decompose queries,
analyze similarity between queries, use previous results of queries or views
and merge it with incoming data. There is still a need to analyze and study
the different kinds of queries related to moving objects and find similarities
and common processing over them [79].

– An autonomous and reactive processing system. This system should handle
processing and maintenance of views in accordance to queries frequently
formulated by the agents. It should detect the emergence of new events and
advise agents of those modifications. It might also reduce the intervention of
human agents and process himself data and provide results only if necessary
in a DAHP (Data Active Human Passive) way” [3].
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3.2 Design of a hybrid system for moving objects

Requirements and goals of our design having been formulated in the previ-
ous section. Let us describe the principles of our hybrid architecture whose
objective is to handle moving objects.

The hybrid system suggested is structured with two main components: One
relates to the offline processing while the other one is responsible for the online
part (cf. Figure 2). Both components can run independently in pure offline or
online way storing and processing data incoming in the system, but the goal
of such a system is to exploit the advantages of both approaches in order to
answer hybrid queries.

Fig. 2 Architectural principles

Online processing is performed on a distributed sliding window whose size
can be changed according to the amount of data collected in real-time on
the respective coverage area. Online views on continuous queries are updated
and incremented while incoming data stream is processed. When a user gives
query for which no synthesized summary exists, necessary data to handle the
query are accessible via the sliding window. When the temporal interval of the
sliding window is exceeded, the data is transferred to the historical database
to perform distributed processing offline. In order to have a reactive system,
summaries are performed on historical data and updated upon arrival in the
database and then transferred to online part to provide real-time answers.
Both online and offline parts use a distributed processing schema that still
needs to be defined to take advantage of the spatial and temporal distribution
of positioning records.

Furthermore, two entities have the role (cf. Figure 2) of identifying the data
to extract and process, and to manage the interactions between the historical
database and real-time processing system. In other words, these are the major
components of our hybrid system which allows us to merge the online and
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offline parts and to answer the query using the minimum data as possible in
accordance to user’s requirements.

The role of the Mediator is to manage the flows between components on-
line and offline, preserve and store the associated views and to merge them to
answer hybrid queries. The Evaluator analyzes the input query and tries to
infer the type of request, (i.e. online, offline or hybrid) to guide, based on the
identified type of query, recovery of data and information needed in our archi-
tecture. It transmits the desired data to the Mediator to deal with, then the
Mediator is responsible to answer the query taking, combining or performing
processing on the sliding time window or on the archive following the query
type.

4 Towards a Stream-based system for moving objects

Considering our application context on maritime traffic monitoring our hybrid
approach must be stream-oriented to deal with real-time requirements. Let us
examine the challenges and difficulties involved in the design of a DSMS-based
approach and those directly inherited from the DSMS part.

4.1 Challenges involved in a distributed data stream management system for
moving objects

In a DSMS, a query consists of stream operators organized in a directed acyclic
graph (DAG) or workflow [9]. Query operators are connected via queues and
each stream operator has an in-memory state composed by the tuples needed
to perform the operation whose is responsible for. The DAG uses a pipeline
paradigm where each result produced by an operator is transmitted to the
following operator(s) in the workflow. All data are processed in main memory
and some tuples or results cached are shared between the different queries
which run simultaneously.

Handling moving object in this context raises some additional issues that
should be taken into account to design a distributed moving object stream
management system. Let us sum up the challenges associated to the design of
a distributed DSMS-based system for mobility analysis.

– Distribution and optimization of the queries. This system can be modeled
as a dataflow where incoming data flows and queries should be re-evaluated
accordingly [21]. Therefore, such system should create and delete novel
processes when necessary to stay efficient as the system evolves. Online
systems must also process multiple queries simultaneously, then incoming
data associated to different queries must be brought and processed to-
gether in order to reduce number of operations. Finally this system must
re-order the operators that process data and choose the best efficient query
execution plan.
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– Evaluation and approximation. An important problem to deal with in on-
line systems is that data are processed in memory only. Therefore, the
amount of data manipulated in memory should be reduced when process-
ing the re-sampling, compressing load-shedding... [38]. Another approach
is to design specific algorithms that give approximate solutions by a data
evaluation performed at regular times. Data summaries or data views can
be also used as a sort of incremental processing paradigm [33].

– Distributed schema processing. The two previous challenges must be ex-
tended in the context of a distributed system. Such distribution brings
common additional issues such as fault tolerance, scalability and data dis-
tribution. In the context of our approach view placement, dynamic alloca-
tion of the operators, data transfer from one node to another must be also
taken into account [80]. This implies to distribute both data and processing
along the nodes of our architecture. Distribution can be done according to
spatial coverage, temporal extent or by taking into account moving object
movement patterns [83].

– A hybrid stream-based approach. In the context of hybrid processing stream-
oriented, the online part must be the cornerstone of this system that can
be combined with offline results. Therefore, this system must be able to
merge query results of online and offline parts as well as making a difference
between the online and offline parts of a hybrid query.

To the best of our knowledge, the first research work to address the integra-
tion of the fields of data stream management and moving objects is introduced
in [71]. In this paper, the author defines a data model for handling moving
object as data streams but seems ill-equipped to deal with some cases (only
moving points are considering and not moving regions). The system developed
provides some sampling algorithms to manipulate moving objects in order to
reduce the amount of data stored in memory [76], using sliding windows at dif-
ferent levels of granularity [69] or using summaries [77]. However, and despite
the fact that the amount of data processed in memory is relatively limited,
multiple queries and integration of on-line and archived data is not taken into
account. The only aspects concerning distribution and optimization of queries
are inherited from TelegraphCQ [14], but the problem is that evaluation and
approximation techniques have not been implemented into an only one system
or applied to extend TelegraphCQ.

Other related work focuses on scalability issues where the author intro-
duces a shared-execution paradigm [16], in other words a join between data
and queries to deal with coordinated execution of multiple queries applied to
several objects in a moving object context [60]. Another focus is made on the
incremental query processing [59] to avoid complete re-evaluation of persistent
queries into the system. Indeed, to avoid a complete reevaluation of a given
query, difference is made positive and negative updates when previous results
or summaries of data are used via predicate windows [32]. In [90] the author
address the problem into account incremental processing and multiple queries
handling but some views are still stored on disk. In SOLE [58] the same au-
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Table 1 State of the art Resume for Stream Moving Objects Systems
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thors proposes to deal with moving objects in a online way only by processing
data in-memory, but this work doesn’t take care of distribution aspects.

The work introduced in SCUBA uses datamining techniques such as clus-
tering to reduce the amount of data and time processing, using a shared-cluster
based execution paradigm and load-shedding and applied to moving objects
[62]. Despite its interest, a limitation of this work is that although it is appro-
priate when dealing with moving objects with relatively predictable behavior
in some constrained urban networks, this being not the case in the maritime
domain.

StreamSecondo [96] extends Secondo [18] by providing an algebra to deal
with spatial streams. However, the management and query repartition aspects
are not the main concern of this work which focuses on spatial objects rather
than on moving objects. Some windows and spatial operators have been im-
plemented but don’t seem to be sufficient to our application context.

In [30] the authors suggest a general framework to deal with moving objects
knowing about the limits of TelegraphCQ in [71] and inspired by the algebra
defined in [96]. It can be used as a basis for developing a geospatial DSMS but
doesn’t take into account management and query repartition aspect.

In [48] the authors address the design of a system for mobility data process-
ing extending the following CEP (Complex Event Processing system) [7]. The
authors propose to merge old data derived as sketches with incoming data to
handle moving objects. Moreover, spatio-temporal streams and spatial queries
like knn-query and range query have been developed. However, the system
seems designed for networks and the distribution aspect is not addressed.

IBM Infosphere streams ITS [12] provides a modular distributed framework
to process positioning data. It deals with management and query repartition
aspect by reordering [89] and fusing operators [49]. Although spatial data
and operators are not implemented and the main concern is rather on map-
matching or shortest path finding than mobility analysis.

Another works have emerged with proliferation of cloud-streaming solu-
tions as Storm and S4 [64] by extended them to deal with mobility analysis
[92], [31]. However, these systems distribute the process but do not appear to
deal with query optimization and approximations issues.

MOCEP (Complex Event Processing system for Moving Object) (cf. sec-
tion 5) is the system that we propose to deal with mobility analysis in an
outdoor context. It considers movement in term of events to process mobility
data. A hybrid approach combining real-time processing and archived data
analysis is suggested to handle moving objects ”on the fly”. Distribution over
several nodes is also considered to improve data processing. It requires a more
precise definition of events necessary to express and store views into the sys-
tem.
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Table 2 Pro and Cons of State of the art Stream Moving Objects Systems
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4.2 Stream processing principles to handle moving objects

Considering both challenges for handling moving objects in a DSMS-based
approach 4.1 and principles of our hybrid system 3.2 to deal with operational
context, let us propose the following architecture (cf. Figure 3) which is cur-
rently under development and falls into the conception of a stream-oriented
hybrid system.

Fig. 3 Online architectural principles

There are two different inputs, one related to the system which collects
the data and processes it as it incomes, and one related to the user which
formulates and adds his query to the pool of persistent queries or wants an
answer to a hybrid query. The link between these two components is made by
the Executor which is the distributed data flows processing engine whose role
is to join moving objects with queries in order to share processing and data
along the different operators.

Incoming streams are received, pre-processed and supplied to the stream
operators by the Router while new queries are analyzed and translated in the
form of workflow (or query plan) by the Analyzer. As a new query is specified
in the system, there are two different options following the result given by the
Evaluator on the hybrid part. When the incoming query is persistent, then it
is added to the system to run continuously whereas if it is a one-time query it
will be executed once and processed mainly using views. The Analyzer extracts
the online part related to the query by desegregating the query into online and
offline sub-queries. The query plans associated to the online queries are then
stored in a repository (Query Depot) and managed by the Query Manager that
stores, indexes and ensures the periodic re-execution of continuous queries. The
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Executor, or dataflow based engine gives the link between the data sent by the
Router and the queries which have been translated into scheduling processes
and optimized by the Scheduler according to queries already running in the
Executor. Finally, the Memory Manager is responsible for the management of
the sliding windows and the transfer of data from the online part to offline one
via the Mediator in case of obsolescence of data, while the View Manager is in
charge of view maintenance obtained from successive executions of continuous
queries.

When the incoming query is executed once then the system checks if the
online sub-query(or a part of it) is already running in the pool of queries (in
the Query Depot). If this is the case the system takes the view associated to
the query via the View Manager, if not the system computes the result using
the distributed sliding window and generates the associated view as it’s done
for a persistent query that run continuously.

5 MOCEP : a Complex Event Processing system for Moving
Object

5.1 Different kinds of queries for moving objects

Since development of moving object databases (MOD), a lot of different works
have been made to process and a particularly one query such as continuous
knn-query [91] or range query [47]. Instead, we aim to provide a system that
will be able to deal with most of the different queries that can be formulated by
an agent in a general framework as in [57]. The different kind of moving objects
queries can be classified into three different kinds of queries [20]. First of all,
queries can concern comparison of trajectories with specific locations or POI
(Point Of Interest). An example of a so-called P-query could be ”What are the
moving objects that have been close to this specific point?”. Secondly, in some
queries called R-queries trajectories and regions can be involved, for instance
we can be interested in finding trajectories that cross a specific spatiotempo-
ral region or finding regions that are usually crossed by moving objects. An
illustration of such queries could be ”What are the regions that are the most
crossed between the period time T ?”. Finally, T-queries are queries related
to similarity finding in a set of trajectories. This can be relevant to identify
some meeting, collision phenomena between moving objects but also to iden-
tify specific patterns. An example of such a query could be ”What are the
moving objects that could intersect the trajectory of this specific moving ob-
ject during the next five minutes?”. Those are the different queries that our
system should be able to deal with. We can also categorize queries considering
the time period concerned by the query as it is done in [65] for index. Past
query will concern old data, whereas now-queries will refer to current and re-
cent data. Predictive queries need recent and old data following the accuracy
and the time prediction of the query. Indeed, if we want to estimate the future
location of moving objects in 2 minutes, this position can be computed with



18 Loic Salmon, Cyril Ray

precedent heading and velocity with a tiny error, while estimate the position
in 10 minutes can require recent data heading and velocity to compare with
old data to have a better accuracy. Finally, in our hybrid stream-oriented sys-
tem we can classify queries considering if they are to be executed once in the
system so we’ll talk about one-time queries or if they have to run continuously
as data incomes in the system so we’ll talk about continuous queries.

5.2 Event paradigm to deal with mobility analysis

We can model displacement of moving objects as events. The notion of events
to deal with trajectory have been proposed recently in [70] where a Complex
Event Recognition system is used to identify some typical behaviors in the
maritime traffic domain. The notion of event and hybrid pattern matching
(over stream and archived data) developed in [11] can be extended in our
moving object context. Let’s consider the following assumptions :

Definition 1 : Basic Event. A basic event for moving object is noted as
follows E=E(EventId,TypeId,time,<a1,...,an>), where EventId identifies the
moving object event, Typeid refers to the kind of moving object event con-
sidered, the time value defines the moment where the event took place and
<a1,...,an> corresponds to the attributes specific to the event. Here we’ll con-
sider only one kind of events that is the belonging of a moving object to a
spatio-temporal area at a determinate time. For the following part of this pa-
per a Basic Event will refer to this specific event.

Definition 2 : Complex Event. A complex event for moving object is de-
fined as E=E(EventId, C=<e1 Opr e2 Opr... en>, ts, te, <a1,...,an>) where
C is a set of basic or complex events linked with each other by Opr event con-
structor that can be disjunction, conjunction and so on while ts is the time
corresponding to the beginning of the event and te the time of end. For this
paper, complex events will be limited only to conjunction of basic event previ-
ously defined. Then complex moving object event associated to a moving object
will correspond only to the spatio-temporal areas crossed by this moving object.

These event definitions that still need to be extended, allow us to define
results from queries execution by patterns. These patterns expressed as a se-
quence of events can provide some views at another level to filter and compare
elements with incoming streams into the system. In order to do that, we’ll have
to correlate the on-line execution of queries defined in the previous section 3.2
with specific patterns recorded as views in-memory or on disk considering the
free space in memory. Here also we can distinguish three kind of generic pat-
terns [51]. Individual patterns focus on the behavior of a specific moving object
in order to identify some specific patterns that occurs periodically for the mov-
ing object considered. Pairwise patterns concerns process on pairs of moving
objects to detect some collision or avoidance phenomena. Finally, aggregate
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Table 3 Representative table of different queries that the system should deal with
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patterns are extracted to find specific behaviors over multiples trajectories like
moving clusters and derived (flocks, convoys, swarms ...), frequent trajectory
patterns or overcrowded areas. Those patterns have to evolve in an incremental
way for the online part to reduce the process due to complete reevaluation.

5.3 General statements and preliminary elements of the system

Let us introduce the operational elements of our system. The system we have
chosen to extend is the Apache Flink system described on section 2.2, because
it seems the more suitable to deal with real-time requirements allowing to make
hybrid processing. The proposed solution takes also into account elements and
design principles previously defined (cf. Figure 2 and Figure 3)

Let us describe different elements and the way they are handled in the
Apache Flink system. A Window Assigner is responsible for the assignment of
elements to one or more windows, in a similar way to our WindowsManager
defined in section 4.2. Each window owns a Trigger that forces the evaluation
and execution of on a window or a part of it. The Trigger is called when an
element is inserted into the windows or some time events occurs (typically
when no activity have been recorded for a certain time period). A window can
be evaluated several times depending on the nature of the Trigger and data
incoming into the system. The Evictor is an optional complement responsible
for deleting some data that are to old and can be involved independently or
after the Trigger action.
Flink deals with iteration in a specific way. For a classical iterative algorithm
as machine learning algorithms, the entire input is consumed into an opera-
tor chain to produce the next version of the partial solution, and the partial
solution is used to fed the following step while stop conditions have not been
reached (convergence criterion or maximum number of iterations). There is
also the notion of delta iteration that can be very useful in our context. Rather
than fully recompute all data at each step, just new data are evaluated and
merged with results derived from the previous iteration.

Concerning the distribution, data are split on the different nodes accord-
ingly to their spatial location. Basically, we’ll mesh space by using grid cells
of regular size. We know about the skew phenomena and some future works
and refinement will be done to study the best repartition. The advantages
of splitting data and queries accordingly to their spatial area is that if each
moving object doesn’t move from its area, we’ll have less data to examine to
retrieve corresponding data and compute results. The problems occurs when
the moving object leaves its area, so we’ll have to transfer the moving queries
and views associated to this moving object to the node responsible for the new
covering area in a similar way to the QTP model proposed in [90].
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5.4 Illustrative queries for maritime traffic monitoring

In our system, queries can be persistent or one-time considering if they are
continuously running into the system of they are executed once. Persistent
queries are the cornerstone of our system because they produce views that are
continuously updated and synthesize some interesting results. These synopses
can be used directly to answer other queries. Here we present representative
persistent queries relevant for maritime traffic monitoring:

5.4.1 Illustrative persistent queries

Persistent queries related to trajectory reconstruction. For each trajectory,
while a new location is incoming in the system the new location is added
to the trajectory. When the record is made on a different node comparing to
node where last record have been registered, then views and moving queries
transfer is executed. The view corresponding to the trajectory reconstruction
is the set of the different locations reported during the last L minutes, where L
is the size of the sliding window chosen that need to be determined that could
be variable. Views idea necesitates some mechanisms to refresh and have a
view related to the time period considered. To update the view for trajectory
construction, updates are done by appending new records as explained and
old records are deleted via Evictors.

Persistent queries related to next location. With AIS system, each record is
done following the speed of the ship. We can thus determine the next location
that will be registered in the system and raise some triggers or alerts if no posi-
tion are emitted from the boats or if the location doesn’t fit with the previous
that has income into the system. To estimate the next position of a vessel we
can take into account the ship kind, the previous heading and velocity without
forgetting uncertainty aspects. We can then in a similar way to [76] deleting
unnecessary data that are not relevant to describe ship’s movement.

Persistent queries related to a trajectory pattern. Here we wants the sys-
tem to resume as synopses the representative path that vessels generally use
to cross some areas like in [26]. For instance if we are interested by the typ-
ical road followed by cargo ships in the Atlantic Ocean it can be relevant to
aggregate trajectories of all boats that have crossed the area to extract the
different representative patterns and behaviors. We could use some relevant
datamining techniques dedicated to trajectory mining as Dbscan or clustering
techniques to determine spatio-temporal patterns as in [22]. Here we propose
to use the Fpgrowth algorithm developed in [42] whose objective is to find
frequent patterns in transaction and time serie databases. This mining tech-
nique seems suitable and fit with the event model proposed in the previous
section 5.2. Indeed, we can mesh space with tiles that will be from different
size from the area size for every node of the system and use Fpgrowth to find
trajectory patterns in a similar way to [61]. A basic event is the fact that a
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moving object has recorded its location in a tile and represents an item while
a complex event is a sequence of basic events constituting the whole trajectory
of the moving object and corresponds to a transaction. So we’ll generate a tree
of frequent patterns (frequent trajectories/subtrajectories) from the transac-
tion database (set of trajectories).

Some other queries are formulated by the agents as they observe suspicious
behavior. Our system takes advantage of the views derived from persistent
queries to answer to these one-time queries. Let us give some representative
examples:

5.4.2 Illustrative one-time queries

One-time Query: ”Is this vessel following a ’normal’ trajectory?” The role
of maritime agents is to monitor maritime traffic in order to prevent some
accident from happening or reacts quickly when some problems occurs. In this
context, where the agent have to look after maybe until several hundred of
ships at a time, a query that automatically detects some strange behavior can
be useful. To determine the ”normality” of a trajectory, we want to compare
actual trajectories with trajectory pattern recorded in the system as views as
in [22]. We can then use the benefits of the views related to trajectory pattern

Fig. 4 Spatio-temporal corridor to detect abnormal trajectories and behaviors [22].

extraction and compare with actual trajectories recorded in the system in
the views concerning trajectories reconstruction by using a Jaccard distance.
If Jaccard distance between the specific vessel and the trajectory patterns
registered is high, we can analyze this boat displacement over the last few
days to see if there is some periodic pattern or if its movement seems normal.
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Here, we can see the relevance of patterns derived from events for our system,
because it allows to filter elements and focus on suspicious behaviors.

One-time Query: ”What are the fishing areas near from Brest?” Identify
fishing areas is relevant because it allows to make some difference between
legal and illegal fishing to preserve environment and fish species diversity. In
order to do that, we restrain the study to fishing boats, behaviors of vessels
currently fishing is specific and can be identify easily. The boat moves at a low
speed and makes some loops to fish, then for each fishing vessel we compute
the coverage area of fishing and intersect with coverage areas of other fishing
boats to extract a density map of activity and obtain fishing areas as proposed
in [1]. Those fishing areas extracted from the offline part and incremented in

Fig. 5 Estimated fishing activity for scalop dredging vessels per month in 2011-2012 (ex-
pressed in fishing hours/km)[1].

real-time are then compared with fishing boat currently in movement and
clearly identify fisherman in fraud. The problem here, is that some fishermen
shut down their system of position reporting when they are in illegal areas.
To extend the query, a good idea could be to identify some ”gaps” in fishing
boat trajectories to infer which one belong to malicious anglers.
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5.5 Discussion

The research developed in this paper introduced the principles of a hybrid
approach for mobility mining combining real-time analysis with information
extracted from archived data. The system developed is mainly oriented to the
online part of the architecture in order to deal with real-time requirements. We
expect that most queries will be processed using only the online part and views
associated to the analysis of archived data. Such system should be autonomous
and process data and advise agents when necessary. The advantages of such an
approach is its likely fast response-time and its reactivity to new events in a
operational context, but can lack of efficiency for stream mining or running of
complex queries.The few examples presented here give some statements in the
mechanisms involved but some of them need to be studied and improved. For
instance, the idea of event must be investigated and should allow to answer
queries of this kind ”What are the moving objects that leaves this area in
a high speed with a heading change?”. An another thing to investigate is
the distribution of the data and the design of algorithms that should take
advantage from this distribution in an incremental way. Finally, views need to
be enriched and defined at different granularity levels to answer the queries
and to limit computes in our system.

6 Conclusion

Over the past few years the emergence and proliferation of mobile and sensor-
based systems have generated a significant increase of spatial and temporal
data in terms of volume and update frequency. The maritime domain in par-
ticular had recently to face with an explosion of positioning data that requires
a reevaluation of existing methods and systems to deal with maritime traffic
monitoring. Previous works related to trajectory analysis have been directed
towards either mining archived historical data (offline) or continuous process-
ing of incoming data streams (online). In this work we have introduced the
design principles of a hybrid approach combining both online and offline ap-
proaches to process maritime traffic data. The hybrid architecture suggested
is stream-based and deal with real-time requirements of operational contexts
enriched by the analysis of archived data. It has been instantiated in a few
examples to illustrate the mechanisms and algorithms used. Ongoing work con-
cerns the development and implementation of the event processing paradigm
proposed and the evaluation of our use case examples.
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