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Abstract—More effective, efficient and flexible ways to manage
safety assurance are needed for the successful development and
release of Automated Driving Systems (ADSs). In this paper we
propose a set of desired assurance method criteria and present
an initial overview of available safety assurance methods and
how they contribute to the proposed criteria. We observe that
there is a significant gap between the state-of-the-art research and
the state-of-practise for safety assurance of ADSs and propose
to investigate reasons for this as future work. A next step will
be to investigate how to merge the elements from the different
assurance methods to achieve a method addressing all criteria.

Index Terms—Safety assurance, Contract-based design, safety
contracts, automated driving system, assurance method criteria.

I. INTRODUCTION

Safety assurance is a challenge for development of ad-
vanced automated and connected vehicle functions, such as
automated driving systems (ADSs). There is a need for more
effective, efficient and flexible ways to manage assurance
cases compared to currently prevailing practices. Incremental
development to ease introduction of ADSs by allowing for
gradual improvement of performance and gradual expansion
of the operational design domain (ODD) requires support
for (a) frequent updates, e.g. using agile development and
continuous integration/continuous deployment schemes. Key
to such incremental improvements is also use of targeted
collection of (b) operational data giving feedback to de-
velopment, e.g. using DevOps/DataOps methods. In addition,
automated functions will have a need for (c) monitoring
changes in the operational context to make sure the safety
case stays valid, e.g. by using field data in the context of ODD
verification and monitoring; as discussed by Gyllenhammar et
al. [1]. Cyber-security incident management is another driving
need for rapid updates. Furthermore, management of multiple
(d) variants and integration of components from different
suppliers – which requires (e) modularity – are prevalent
issues in the automotive domain. As ADSs are complex
safety-critical functions, they are likely to involve parts from
multiple suppliers and exist in multiple variants. An ADS
may also employ (f) self-adaptive system properties, i.e. a
system that has to operate under uncertainty. Weyns et al. [2]
coin the term perpetual assurance to capture the continuous
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assurance effort needed for self-adaptive systems, in contrast
to a one-off effort before deployment of the system. Here, the
assurance process spans the entire life-time of the system and
new evidence and arguments are incorporated and integrated
into the assurance case continuously also during operations.
Finally, putting together an effective assurance case given
the characteristics of an ADS, e.g. with non-deterministic
algorithms, a complex sensor system, adequately capturing
the details of the (stochastic) environment, and a large scope
for the safety-critical functionality, will be challenging. We
believe in basing safety assurance on a quantitative risk norm,
e.g. as described by Warg et al. [3], which implies a mainly
(g) quantitative assurance case. The goal of this approach is
a more balanced and usable way of allocating necessary risk
reduction; compared to the relatively coarse-grained integrity
levels used in standards such as ISO 26262 [4].

In [2], a framework is presented and a set of requirements
for method usefulness is given. This framework is in part
relevant also for ADSs, but we suggest the assurance method
criteria (a)-(g) above to more accurately capture the specific
challenges in ADS assurance. A hypothesis for our work has
been that safety-contract based design – a well-researched
method (e.g. Bate et al. [5]) which enables design with re-
usable and potentially pre-certified components – would be a
suitable base for ADS safety assurance. However, considering
the criteria above it is not sufficient by itself, and despite the
large body of existing work, we have yet to see any widespread
use of safety contracts.

In this paper we discuss a few proposed safety assurance
methods and map their applicability to criteria (a)-(g). We
find that there is a gap between state-of-the-art in research and
state-of-practice, as well as a lack of tools fulfilling all criteria,
something we aim to investigate further in future work. While
no method seem sufficient by itself, all methods contribute to
some criteria, hinting at the possibility of combining elements
from different methods for an ADS safety assurance method
covering all criteria. In particular, we revisit the research in
safety contracts, and suggest that a way forward can be using
contracts as a base to build such an assurance method.

II. BACKGROUND: CONTRACT-BASED DESIGN

Contract-based software design was pioneered by Bertrand
Meyer [6] in the Eiffel programming language. The central
idea, equivalent to the Hoare triple [7], is that the interaction
between elements in a system are expressed as contracts. A



contract describes which preconditions an element expects,
and which postconditions (and invariants) it can guarantee
given that those preconditions hold. Hence, the element does
not have to be designed to handle cases where the precon-
ditions are invalid, limiting both complexity and verification
effort. The contract-based approach encourages (e) modularity,
and can simplify change management as the contracts will
provide a way to perform impact analysis, i.e. whenever a
contract is altered it will be possible to follow how depen-
dent elements are affected. Contract usage establishes the
foundations for contract reasoning about composability and
abstraction/refinement relationships. In software, contracts are
often implemented as assertions resulting in an exception if
a contract is broken. The paradigm has later been applied to
system design, where e.g., Benveniste et al. [8] introduced and
formalized Assume-Guarantee (A/G) contracts to describe the
preconditions (assumes) and post-conditions (guarantees) for
system design elements.

Nuzzo et al. [9] describe a methodology for design of
complex distributed systems based on [8]. A/G contracts are
used to reason about requirements and their refinement during
the design process, and includes a methodology and algebra
of contracts to formalize the design process. The design is
carried out as a sequence of refinement steps from a high-
level specification to an implementation built out of a library
of components at the lower level. The high-level specification
is first formalized in terms of contracts to enable require-
ment validation and early detection of inconsistencies. Then,
at each step, contracts are refined by combining synthesis,
optimization and simulation-based design space exploration
methods. Refinement through different abstraction levels is
also proposed by Warg et al. [10], though the way to formulate
contracts is not as well defined. The main goal in [10],
however, is a methodology enabling continuous deployment.

III. SAFETY ASSURANCE METHODS

In this section, we briefly describe safety assurance methods
that fulfil some of the criteria discussed in Sec. I. Note that
only the most relevant or recent paper from each author/group
is included, for space reasons. A summary how the methods
map to the proposed assurance method criteria can be found
in Table I.

A. Safety-Contract Based Design

A use-case for contract-based design is to provide contracts
aimed at quality attributes. The use of safety contracts, i.e.
contracts which only encode safety-critical properties of an
element, has further been proposed, e.g. Bate et al. [5] and
Slijvo et al. [11]. Recently, there have also been large EU
funded projects in the domain, such as the SafeCer project.
This project had the goal of enabling reusable certifiable com-
ponents using safety contracts and pre-qualified components.
In [12], Carlson et al. (from the SafeCer project) introduce
a meta model to support safety argumentation according to
safety standard(s) by incorporation of the necessary elements
into a component-based software engineering approach. The

project AMASS [13] also included contracts in its mission
to introduce a framework for multi-concern (e.g. safety and
security) assurance and certification of dependable systems.

Söderberg and Johansson [14] discuss how to use a modified
design methodology for contract-based design (CBD) intended
for development of software and component based systems by
use of safety contracts. The primary purpose is to make a pro-
posal on how to integrate safety contracts in an implementable
way (in a tool) for automatic safety contract verification.

B. Conditional Safety Certificates - ConSerts

Schneider and Trapp [16] propose Conditional Safety Cer-
tifications (ConSerts) to shift part of the certification task of
open adaptive systems from design-time, where the access
to detailed evidence in support for the safety analyses might
be limited, to run-time, where such evidence might be more
readily available. The ConSerts are constructed of a set of
predefined modular (e) and variable (d) certifications for each
related (sub-)system. When the system is integrated (at system
start with different collection of services) or adapted (during
run-time) (f) these modular certificates are composed and
evaluated. The ConSert certifies that a number of specified
safety guarantees are fulfilled with certain probability (g)
given the precondition that the specified safety demands (cf.
assume of CBD) are fulfilled. The demands of each modular
certificate relates to the component’s environment and it might
thus be difficult to verify already at design-time, since the
environment might change throughout the use of the system
(or component). In the example given, the environment of the
component is exemplified as what other services are active.
Despite the lack of detailed discussions about different system
environments, except the availability of different adjacent ser-
vices, there seem to be nothing in the approach contradicting
its use also in the context of highly dynamic environments or
e.g. to cater for the complexity of different ODDs.

The discussed example relates to adaptiveness in the sense
that the system switches between different configurations
during run-time. The system is able to provide certain top-level
services based on cooperation between components through
a service oriented architecture and dynamical service hierar-
chies. [16] emphasises that the ConSert should be used as a
means to shift only the parts that are difficult or impossible
to adequately complete during development/design-time to be
evaluated in run-time, not that everything should be left for
run-time certification. Only some predetermined certificate
variants should be left for run-time evaluation, where their
respective demands can be checked.

Contrary to CBD, the ConSert approach suggests to design
the certificates composed in several paths where the most per-
formant sub-system (path) is evaluated first and subsequently
enacted if its certificates are found valid. This adaptability of
the contract structure based on run-time evidence is something
that seems generally missing in work in the CBD-approach.
More recently, Trapp et al. [15] build on the ConSert concept
and introduce a dynamic safety management framework for
autonomous systems. This facilitates monitoring (c) as well



TABLE I
SAFETY ASSURANCE METHODS MAPPED TO ASSURANCE METHOD CRITERIA.

Assurance method Assurance method criteria (a) to (g) ReferencesFreq. upd. Op. data Monitor Variants Modular Self-adapt. Quant. AC
Safety-contract based design X [5], [11]–[14]
Conditional safety certificates (ConSert) (X) [15] X X X X [15], [16]
Dynamic assurance cases X (X) [17] X [17]–[20]
Product-line contract based design X X [21]
Continuous assurance cases X X X [10]

as to create safety-awareness, ultimately allowing the system
to self-adapt based on available run-time evidence.

C. Dynamic Assurance Cases

Denney et al. [18] introduce the term Dynamic Safety cases.
They deploy real-time monitors (c) of both the system and
its environment to initiate changes to the safety case where
applicable. This relies on a safety case that is possible to
query and includes the appropriate metadata. Asaadi et al. [19]
continues this work and propose an architecture (including
monitors and decision mechanisms) as well as a methodology
for dynamic assurance. The dynamic assurance case consists of
five models or parts: 1) Assurance policy models, 2) Assurance
architecture model, 3) Assurance quantification model (g), 4)
Evidence model, and 5) Assurance rationale.

Calinescu et al. [17] propose a method for dynamic genera-
tion of assurance cases; with generation of assurance evidence
during both design-time and runtime. This is done for a target
application that is denoted a self-adaptive software system
(f). Self-adaptive software handles environmental and internal
uncertainties by dynamically adjusting its architecture and
parameters in response to events such as workload changes
and component failures.

Asaadi et al. [20] propose a method to quantify (g) as-
surance measures online, during run-time, by using Gaussian
processes. They suggest that such quantification of the use case
considered could consist of two aspects (i) identification of
relevant dependability (e.g. safety) attributes, and (ii) quantifi-
cation of these attributes and the associated uncertainty of that
quantification. They propose to use the output of the quantified
assurance measure to dynamically check the validity of the
assurance case and thus support dynamic assurance cases.

D. Product-Line Contract Based Design

Nešić et al. [21] discuss assurance, in the context of Product-
Lines (PL) in system development, based on CBD. The
purpose is to handle system variants (c) at design-time and
create valid assurance cases for all of them. This is done by
extending the model for CBD (e.g. [8]) to define conditions
under which all system variants can be shown to fulfil the
specified requirements. These conditions are used to define
an assurance case pattern that also enable step-wise assurance
case creation. Further, they believe that it is feasible to express
general PLs according to the proposed CBD model. Using this
model of the system in the design phase would yield early
insights into the system and what needs to be addressed in

order for the assurance pattern to be completed and a valid
assurance case compiled. The work addresses similar problems
as those discussed by Schneider and Trapp (ConSerts) [16], but
in slightly different contexts and also focus on different main
challenges. Where [21] address the combinatorial complexity
of configurations of different variants across a PL, [16] address
the challenge where evidence of the system configuration and
the components operating environments cannot be obtained
prior to run-time. Both the certificates in ConSert and the
contract structure of PL-CBD are defined during design-time.
ConSerts are however evaluated in their present context during
run-time and the demands are checked using the currently
available run-time evidence.

It seems possible to adapt and configure the approach from
[21] to also solve the challenges of run-time evidence ad-
dressed by [16]. All possible system configurations (including
service configurations) and operational contexts need to be
described according to the PL CBD structure and further
analysed according to the proposed criteria in order to assert
the fulfilment of the requirements. However, even though the
example in [16] would be possible to fit into the framework
of [21] (since the parameters considered only pertain to the
system configuration and that this number of configurations
clearly is finite), cases where the evidence is only obtainable
during run-time (e.g. pertaining to external environment) might
not be possible to frame in the PL CBD framework. Especially,
the complexity of considering all possible system configura-
tions with all possible environmental contexts would lead to a
combinatorial explosion, which in general would result in the
PL CBD approach being infeasible to provide completeness
of the assurance (cf. Scenario-based V&V). In such a context,
delaying the certification until run-time when the specific com-
bination of parameters has been significantly reduced would
perhaps yield a better confidence in the provided assurance,
thus playing in favour of the ConSert approach of [16]. We
also note that it is unclear how stochasticity and uncertainty
is addressed in the two approaches.

E. Continuous Assurance Cases

Warg et al. [10] propose a method for updating the assurance
case for a function in step with changes in an agile/iterative
development cycle. The motivation is to enable steady fea-
ture growth after deployment, e.g. being able to expand
the ODD or improve performance for an ADS (e.g. due to
better understanding through increased data collection). The



method include using assurance case fragments for individual
components which are then aggregated using safety contracts.
Updates of the assurance case are planned for, and performed,
in step with the feature development, and the assurance case is
version managed with the product. This method has yet to be
proven in a use-case and lacks tooling. However, it is based on
the criteria for modularity (e), frequent update (a) and use of
operational data (b), and we believe it can be a useful base for
adding parts of other methods to eventually fulfill all criteria.

IV. CONCLUSIONS & FUTURE WORK

In this paper, we have proposed criteria that we believe
are necessary for effective, efficient and flexible development
and assurance of ADSs. Some existing techniques that may
contribute to fulfilling these criteria are discussed – where
a more systematic survey of the state-of-the-art remains as
future work to create a complete view of existing work. An
observation is that there seems to be a significant gap between
state-of-the-art in research and state-of-practice. There are
likely several reasons for this, and safety assurance for ADSs
lack maturity in general. However, in our future work we
would like to better understand the reason behind, and be able
to address, this gap.

One initial impression is that there is a lack of tools
compatible with our proposed criteria, at least widely deployed
tools. Safety-contract tools such as CHESS [22] and CHASE
[23] exist, but do not seem well suited, especially considering
criteria (a)-(c) and (f). Since both are based on formal speci-
fication, which require significant expert skills, it may also be
difficult to achieve wide adaptation in an agile organization.
However, a more in-depth investigation of tools in light of the
proposed criteria remains as future work.

We intend to improve the continuous assurance approach
[10], aiming to fill the remaining gaps identified in the
assurance method criteria table. To that end, one task will
be a deeper study of the methods mentioned in this paper,
as well as other works related to ADS safety assurance,
aiming to find additional elements to incorporate. Looking
at the applicability of the ConSert approach for complex
systems such as ADSs and the possibility to merge the run-
time flexibility of this approach with the elements of the
continuous assurance approach seems to be a promising start.
Finally, answering the question: ”How to compose contracts to
capture the quantitative risk norm and relay this information
throughout the ADS?”, will be central in order to connect a
contract-based assurance method to the risk norm at vehicle
level.
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