Jean-Guillaume Dumas
email: jean-guillaume.dumas@univ-grenoble-alpes.fr.

Aude Maignan
email: aude.maignan@univ-grenoble-alpes.fr.

Clément Pernet
email: clement.pernet@univ-grenoble-alpes.fr.

Daniel S Roche
email: roche@usna.edu.

VESPo: Verified Evaluation of Secret Polynomials (with application to dynamic proofs of retrievability)

Proofs of Retrievability are protocols which allow a Client to store data remotely and to efficiently ensure, via audits, that the entirety of that data is still intact. Dynamic Proofs of Retrievability (DPoR) also support efficient retrieval and update of any small portion of the data. We propose a novel protocol for arbitrary outsourced data storage that achieves both low remote storage size and audit complexity. A key ingredient, that can be also of intrinsic interest, reduces to efficiently evaluating a secret polynomial at given public points, when the (encrypted) polynomial is stored on an untrusted Server. The Server performs the evaluations and also returns associated certificates. A Client can check that the evaluations are correct using the certificates and some pre-computed keys, more efficiently than re-evaluating the polynomial. Our protocols support two important features: the polynomial itself can be encrypted on the Server, and it can be dynamically updated by changing individual coefficients cheaply without redoing the entire setup. Our methods rely on linearly homomorphic encryption and pairings, and our implementation shows good performance for polynomial evaluations with millions of coefficients, and efficient DPoR with terabytes of data. For instance, for a 1TB database, compared to the state of art, we can reduce the Client storage by 5000x, communication size by 20x, and client-side audit time by 2x, at the cost of one order of magnitude increase in server-side audit time.

Introduction

With a constant growth in the amount of produced data, it becomes more and more important to use remote facilities to store this data. Users and organizations using such outsourcing need to ensure the integrity of their data.

In this setting, a Client wishes to store her data on an untrusted Server, then verify (without full retrieval) that the Server still stores the data intact. The crucial protocol is an Audit, wherein the Client issues some challenge to the Server, then verifies the response using some pre-computed information to prove that the original data is still recoverable in its entirety. This is the field of Proofs of Retrievability (PoR), somewhat overlapping with the problem of Provable Data Possession (PDP) [START_REF] Juels | PORs: Proofs of retrievability for large files[END_REF][START_REF] Ateniese | Provable data possession at untrusted stores[END_REF].

A variety of tools have been employed to develop efficient PoR and PDP protocols, see for instance [START_REF] Juels | PORs: Proofs of retrievability for large files[END_REF][START_REF] Ateniese | Provable data possession at untrusted stores[END_REF][START_REF] Shacham | Compact proofs of retrievability[END_REF][START_REF] Cash | Dynamic proofs of retrievability via oblivious RAM[END_REF][START_REF] Shi | Practical dynamic proofs of retrievability[END_REF][START_REF] Anthoine | Dynamic proofs of retrievability with low server storage[END_REF] and references therein. Retrievability is proven when any sequence of successful audits can, with high probability, be used to recover the original data, e.g., by polynomial interpolation; thus any Server with a good chance to pass a single random audit must hold the entire data intact. Note that this recovery mechanism is not actually crucial except to prove the soundness of the audit protocol; the important feature is how cheaply the audits can be performed by a Server and resource-constrained Client.

Some of these protocols are based on verifiable computing, so that a PoR audit consists of some verified computation over the stored data [START_REF] Gennaro | Non-interactive verifiable computing: Outsourcing computation to untrusted workers[END_REF]. Generally speaking, verifiable computing consists in delegating the computation of a function to an untrusted Server. This Server returns the result as well as a proof of its correctness, and verifying a result should be less expensive than computing it directly. While certified and verified computation protocols date back decades, the practical need for efficient methods is especially evident in cloud computing, wherein again a low-powered device, such as a mobile phone, may wish to outsource expensive and critical computations to an untrusted, shared-resource, commercial cloud. The literature on verifiable computation protocols can be divided into general-purpose computations -of an arbitrary algebraic circuit -and more limited but more efficient special-purpose computations of certain functions (see, e.g., [START_REF] Walfish | Verifying computations without reexecuting them[END_REF][START_REF] Dumas | Proof-of-work certificates that can be efficiently computed in the cloud[END_REF] and references therein). In the latter category, one problem is Verifiable Polynomial Evaluation (VPE), where a Client wishes to outsource the evaluation of a univariate polynomial P on an untrusted Server at given public points and efficiently verify the result.

Existing VPE protocols usually do not consider dynamicity, at least not efficiently: even for the modification of a single coefficient, most of the time the whole protocol has to be reinitialized. Also, previous PoR protocols would either have a low audit complexity but a storage size several times that of the database; or have low remote storage but a less scalable audit complexity. In this paper, we propose a novel protocol for arbitrary outsourced dynamic data storage that achieves both low remote storage size and audit complexity. A key ingredient of our protocol is to be able to perform a dynamic VPE, in order to efficiently handle updates of the database.

A verifiable polynomial evaluation scheme is conventionally composed of three main algorithms. First, a Client runs SetuppP q to compute some public representation of the (potentially secret) polynomial P (which may be stored on the Server) as well as some private information which will be used to verify later evaluations. This step may be somewhat expensive, but only needs to be performed once. The second algorithm, Evalpxq, is run by the Server using a public evaluation point x provided by the Client. The Server produces the evaluation y " P pxq as well as some proof (or certificate) Π that this evaluation is correct. Finally, the third algorithm, Verifypy, Πq, is run by the Client to check the correctness of the evaluation. This verification should be always correct and probabilistically sound, meaning that an honest Server can always produce a result y and proof Π that will pass the verification, whereas an incorrect evaluation y will fail the verification with high probability for any purported proof Π. Furthermore, the Verify algorithm should be efficient, ideally much cheaper in time and/or space than the computation itself.

In the simplest case, the considered polynomial P is static and stored in cleartext by both the Server and the Client. But constraints can then be added to this framework, when needed:

• Polynomial outsourcing. When the Client device has limited storage, or to facilitate evaluations for multiple Clients, both the polynomial storage and its computation must be externalized. Besides evaluation and verification, an additional Read protocol is often provided to allow random access to some polynomial coefficients. The challenge is for the Client to obtain the polynomial evaluation while minimizing the communication costs required to verify it.

• Secret polynomial. To guarantee data privacy, the polynomial could be hidden from the Server, or the Client, or both. Typically, the polynomial will be stored under a fully-or partially-homomorphic encryption scheme, in such a way that the Server can still compute the (necessarily encrypted) evaluation and certificate for verification. This setting has been extensively studied in the literature, with both general-purpose protocols as well as some specific ones for verified polynomial evaluation; see, e.g., [START_REF] Fiore | Efficiently verifiable computation on encrypted data[END_REF][START_REF] Groth | On the size of pairing-based non-interactive arguments[END_REF][START_REF] Ben-Sasson | Fast reed-solomon interactive oracle proofs of proximity[END_REF][START_REF] Bünz | Bulletproofs: Short proofs for confidential transactions and more[END_REF][START_REF] Maller | Sonic: Zero-knowledge snarks from linearsize universal and updatable structured reference strings[END_REF][START_REF] Fiore | Boosting verifiable computation on encrypted data[END_REF][START_REF] Bhadauria | Ligero++: A New Optimized Sublinear IOP[END_REF][START_REF] Dory | Efficient, transparent arguments for generalised inner products and polynomial commitments[END_REF][START_REF] Ràfols | An algebraic framework for universal and updatable snarks[END_REF][START_REF] Bois | Flexible and efficient verifiable computation on encrypted data[END_REF].

• Dynamic updates. The initial Setup protocol requires knowledge of the entire polynomial and generally is much more costly than running Verify. This creates a challenge when the Client wishes to update only a few of the coefficients of the polynomial. A dynamic VPE protocol allows for such updates efficiently. Namely, the Client and Server storing polynomial P " d i"0 p i X i for verified evaluation can engage in an additional Updatepi, p 1 i q protocol, which effectively updates P pxq to P pxqp p 1 i ´pi qx i for future evaluations. To the best of our knowledge, no prior work in the literature discusses dynamic updates for verified polynomial evaluation. When the polynomial (as well as any update) needs to be hidden from the Server, the difficulty is in general to preserve both secrecy and verifiability while allowing those efficient partial updates. The importance of allowing efficient updates is motivated by our application to verifiable data storage, where a Client outsourcing storage of a large database wishes to make small changes efficiently.

• Private/public verification. The verification protocol is said to be private when only the party which holds the secrets derived during Setup can verify evaluations. That is, any potential Verifiers (sometimes called readers) must be trusted not to divulge secret information to the untrusted Server. Sometimes, it is desirable also to have untrusted Verifiers, who can check the result of an evaluation without knowing any secrets. In this public verification setting, the Client at setup time publishes some additional information, distributed reliably but insecurely to any Verifiers, which may be used to check evaluations and proofs issued by the Server.

Our contributions

Our contributions are the following:

• An (unencrypted) Verifiable Polynomial Evaluation (VPE) scheme with public verification, supporting secured dynamic updates (Section 4 and Table 4). The polynomial is stored in cleartext on the Server, and the technique used to provide a correct and sound protocol uses both Merkle trees and pairings.

A Horner-like evaluation scheme is used to optimize the evaluation of the difference polynomial for the proof, and no secrets are required to perform the verification.

• A novel encrypted, dynamic and private VPE protocol (Section 5 and Table 12). That is, the polynomial is stored encrypted on the Server, and efficient updates to individual coefficients can be performed. This is achieved by combining a linearly homomorphic cryptosystem with techniques from the first scheme. Note however, this scheme does not support public verification as this verification now requires some secrets from the Client.

• A new Dynamic Proofs of Retrievability (DPoR) scheme that is the first to simultaneously support small Server storage, dynamic updates, and efficient audits (Section 6 and Table 9), based on our novel encrypted, dynamic VPE protocol. Previous work either had poly-logarithmic time audits and linear extra storage, or sub-linear extra storage and polynomial-time audits; ours is the first to achieve both sub-linear extra storage and optimal O(log n) Client time for updates and audits. This could be beneficial especially in blockchain settings such as FileCoin where the proof and verification must be done on-chain [START_REF]Filecoin: A decentralized storage network[END_REF].

• A full implementation and experimental timings based on our encrypted VPE and dynamic PoR protocols that indicate VPE up to millions of coefficients and DPoR up to terabytes of data, both with Client cost less than a few milliseconds (Tables 7 and10).

These contributions are organized as follows. A complete security definition of verifiable polynomial evaluation can be found in Section 2. This definition follows previous results, with the novel inclusion of an Update protocol. Then Section 3 introduces the tools for verification of polynomial evaluation. A motivating example is presented in the form of a direct extension of the bilinear pairing scheme of [START_REF] Kate | Constant-size commitments to polynomials and their applications[END_REF], now supporting an encrypted input polynomial (Section 3 and Table 3). Since the privacy of this protocol is not proven and it supports neither public verifiability nor dynamic updates, it motivates the more involved contributions of Section 4 (for public verifiability and dynamicity, but on an unciphered polynomial) and of Section 5 (for dynamicity on a ciphered polynomial, but without public verifiability).

The efficiency of our protocols is measured by the computational complexity of the Server-side Eval algorithm, the volume of persistent Client storage, and the amount of communication and Client-side complexity to perform a Verify. Improving on previously-known results, our VPEs protocols all have O(d) (parallelizable) Server-side computation, O(1) communication and Client-side computation time, and O(1) Client-side persistent storage. We include some practical timings in Sections 5.4 and 6.3 and Appendix D. In addition, our new dynamic proofs of retrievability require only o(d) extra Server space. This improves on [START_REF] Shi | Practical dynamic proofs of retrievability[END_REF] in terms of Server storage and on [START_REF] Anthoine | Dynamic proofs of retrievability with low server storage[END_REF] in terms of communication and Client computation complexity for Audit. For instance on a 1TB size database, with a Server extra storage lower than 0.08%, and a Client persistent storage less than one KB, our Client can check in less than 7ms that their entire outsourced data is fully recoverable from the cloud Server.

Related work

While ours is the first work we are aware of which considers verifiable polynomial computation while hiding the polynomial from the Server and allowing efficient dynamic updates, there have been a number of prior works on different settings of the VPE problem.

One line of work considers commitment schemes for polynomial evaluation [START_REF] Catalano | Vector commitments and their applications[END_REF][START_REF] Camenisch | Composable and modular anonymous credentials: Definitions and practical constructions[END_REF][START_REF] Libert | Functional commitment schemes: From polynomial commitments to pairing-based accumulators from simple assumptions[END_REF][START_REF] Gabizon | PLONK: permutations over Lagrange-bases for oecumenical noninteractive arguments of knowledge[END_REF][START_REF] Tomescu | Aggregatable subvector commitments for stateless cryptocurrencies[END_REF][START_REF] Boneh | Efficient polynomial commitment schemes for multiple points and polynomials[END_REF][START_REF] Ozdemir | Scaling verifiable computation using efficient set accumulators[END_REF][START_REF] Fiore | Boosting verifiable computation on encrypted data[END_REF][START_REF] Dory | Efficient, transparent arguments for generalised inner products and polynomial commitments[END_REF]. There, the polynomial P is known to the Server, who publishes a binding commitment. The Verifier then confirms that a given evaluation is consistent with the pre-published commitment. By contrast, our protocols aim to hide the polynomial P from the Server.

Another line of work considers polynomial evaluation as an encrypted function, which can be evaluated at any chosen point. Function-hiding inner product encryption (IPE) [START_REF] Bishop | Function-hiding inner product encryption[END_REF][START_REF] Kim | Function-hiding inner product encryption is practical[END_REF][START_REF] Abdalla | Multi-client inner-product functional encryption in the random-oracle model[END_REF] can be used to perform polynomial evaluation without revealing the polynomial P , but this inherently requires linear-time for the Client, who must compute the first d powers of the desired evaluation point x. Similarly, protocols using a Private Polynomial Evaluation (PPE) scheme have been developed in [START_REF] Bultel | Verifiable private polynomial evaluation[END_REF]. This primitive, based on an ElGamal scheme, ensures that the polynomial is protected and that the user is able to verify the result given by the Server. Here the aim of the protocol is not to outsource the polynomial evaluation, but to obtain P pxq and a proof without knowing anything about the polynomial. To check the proof, as with IPE the Client has to perform a computation which is linear in the degree of P .

A third and more general approach which can be applied to the VPE problem is that of secure evaluation of arithmetic circuits. These protocols make use of fully homomorphic encryption (FHE) to outsource the evaluation of an arbitrary arithmetic circuit without revealing the circuit itself to the Server. The VC Scheme of [START_REF] Gennaro | Non-interactive verifiable computing: Outsourcing computation to untrusted workers[END_REF] is based on Yao's label construction. P is first transformed into an arithmetic circuit. The circuit is garbled once in a setup phase and sent to the Server. To later perform a verified evaluation, the Client sends an encryption of x, the Server computes P pxq through the garbled circuit, and the Client can verify the result in time proportional to the circuit depth, which for us is O(log d).

Using similar techniques, Fiore et al. and Elkhiyaoui et al. [START_REF] Benabbas | Verifiable delegation of computation over large datasets[END_REF][START_REF] Fiore | Publicly verifiable delegation of large polynomials and matrix computations, with applications[END_REF][START_REF] Elkhiyaoui | Efficient techniques for publicly verifiable delegation of computation[END_REF] propose high-degree verified polynomial evaluations. The major issue for these works is that they were not meant to be dynamic: they use some structured masking that must be updated together with the polynomial update (otherwise updates leak some secrets). But then the update is not efficient anymore as the structure impacts all of the polynomial coefficient masking.

More recently, Fiore et al. [START_REF] Fiore | Efficiently verifiable computation on encrypted data[END_REF][START_REF] Fiore | Boosting verifiable computation on encrypted data[END_REF][START_REF] Bois | Flexible and efficient verifiable computation on encrypted data[END_REF] propose a new protocol for more general circuits, using succinct non-interactive arguments of knowledge (SNARKs) or probabilistically checkable proofs (PCPs) over a quotient polynomial ring. In contrast to our work, these protocols use more expensive cryptographic primitives, and they do not consider the possibility of efficiently updating the polynomial -while preserving the security properties. A summary of how our protocols compare to the state of the art is given in Table 1.

Protocol

Server Comm. Verif. Dyn. LHE P-Q

BGV11 [9] O(d) O(1) O(1) FG12 [30] O(d) O(1) O(1) libsnark [38] O(d log d) O(1) O(1) MT bulletproof [19] O(d) O(log d) O(d) FGP14 [31] O(d log d) O(1) O(log d) FHE libiop [8] O(d log d) O log 2 d O(d) ligero++ [12] O(d log d) O log 2 d O(d) FNP20 [32] O(d log d) O(1) O(log d) FHE DORY [47] O(d log d) O(log d) O(log d) BCFK21 [14] O(d) O log 2 d O log 2 d FHE VESPo, Table 12 O(d) O(1) O(1)
From this table, we see that many instances, like SNARKS, need Opd log dq operations on the Server side, where VESPo remains linear, Opdq in the input size. Also dynamicity is usually not considered in the literature. For us, the difficulty is to be able to modify a small part of the input, without having to replay the whole Setup phase, while not compromising security. A salient point is that many schemes cannot directly handle the encrypted setting. In some cases a solution could be to simulate the whole encryption as arithmetic circuits, but this drastically affects performance. For instance we tried libsnark over a Paillier encryption, this rapidly exhausted the RAM of our server (i.e. even with degrees as small as 20), and thus denote this exhaustion by MT (memory thrashing). Finally, we mention if the protocol is feasibly post-quantum (P-Q) secure in the 'P-Q' column ([START_REF] Ben-Sasson | Fast reed-solomon interactive oracle proofs of proximity[END_REF][START_REF] Bhadauria | Ligero++: A New Optimized Sublinear IOP[END_REF] are P-Q-secure, [START_REF] Bois | Flexible and efficient verifiable computation on encrypted data[END_REF] do not mention it but seems P-Q-secure, all the others, including us, use bilinear pairings). In Appendix E, we abstract the requirements of our protocols to see if they could be modified to use only post-quantum secure routines. Our preliminary results there show that this might be possible but that using quantum-safe routines in our case would still be several orders of magnitude slower.

In fact, efficiency, linearity, dynamicity and encryption, are all four of paramount importance for instance for our particular application, as detailed next.

Proof of retrievability (PoR) and Provable data possession (PDP) protocols also have an extensive literature [START_REF] Ateniese | Provable data possession at untrusted stores[END_REF][START_REF] Erway | Dynamic provable data possession[END_REF][START_REF] Juels | PORs: Proofs of retrievability for large files[END_REF][START_REF] Sebé | Efficient remote data possession checking in critical information infrastructures[END_REF][START_REF] Shacham | Compact proofs of retrievability[END_REF][START_REF] Stefanov | Iris: A scalable cloud file system with efficient integrity checks[END_REF][START_REF] Cash | Dynamic proofs of retrievability via oblivious RAM[END_REF][START_REF] Shi | Practical dynamic proofs of retrievability[END_REF][START_REF] Cash | Dynamic proofs of retrievability via oblivious RAM[END_REF][START_REF] Anthoine | Dynamic proofs of retrievability with low server storage[END_REF]. PDPs, first introduced by Ateniese et al., generally optimize Server storage and efficiency at the cost of soundness: a PDP audit only guarantees (probabilistically) that a large fraction of the data was not altered; a single block deletion or alteration is likely to go undetected in an audit.

PoRs have stronger soundness guarantees, but at the expense of larger and more complicated Server storage, often based on erasure codes and/or ORAM techniques.

PoR methods based on block erasure encoding are a class of methods which guarantee with a high probability that the client's entire data can be retrieved. The idea is to check the authenticity of a number of erasure encoding blocks during the data recovery step but also during the audit algorithm. Those approaches will not detect a small amount of corrupted data. But the idea is that if there are very few corrupted blocks, they could be easily recovered via the error correcting code [START_REF] Lavauzelle | New proofs of retrievability using locally decodable codes[END_REF]. Now, state-of-the-art, dynamic, PoR protocols either incur a constant-factor blowup in Server storage with poly-logarithmic audit cost [START_REF] Cash | Dynamic proofs of retrievability via oblivious RAM[END_REF][START_REF] Cash | Dynamic proofs of retrievability via oblivious RAM[END_REF][START_REF] Shi | Practical dynamic proofs of retrievability[END_REF], or use negligible extra Server storage space but require polynomial-time audits on the Client and Server [START_REF] Shacham | Compact proofs of retrievability[END_REF][START_REF] Anthoine | Dynamic proofs of retrievability with low server storage[END_REF]. We refer, e.g., to [5, § 7] for a more detailed comparison between PoR and PDP schemes. In fact, a lower bound argument from [START_REF] Anthoine | Dynamic proofs of retrievability with low server storage[END_REF]Theorem 4] proves that some time/space tradeoff is inherent. Roughly speaking, for any PoR on an N -bit database, the product of persistent storage overhead times audit computational complexity must be at least N . We show in Section 6 that with VESPo, we let the Server perform most of the computations (but this remains quite fast), so that we still need only negligible extra Server storage, but drastically reduce the Client communication, storage and computations.

2 Security properties and assumptions

Preliminaries

Pairings. In the following, we use the notation e : G 1 ˆG2 Ñ G T to denote a bilinear pairing in groups of the same prime order. If such a pairing exists then G 1 and G 2 are denoted as bilinear groups. We often use groups of prime order, in order to be compute within the exponents. In particular, thanks to the homomorphic property of exponentiation, we will perform some linear algebra over the group and need notations for this. For a matrix A, g A denotes the coefficient-wise exponentiation of a generator g to each entry in A. Similarly, for a matrix W of group elements and a matrix B of scalars, W B denotes the extension of matrix multiplication using the group action. If we have W " g A , then W B " pg A q B . Further, this quantity can actually be computed if needed by working in the exponents first, i.e., it is equal to g pABq . For example:

g a b c d (e f) " g a g b g c g d (e f) " g ae`bf g ce`df " g a b c d (e f) . (1)
For the sake of simplicity, when there is no ambiguity, we also use the associated notation shortcuts like: epg

(a b) 1 ; g c 2 q " epg 1 ; g 2 q (ca cb) .
Linearly Homomorphic Encryption (LHE). We will also use a public-key partially homomorphic encryption scheme where both addition and multiplication are considered. We need the following properties on the linearly homomorphic encryption function E (according to the context, we use E pk or just E to denote the encryption function, similarly for the decryption function, D or D sk): computing several homomorphic additions on ciphered messages and homomorphic multiplications but only between a ciphered message and a cleartext.

DpEpm 1 qEpm 2 qq " m 1 `m2 AND DpEpm 1 q m2 q " m 1 m 2 (2)
Remark 1. For instance, Paillier-like cryptosystems [START_REF] Paillier | Public-key cryptosystems based on composite degree residuosity classes[END_REF][START_REF] Benaloh | Dense probabilistic encryption[END_REF][START_REF] Fousse | Benaloh's dense probabilistic encryption revisited[END_REF] can satisfy these requirements, via multiplication in the ground ring, for addition of enciphered messages, and via exponentiation for ciphered multiplication.

Note though that an implementation with Paillier cryptosystem of the evaluation P prq, in a modular ring Z m , providing the functionalities of Equation (2), requires some care: indeed these equations are usually satisfied modulo an RSA composite number N , not equal to m. More precisely, Paillier cryptosystem will provide DpEpP prqqq " p d i"0 p i r i q mod N . Thus a possibility to recover the correct value, is to precompute r i mod m and require that: pd `1qpm ´1q 2 ă N . This way one can actually homomorphically compute over Z and use the modulo m only after decryption. See Appendix C for more details.

Merkle Hash Trees. Finally, we will use a Merkle hash tree to allow verifications of updates. A Merkle hash tree is a tree in which every leaf is labelled with the cryptographic hash of a data block, and every other node is labelled with the hash of the labels of its child nodes [START_REF] Merkle | A digital signature based on a conventional encryption function[END_REF][START_REF] Laurie | and Google[END_REF][START_REF] Anthoine | Dynamic proofs of retrievability with low server storage[END_REF]. By just storing the root of the tree, one can check the presence of a given leaf in the tree with only a logarithmic number of additional nodes (uncles) and hash computations. More details on how we use them are given in Section 4.1.

Verifiable scheme

A verifiable dynamic polynomial evaluation (VDPE) scheme consists of five algorithms: Setup, Read, Update, Eval and Verify between a Client C with state st C , a Server S with state st S and a Verifier V with (potentially public) state st V . The algorithms can reject, when specified, if some inconsistencies are detected.

• pst C , st V , st S q Ð Setupp1 κ , P q: On input of the security parameter κ and the polynomial P of degree d ˝pP q " d, outputs the Client state st C , the Verifier st V and the Server state st S . We denote by S κ pP q " {Setupp1 κ , P q} the set of admissible states for a given polynomial (dependent on the different random choices).

• {p i , reject} Ð Readpi, st V , st S q: On input of an index i P 0..d, the Verifier/Server states st V /st S , outputs the i th coefficient of P or reject.

• {pst 1 C , st 1 V , st 1 S q, reject} Ð Updatepi, p 1 i , st C , st V , st S q: On input of an index i P 0..d, data p 1 i , the Client/Verifier/Server states st C /st V /st S , outputs new Client/Verifier/Server states st C '/ st V '/ st S ', representing the polynomial P `pp 1 i ´pi qX i , or reject. A variant of this algorithm, δUpdate, takes as input the difference data δ " p 1 i ´pi instead of p 1 i . • {ζ, ξ} Ð Evalpst S , rq: On input of the Server state st S and an evaluation point r, outputs ζ the encrypted value of P prq and a proof ξ.

• {z, reject} Ð Verifypst V , r, ζ, ξq: On input of the Verifier state st V , the evaluation point r, the encrypted value ζ of P prq and the proof ξ, outputs a successful evaluation z " P prq or reject.

The Client may use random coins for any algorithm. This is the general setting for public verification, the idea being that for a private verification, the Client will play the role of the Verifier too and their states will be identical: st V " st C .

Security properties

Adapted from both [START_REF] Kate | Constant-size commitments to polynomials and their applications[END_REF][START_REF] Fiore | Efficiently verifiable computation on encrypted data[END_REF], in order to take into account dynamicity, we propose the following security game and the associated security properties:

Definition 2. (Setup, Read, Update, Eval, Verify) is a secure publicly verifiable polynomial evaluation scheme if it satisfies the following three properties: (i) Correctness. Let d P N, P pXq " d i"0 p i X i , with pp 0 , . . . , p d q in a ring R and pst C , st V , st S q P S κ pP q, then for any 0 ď i ď d and p1 i P R:

Readpi, st V , st S q " p i (3) Updatepi, p 1 i , st C , st V , st S q P S κ pP `pp 1 i ´pi qX i q (4) Verifypst V , r, Evalpst S , rqq " P prq (5)
(ii) Soundness. The soundness requirement stipulates that the Client (or the Verifier) always reject (except with negligible probability) if any message sent by the Server deviates from the honest (correct) behavior 1 . A VDPE scheme is sound, if no polynomial-time adversary has more than negligible probability in winning the security game of Figure 1.

(iii) Privacy. We use now the following variant game: A chooses two initial polynomials P 0 , P 1 ; O 1 randomly chooses one bit b P {0, 1}; the players run steps (2-3) of Figure 1 In Section 5 we apply our new verifiable protocols to create a new Dynamic Proofs of Retrievability (DPoR) scheme, provably achieving correctness, soundness, and retrievability for DPoR. We follow the exact same security definition for DPoR as in [START_REF] Anthoine | Dynamic proofs of retrievability with low server storage[END_REF], adapted from [START_REF] Shi | Practical dynamic proofs of retrievability[END_REF], which we will not restate here for the sake of brevity.

Assumptions

To prove the security of our protocols we rely on classical discrete logarithm and Diffie-Hellman like assumptions, all related to polynomial computations. The first assumption, a decisional one, is the distinct leading monomials assumption: informally it states that polynomial evaluations "in the exponents" where the polynomials have distinct leading monomials are merely indistinguishable from randomness. The formal version is recalled in Definition 6. We also need computational assumptions, including the hardness to compute discrete logarithms, in Definition 4, and polynomial extensions of the hardness to produce Diffie-Hellman-like secrets even with bilinear pairings, in Definition 5.

Definition 4 (Discrete Logarithm, DLOG, hardness assumption [START_REF] Katz | Introduction to Modern Cryptography[END_REF]Def. 9.63]). For a computational security parameter κ P N, a discrete-logarithm problem is hard relatively to a group G of group order p ě 2 2κ , a generator g and a randomly sampled element of the group, h $ Ð G, if for any probabilistic polynomial-time (ppt) algorithms A DLOG , there exists a negligible function negl such that Pr [A DLOG pG, g, hq " x s.t. h " g x] ď neglpκq.

Definition 5 (t-Bilinear Strong Diffie-Hellman, t-BSDH, assumption, from [START_REF] Goyal | Reducing trust in the PKG in identity based cryptosystems[END_REF][START_REF] Kate | Constant-size commitments to polynomials and their applications[END_REF]). For a computational security parameter κ P N, let α P Z p , with p ě 2 2κ , and j P {1, 2}. Given as input a pt `1q-tuple g j , g α j , g α 2 j , . . . , g α t j P G t`1 j , in a bilinear group G j of order p with a bilinear pairing e : G 1 ˆG2 Ñ G T , for every ppt-adversary A t´BSDH and for any value of c P Z p \{´α}, we have the probability:

Pr At´BSDH pg1, g2, g α j , g α 2 j , . . . , g α t j q " c, epg1; g2q

1 α`c ď neglpκq
Next is the distinct leading monomial (DLM) assumption that states that polynomial evaluations "in the exponents" where the polynomials have distinct leading monomials are merely indistinguishable from randomness. In [START_REF] Abdalla | An algebraic framework for pseudorandom functions and applications to related-key security[END_REF] the assumption is given for n-multivariate polynomials with matrices of dimension kˆk and projections of dimension kˆm for k ě 2 and m ě 1. Here, we will only use univariate polynomials, n " 1, and dimensions k " 2, m " 1. We therefore recall the assumption only for this particular case.

Definition 6 (Distinct Leading Monomial, DLM, assumption [START_REF] Abdalla | An algebraic framework for pseudorandom functions and applications to related-key security[END_REF]Theorem 6]). Let G " g be a bilinear group of prime order p. The advantage of an adversary A against the p2, 1, dq-DLM security of G, denoted Adv p2,1,dq´DLM G pAq, is the probability of success in the game defined in Table 2 and is negligible, with A being restricted to make queries P P Z p rT s such that for any challenge P , the maximum degree in one indeterminate in P is at most d, and for any sequence pP 1 , . . . , P q q of queries, there exists an invertible matrix M P Z qˆq p such that the leading monomials of M ¨rP 1 , . . . , P q s are distinct.

Table 2: p2, 1, dq-DLM security game for a bilinear group G [1] Init ChallengepP q Responsepb 1 q r $ Ð Z 2ˆ2 p If b "" 0 Return b 1 "" b β $ Ð Z 2 p Then Return y Ð g P prq¨β b $ Ð {0, 1} Else Return y $ Ð G 2
In fact, the DLM security can also be reduced to the Matrix Diffie-Hellman assumption (MDDH) [1, Theorem 5], a generalization of the widely used decision linear assumption [START_REF] Gay | Tightly CCA-secure encryption without pairings[END_REF][START_REF] Morillo | The kernel matrix Diffie-Hellman assumption[END_REF][START_REF] Agrawal | Fully secure functional encryption for inner products, from standard assumptions[END_REF][START_REF] Ambrona | Generic transformations of predicate encodings: Constructions and applications[END_REF][START_REF] Attrapadung | Unbounded dynamic predicate compositions in abe from standard assumptions[END_REF].

Eventually, when we use Merkle Hash Tree, we need to apply a Collision Resistant Hash Function (CRHF), so that finding different hash trees with the same root is hard.

Overall, since we consider the semantic security of the cryptosystem, we assume that adversaries are probabilistic polynomial time machines. More precisely we consider Malicious adversaries: a corrupted Server controls the network and stops, forges or listens to messages in order to gain information or fool the Client.

Tools for the verification of a polynomial evaluation

Our first step is to define a verification protocol for polynomial evaluation that supports a ciphered input polynomial over a finite ring Z p . For this we start with ideas mostly from [START_REF] Kate | Constant-size commitments to polynomials and their applications[END_REF][START_REF] Benabbas | Verifiable delegation of computation over large datasets[END_REF], in order to highlight the difficulties in our setting: adding dynamicity and encryption; that is allowing to modify only parts of the inputs at a low cost, while dealing with covert inputs and preserving a proven security. More precisely, our modifications allow the adaptation of the security proof in order to incorporate the updates, and require some algorithmic tricks to preserve the linearity of the Server computations.

First, we define a difference polynomial that we will use to check consistency.

Definition 7. For a polynomial P pXq P Z p rXs " d i"0 p i X i of degree d, let its subset polynomials be:

T k,P pXq " d i"k`1 p i X i´k´1 " d´1´k j"0 p j`k´1 X j . Lemma 8. Let Q P pY, Xq " P pY q´P pXq Y ´X
be the difference polynomial of a polynomial P ; then:

Q P pY, Xq " d i"1 p i i´1 k"0 Y i´k´1 X k " d´1 k"0 T k,P pY qX k (6) Proof. As Y i ´Xi " pY ´Xqp i´1 k"0 Y i´k´1 X k q, we obtain that Q P pY, Xq " d i"1 p i i´1 k"0 Y i´k´1 X k . This is also Q P pY, Xq " d´1 k"0 X k d i"k`1 p i Y i´k´1 .
This identity relates two evaluations of P : P pY q " P pXq `pY ´XqQ P pY, Xq. This equation allows one to verify z ? " P prq by checking, for a secret s, that:

P psq " z `ps ´rqQ P ps, rq (7)
Table 3:

Verifiable Ciphered Polynomial Evaluation Server Communications Client Setup G 1 , G 2 , G T groups of order p P P Z p rXs, 1 ď d ˝pP q ď d; let s $ Ð Z p pairing e, gen. g 1 , g 2 , g T " epg 1 ; g 2 q W Ð E pk pP q, K Ð g P psq T , H Ð rg Tk,P psq 2 s d´1 k"0 Output : st S " {pk, G 1,2,T , W, H} W, H st C " {pk, sk, G 1,2,T , g 1,2,T , e, K, s} Eval/Verify Form x Ð r1, r, r 2 , . . . , r d s r r $ Ð Z p ζ " W d x; ξ " H d x 0..d´1 ζ, ξ epg s´r 1 ; ξqg Dskpζq T ? " K Output : D sk pζq or reject
For this, let E, D be the encryption and decryption functions of a partially homomorphic cryptosystem, supporting addition of two ciphertexts and multiplication of ciphertext by a cleartext, as in Equation [START_REF] Abdalla | Multi-client inner-product functional encryption in the random-oracle model[END_REF]. Therefore it is possible to evaluate a ciphered polynomial at a clear evaluation point, using powers of the evaluation point: for x " r1, r, r2 , . . . , r d s, denote by EpP q dx " d i"0 Epp i q r i " EpP prqq, the homomorphic polynomial evaluation.

Similarly, if H " rh 0 , . . . , h d s " rg a0 , . . . , g a d s, denote by H d x " d i"0 h xi i " g aixi the dot-product in the exponents. Then Table 3 shows how the Server produces the evaluation via the partially homomorphic cipher and the subset polynomials (in this table, and in the following protocols presentations, time passes from top to bottom only, driven by the "Communications" column). Then this evaluation is bound to be correct by the consistency check in the exponents. Proposition 9 (A proof is given in Appendix B). The protocol of Table 3 is correct and sound under the d-BSDH assumption.

Several issues remain with this protocol: first it is not dynamic. Indeed, for a dynamic version, the problem is that updating only one coefficient of P requires to update up to d ´1 coefficients of H. This work would be of the same order of magnitude as recomputing the whole setup. Second it is not fully hiding the coefficients of P as they are just put in the exponents without any masking, and we do not prove the privacy requirement 2 . Third, the protocol is not fully publicly verifiable since the decryption key of the partially homomorphic system is required. We incrementally solve the first two issues in the remainder of this paper and obtain a fully secure private protocol. We also are able to provide a dynamic protocol, publicly verifiable, but for an unciphered polynomial. Combining all three properties, that is, designing a publicly verifiable dynamic protocol for ciphered polynomials, preserving a good efficiency while still being secure, remains an open question to us (usually when adapting a static protocol, either dynamicity involves too much recomputation or the security is compromised by the updates).

Outsourced dynamic verification of the evaluation

In order to be able to deal with updates, a classical tool is to add Merkle trees that are updated along with the polynomial parts. Checking the root of the Merkle tree allows for logarithmic verifications and updates of any coefficient of the polynomial. Modifications of the polynomial coefficients are also included in the Client state so that old polynomials cannot be used for the verification of Eval. The difficulty then is to preserve a linear time Server with a fast and light Client; we show next how to achieve this.

Merkle trees for logarithmic Client storage

In order to avoid storing the polynomial coefficients on the Client side, we thus use a Merkle hash tree [START_REF] Merkle | A digital signature based on a conventional encryption function[END_REF][START_REF] Laurie | and Google[END_REF][START_REF] Anthoine | Dynamic proofs of retrievability with low server storage[END_REF]. Then it is sufficient to store the root of the Merkle tree: under the CRHF assumption, a malicious Server cannot give back different polynomial coefficients. For our purpose, an implementation of such trees must just provide the following algorithms:

• T Ð MTTreepXq creates a Merkle hash tree from a database X.

• r Ð MTRootpXq computes from scratch the root of the Merkle hash tree of the whole database X.

• L Ð MTUnclespi, T q retrieves a list of "uncle" node hashes along the path in the tree to index i.

• r Ð MTpathRootpi, a, Lq computes the root of the Merkle hash tree from a leaf element a and the associated path of uncles L.

• T 1 Ð MTupdLeafpi, a, T q updates the whole Merkle tree T by changing the i-th leaf to be a.

The correctness requirements are that, for any index i and databases X, Y which are identical except possibly for the i'th index index (i.e., @j ‰ i, x j " y j), we have

MTRootpXq " MTpathRoot (i, x i , MTUncles (i, MTTreepXq)) (8)
MTTreepXq " MTupdLeafpi, x i , Y q (9)
And the soundness requirement is that no P.P.T. adversary can compute a tuple pX, i, b, Lq such that

x i ‰ b and MTRootpXq " MTpathRootpi, b, Lq. (10)

Public dynamic unciphered polynomial evaluation

Thanks to these additional Merkle-tree operations, we can now give a protocol for the public verification of the evaluation of a dynamic polynomial P . It consists in five algorithms (Setup, Read, Update, Eval, Verify) detailed in Table 4 and it requires, for now, a symmetric pairing.

During the Setup algorithm, the Client sends the unciphered polynomial to the Server and deletes it to minimize its storage. The Client uses a random coin s to create some data to be published or to be sent to the Server. The Verifier collects the published data and is authorized to run the Read and the Verify algorithms. But she is not authorized to run the Setup and Update algorithms (she does not know s). At any point the Client can take the role of a Verifier. This is shown in Table 4, where the different states are as follows: st V " {G, G T , g, e, K 1 , K 2 , r P }, st C " st V Y {s} and st S " {G, g, P, T P , S}. Proposition 10 (A proof is given in Appendix B). The protocol of Table 4 is correct and sound under the d-BSDH and CRHF assumptions.

One difficulty is to preserve a linear-time Server. We show next that this is indeed possible here.

T P Ð MTTreepP q P, S r P Ð MTRootpP q Output : st S " {G, P, T P , S} st V " {G, G T , g, e, K 1 , K 2 , r P }, st C " st V Y {s} Read i L i Ð MTUnclespi, P, T P q p i , L i r P ? " MTpathRootpi, p i , L i q Output : p i or reject Update i, p 1 i L i Ð MTUnclespi, P, T P q p i , L i r P ? " MTpathRootpi, p i , L i q, r 1 P Ð MTpathRootpi, p 1 i , L i q T P Ð MTupdLeafpi, p 1 i , T P q; p i Ð p 1 i K 1 1 Ð K 1 ¨e g s i pp 1 i ´piq ; g Output : st S " {G, P, T P , S} st V " {G, G T , g, e, K 1 1 , K 2 , r 1 P }, st C " st V Y {s} or reject Eval/Verify Form x Ð r1, r, r 2 , . . . , r d s r r $ Ð Z p ζ Ð P prq; ξ Ð d i"1 i´1 k"0 S pixk i´k´1 ζ, ξ epξ; K 2 {g r qepg ζ ; gq ? " K 1 Output : Dpζq or reject

Efficient linear-time evaluation

As a first approach to evaluate our protocols, we consider that the cardinality of the coefficient domain is a constant. Therefore, we count as arithmetic operations in the field not only the usual addition, subtraction, multiplication and inversion, but also the exponentiations that are independent of the degree of the polynomial. We thus express our asymptotic complexity bounds in Table 5, only with respect to that degree d. The main idea is to evaluate the polynomial of Equation (6) (with a priori a quadratic number of monomials) in a Horner-like fashion, so that it requires only a linear number of operations. In the next Section, we then propose a novel fully private protocol, combining and formalizing the ideas from the encrypted one and the dynamic one. permanent storage to a small constant number of field elements. For this we use Merkle hash trees presented in Section 4.1. They ensure the authenticity of the coefficient updates, with the storage of only one hash. Finally note that the bilinear pairing need not be symmetric anymore, but need to be applied twice for the security hypothesis to hold.

We start the section with the security tools and then the linear algebra algorithms we will use and then give a full formalization and the associated proofs of security. We end the section with experiments showing the efficiency of our approach.

Security requirements

Here we add a secret masking of the polynomial coefficients in order to make the protocol hiding. For this we use the security hypothesis of Definition 6: indeed, DLM security states that in a bilinear group G of prime order, the values pg P1pAqβ , . . . , g P d pAqβ q are indistinguishable from a random tuple of the same size, when P 1 , . . . , P d have distinct leading monomials of bounded degree and A and β are the 2ˆ2 and 2ˆ1 secrets. Therefore, in our modified protocol, the coefficients g Φ i β for a secret 2ˆ2 matrix Φ, are indistinguishable from a random tuple (g Γi) since the polynomials X i , i " 1..d are just distinct monomials.

Linear algebra toolbox

For the next protocol to hold, we need to adapt the difference polynomial to the matrix case. For instance Lemma 8 holds in the matrix case provided that the, now matrices, Y and X commute and that Y ´X is invertible. Let I n be the nˆn identity matrix. Then, we will for instance use Y " sI 2 and X " rI 2 with s ‰ r.

Also to speed-up things with the DLM masks, we need to efficiently compute geometric sums of matrices. Thanks to Fiduccia's algorithm [START_REF] Fiduccia | An efficient formula for linear recurrences[END_REF], this is easily done with a number of operations logarithmic in the exponent, provided that 1 is not an eigenvalue of the matrix. Indeed, first, any matrix commutes with the identity so the geometric sum can be computed via one matrix exponentiation, one matrix inverse and one matrix multiplication: d i"0 A i " pA d`1 ´In qpA ´In q ´1. Then, second, Fiduccia's algorithm computes the exponentiation modulo the characteristic polynomial, using the square and multiply fast recursive algorithm. This is summarized in Algorithms 1 and 2 and analyzed in Appendix B.

Algorithm 1 Degree 2 modular monomial powers (2-MMP)

Input: d P Z, d ě 1, P " p 0 `p1 Z `Z2 P Z p rZs monic degree 2 polynomial. Output: Z d mod P .

1: if d "" 1 then return Z 2: T Ð 2-MMPp d{2 , P q; 3: S Ð pt

Input: k P Z, A " a b c d P Z 2ˆ2 p , s.t. A ´I2 is invertible, β P Z 2 p . Output: k i"0 A i β. 1: Let πpZq " pad ´bcq ´pa `dqZ `Z2 ; {The characteristic polynomial of A} 2: Let F pZq " f 0 `f1 Z " 2-MMPpk `1, πq; {Z k`1 mod πpZq, using Algorithm 1} 3: return pf 1 A `pf 0 ´1qI 2 qpA ´I2 q ´1β. {pA k`1 ´I2 qpA ´I2 q ´1β}
Lemma 12. Algorithm 2, computing the matrix geometric sum, requires between 40 `8 log 2 pd p `1q and 40 `11 log 2 pd p `1q arithmetic operations.

Proof. Counting only (modular) field operations, Algorithm 1 requires between 8 and 11 times log 2 pd p q additions and multiplications depending on the binary decomposition of d p . Then we have 5 operations for the matrix inverse, twice 6 operations for the matrix-vector multiplications and 18 operations for the matrix polynomial evaluation. Plus 5 operations for the characteristic polynomial.

Formalization of the protocol

The dynamic externalized polynomial evaluation scheme consist of the following algorithms

Ð Z p z{0, 1}, α, β $ Ð Z 2 p , Φ $ Ð Z 2ˆ2 p , s. t. sΦ ´I2 is invertible; 4: Client: computes P pXq " d i"0 X i pp i α `Φi βq, W " E pk pP q " rEpp i qs d i"0 , S " rg s k 1 s d´1 k"0 P G d 1 , H " rg pi 2 s d i"1 P G 2ˆd 2 , K " g P psq T P G 2 T and d p "d mod ϕppq " d mod p´1; 5: Client: r W " MTRootpW q;
{root of the Merkle tree} 6: Client: sends pk, G 1 , G 2 , g 1 , g 2 , G T , e, W, S, H to the Server; 7: Client: return st C Ð {pk, sk, G 1,2,T , g 1,2,T , e, s, α, β, Φ, K, r W , d p }; 8: Server: T W Ð MTTreepW q; {the Merkle tree} 9: Server: return st S Ð {pk, G 1,2,T , e, W, T W , S, H}.

Algorithm 4 Readpist C , st S q Input: i P r0..ds, pst C , st S q " Setupp1 κ , P q. Output: p i the value of the i th coefficient of P .

1: Client: sends i; 2: Server: L i Ð MTUnclespi, W, T W q; 3: Server: sends w i , L i to the Client; 4: if r W ‰ MTpathRootpi, w i , L i q then {the stored root does not match the received element and uncles}

5:

Client: return reject. 6: else

7:

Client: computes p i " Dpw i q; 8: end if Remark 13. We show next how to use a dynamic VPE protocol inside a DPoR scheme. There, the client updates a polynomial coefficient p i by sending an encryption of only the difference δ " p 1 i ´pi without needing to know the value of p i . In this variant, the value of p i does not have to be checked and the hash tree is superfluous.

We thus consider δSetup, a variant of Setup where the client does not need MTRootpW q (line 5 of Algorithm 3) and the server does not compute the tree at all (remove MTTreepW q, line 8). st C and st S are therefore reduced to st C " {pk, sk, G 1,2,T , g 1,2,T , e, s, α, β, Φ, K, d p } and st S " {pk, G 1,2,T , e, W, S, H} (note that this prevents using the Read operation on the polynomial). In addition, we also consider a Algorithm 5 Updatepi, p 1 i , st C , st S q Input: i P r0..ds, p 1 i P Z p , pst C , st S q " Setupp1 κ , P q. Output: pst 1 C , st 1 S q " Setupp1 κ , P `pp 1 i ´pi qX i q or reject. 1: Client: gets st C " ppk, sk, G 1,2,T , g 1,2,T , e, s, α, β, Φ, K, r W , d p q, 2: Client: computes w 1 i " Epp 1 i q, 3: Client: computes H1 i Ð g

p 1 i α`Φ i β 2 4: Client: sends i, w 1 i if pi ą 0q sends H1 i ; 5: Server: L i Ð MTUnclespi, W, T W q; 6: Server: T 1 W Ð MTupdLeafpi, w 1 i , T W q;
{updates the Merkle tree} 7: Server: sends w i , L i to the Client; 8: Server:

st S Ð st S \{T W , w i } {T 1 W , w 1 i } 9: if i "" 0 then Server: return st 1 S Ð st S else Server: return st 1 S Ð st S \{ Hi } 2 j"1 { H1 i rjs} 10: if r W ‰ MTpathRootpi, w i , L i q then
{the stored root does not match the received element and uncles} 11:

Client: return reject. 12: else 13:

Client: computes ∆ Ð g pp 1 i ´piqα 2 ; 14:

Client: computes K1 rjs Ð epg 1 ; ∆rjs s i q ¨Krjs for j " 1..2;

15:

Client: computes r 1 W " MTpathRootpi, w 1 i , L i q;

16: Server: t Ð S i´1 ¨tr ;

Client: return st 1 C Ð st C \{ K, r W } { K1 , r

5:

Server: ξrjs Ð ξrjs ¨ept; Hi rjsq for j " 1..2; 6: end for 7: Server: return ζ, ξ.

Algorithm 7 Verifypst C , r, ζ, ξq Input: st C , the evaluation point r P Z p , its encrypted evaluation ζ and a proof ξ ; Output: z " P prq or reject.

1: Client: computes rΦ and c Ð prΦq dp`1 ´I2 ¨prΦ ´I2 q ´1 ¨β {via Algorithm 2} 2: Client: computes z " D sk pζq mod p; 3: if ξrjs s´r g zαrjs`crjs T " Krjs for j " 1..2 then

4:

Client: return z. 5: else

6:

Client: return reject. 7: end if variant of the Update algorithm, which takes δ " p 1 i ´pi as input instead of p i , as detailed in Algorithm 8. The corresponding dynamic (from the difference) externalized polynomial evaluation scheme is then reduced to the algorithms δSetup, δUpdate, Eval and Verify.

We have now our main result for the Dynamic Verified Evaluation of Secret Polynomials. Theorem 14 (A proof is given in Appendix B). Under the d-BSDH, DLOG, CRHF and DLM security assumptions of Section 2, the protocol composed of Algorithms 3 to 8 (summarized in Table 12) is a fully Algorithm 8 δUpdatepi, δ, st C , st S q Input: i P r0..ds, δ P Z p , pst C , st S q " Setupp1 κ , P q. Output: pst 1 C , st 1 S q " Setupp1 κ , P `δX i q or reject. 1: Client: computes e δ " E pk pδq, ∆ " g δα 2 ; 2: Client: sends i, e δ , ∆ to the Server; 3: Server: sends w i to the Client; 4: if i "" 0 then Server: return st 1 S Ð st S else Server: return st 1 S Ð st S \{ Hi } 2 j"1 { Hi rjs ¨∆rjs} 5: Client: computes K1 rjs Ð epg 1 ; ∆rjs s i q ¨Krjs for j " 1..2; 6: Client:

return st 1 C Ð st C \{ K} { K1 }.
secure verifiable polynomial evaluation scheme, as defined in Definition 2 and the complexity bounds of its algorithms are given in Table 6.

For the complexity bounds we still consider the cardinality of the coefficient domain to be a constant (so that, again, even exponentiations not involving the degree are considered constant) and we also consider that one encryption/decryption with the linearly homomorphic cryptosystem requires a number of arithmetic operations constant with respect to the degree.

Experiments

To assess the efficiency of our protocol, we implemented Table 12 using the following libraries3 : gmp-6.2.1 for modular operations, fflas-ffpack-2.4.3 for linear algebra, relic-0.6.0 for Paillier's cryptosystem and pairings (we used a "bn-p254" pairing), libsnark (commit 2af4402) for baseline polynomial evaluation verification. Our source code to perform these experiments is available via the following GitHub repository: https://github.com/jgdumas/vespo.

To observe the effect of the chosen homomorphic systems (Paillier with an RSA modulus size of 2048 bits and the pairing), we ran the experiments, on a single core of an intel Gold 6126 2.6GHz for the Client and Horner computations and on one or four cores for the Server (the parallelization of the prefix-like Server part of Algorithm 6 is given in Appendix D). In Table 7, we thus compare the Server time to the Client time of our protocol, to that of a simple (witness) polynomial evaluation (Horner-like) in this group and of an unciphered static polynomial evaluation with a SNARK (a ciphered evaluation with these SNARK would require to arithmetize the Homomorphic cryptosystem and seems still out of reach).

First of all, of course, the Server time, using homomorphic arithmetic, can be several orders of magnitude slower than the simple polynomial evaluation, while indeed being clearly linear. Second, for the protocol itself, we see that both homomorphic evaluations of the Server are quite similar, even if Table 7: Comparative behaviors of pairings and Paillier system on the Server and Client sides with a 254-bits group size for the protocol of Table 12 (column 'pows' is the time to perform the lhs exponentiations (by s ´r and by Dpζqαrjs `crjs); column 'c' times the matrix geometric sum; and column 'D' times the single Paillier's deciphering; below are some baseline comparisons: 'Horner' is a witness direct evaluation in that group, 'libsnark' is an unciphered and static polynomial evaluation verification. Each experiment was performed 11 times and we report the median value, with a maximum variance lower than 16.4% between runs).

Degree Server Certification

Client Verification the Paillier cryptosystem is more expensive for large modulus. Then, on the Client side and for the considered degrees, the dominant computation is that of a single Paillier's deciphering (and that the only part in practice potentially non-constant in the degree is by far the most negligible). Third our Client is even faster than an unciphered one (we use less pairings than libsnark) and for a large enough degree, we can observe the Client time to win over the linear time pure polynomial evaluation. Also, our ciphered Server slowdown remains within a factor close to four (or only two without Paillier) when compared to the static and unciphered one.

Low Server storage dynamic PoR

Recall that Proofs of Retrievability (PoR) allow a Client with limited storage, who has outsourced her data to an untrusted Server, to confirm via an efficient Audit protocol that the data is still being stored in its entirety. The lower bound of [START_REF] Anthoine | Dynamic proofs of retrievability with low server storage[END_REF]Theorem 4] proves that a tradeoff is inevitable between low/high audit cost and high/low storage overhead. The dynamic PoR schemes of [START_REF] Cash | Dynamic proofs of retrievability via oblivious RAM[END_REF][START_REF] Shi | Practical dynamic proofs of retrievability[END_REF] optimize for fast audits. They incur a large O(N) storage overhead on the Server, but can perform audits with only plog N q O(1) communication and computation for the Client and Server. Instead, [START_REF] Anthoine | Dynamic proofs of retrievability with low server storage[END_REF] optimizes for small storage; their scheme has only sub-linear storage overhead of O(N { log N), but a higher audit cost of O(N) on the Server, and Op √ N q Client time and communication. The authors demonstrate that, for reasonable deployment scenarios on commercial cloud platforms, the higher audit cost is more than offset by the greatly reduced costs of extra persistent storage, especially if audits are only performed a few times per day.

We here further improve on the low storage overhead approach of [START_REF] Anthoine | Dynamic proofs of retrievability with low server storage[END_REF], by our scheme with a small o(N) storage overhead, but only O(log N) communication and Client computation cost for audits. That is, our new protocol still benefits from small storage overhead, while effectively pushing the higher computational cost of audits (which is inevitable from the lower bound) entirely off the Client and onto the Server. These savings are highlighted in Table 8. Comput.

[61] An easy argument demonstrates that our O(log N) Client cost for audits is optimal. If each audit has o(log N) cost (and thus transcript size), then the total number of possible transcripts is o(N), which is a contradiction with the definition of retrievability; not every N -bit database could be recoverable via independent audit transcripts.

O(N) O(log N) O(log N) O(1) O(log N) [5] o(N) N `o(N) O √ N O(1) O √ N Here o(N) N `o(N) O(log N) O(1) O(log N)
γ $ Ð Z p , u Ð rγ i s m´1 i"0 P Z m p v Ð u M P Z n p § ¦ ¤ ¥ δSetup ÐÝÝÝÝÝÝÝÝÝÝÝÝ V ect2P olypvq 4 st S ÐÝÝÝÝÝÝÝÝÝÝÝÝ ÝÝÝÝÝÝÝÝÝÝÝÝÑ st C T M Ð MTTreepM q M r M Ð MTRootpM q Output: st S , M, T M Output: st C , γ, r M Write L Mik Ð MTUnclespk `i¨n, M, T M q i, k Input: i, k, M 1 ik M ik , L Mik , w k r M ? " MTpathRootpk `i¨n, M ik , L Mik q δ Ð γ i pM 1 ik ´Mik q st S ÝÝÝÝÝÝÝÝÝÝÝÝÑ § ¦ ¤ ¥ δUpdate ÐÝÝÝÝÝÝÝÝÝÝÝÝ δ, st C st S ÐÝÝÝÝÝÝÝÝÝÝÝÝ ÝÝÝÝÝÝÝÝÝÝÝÝÑ st C M ik Ð M 1 ik , T M Ð MTupdLeafpk `i¨n, M 1 ik , T M q M 1 ik r M Ð MTpathRootpk `i¨n, M 1 ik , L Mik q Output: st S , M, T M Output: st C ,

Matrix based approach for audits

Here we summarize the DPoR of [START_REF] Anthoine | Dynamic proofs of retrievability with low server storage[END_REF] upon which our new scheme is based. The premise is to treat the data, consisting of N bits organized in machine words, as a matrix M P Z mˆn p , where Z p is a suitable finite field of size p. Crucially, the choice of ring Z p does not require any modification to the raw data itself; that is, any element of the matrix M can be retrieved in Op1q time from the underlying raw data storage. The scheme is based on the commutativity of matrix-vector products. During an Init phase, the Client chooses a secret vector u of dimension m and computes v " u M ; both vectors u and v are then stored by the Client for later use, while the Server stores the original data and hence the matrix M in the clear. Reading or updating individual entries in M (Read, and Write protocols in the DPoR case), can be performed efficiently with the use of Merkle hash trees and from the observation that changing one element of M only requires changing one entry in the Client's secret control vector v. To perform an Audit, the Client and Server engage in a 1-round protocol:

1. Client chooses a random vector x of dimension n, and sends x to Server. 2. Server computes y " M x and sends the dimension-m vector y back to Client.

3. Client computes two dot products u y and v x, and checks that they are equal.

The proof of retrievability relies on the fact that observing several successful audits allows, with high probability, recovery of the correct matrix M , and therefore of the entire database. The communication costs are O(n) and O(m) in steps 1 and 2 respectively, and the Client computation in step 3 is O(m `n), resulting in Op √ N q total communication and Client computation when optimizing the matrix dimensions to roughly m " n " √ N . While this square-matrix setup is the basic protocol presented by [START_REF] Anthoine | Dynamic proofs of retrievability with low server storage[END_REF], the authors also discuss a potential improvement in communication complexity. Instead of x being uniformly random over Z n p , it can instead be a structured vector formed from a single random element r P Z p as x " rr i s n i"1 . Then the communication on step 1 is reduced to constant, and hence the total communication depends only on the row dimension O(m). By choosing a rectangular matrix M with few rows and many columns, the communication can be made arbitrarily small. The tradeoff for this reduction in communication complexity is higher Client storage of the control vector v as well as higher Client computation cost for the n-dimensional dot product v x. In [START_REF] Anthoine | Dynamic proofs of retrievability with low server storage[END_REF], the authors found that the savings in communication were not worth the higher Client storage and computation, and their experimental evaluation was based on the square matrix version with overhead Op √ N q.

Bootstrapping Client via VESPo

Now we show how to modify the reduced communication version of the DPoR protocol of [START_REF] Anthoine | Dynamic proofs of retrievability with low server storage[END_REF] just presented in order to eliminate the costly Client storage of v P Z n p and computation of v x during audits. Our improved protocol is based on the observation that, when the audit challenge vector x is structured as x " rr i s, then the expensive Client dot product computation of v x is actually a polynomial evaluation: if the entire of v are the coefficients of a polynomial P , then v x is simply P prq. We therefore eliminate the O(n) Client persistent storage and computation cost during audits by outsourcing the (encrypted) storage of vector v and computation of v x " P prq with our novel protocol for dynamic, encrypted, verifiable polynomial evaluation scheme of Table 12. The obtained private-verification DPoR protocol, combining that of [START_REF] Anthoine | Dynamic proofs of retrievability with low server storage[END_REF] with our ciphered polynomial evaluation in Section 5, is presented in Table 9.

Theorem 15 (A proof is given in Appendix B). The protocol of Table 9 is correct and sound under the d-BSDH, DLOG, CRHF and DLM security assumptions.

Experiments

We now compare our modification of the DPoR protocol with the one in [START_REF] Anthoine | Dynamic proofs of retrievability with low server storage[END_REF]. Table 10 has three blocks of experiments, each for four database sizes ranging from 1GB to 1TB. The first block of experiments is a run of the original statistically secure DPoR protocol with two dotproducts for the verification, considering the matrix as 56 bits elements modulo a 57-bits prime. The second block of experiments is our new modification, but still using close to square matrices. Subject now to computational security, we have to use a larger coefficient domain, namely here a 254-bits prime (with associated bilinear groups and a 2048-bits Paillier modulus, both estimated equivalent to a 112-bit computational security). We separate the timings of the Write phase in two phases, the remaining linear algebra phase and the new polynomial evaluation phase (δUpdate). In the third block of experiments we use a more rectangular matrix, trying to reduce communications while not increasing too much the Server computational effort.

Overall, we see first in Table 10, that changing the coefficient domain size increases the computational effort of the Server in the linear algebra phase. Still, reducing the dimension of the dotproduct for the Client, as shown in he third block, allows the Client to be faster for databases larger than 100GB. In any case, the Client audit computational effort is never larger than a few milliseconds and thus the dominant part is most certainly communications. On this aspect, we see that our modification allows for large reductions in both the Client storage (even with square matrices) and the overall communications. Indeed, the Client private state is the vector dimension, the Paillier's private key, twelve group elements and two Merkle tree roots; while the communications are mostly one vector of modular integers in the smallest dimension.

The price to pay is from about a factor of four (large database) to an order of magnitude (tiny database) for the Server computations (more limited losses in the more realistic case where the Server can use multiple cores). In any case, the persistent Client storage is going from dozens of MB to less than one KB, and the communication volume can be decreased by more than two orders of magnitude.

Conclusion

We have presented a protocol verifying publicly a dynamic unciphered polynomial evaluation and then a protocol verifying privately a dynamic ciphered polynomial evaluation. Now, combining efficient and proven dynamicity for ciphered polynomial with public verifiability raises security issues and reminds an open problem. Still, we have also presented a protocol verifying the outsourced evaluation of secret polynomials. Client verification is of the order of a few milliseconds and is faster than direct polynomial evaluation over a small finite field, as soon as the degree of the polynomial is larger than a few thousand.

This enables us in turn to reduce by several orders of magnitude the communications, Client storage and Client computations for state-of-the-art low Server-storage dynamic proofs of retrievability.

A Overview of VESPo exchanges

We here recall in Table 12, the summary of the exchanges of Algorithms 3 to 8. This gives an overview of our verifiable & dynamic evaluation of ciphered polynomials.

With this summary we can refine in Table 11 the results of Table 6 if we are using Paillier for the LHE (a Paillier encryption is 1 modular exponentiation and 3 modular multiplications, a Paillier decryption is 1 exponentiation and 1 multiplication, homomorphic multiplication is an exponentiation and homomorphic addition is a multiplication; then we approximate Algorithm 1 with 6 exponentiationsand 40 modular operations and we approximate the application of the pairing bilinear map with 1 exponentiation).

Table 11: Dominant terms in operations counts for Table 12 using Paillier (a value of x approximates in fact x `opxq; then "Hash" counts calls to the cryptographic hash function, "mexp" is for modular exponentiations, "group" is for the other arithmetic operations).

Alg.

Server

B Proofs of the propositions and theorems

Now, we give the proofs of the propositions in Sections 3 and 4 and of our main theorems for our private and dynamic ciphered polynomials evaluation protocol and our low Server storage and audit complexity DPoR.

Proposition 9 (From page 9). The protocol of Table 3 is correct and sound under the d-BSDH assumption.

Proof. Correctness. First, ζ " W d x " d i"0 Epp i q pr i q " EpP prqq. Then, second, ξ " H d x "

d´1 k"0 g T k,P psqr k 2 " g Q P ps,rq 2
, by Lemma 8. Therefore, the verification is that g

Q P ps,rqps´rq`P prq T ? " g P psq T
and this is guaranteed by Equation [START_REF] Attrapadung | Unbounded dynamic predicate compositions in abe from standard assumptions[END_REF].

Ð Z p z{0, 1}, α, β $ Ð Z 2 p , Φ $ Ð Z 2ˆ2 p , gen. g 1 , g 2 , g T " epg 1 ; g 2 q s.t. psΦ ´I2 q P GL 2 pZ p q Let P pXq Ð d i"0 X i pp i α `Φi βq Alg. 3 W Ð E pk pP q, S Ð rg s k 1 s d´1 k"0 PG d 1 K Ð g P psq T PG 2 T , H Ð rg pi 2 s d i"1 PG 2ˆd 2 T W Ð MTTreepW q W, H, S d p Ð d mod ϕppq, r W Ð MTRootpW q Output : st S " {pk, G 1,2,T , e, W, T W , S, H} st C " {pk, sk, G 1,2,T g 1,2,T , e, s, α, β, Φ, K, r W , d p } Read i Alg. 4 L i Ð MTUnclespi, W, T W q w i , L i r W ? " MTpathRootpi, w i , L i q Output : p i Ð D sk pw i q or reject Update i, w 1 i , if pi ą 0q H1 i w 1 i Ð E pk pp 1 i q, H1 i Ð g p 1 i α`Φ i β 2 Alg. 5 L i Ð MTUnclespi, W, T W q w i , L i r W ? " MTpathRootpi, w i , L i q T W Ð MTupdLeafpi, w 1 i , T W q r W Ð MTpathRootpi, w 1 i , L i q w i Ð w 1 i ∆ Ð g pp 1 i ´piqα 2 , Krjs Ð epg 1 , ∆rjs s i q ¨Krjs Output : st S " {pk, G 1,2,T , e, W, T W , S, H} st C " {pk, sk, G 1,2,T , g 1,2,T , e, s, α, β, Φ, K, r W , d p } or reject δUpdate If i ą 0, H1 i rjs Ð ∆rjs ¨H i rjs for j " 1..2 i, e δ , ∆ e δ Ð E pk pδq, ∆ Ð g δα 2 Alg. 8 w i Ð w i ¨eδ Krjs Ð epg 1 ; ∆rjs s i q ¨Krjs Output : st S " {pk, G 1,2,T , e, W, S, H} st C " {pk, sk, G 1,2,T , g 1,2,T , e, s, α, β, Φ, K, d p } Eval/Verify Form x Ð r1, r, r 2 , . . . , r d s r For r P Z p s.t. prΦ ´I2 q P GL 2 pZ p q Alg. 6/7 ζ Ð W d x c Ð pprΦq dp`1 ´I2 qprΦ ´I2 q ´1β ξrjs Ð d i"1 i´1 k"0 epS i´k´1 ; Hi rjsq xk for j " 1..2
ζ, ξ ξrjs s´r g Dskpζqαrjs`crjs T ?

" Krjs for j " 1..2 Output : D sk pζq or reject Soundness. Let g 2 , g s 2 , g s 2 2 , . . . , g s t 2 P G t`1 2 be a t-BSDH instance and suppose that there exists an attack to the Audit protocol.

Let rp 0 , . . . , p t s $ Ð Z t`1 p for a degree t polynomial and d " t. Then compute directly W " EpP q, T k,P " t i"k`1 p i Y i´k´1 " t´1´k j"0 t k,j Y j and homomorphically compute:

K " e g 1 ; g 2 , g s 2 , g s 2 2 , . . . , g s t 2 d rp 0 , . . . , p t s , together with H " rh k s, where h k " g 2 , g s 2 , g s 2 2 , . . . , g s t´1´k 2 d rt k,0 , . . . , t k,t´1´k s. These inputs are indistinguishable from a generic setup of the protocol of Table 3 and can thus be given to its attacker.

Finally, select a random evaluation point r and compute pζ, ξq. The supposition is that an attacker of the Audit part of the protocol can get pζ 1 , ξ 1 q, with some advantage, such that pDpζ 1 q, ξ 1 q ‰ pDpζq, ξq, even though both would be passing the verification. Now, on the one hand, if Dpζ 1 q " Dpζq, then ξ ‰ ξ 1 and it must be that epg s´r ; ξ 1 q contradicts the fact that ξ ‰ ξ 1 ; so r " s, and the secret can be exposed. On the other hand, if Dpζ 1 q ‰ Dpζq, then it means that we must have the equality pepg 1 ; ξq{pepg 1 ; ξ 1 qq s´r " g Dpζ 1 q´Dpζq T and therefore: epg1;ξq epg1;ξ 1 q

1 Dpζ 1 q´Dpζq " g 1 s´r

T

. This proves that the adversary would solve the t-BSDH ´r, epg 1 ; g 2 q 1 s´r challenge with the same advantage.

From this proof, one can see that using a decipherable partially homomorphic function for the coefficients of P is required for the soundness (otherwise one could not compute the exponentiation on ξ{ξ 1).

Proposition 10 (From page 10). The protocol of Table 4 is correct and sound under the d-BSDH and CRHF assumptions.

Proof. Correctness. First, [START_REF] Ben-Sasson | Fast reed-solomon interactive oracle proofs of proximity[END_REF] gives the correctness of Read. For Update, (9) provides the correctness of the hash tree. Then, with δ " p 1 i ´pi , the new polynomial is P 1 psq " P psq`δs i , so that the key is updated as K 1 1 " K 1 ¨epg δs i ; gq. Now for the evaluation, first, ξ "

d i"1 i´1 k"0 S pix k i´k´1 " g s i´k´1 pix k " g Q P pr
,sq and, second, we have that: epξ; K 2 {g r qepg; gq ζ " epξ; g s´r qepg; gq P prq " epg; gq Q P pr,sqps´rq`P prq " epg; gq P psq .

Hence we see that epξ; K 2 {g r qepg; gq ζ " K 1 and, therefore, the protocol is correct.

Soundness. First for the Read/Update parts. Suppose an attacker can provide p 1 i ‰ p i that passes the Merkle root check. This would violate the soundness property of Equation [START_REF] Benaloh | Dense probabilistic encryption[END_REF], which is derived from the collision resistance of the underlying hash function.

Second, for the Eval/Verify parts. Let g, g s , g s 2 , . . . , g s t P G t`1 be a t-BSDH instance. For the setup phase, just set d " t and then randomly select rp 0 , . . . , p t s $ Ð Z t`1 p . Then set S " G, g, g s , g s 2 , . . . , g s t and K 1 " e g, g s , g s 2 , . . . , g s t d rp 0 , . . . , p t s; g .

These inputs are indistinguishable from generic inputs to the protocol of Table 4. For any number of update phase, randomly select p 1 i (or δ), receive p i and L i from the Server, compute K 1 1 " K 1 epS δ i ; gq and refresh r p . Finally, select a random evaluation point r, compute pζ, ξq and call an attacker of the Eval part of the protocol to get pζ 1 , ξ 1 q such that pζ 1 , ξ 1 q ‰ pζ, ξq, even though both are passing the verification. If ζ 1 " ζ, then as ξ ‰ ξ 1 it must be that r " s and the secret is revealed; otherwise, ζ 1 ‰ ζ and we have both epξ 1 ; K 2 {g r qepg; gq ζ 1 " K 1 , on the one hand, and K 1 " epξ; K 2 {g r qepg; gq ζ , on the other hand. This gives ep ξ 1 ξ ; g s´r q " epg ζ´ζ 1 ; gq and thus e p ξ 1 ξ q s´r ; g " epg ζ´ζ 1 ; gq. Finally, we have that:

e ξ ξ 1 ; g 1 ζ 1 ´ζ " epg; gq 1
s´r . This proves that the adversary would solve the t-BSDH ´r, epg; gq Proof. The setup phase requires the Client to perform one polynomial evaluation and d exponentiations for Opdq arithmetic operations, together with the computation of the Merkle tree on both sides, for Opdq hashing operations.

For the update phase, the Client computes the root of the Merkle tree from the new value p i `δ and the path L i given by the Server in O(logpdq). She also has to compute an exponentiation and a product in Z p rXs, this is in O(1).

For the verification phase, communications are just 3 group elements. The Client work is only 2 pairing and 2 exponentiations and 1 product. Now for the Server. First, computing ζ is d `1 homomorphic multiplications and d additions. Second, the Server has to compute ξ "

d i"1 i´1 k"0 S pix k i´k´1 " d i"1 i´1 k"0 S r k i´k´1 pi
. Therefore, one can use a Horner-like prefix computation [START_REF] Kahan | Symbolic computation of divided differences[END_REF]: consider t 0 " 1, and t i " S i´1 ¨tr i´1 , then t 1 " S 0 , t 2 " S 1 S r 0 and therefore t i " S i´1 pS i´2 . . . pS 2 pS 1 S r 0 q r q r . . .q r " i´1 k"0 S r k i´k´1 . Thus one can use the following Algorithm 9 to compute ξ.

Computing ξ then requires at most 2d exponentiations and 2d multiplications.

Theorem 14 (From page 14). Under the d-BSDH, DLOG, CRHF and DLM security assumptions of Section 2, the protocol composed of Algorithms 3 to 8 (summarized in Table 12) is a fully secure verifiable polynomial evaluation scheme, as defined in Definition 2 and the complexity bounds of its algorithms are given in Table 6.

Algorithm 9 Homomorphic linear prefix evaluation of the difference polynomial Input: r, rS 0 , . . . , S d´1 s, rp 1 , . . . , p d s.

Output: ξ "

d i"1 i´1 k"0 S r k i´k´1 pi
.

1: ξ " 1; t " 1; 2: for i " 1 to d do

3: t Ð S i´1 ¨tr ; {t i " i´1 k"0 S r k i´k´1 } 4:
ξ Ð ξ ¨tpi . 5: end for 6: return ξ.

Proof. First of all, we have that:

H 1 i " H i .∆ w 1 i " w i .e δ ô ∆ " H 1 i .H ´1 i e δ " w 1 i .w ´1 i
Therefore, it is equivalent to consider the protocols using only Algorithm 5 or only Algorithm 8 or any combinations of both. Also, the Read part is identical to that of Table 4 and so are the associated security proofs.

Correctness. For the Update operation, P 1 psq " P 1 ps¨I 2 q " pp 1 i ´pi qs i α`P ps¨I 2 q and epg 1 ; g

P 1 ps¨I2qrjs 2
q " epg 1 ; g s i pp 1 i ´piqαrjs 2 q ¨epg 1 ; g P ps¨I2qrjs 2 q " epg 1 ; p H1 i rjs ¨H i rjs ´1q s i q ¨g P psqrjs T " epg 1 ; p H1 i rjs ¨H i rjs ´1q s i q ¨Krjs for j " 1..2. Finally, We use the left hand side of Lemma 8 and Equation [START_REF] Attrapadung | Unbounded dynamic predicate compositions in abe from standard assumptions[END_REF]. Applied to P , this is: ξ

" d i"1 i´1 k"0 epS i´k´1 ; Hi q x k " d i"1 i´1 k"0 epg s i´k´1 1
; g 2 Pi q r k so that ξ " epg 1 ; g 2 q Q P ps¨I2,r¨I2q . Denote by GpZq " Z d`1 ´1 Z´1 . Now P pXq " P pXqα `GpXΦqβ, then c " GprΦqβ " Gpr ¨I2 Φqβ and thus P pr ¨I2 q " Dpζqα `c " P prqα `c. Therefore the verification in Eval/Verify is indeed that g Q P ps¨I2,r¨I2qps´rq`P pr¨I2q T ? " g P ps¨I2q T " g P psq T . Complexity bounds. In terms of storage, apart from the public/private key pair and the groups, the Client just has to store nine elements mod p, that is s, α ‰ r0, 0s, β, and Φ, together with two group elements, K; the Server has to store the polynomial ciphered thrice, the ciphered powers of s and the Merkle tree for the ciphered polynomial: all this is Opdq. In terms of communications, during the Update phase the Client sends one index and three group elements, while receiving one group element and the list of its logpdq uncles. During the Eval/Verify phase, only four elements are exchanged. Finally, in terms of computations, the Server performs Opdq operations for the Merkle tree generation at Setup; fetches Oplogpdqq uncles at Update; and Opdq (homomorphic) operations at Verify, thanks to Algorithm 9. For the Client, Update requires Oplogpdqq arithmetic operations to check the uncles and to compute the exponentiation s i and Φ i , together with a constant number of other arithmetic operations, independent of the degree. Similarly, computing prΦq dp`1 also requires Opmin{logpdq, logppq}q classical arithmetic operations thanks to Algorithm 2. This is O(1) if p is considered constant and the rest is also a constant number of operations that are independent of the degree.

Soundness. Let g 1 , g s 1 , g s 2 1 , . . . , g s t 1 P G t`1 1 be a t-BSDH instance. For the setup phase, randomly select α, β, Φ and rp 0 , . . . , p t s. Then compute W " EpP q, H " g P 2 , and let S " g 1 , g s 1 , g s 2 1 , . . . , g s t 1 . Finally homomorphically compute:

K " e g 1 , g s 1 , g s 2 1 , . . . , g s t 1 d rp 0 , . . . , pt s; g 2 .

These inputs are indistinguishable from random inputs to the protocol of Table 12. For any number of update phases, randomly select i and p 1 i and compute

w 1 i Ð Epp 1 i q, H1 i Ð g p 1 i α`Φ i β 2
and ∆ " g δα 2 . Also compute K 1 " epS pp 1 i ´piqα i ; g 2 q ¨K. Finally, select a random evaluation point r, compute pζ, ξq and call an attacker of the Eval part of the protocol to get pζ 1 , ξ1 q such that pDpζ 1 q, ξ1 q ‰ pDpζq, ξq, even though both are passing the verification. This means, again, that if, on the one hand, Dpζ 1 q " Dpζq, then ξps´rq " ξ1ps´rq with ξ ‰ ξ1 . Therefore s " r and the secret is exposed. If, on the other hand, Dpζ 1 q ‰ Dpζq then, as α ‰ r0, 0s, set j P {1, 2} such that αrjs ‰ 0 and we have again: ξrjs ξ1 rjs

1 αrjspDpζ 1 q´Dpζqq " epg 1 ; g 2 q 1 s´r .
This proves that the adversary would solve the t-BSDH ´r, epg 1 ; g 2 q 1 s´r challenge.

Privacy. We show that the protocol is hiding both p i and pi . For pi first. Let B " g b 2 be a DLOG instance. For the setup phase, randomly select s, α, Φ, d, rp 0 , . . . , p d s and two non-zero elements b 1 , b 2 P Z p . Then compute W " EpP q, Hi " g αpi 2 B Φ i rb1,b2s , S " g 1 , g s 1 , g s 2 1 , . . . , g s t 1 , and K " epg 1 ; g αP psq 2

B GpsΦqrb1,b2s q. These inputs are indistinguishable from random inputs to the protocol of Table 12. For any update phase, randomly select i and p 1 i and compute

w 1 i Ð Epp 1 i q, H1 i Ð g p 1 i α`Φ i β 2
and ∆ " g αδ 2 . Also compute K1 rjs " epg 1 ; ∆ s i q ¨Krjs for j " 1..2. Such updates are indistinguishable from random updates to the protocol of Table 12. Randomly select any number of evaluation points r and run the associated Eval phases, randomly alternated with Update phases. Now, if an attacker can find from this transcript one coefficient pi rjs for j P {1, 2}, then compute b " pp i rjs ´pi αrjsq{pΦ i rb 1 , b 2 s qrjs and the DLOG is revealed.

For p i , we proceed with a sequence of two indistinguishable games. Under DLM security, cf. Definition 6, the parameter Hi , or more precisely, the pair pEpp i q, g piα`Φ i β 2 q, is indistinguishable from pEpp i q, g piα`Γi 2 q for some random 2-dimensional vectors Γ i . Therefore the protocol of Table 12 is indistinguishable, as a whole, from the same protocol where Φ i β is everywhere replaced by Γ i , and c is (now inefficiently) computed as r i Γ i . Now we prove that the latter is hiding. Let Z " Epωq be the cipher of a secret ω. Randomly select d and ru 0 , . . . , u d s

$ Ð Z d`1 p
. Compute W i " Z ¨Epu i q " Epω `ui q. Randomly select α and h i (so that Γ i " log g2 ph i q ´pω `ui qα P Z 2 p exists, but remains unknown) for i " 1..d. Randomly select s and compute K " epg 1 ; H d r1, s, . . . , s d sq. For any number of updates, randomly select p 1 i , compute w 1 i Ð Epp 1 i q so that δ " p 1 i ´pi " pω `u1 i q ´pω `ui q " u 1 i ´ui . Thus update u 1 i Ð δ `ui and, therefore, compute ∆ " g δα 2 and K1 rjs " epg 1 ; ∆rjs s i q ¨Krjs for j " 1..2. Alternatively run such updates with random Eval phases; all this is indistinguishable from a normal transcript of the protocol. Now if from this transcript an attacker could find one p j , then compute ω " p j ´uj and the encrypted value would be revealed.

Theorem 15 (From page [START_REF] Bünz | Bulletproofs: Short proofs for confidential transactions and more[END_REF]. The protocol of Table 9 is correct and sound under the d-BSDH, DLOG, CRHF and DLM security assumptions.

Proof. For the sake of simplicity, we here only consider the case t " 1, that is a single control vector.

Correctness. Assume that all the parties are honest. After each update phase, thanks to the correctness of the Merkle hash tree algorithms, we have w " Epu M q and K " epg 1 ; g vσ 2 q. To see this, suppose a modification of the database at indices i and k, and let M 1 " M `pM 1 ik ´Mik qE ik where E ik is the single entry matrix with 1 at position pi, kq. We have u M 1 " u M `u pM 1 ik ´Mik qE ik " u M `γi e k pM 1 ik ´Mik q where e k is the k-th canonical vector. Thus, v 1 " v `γi pM 1 ik ´Mik qe k " v `δe k satisfies u M 1 " v 1 . Only the k-th coefficients are different in v and v 1 , and in w and w 1 as well. For the latter, w 1 k " Epv 1 k q " Epv k `δq " Epv k qEpδq " w k Epδq. The Server thus computes w 1 such that w 1 " Epu M 1 q. Moreover, for j " 1..2, v1 rjs " vrjs `δαrjse k , so that, similarly, H1 k rjs " ∆rjs Hk rjs with ∆ " g δα 2 , and K1 rjs " epg 1 ; g v1 rjsσ 2

q " epg 1 ; g vrjsσ 2 g δαrjse k σ 2

q " Krjs ¨epg 1 ; g δαrjss k 2

q " Krjs ¨epg 1 ; ∆rjs s k q. Now, concerning the audit phase. Since we consider the polynomial evaluation as a dotproduct, the application of Proposition 8 to our notations gives: ps ŕq

n´1 i"1 i´1 k"0 vi s i´k´1 r k ` n´1 i"0 vi r i " n´1 i"0 vi s i . Thus we have: ξ " n´1 i"1 i´1
k"0 epS i´k´1 ; Hi q x k so that also ξ "

n´1 i"1 i´1 k"0 epg s i´k´1 1 ; g 2 vi q r k " epg 1 ; g 2 q n´1 i"1 i´1 k"0 vis i´k´1 r k . Moreover, αDpζq `c " αvx `pprΦq d`1 ´I2 qprΦ ´I2 q ´1β " αvx ` n´1 k"0 r k Φ k β " vx. Thus we have that Krjs " g vrjsσ T " g ps´rqp n´1 i"1 i´1 k"0 virjss i´k´1 r k q`vrjsx T
. From the setup, this means that Krjs " ξrjs s´r g Dpζqαrjs`crjs T and, finally, u y " u M x " v x.

Soundness. An attacker to the protocol must provide py 1 , ζ 1 , ξ 1 q such that py 1 , ζ 1 , ξ 1 q ‰ py, ζ, ξq, but still u y 1 " D sk p ζ1 q, with a non negligible advantage . There are two cases: if pD sk p ζ1 q, ξ 1 q ‰ pD sk p ζq, ξq then the attacker had to break the polynomial evaluation; otherwise, it must be that u y 1 " u y with y 1 ‰ y.

For the first case, Theorem 14 assesses the security of the polynomial evaluation. For the second case, we consider T " E pk ptq the cipher of a secret t by the homomorphic scheme. Here, we use again the fact that the protocol of Table 9 is indistinguishable as a whole from the same protocol where, within the polynomial evaluation of, Φ i β is everywhere replaced by a random Γ i . Further, this is indistinguishable from a third protocol where, at each Write of index i, a new Γ 1 i is also randomly redrawn and replaces Γ i in the Client state. We thus continue the proof with this third game setting. Now, using e the -th canonical vector of Z m p , we can (abstractly) consider ũ " u`te and ṽ " ũ M " pu `te qM " v`tM ,˚. Then, for the Init phase, we can randomly select m, n and ď m. Then also M P Z mˆn p , u P Z m p , and compute v " u M . From this, compute w k " Epv k qT M k " Epv k `tM k q " Epṽ k q. We also randomly select s, α and Hk (so that Γ k " log g2 p Hk q ´ṽ k α exists, but is unknown). For any Write phases, compute w 1 k " w k T M 1 k ´M k and select randomly a ∆ (so that H1 k rjs " Hk rjs∆rjs for j " 1..2 now correspond to a new Γ 1 k " log g2 p H1 k q ´ṽ 1 k α still unknown). Finally, the attacker provides a vector y 1 such that both ũ py 1 ´yq " 0 and y 1 ‰ y mod p. Since is randomly chosen from 1..m, the probability that the vectors are distinct at index , in other words that y 1 ‰ y mod p, is at least 1{m. If this is the case, then, denoting z " y 1 ´y, we have that z ‰ 0 mod p. Now, ũ z " 0 implies that u z `tz " 0 so that the secret can be computed as t " ´z ´1 ¨pu zq mod p and the homomorphic cryptosystem is subject to an attack with advantage {m.

C Paillier's cryptosystem as the linearly homomorphic primitive

Paillier's homomorphic system works modulo some RSA composite number N . Now it is possible to use it to compute evaluations modulo a different m (for instance a prime), provided that m is small enough: consider the modulo m operations to be over Z, perform the homomorphic operations, and use m only to reduce after decryption. This is illustrated in Algorithm 10.

Algorithm 10 Homomorphic modular polynomial evaluation with a different Paillier modulus Input: An integer r P r0..m ´1s; Input: A Paillier cryptosystem pE, Dq with modulus N ą pm ´1q 2 . Input: pEpp 0 q, . . . , Epp d qq P Z d`1 N , such that @i, p i P r0..m ´1s and d ă N pm´1q 2 ´1. Output: c P Z N such that Dpcq mod m " P prq mod m " d i"0 p i r i mod m. 1: let x 0 " 1 and c 0 " Epp 0 q; 2: for i " 1 to d do Proof. If 0 ď p i ď pm ´1q, then as x i " r i mod m is considered as an integer between 0 and m ´1, then 0 ď d i"0 p i x i ď pd `1qpm ´1q 2 ă N by the constraints on d and N . Therefore d i"0 p i x i mod N " d i"0 p i x i P Z and now Dpcq mod m " d i"0 p i x i mod m " P prq.

D Parallel prefix-like algorithm for the Server

We here provide the parallelization we used for the Server audits in our experiments. For the DPoR, the matrix-vector product part was already parallelized in [START_REF] Anthoine | Dynamic proofs of retrievability with low server storage[END_REF]Table 6], a Server auditing the 1TB database in a few minutes. For the polynomial part, as the dimensions become more rectangular, as we can see in Table 10, the Server's polynomial part is sometimes not negligible anymore, thus also benefits from some parallelization. For this, we would need to parallelize both the homomorphic dot-product and the Horner-like pairings. On the one hand, the former operations, line 1 in Algorithm 6, can be blocked in independent exponentiations and final multiplications in a binary tree. On the other hand, for the latter operations, a standard "baby steps / giant steps" approach can be employed for the iteration of lines 3-6 in Algorithm 6:

• First, for steps of size k, compute t r k , then t r kj for j " 1..pd{kq as a parallel prefix; then iterates the multiplications by the coefficients of S in parallel for the d{k blocks.

• Second, then all the pairings could be computed in parallel and their final multiplications performed again with a binary tree. This is exposed in Algorithm 11.

Algorithm 11 Parallel Server Eval Input: Group order p, polynomial degree d, evaluation point r and vectors W , S, Hrjs, all as in Algorithm 6. Input: Cutting parameter q (e.g. can be the number of threads). Output: SERVER ζ, ξrjs for j " 1..2.

1: Let pb, ηq P N 2 s.t. d `1 " bq `η, with 0 ď η ă q;

ζ k Ð b k ´1 i"b k´1 w ρi i 12: end parfor 13: ζ Ð q k"1 ζ k { log 2 pqq parallel steps} {PHASE C: u " k"0 S r k
´k, for " 0..pd ´1q} 14: u 0 Ð S 0 ; 15: for k " 1 to q ´1 do {q parallel steps} 16: for " 0 to b k`1 ´bk ´1 do 20:

u b k Ð u ρ b k ´bk´1 b k´1 b k "b k´1 `1 S ρ b k ´ ; 17
u b k ` `1 Ð S b k ` `1 ¨ur b k ` ; 21:
end for 22: end parfor {PHASE D: ξ "

d i"1 i´1 k"0 epS i´1´k ; Hi q r k } 23: ξ " r1 G T , 1 G T s P G 2
T ; 24: for j " 1 to 2 do ξrjs Ð q k"1 ξk rjs { log 2 pqq parallel steps} 29: end for Lemma 17. Algorithm 11 is correct, work-optimal with work W q " Opdq and runs in time W q {q `opW q q on q processors. Proof. Correctness of phases A, B and D stems directly from the correctness of Algorithm 6. Phase C is correct since the new variables u satisfy {u 0 " S 0 , u `1 " S `1u r }.

Then, p is the prime group order, and for any homomorphic system satisfying Equation (2) we have:

• Phase A: requires d multiplications modulo p with depth Oplogpdqq and the parallelism is thus only bounded by Brent's law [17, Lemma 2];

• Phase B: requires d`1 homomorphic exponentiations and d homomorphic multiplications with a depth of b " d{q such operations and the parallelism is thus only bounded by Brent's law;

• Phase C: requires d exponentiations and multiplications in G 1 . But this is implemented in parallel with a depth of b " d{q such operations, only after precomputing q ´1 times b operations each with a depth of logpbq;

• Phase D: requires d pairings and d ´1 multiplications in G T with a depth of b " d{q such operations and the parallelism is thus only bounded by Brent's law.

So only Phase C requires more operations in parallel than in sequence. And that number of operations is d `bpq ´1q exponentiations and multiplications if ran on q processors. This latter work is in fact optimal for prefix-like computations as shown in [62, Corollary 4] (see also [START_REF] Roch | On-line adaptive parallel prefix computation[END_REF]): indeed consider a family of binary gates θ ρi pa, bq that on inputs a and b compute a ¨bρi , that is one multiplication and one exponentiation. They satisfy the conditions of [START_REF] Snir | Depth-size trade-offs for parallel prefix computation[END_REF]Corollary 4] and thus computing all the u is lower bounded by dp2 ´1{qq calls to that gate when ran on q processors. Remark 18. The accumulated independent exponentiations/pairings of lines 11, 16 and 26 of Algorithm 11 can in fact be gathered in small batches, where each batch can factorize some computations (e.g. using a generalized Shamir trick with multiple exponentiations in G 1 , or using NAF windows, etc.). Therefore, on the one hand, with respect to a purely sequential computation, the extra work required by Phase C (when used with more than 2 processors) is in fact batched. On the other hand, the other part of Phase C cannot benefit from these batches and is therefore dominant, but is more parallel. Therefore, as shown also in Table 13, this allows us to reach, on multiple cores, pretty good overall practical speed-ups. This parallelism can be used to further reduce the Server latency for large databases, to allow faster multi-user queries, and thus to make the scheme even more practically relevant.

E Post-quantum homomorphic routines

The use of linearly homomorphic encryption (e.g., Paillier) and pairings means that, as implemented, our protocols are not resistant to quantum attacks. In response to recent recommendations by NIST and other standards organizations that all cryptographic solutions be made quantum-resistant, we considered the impacts of replacing these primitives with fully homomorphic encryption (FHE) primitives which are believed to be quantum-resistant.

Unfortunately, there are two reasons why further work is needed before we could recommend using FHE in our protocols. First, as we discuss in detail below, our preliminary implementation results are prohibitively slow using state of the art FHE libraries, due apparently to the inherent non-linear nature of polynomial evaluation on encrypted evaluation points. Second, our proof of security as written reduces the soundness guarantee to the t-BSDH problem, which has no analogue in FHE cryptosystems, and it is not clear what different assumption on FHE primitives could be used in its place.

We now detail our preliminary investigation into using FHE in our protocols, to better explain the shortcomings mentioned above and hopefully encourage future work in this direction.

We need two systems. First, where we use Paillier's cryptosystem, our protocols were already abstracted by the requirements of Equation [START_REF] Abdalla | Multi-client inner-product functional encryption in the random-oracle model[END_REF]. It is thus possible to use instead any quantum-safe linearly homomorphic primitives. There, Paillier's routine with larger parameters might be a possibility, see e.g. [START_REF] Bernstein | Post-quantum RSA[END_REF]. Other possibilities for now is to use quantum-safe fully homomorphic encryption, like BGV [START_REF] Brakerski | leveled) fully homomorphic encryption without bootstrapping[END_REF], here without bootstrapping.

Second, we need to modify the parts where we use pairings, in order to replace them with quantumsafe routines. For this we first abstract the requirements. Denote by E, and resp. D, the homomorphic encryption, resp. decryption, functions. We want those to support homomorphic addition, homomorphic multiplication between a ciphered message and a cleartext, together with depth-1 homomorphic multiplication between two ciphertexts and with homomorphic equality testing (in a private setting, this latter requirements can also for instance be implemented by decryption and direct equality testing). We can notate these requirements as follows:

DpEpm 1 q ' Epm 2 qq " m 1 `m2 DpEpm 1 q m2 q " m 1 ˆm2

DpEpm 1 q b Epm 2 qq " m 1 ˆm2

Epm 1 q ? " l Epm 2 q ðñ m 1 ?

" m 2

The pairings parts in Table 12 are now transformed as in Table 14: The two important issues are then the security analysis and the performance. First, the security analysis we have performed depends on assumptions of pairings (namely the hardness of t-BSDH). For Table 14 we would need to use some other assumption on the chosen FHE primitives. Second, our protocol efficiency crucially depends on efficient ciphertext-cleartext multiplication. We here report on some attempts with the BGV system implemented with the SEAL [START_REF][END_REF] and the HElib [START_REF] Halevi | Bootstrapping for helib[END_REF] libraries.

We were able to make our protocol work with these LWE-like implementations but for now there is a prohibitive performance price to pay, for two reasons:

1. A first constraint in SEAL and HElib is the size of the cleartext modulus which can usually not yet be very large, in practice at most some small fraction of a machine word.

2.

A second limitation for these libraries, is that the ciphertext-cleartext multiplication is not much more efficient than ciphertext-ciphertext, since the noise in the polynomials is similarly increasing in both cases.

More precisely, for the computation of our coefficient ζ, we were able to use batched arithmetic with both SEAL and HElib and this is quite efficient, but works only for very small primes.

Differently, this is for the computation of our second coefficient, ξ, that the price to pay is much too prohibitive, even for very small primes and (too) low security parameters. Indeed, to compute ξ, our Server scheme involves computations of the form S 3 'S r 2 'S r 2 1 'S r 3 0 , where r is a cleartext and the S i are ciphertexts. On the one hand, if the r k are precomputed, this is of constant multiplicative depth 1, even when counting ciphertext-cleartext multiplications, but then the overall double-loop scheme of Lemma 8 is quadratic-time. On the other hand, if ξ is instead homomorphically computed with the linear prefixlike Algorithm 9, the computations now involve in fact computations of the form S 3 'pS 2 'pS 1 'pS r 0 qq r q r . As mentioned, even though the involved multiplications are only ciphertext-cleartext, in the available libraries the noises increase linearly, much closer to a linear multiplicative depth. Bootstrapping is thus required a linear number of times. For instance, the latency of a BGV bootstrapping operation costs at least several dozen seconds [START_REF] Halevi | Bootstrapping for helib[END_REF] 4 . We provide in Table 15, evaluations of our scheme using either SEAL and the quadratic, depth-1 version, or HElib and the linear, but bootstrapped version. Comparing with Table 7, we see that quantum-safe routines are for now still several orders of magnitude slower.

The dominant cost in these experiments is in fact the bootstrapping. Future work thus might be:

Figure

 Figure 1: VDPE soundness security game between two Observers O 1 & O 2 (respectively playing the roles of the Client and the Verifier), a potentially malicious Server A and an honest Server S

" K and epg s´r 1 ; ξ 1 1 ;

 111 qg Dpζq T " K. Therefore, if r ‰ s, then epg s´r ξq " epg s´r 1

1

 1 s´r challenge with the same advantage. Proposition 11 (From page 11). In Table 4, the setup protocol requires O(d) arithmetic and hashing operations; the update protocol requires O(logpdq) arithmetic and hashing operations; the verification protocol requires O(1) communications and arithmetic operations for the Client, and O(d) arithmetic operations for the Server.

3 :

 3 x i Ð x i´1 ¨r mod m; {Now x i P r0..m ´1s} 4:c i Ð c i´1 ¨Epp i q xi ; {Now c " Ep i k"0 p i x i q} 5: end for 6: return c " c d .Lemma 16. Algorithm 10 is correct.

: end for 18 :

 18 parfor k " 0..pq ´1q do {q blocks of size b or b ´1 in parallel} 19:

25 :

 25 parfor k " 1..q do {q blocks of size b or b `1 in parallel} 26:

Table 1 :

 1 Comparing verifiable computation schemes for polynomial evaluation of degree d. See also[50,

Table 1]

 1 or[57,

Table 1]

 1 (Most of the time dynamicity is not considered in the literature).

 1: VDPE soundness security game between two Observers O 1 & O 2 (respectively playing the roles of the Client and the Verifier), a potentially malicious Server A and an honest Server S 1. A chooses an initial polynomial P . 2. O 1 runs Setup, keeps st C and sends the initial Server part, st S , of the memory layout to both A and S; and the Verifier part, st V , to O 2 . 3. For a polynomial number of steps t " 1, 2, ..., polypκq, A picks an operation op t where operation op t is either Update, Read, Eval or Verify. O 1 executes the Update operations with both A and S, while O 2 executes the Read, Eval or Verify operations also with both A and S. 4. A is said to win the game, if any cleartext sent by A differs from that of S, or, if any ciphered message sent by A does not deciphers like that of S, and neither O 1 nor O 2 did witness reject.

Table 4 :

 4 Public and Dynamic unciphered polynomial evaluation symm. pairing e K 1 Ð e g P psq ; g , K 2 Ð g s , S Ð rg s k

	Server	Communications	Client/Verifier
	Setup	G, G s d´1 k"0

T of order p, gen. g P P Z p rXs, 1 ď d ˝pP q ď d; let s $ Ð Z p

Table 5 :

 5 Complexity bounds for the publicly verifiable dynamic and unciphered polynomial evaluation of Table4for a degree d polynomial.

			Server	Communication	Client
		Storage	O(d)		O(1)
	Comput.	Setup Read/Update O(logpdq) O(d) Eval/Verify O(d)	O(d) O(logpdq) O(1)	O(d) O(logpdq) O(1)

Proposition 11 (A proof is given in Appendix B). In Table

4

, the setup protocol requires O(d) arithmetic and hashing operations; the update protocol requires O(logpdq) arithmetic and hashing operations; the verification protocol requires O(1) communications and arithmetic operations for the Client, and O(d) arithmetic operations for the Server.

 Setup, Read, Update, Eval and Verify between a Client C with state st C and the Server S of state st S . Following the definition of a VDPE scheme of Section 2.2, Setup is detailed in Algorithm 3; Read is detailed in Algorithm 4; Update is detailed in Algorithm 5; Eval is detailed in Algorithm 6; and Verify is detailed in Algorithm 7. Finally, a lighter variant of Setup and Update (detailed in Algorithm 8) dedicated to the DPoR protocol is proposed. The exchanges are summarized in Table 12 of Appendix A. Input: 1 κ ; p P P, P " d i"0 p i X i P Z p rXs; Input: a partially homomorphic cryptosystem E{D satisfying Equation (2), for any dot-product of size d `1, modulo p. Output: st S , st C . 1: Client: generates order p groups G 1 , G 2 , G T with non-degenerate pairing e : G 1 ˆG2 Ñ G T and generators g 1 , g 2 , g T " epg 1 ; g 2 q; 2: Client: generates a public/private key pair ppk, skq for E{D;

	Algorithm 3 Setupp1 κ , P q

3: Client: randomly selects s $

 Evalpst S , rq Input: st S and a evaluation point r P Z p ; Output: ζ the encrypted evaluation of P prq and a proof ξ.{via Equation (2), see also, e.g., Remark 1 and Algorithm 10} 2: Server: ξ " r1 G T , 1 G T s P G 2

	d i"0 w i pr i mod pq

1 W }. 17: end if Algorithm 6 1: Server: computes ζ " W d x " T ; t " 1 G1 ; 3: for i " 1 to d do {Following the ideas of Section 4.3} 4:

Table 6 :

 6 Complexity bounds for verifiable dynamic and ciphered polynomial evaluation (function of the degree d of the polynomial, for groups of supposed constant cardinality: number of group elements/arithmetic operations).

			Server	Communication	Client
		Storage	O(d)		O(1)
		Setup	O(d)	O(d)	O(d)
	Comput.	Read Update δUpdate	O(logpdq) O(logpdq) O(1)	O(logpdq) O(logpdq) O(1)	O(logpdq) O(logpdq) O(1)
		Eval/ Verify	O(d)	O(1)	O

Table 8 :

 8 Attributes of some selected DPoR schemes

		Server	Client
	Protocol	Extra Storage Comput. Comm. Audit Audit	Storage	Audit

Table 9 :

 9 Private verifiable Client/Server DPoR protocol with low storage Server

	Server	Communications	Client
			Input: p prime, cryptosystem E{D
			Input: M P Z mˆn p
	Init		

Table 10 :

 10 Modification of the DPoR audit protocol, with 254-bits groups, 2048-bits Paillier, on a Gold 6126 2.6GHz & 10 GB/core (real time are median values for a single run; each experiment was performed 11 times; the maximum relative difference between the runs was at most 3.6%).

	Database	1GB	10GB	100GB	1TB
	Private-verified audit using 57-bits prime [5, Figure 1 & Tables 5-6-7] 5	
	Matrix view	12339ˆ12432 39131ˆ39200 123831ˆ123872 396281ˆ396368
	Server extra storage	ă0.01%	ă0.01%	ă0.01%	ă0.01%
	Client Storage	169KB	535KB	1 693KB	5 418KB
	Server Audit (1/12 cores)	0.29s/0.04s	2.68s/0.30s	29.04s/3.36s	219.7s/41.48s
	Communications	169KB	535KB	1 693KB	5 418KB
	Client Audit (1 core)	0.6ms	1.7ms	5.3ms	18.3ms
	Square Dynamic-ciphered delegated polynomial evaluation with 254-bits groups of Table 9 6
	Matrix view	5815ˆ5816 18390ˆ18390 58154ˆ58154 186092ˆ186093
	Server extra storage	0.12%	0.04%	0.01%	ă0.01%
	Client storage	0.94KB	0.94KB	0.94KB	0.94KB
	Server Audit (1/12 cores): matrix-vector step	1.1s/0.2s	11.3s/1.3s	113.4s/12.9s	1 152.5s/131.1s
	Server Audit (1/12 cores): polynomial step	4.4s/0.5s	13.5s/1.4s	42.6s/4.2s	141.7s/13.4s
	Communications	181KB	571KB	1 803KB	5 770KB
	Client Audit (1 core): dotproduct step	3.2ms	8.4ms	13.1ms	37.9ms
	Client Audit (1 core): polynomial step	1.7ms	1.7ms	1.7ms	1.7ms
	Rectangular Dynamic-ciphered delegated polynomial evaluation with 254-bits groups of Table 9 6
	Matrix view	6599ˆ5125	7265ˆ46551	7929ˆ426519	8600ˆ4026778
	Server extra storage	0.11%	0.10%	0.09%	0.08%
	Client storage	0.94KB	0.94KB	0.94KB	0.94KB
	Server Audit (1/12 cores): matrix-vector step	1.1s/0.2s	11.3s/1.3s	113.2s/12.8s	1 147.9s/130.7s
	Server Audit (1/12 cores): polynomial step	3.8s/0.4s	35.5s/3.6s	324.1s/30.6s	3 064.8s/283.6s
	Communications	205KB	226KB	246KB	267KB
	Client Audit (1 core): dotproduct step	3.7ms	4.0ms	4.4ms	4.8ms
	Client Audit (1 core): step	1.7ms	1.7ms	1.7ms	1.7ms

Table 12 :

 12 Private & Dynamic, Ciphered polynomial evaluation, summarizing Algorithms 3 to 8. , G 2 , G T groups of order p P P Z p rXs, 1 ď d ˝pP q ď d pairing e to G T , s

	Server	Communications	Client
		G 1 $	
	Setup		

 {PHASE A: r i mod p, for i " 0..d}3: ρ 0 Ð 1, ρ 1 Ð r,i Ð 1; 4: while i ď d do { log 2 pdq parallel steps}

	2: Set b k Ð	kpb `1q k " 0..pη ´1q kb `η k " η..q	{q blocks of size b `1 or b}
	5:	parfor k " 1..minpi; d ´iq do
	6:		
	7:	end parfor
	8:	i Ð 2i;	
	9: end while {PHASE B: ζ " W d x "	d i"0 w	pr i mod pq i

ρ i`k Ð ρ i ¨ρk mod p;

} 10: parfor k " 1..q do {q blocks of size b or b `1 in parallel} 11:

Table 13 :

 13 Parallel Server-side VESPo Degree 5816 18390 58154 186093 426519 4026778

	1 core	4.4s	13.5s	42.6s	141.7s	324.1s 3 064.8s
	4 cores	1.2s	3.8s	11.8s	38.3s	87.8s	831.6s
	8 cores	0.7s	2.0s	6.3s	19.9s	45.4s	428.9s
	12 cores	0.5s	1.4s	4.2s	13.4s	30.6s	283.6s

Table 14 :

 14 Abstraction of the pairings functionalitiesSetupK Ð Ep P psqq, S Ð rEps k qs d´1 k"0 , H Ð rEpp i α `Φi βs d

		i"1
	Update Eval	K Ð E αpp 1 i ´pi qs i ' ξ Ð ' d i"1 ' i´1 k"0 S x k i´k´1 b Hi K
	Verify	ξs´r ' EpDpζqα `cq

? " l K

One might also ask for knowledge soundness (see, e.g.,[START_REF] Lindell | Parallel coin-tossing and constant-round secure two-party computation[END_REF]) on the coefficients of the outsourced polynomial, but this is easily achieved for any VDPE scheme by definition: the Client can simply interpolate from the evaluations.

Efficient updates in similar schemes are considered, e.g., in[START_REF] Tomescu | Aggregatable subvector commitments for stateless cryptocurrencies[END_REF] but to a protocol that verifies coefficients known to the Server, not its evaluation at hidden coefficients

Fully private, dynamic and ciphered polynomial evaluationSo far we have a polynomial evaluation verification, that allows efficient updates of its coefficients. We now propose a scheme which combines the polynomial evaluation with the externalization of the polynomial itself. For this, two more ingredients are added in Section 5.1: an efficient masking in the exponents in order to fulfill the hiding security property and an outsourcing of the (ciphered) polynomial itself. This latter feature allows the Client to not even store the polynomial and reduces her need for

https://gmplib.org, https://linbox-team.github.io/fflas-ffpack, https://github.com/scipr-lab/libsnark. git, https://github.com/relic-toolkit/relic.

Converts the vector v into the polynomial P pxq " n´1 i"0 v i x i .

https://github.com/dsroche/la-por

https://github.com/jgdumas/vespo

In contrast, some other libraries, such as FHEW[START_REF] Ducas | FHEW: bootstrapping homomorphic encryption in less than a second[END_REF] and TFHE[START_REF] Chillotti | Improved programmable bootstrapping with larger precision and efficient arithmetic circuits for TFHE[END_REF], may have faster bootstrapping operations but require to re-implement the homomorphic arithmetic with boolean circuits.

Acknowledgments

We thank Gaspard Anthoine for providing us with some preliminary comparisons with the PBC and libpaillier libraries and Anthony Martinez for the libsnark baseline benchmarking. We thank Jean-Louis Roch for fruitful exchanges about the parallelization of the Server side and for pointing out [62]. Finally we thank the anonymous referees who greatly helped improve the paper. This material is based on work supported in part by the Agence Nationale pour la Recherche under Grants ANR-21-CE39-0006 Sangria and ANR-15-IDEX-0002.

• Designing a post-quantum linearly homomorphic encryption with efficient ciphertext-cleartext multiplication

• Transforming the computation of ξ so that it is more batchable (a strategy could be to start by adapting the parallelization presented in Appendix D, so that more identical operations could be performed simultaneously)

For instance, phase C in Algorithm 11 is solely responsible for the multiplicative depth. Then we see that line 16 can be performed with a depth of q, while line 20 can be performed with q depth-b operations, with d " bq. With some FHE implementations (as reflected in Table 15) the first aggregated multiplications require less bootstrapping. Thus, depending on their respective costs and the actual architecture, some choices of b (and q) might reduce the overall required bootstraps. By looking at Tables 7 and15, we see that even such a (small) constant gain in bootstrapping is not yet sufficient to compete with the pairings.