N

N

VESPo: Verified Evaluation of Secret Polynomials

Jean-Guillaume Dumas, Aude Maignan, Clément Pernet, Daniel S. Roche

» To cite this version:

Jean-Guillaume Dumas, Aude Maignan, Clément Pernet, Daniel S. Roche. VESPo: Verified Evalu-
ation of Secret Polynomials: with application to low-storage dynamic proofs of retrievability. 2022.
hal-03365854v4

HAL Id: hal-03365854
https://hal.science/hal-03365854v4

Preprint submitted on 9 May 2022 (v4), last revised 13 Mar 2023 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03365854v4
https://hal.archives-ouvertes.fr

VESPo: Verified Evaluation of Secret Polynomials

(with application to dynamic proofs of retrievability)*

Jean-Guillaume Dumas’ Aude Maignant Clément Pernet! Daniel S. Roche *

May 9, 2022

Abstract

We consider the problem of efficiently evaluating a secret polynomial at a given public point, when
the polynomial is stored on an untrusted server. The server performs the evaluation and returns a
certificate, and the client can efficiently check that the evaluation is correct using some pre-computed
keys. Our protocols support two important features: the polynomial itself can be encrypted on the
server, and it can be dynamically updated by changing individual coefficients cheaply without redo-
ing the entire setup. As an important application, we show how these new techniques can be used
to instantiate a Dynamic Proof of Retrievability (DPoR) for arbitrary outsourced data storage that
achieves both low server storage size and audit complexity. Our methods rely on linearly homomor-
phic encryption and pairings, and preliminary timing results indicate reasonable performance for
polynomials with millions of coefficients, and efficient DPoR with terabytes of databases.

1 Introduction

Verifiable computing.

Verifiable computing, first formalized by [24], consists in delegating the computation of some function
to an untrusted server, who must return the result as well as a proof of its correctness. Generally,
verifying a result should be much less expensive than computing it directly, and result in a provably
low probability that the result is incorrect. While certified and verified computation protocols date back
decades, the practical need for efficient methods is especially evident in cloud computing, wherein a
low-powered device such as a mobile phone may wish to outsource expensive and critical computations
to an untrusted, shared-resource commercial cloud provider.

The extensive literature on verifiable computation protocols can be divided into general-purpose com-
putations — of an arbitrary algebraic circuit — and more limited and (hopefully) efficient special-purpose
computations of certain functions. In the latter category, one important problems is Verifiable Polyno-
mial Evaluation (VPE), where a client wishes to outsource the evaluation of a univariate polynomial P
at a given point x and efficiently verify the result.

Verifiable Polynomial Evaluation.

A VPE scheme is conventionally composed of three algorithms. First, a client runs Setup(P) to compute
some public representation of P (which may be stored on the server) as well as some private information
which will be used to verify later evaluations. This step may be somewhat expensive, but only needs to
be performed once.

The second algorithm, Eval(z, «), is run by the server using a public evaluation point z, as well
as possibly some additional information « provided by the client. The server produces the evaluation
y = P(x) as well as some proof or certificate 8 that this evaluation is correct.

*This material is based on work supported in part by the Agence Nationale pour la Recherche under Grant ANR-21-
CE39-0006 Sangria.

tUniversité Grenoble Alpes, Laboratoire Jean Kuntzmann, UMR CNRS 5224, Grenoble INP. 700 avenue centrale, IMAG
— CS 40700, 38058 Grenoble, France. {Jean-Guillaume.Dumas, Aude.Maignan, Clement.Pernet}@univ-grenoble-alpes.
fr.

fUnited States Naval Academy, Annapolis, Maryland, United States. Roche@usna.edu.

mailto:Jean-Guillaume.Dumas@univ-grenoble-alpes.fr,Aude.Maignan@univ-grenoble-alpes.fr,Clement.Pernet@univ-grenoble-alpes.fr
mailto:Jean-Guillaume.Dumas@univ-grenoble-alpes.fr,Aude.Maignan@univ-grenoble-alpes.fr,Clement.Pernet@univ-grenoble-alpes.fr
mailto:Roche@usna.edu

Finally, the third algorithm, Verify(y, 8), is run by the client to check the correctness of the evaluation.
This verification should be always correct and probabilistically sound, meaning that an honest server can
always produce a result y and proof g that will pass the verification, whereas an incorrect evaluation
y will always fail the verification with high probability. Furthermore, the Verify algorithm should be
efficient, ideally much cheaper in time and/or space than the computation itself.

Additional protocol features.

In the simplest case, the considered polynomial P is static and stored in cleartext by both the server
and the client. But constraints can then be added to this framework.

e Polynomial outsourcing When the client device has limited storage, or to facilitate multiple clients,
the polynomial and its computation must be externalized. This can always be trivially achieved by
storing all client secrets on the server via symmetric encryption and a saved cryptographic hash digest;
the challenge is to do so while minimizing the communication costs required for the client to verify an
evaluation.

e Secret polynomial. To guarantee data privacy, the polynomial could be hidden from the server, or
the client, or both. Typically, the polynomial will be stored under a fully- or partially-homomorphic
encryption scheme, in such a way that the server can still compute the (necessarily encrypted) evalu-
ation and certificate for verification. This setting has been extensively studied in the literature, with
both general-purpose protocols as well as some specific for verified polynomial evaluation.

e Dynamic updates. The initial Setup protocol requires knowledge of the entire polynomial and
generally is much more costly than running Verify. This creates a challenge when the client wishes
to update only a few of the coefficients of the polynomial. A dynamic VPE protocol allows for such
updates efficiently. Namely, the client and server storing polynomial P for verified evaluation can
engage in an additional Update(d, i) protocol, which effectively updates P(x) to P(z) + dz* for future
evaluations, along with any secret and/or public verification information. To the best of our knowledge,
no prior work in the literature discusses dynamic updates for verified polynomial evaluation, which is
especially challenging when the polynomial (as well as any update) needs to be hidden from the server.
The difficulty is in general to preserve the security properties while allowing those partial updates.
The importance of allowing efficient updates is motivated by our application to verifiable data storage,
which we explain next.

e Private/public verification The verification protocol is said to be private when only a party which
holds the secrets derived during Setup can verify evaluations. That is, any potential verifiers (sometimes
called readers) must be trusted not to divulge secret information to the untrusted server. Sometimes, it
is desirable also to have untrusted verifiers, who can check the result of an evaluation without knowing
any secrets. In this public verification setting, the client at setup time publishes some additional
information, distributed reliably but insecurely to any verifiers, which may be used to check evaluations
and proofs issued by the server.

Proofs of Retrievability.

One important application of VC in general, and VPE in particular, is to Proofs of Retrievability (PoR),
somewhat overlapping with the problem of Provable Data Possession (PDP) [26, 6]. In these settings, a
client wishes to store her data on an untrusted server, then verify (without full retrieval) that the server
still stores the data intact. The crucial protocol is an Audit, wherein the client issues some challenge to
the server, then verifies the response using some pre-computed information to prove that the original
data is still recoverable in its entirety.

A variety of tools have been employed to develop efficient PoR and PDP protocols, and some of these
are based on verifiable computing, so that a PoR audit consists of some verified computation over the
stored data. Retrievability is proven when any sequence of successful audits can, with high probability,
be used to recover the original data, e.g., by polynomial interpolation; thus any server with a good
chance to pass a random audit must hold the entire data intact. Note that this recovery mechanism is
not actually crucial except to prove the soundness of the audit protocol; the important feature is how
cheaply the audits can be performed by a server and resource-constrained client.

1.1 Our contributions
Our contributions are the following:

e An (unencrypted) Verifiable Polynomial Evaluation (VPE) scheme with public verification, supporting
secured dynamic updates, meaning that updating only a few coefficients of P does not require perform-
ing the whole setup again (Section 4 and Table 3). The polynomial is stored in cleartext on the server,
and the technique used to provide a correct and sound protocol uses both Merkle trees and pairings.
A Horner-like evaluation scheme is used to optimize the evaluation of the difference polynomial for the
proof, and no secrets are required to perform the verification.

e A novel encrypted, dynamic and private VPE protocol (Section 5 and Table 10). That is, the polyno-
mial is stored encrypted on the server, and efficient updates to individual coefficients can be performed.
This is achieved by combining a linearly homomorphic cryptosystem with techniques from the first
scheme. Note however, this scheme does not support public verification as this verification now requires
some secrets from the client.

e A new Dynamic Proof of Retrievability (DPoR) scheme that is the first to simultaneously support
small server storage, dynamic updates, and efficient audits (Section 6 and Table 8), based on our
novel encrypted, dynamic VPE protocol. Previous work either had poly-logarithmic audits and linear
extra storage, or sub-linear extra storage and polynomial audits; ours is the first to achieve both sub-
linear extra storage and optimal O(logn) client time for updates and audits. This could be beneficial
especially in blockchain settings such as FileCoin wherethe proof and verification must be done on-
chain.

e Experimental timings based on our encrypted VPE and dynamic PoR protocols that indicate VPE
up to millions of coefficients and DPoR up to terabytes of data, both with client cost less than a few
milliseconds (Tables 6 and 9).

A complete security definition of verifiable polynomial evaluation can be found in Section 2. This
definition follows previous results, with the novel inclusion of an Update protocol. Then Section 3
introduces the tools for verification of polynomial evaluation. A motivating example is presented in the
form of a direct extension of the bilinear pairing scheme of [28], now supporting an encrypted input
polynomial (Section 3 and Table 2). Since the privacy of this protocol is not proven and it does not
support neither public verifiability nor dynamic updates, it motivates the more involved contributions
of Section 4 (for public verifiability and dynamicity, but on an unciphered polynomial) and of Section 5
(for dynamicity on a ciphered polynomial, but without public verifiability).

The efficiency of our protocols is measured by the computational complexity of the server-side Eval
algorithm, the volume of persistent client storage, and the amount of communication and client-side
complexity to perform a Verify or Audit. Improving on previously-known results, our protocols all have
O(d) (parallelizable) server-side computation, O(log d) communication and client-side computation time,
and O(1) client-side persistent storage. We include some practical timings in Sections 5.2 and 6.3
and Appendix D.

In addition, our new dynamic PoR scheme requires only o(d) extra server space. This improves on
[40] in terms of server storage and on [5] in terms of communication and client computation complexity
for Audit. For instance on a 1TB size database, with a server extra storage lower than 0.08%, and a client
persistent storage less than one KB, our client can check in less than 7ms that their entire outsourced
data is fully recoverable from the cloud server.

1.2 Related work

While ours is the first work we are aware of which considers verifiable polynomial computation while
hiding the polynomial from the server and allowing efficient dynamic updates, there have been a number
of prior works on different settings of the VPE problem.

One line of work considers commitment schemes for polynomial evaluation [16, 14, 33, 22, 42, 11,
36, 20, 32]. There, the polynomial P is known to the server, who publishes a binding commitment.

The verifier then confirms that a given evaluation is consistent with the pre-published commitment. By
contrast, our protocols aim to hide the polynomial P from the server.

Another line of work considers polynomial evaluation as an encrypted function, which can be evaluated
at any chosen point. Function-hiding inner product encryption (IPE) [10, 30, 2] can be used to perform
polynomial evaluation without revealing the polynomial P, but this inherently requires linear-time for
the client, who must compute the first d powers of the desired evaluation point x. Similarly, protocols
using a Private Polynomial Evaluation (PPE) scheme have been developed in [13]. This primitive, based
on an ElGamal scheme, ensures that the polynomial is protected and that the user is able to verify the
result given by the server. Here the aim of the protocol is not to outsource the polynomial evaluation,
but to obtain P(x) and a proof without knowing anything about the polynomial. To check the proof, as
with IPE the client has to produce a computation which is linear in the degree of P.

A third and more general approach which can be applied to the VPE problem is that of secure
evaluation of arithmetic circuits. These protocols make use of fully homomorphic encryption (FHE)
to outsource the evaluation of an arbitrary arithmetic circuit without revealing the circuit itself to the
server. The VC Scheme of [24] is based on Yao’s label construction. P is first transformed into an
arithmetic circuit. The circuit is garbled once in a setup phase and sent to the server. To later perform
a verified evaluation, the client sends an encryption of z, the server computes P(z) through the garbled
circuit, and the client can verify the result in time proportional to the circuit depth, which for us is
O(logd)

Using similar techniques, Fiore et al. and Elkhiyaoui et al. [8, 19, 17] propose high-degree polynomial
evaluations with a fully secure public verification solution. More recently, Fiore et al. [20] propose a
new protocol for more general circuits, using SNARKSs over a quotient polynomial ring. In contrast to
our work, these protocols use more expensive cryptographic primitives, and they do not consider the
possibility of efficiently updating the polynomial — while preserving the security properties.

Then, Proof of retrievability (PoR) and Provable data possession (PDP) protocols also have an
extensive literature. PDPs generally optimize server storage and efficiency at the cost of soundness; a
PDP audit may succeed even when a constant fraction of the data is unrecoverable. PoRs have stronger
soundness guarantees, but at the expense of larger and more complicated server storage, often based on
erasure codes and/or ORAM techniques.

State-of-the-art PoR protocols either incur a constant-factor blowup in server storage with poly-
logarithmic audit cost [15, 40], or use negligible extra server storage space but require polynomial-time
for audits on the client and server [39, 5]. A lower bound argument from [5] proves that some time/space
tradeoff is inherent, although the proof does not distinguish between server and client computation time
during audits.

2 Security properties and assumptions

A verifiable dynamic polynomial evaluation (VDPE) scheme consists of three algorithms: Setup, Update,
Eval, between a client C with state st¢, a server S with state sts and a verifier V with (potentially public)
state sty.

o (stc, sty, sts) < Setup(1”, P): On input of the security parameters and the polynomial P of degree
d, outputs the client state stc, the verifier sty and the server state stg.

o {(stp,sty, stls), reject} « Update(s,d, stc,sty,sts): On input of an index i € 0..d, data J, the
client /verifier /server states stc /sty /sts, outputs new client/verifier/server states stc’/sty’/sts’, rep-
resenting the polynomial P 4+ § X", or reject.

o {z,reject} + Eval(sty,sts,r): On input of the verifier state stc, the server state stg and an evalu-
ation point r, outputs a successful evaluation z = P(r) or reject.

The client may use random coins for any algorithm. This is the general setting for public verification,
the idea being that for a private verification, the client will play the role of the verifier too and their
states will be identical: sty = stc¢.

Adapted from [28], in order to take into account dynamicity, we propose the following security
properties:

Definition 1. (Setup,Update,Eval) is a secure publicly verifiable polynomial evaluation scheme if it
satisfies the following properties:

Correctness. Letd € N, (ag,...,aq) in aring R and P(X) = Zfzo a; X", then: Eval(Setup(1®, P),r) =
P(r) and for any 6 € R and 0 < i < d:

Eval(Update(i,d, stc, sty, sts),r) = Eval(sty, sts,r) + or'

or reject has been returned by one of the protocols.

Soundness. The soundness requirement stipulates that the client can always detect (except with negligible
probability) if any message sent by the server deviates from honest behaviort. We use the following game
between two observers O1 & Oy (respectively playing the roles of the client and the verifier), a potentially
malicious server A and an honest server S, with the game:

1. A chooses an initial polynomial P. Oy runs Setup and sends the initial server part, sts, of the memory
layout to both A and S; and the verifier part to Os.

2. For a polynomial number of stepst = 1,2, ..., poly(k), A picks an operation op; where operation op; is
either Update or Eval. O; executes the Update operations with both A and S, while O executes the
Eval operations with also both A and S

3. A is said to win the game, if any message sent by A differs from that of S and neither O1 nor Oy did
output reject.

A VDPE scheme is sound, if no polynomial-time adversary has more than negligible probability in winning
the above security game.

Privacy. A VDPE scheme is private, if no polynomial-time adversary has more than negligible probability
in obtaining any coefficient of P, given access to the transcript of all exchanged messages for any number
of runs of Setup, Update or Eval, and the associated server parts sts, of the memory layout.

Definition 2. (Setup,Update,Eval) is a secure privately verifiable polynomial evaluation scheme if it
verifies the Correctness, Soundness and Privacy requirements of Definition 1, where the verifier
state sty is included in the client state ste and no polynomial-time adversary A has more than negligible
probability in winning the soundness security game when O1 also plays the role of Os.

In Section 5 we apply our new verifiable protocols to the development of a new Dynamic Proof of
Retrievability (DPoR) scheme, provably achieving correctness, soundness, and retrievability for DPoR.
We follow the exact same security definition for DPoR as in [5], adapted from [40], which we will not
restate here for the sake of brevity.

To prove the security of our protocols we rely on classical discrete logarithm and Diffie-Hellman
like assumptions, all related to polynomial computations. The first assumption, a decisional one, is
the distinct leading monomials assumption: informally it states that polynomial evaluations “in the
exponents” where the polynomials have distinct leading monomials are merely indistinguishable from
randomness. The formal version is recalled in Definition 5. Then we need computational assumptions,
including the hardness to compute discrete logarithms, in Definition 3, and polynomial extensions of the
hardness to produce Diffie-Hellman-like secrets even with bilinear pairings, in Definition 4.

Definition 3 (Discrete Logarithm, DLOG, hardness assumption [29, Def. 9.63]). A discrete-logarithm
problem is hard relative a group G of group order p > 225 a generator g and a randomly sampled element
h of the group, if for any probabilistic polynomial-time algorithms A, there exists a negligible function
negl such that Pr[Aproc(G,g,h) =z s.t. h = g*] < negl(k).

In the following, We use the notation e : G; xGo — Gr to denote a bilinear pairing in groups of the
same prime order. Our constructions can work with any pairing types, 1, 2 or 3. If such a pairing exists
then G; and G are denoted as bilinear groups.

Definition 4 (t-Bilinear Strong Diffie-Hellman, t-BSDH, assumption, from [25, 28]). Let o € Zy, with

p > 2% and j € {1,2}. Given as input a (t + 1)-tuple <gj,g]°-‘,g;“2, . ,gjo-‘t> € (GE»‘H, in a bilinear group

1One might also ask for knowledge soundness on the coefficients of the outsourced polynomial, but this is easily achieved
for any VDPE scheme by definition: the client can simply interpolate from the evaluations

G; of order p with a bilinear pairing e : Gy xGo — G, for every adversary Ay_pspr and for any value
of c € Zy\{—a}, we have the probability:

t

2 _1
Pr [At—BSDH(gl,gag?,g? een g5) = <076(91;92)C‘+C>] < negl(x)

In the following we often use groups of prime order, in order to be able to easily compute with
exponents. In particular, thanks to the homomorphic property of exponentiation, we will perform some
linear algebra over the group and need some notations for this. For a matrix A, ¢* denotes the coefficient-
wise exponentiation of a generator g to each entry in A. Similarly, for a matrix W of group elements and
a matrix B of scalars, W2 denotes the extension of matrix multiplication using the group action. If we
have W = ¢g#, then W5 = (¢)B. Futher, this quantity can actually be computed if needed by working
in the exponents first, i.e., it is equal to ¢(45). For example:

(g<zs>)<” _ ()P ey (G, m

g¢ g cetdf

For thae sake of simplicity, when there is no ambiguity, we also use the associated notation shortcuts
like: e(ggb);gg) = e(g1592)(cb).

Next is the DLM assumption that states that polynomial evaluations “in the exponents” where the
polynomials have distinct leading monomials are merely indistinguishable from randomness. In [1] the
assumption is given for nm-multivariate polynomials with matrices of dimension kxk and projections of
dimension kxm for £k > 2 and m > 1. Here We will only use univariate polynomials, n = 1, and
dimensions k = 2, m = 1. We therefore recall the assumption only for this particular case.

Definition 5 (Distinct Leading Monomial, DLM, assumption [1, Theorem 6]). Let G = (g) be a bilinear
group of prime order p. The advantage of an adversary A against the (2,1,d)-DLM security of G, denoted

Advg’l’d)_DLM(A), is the probability of success in the game defined in Table 1 and is negligible, with A
being restricted to make queries P € Zy[T| such that for any challenge P, the maxzimum degree in one
indeterminate in P is at most d, and for any sequence (P1,...,P,;) of queries, there exists an invertible
matriz M € Z3* such that the leading monomials of M - [Py, ..., Py|" are distinct.

)

Table 1: (2,1, d)-DLM security game for a bilinear group G [1]
Init Challenge(P) Response(d’)
r&722 |11y =—=0
B 72 | Then Return y + ¢gP(")"# | Return b/ ==
b & {0,1} | Else Return y & G2

In fact, the DLM security can also be reduced to the Matrix Diffie-Hellman assumption (MDDH) [1,
Theorem 5], a generalization of the widely used decision linear assumption [23, 35, 3, 4, 7].

We will also use a public-key partially homomorphic encryption scheme where both addition and
multiplication are considered. We need the following properties on the linearly homomorphic encryption
function E (according to the context, we use Epy or just E to denote the encryption function, similarly
for the decryption function, D or Dgg): computing several modular additions on ciphered messages and
modular multiplications but only between a ciphered message and a cleartext.

D(E(ml)E(mg)) =mq + my AND D(E(ml)m2) = Mmims (2)

Remark 6. For instance, Paillier-like cryptosystems [37, 9, 21] can satisfy these requirements, via
multiplication in the ground ring, for addition of enciphered messages, and via exponentiation for ciphered
multiplication.

Note though that an implementation with Paillier cryptosystem of the evaluation P(r), in a modu-
lar ring Z,, providing the functionalities of Equation (2), requires some care: indeed these equations
are usually satisfied modulo an RSA composite number N, not equal to m. More precisely, Paillier

cryptosystem will provide D(E(P(r))) = (Z?:o pir') mod N. Thus a possibility to recover the correct
value, is to precompute r* mod m and require that: (d+ 1)(m — 1)2 < N. This way one can actually
homomorphically compute over Z, and use the modulo m only after decryption. See Appendix C for more
details.

Finally, we will use a Merkle hash tree to allow verifications of updates and therefore need to use a
cryptographic hash function with collision resistance.

Overall, since we consider the semantic security of the cryptosystem, we assume that adversaries are
probabilistic polynomial time machines. More precisely we consider Malicious adversaries: a corrupted
server controls the network and stops, forges or listens to messages in order to gain information or fool
the client.

3 Tools for the verification of a polynomial evaluation

Our first step is to define a verification protocol for polynomial evaluation that supports a ciphered input
polynomial over a finite ring Z,. For this we propose an adaptation and combination of both [28, 19]
and thus first need to define a difference polynomial that we will use to check consistency.

Definition 7. For a polynomial P(X) € Z,[X] = Z?:o p; X? of degree d, let its subset polynomials be:

d i d—1-k ;
Tip(X) = 2 X =305 pjn— X

Lemma 8. Let Qp(Y,X) = % be the difference polynomial of a polynomial P; then:

d 1—1 d—1
Qr(Y,X) =) pi Y Y IXF=3"1} p(v)X* (3)
0 k=0

=1 k=

Proof. AsY' = X' = (¥ = X)(¥j, Y"1 X*¥), we obtain that Qp (Y, X) = YoiL, pi Y Y F1X™,
This is also Qp(¥, X) = T3 X (S pad 1), =

This identity relates two evaluations of P: P(Y) = P(X) + (Y — X)Qp(Y, X). This equation allows

one to verify z z P(r) by checking, for a secret s, that:
P(s)=z+ (s —r)Qp(s,7) (4)

For this, let E, D be the encryption and decryption functions of a partially homomorphic cryptosys-
tem, supporting addition of two ciphertexts and multiplication of ciphertext by a cleartext, as in Equa-
tion (2). Therefore it is possible to evaluate a ciphered polynomial at a clear evaluation point, using
powers of the evaluation point: for x = [1,7,72,..., 7%, denote by E(P)"Hx = H?:o E(p)" = E(P(r)),
the homomorphic polynomial evaluation.

Similarly, if H = [h;] = [g%], denote by HOx = [[,_, hi* = g2 %% the dot-product in the exponents.
Then Table 2 shows how the server produces the evaluation via the partially homomorphic cipher and
the subset polynomials. Then this evaluation is bound to be correct by the consistency check in the
exponents.

Table 2: Verifiable Ciphered Polynomial Evaluation

Server Communications Client
G1, G2, G groups of order p PeZy[X],1<d°(P)<d
.. $ P(s
Setup pairing e s Ly, W ; f(g];), K+ ght®
generators gi, g2, 9T = 6(91§g2) H « [91 ']k:o.d—l
&A Discard P, W, H
x4 [1,rr2)T VRS r(ilp
Eval | (= WTHa; &= H O 2041 5 e(695 Nor ¥ 2K

Proposition 9 (A proof is given in Appendix B). The protocol of Table 2 is correct and sound.

From this proof, one can see that using a decipherable partially homomorphic function for the coeffi-
cients of P is required for the soundness (otherwise one could not compute the exponentiation on £/£’).
Several issues remain with this protocol: first it is not dynamic. Indeed, for a dynamic version, the
problem is that updating only one coefficient of P requires to update up to d — 1 coefficients of H. This
work would be of the same order of magnitude as recomputing the whole setup. Second it is not fully
hiding the coefficients of P as they are just put in the exponents without any masking, and we do not
prove the privacy requirement?. Third, the protocol is not fully publicly verifiable since the decryption
key of the partially homomorphic system is required. We incrementally solve the first two issues in the
sequel of this paper and obtain a thus fully secure private protocol. We also are able to provide a dynamic
protocol, publicly verifiable, but for an unciphered polynomial. Combining all three properties, that is,
designing a publicly verifiable dynamic protocol for ciphered polynomials, preserving a good efficiency
while still being secure, remains an open question to us (usually when adapting a static protocol, either
dynamicity involves too much recomputation or the security is compromised by the updates).

4 Outsourced dynamic verification of the evaluation

In order to be able to deal with updates, we introduce Merkle trees that are updated along with the
polynomial parts. Checking the root of the Merkle tree allows for logarithmic verifications and updates
of any coeflicient of the polynomial. Modifications of the polynomial coeflicients are also included in the
Client state so that old polynomials cannot be used for the verification of Eval.

4.1 Merkle trees for logarithmic client storage

Thus, to avoid storing the polynomial coefficients on the client side, we use a Merkle hash tree [34, 31, 5].
Then it is sufficient to store the root of the Merkle tree. For our purpose, an implementation of such
trees must just provide the following algorithms:

o T < MTTree(X) creates a Merkle hash tree from a database X.

® 7 < MTRoot(X) computes from scratch the root of the Merkle hash tree of the whole database X.

(a,L) < MTLeafPath(i, X,T") is an algorithm providing the client with the requested leaf element a,
together with the corresponding list L of Merkle tree uncles.

® 7 <— MTpathRoot(¢, a, L) computes the root of the Merkle hash tree from a leaf element a and the
associated path of uncles L.

T’ + MTupdLeaf (%, a, T') updates the whole Merkle tree T' by changing the i-th leaf to be a.
The requirements are thus that:
Vi, X, MTRoot(X) = MTpathRoot (7, MTLeafPath(#, X, MTTree(X))) (5)
Vi,a, X, Let (b, L) < MTLeafPath(, X, MTTree(X)),
and let X' <+ X\{(,b)} U{(z, a)}, (6)

then MTupdLeaf (i, @, MTTree(X)) = MTTree(X")

4.2 Public Dynamic unciphered Polynomial Evaluation

Thanks to these additional Merkle-tree operations, we can now give a protocol for the public verification
of the evaluation of a dynamic polynomial P. It consists in three algorithms (Setup,Update,Eval)
detailed in Table 3 and it requires, for now, a symmetric pairing.

2Efficient updates in similar schemes are considered, e.g., in [42] but to a protocol that verifies coefficients known to the
server, not its evaluation at hidden coefficients

Table 3: Public and Dynamic unciphered polynomial evaluation

Server Communications Client
G, Gr of order p PeZ,X],0<d°(P)<d
Symm. pairing e Let s ﬁ Z
Setup y P & P
gen. g, e(g;g) K1 e(97“;9), S+ [9° Tk=0.a—1
Tp < MTTree(P) &8 Tp <— MTRoot(P)
Store P, Tp, S Publish K1, Ky « ¢%; discard P, S.
pz2
Update pi,Li ?
(pi, L;) + MTLeafPath(i, P, Tp) A rp = MTpathRoot (%, p;, L;)
Tp < MTupdLeaf(i, p; + 6, Tp) 7p 4 MTpathRoot(i, p; + 0, L;)
Ki+Ki-e (gsi5;g); publish Ky
Form z < [1,7,72,...,79" PR r&Zp
i— Tk ,€ ?
Eval | ¢« P(r); &€ < [I, TTico SP51 4 o e(&K2/g")e(g%59) = Ka

During the Setup algorithm, the Client sends the unciphered polynomial to the Server and deletes
it to minimize its storage. The Client uses a random coin s to create some data to be published or to
be sent to the server. We introduce a third part named the Verifier. The Verifier collects the published
data and is authorized to run the Read and the Eval algorithms. But she is not authorized to run the
Setup algorithm and s is not known by the Verifier.

Proposition 10 (A proof is given in Appendix B). The protocol of Table 3 is correct and sound.

One difficulty is to preserve a linear-time Server. We show next that this is indeed possible here.

4.3 Efficient linear-time evaluation

As a first approach to evaluate our protocols, we consider that the cardinality of the coefficient domain
is a constant. Therefore, we count as arithmetic operations in the field not only the usual addition,
subtraction, multiplication and inversion, but also the exponentiations that are independent of the degree
of the polynomial. We thus express our asymptotic complexity bounds in Table 4, only with respect to
that degree d.

Table 4: Complexity bounds for the publicly verifiable dynamic and unciphered polynomial evaluation
of Table 3 for a degree d polynomial.

Server Communication Client

Storage O(d) o)

< | Setup O(d) O(d) O(d)
2 | update || O(log(d)) O(log(d)) O(log(d))

S | Eval O(d) o(1) o(1)

Proposition 11 (A proof is given in Appendix B). In Table 3, the setup protocol requires O(d) arithmetic
operations; the update protocol requires O(log(d)) arithmetic operations; the verification protocol requires
O(1) communications and arithmetic operations for the Client, and O(d) arithmetic operations for the
Server.

In the next Section, we then propose a novel fully private protocol, combining and formalizing the
ideas from the encrypted one and the dynamic one.

5 Fully private, dynamic and ciphered protocol for polynomial
evaluation

So far we have a polynomial evaluation verification, that allows efficient updates of its coefficients.
We now propose a scheme which combine the polynomial evaluation with the externalization of the
polynomial itself. For this, two more ingredients are added in Section 5.1: an efficient masking in the
exponents in order to fulfill the hiding security property and an outsourcing of the (ciphered) polynomial
itself. This latter feature allows the client to not even store the polynomial and reduces her need for
storage to a small constant number of field elements. For this we use Merkle hash trees presented
in Section 4.1. They ensure the authenticity of the coefficient updates, with the storage of only one hash.
Finally note that the bilinear pairing need not be symmetric anymore, but need to be applied twice for
the security hypothesis to hold.

5.1 Private, dynamic, ciphered protocol

Here we add a masking of the polynomial coefficients in order to make the protocol hiding. For this
we use the security hypothesis of Definition 5: indeed, DLM security states that in a group G of prime
order, the values (g” (B gFPa(A)B) are indistinguishable from a random tuple of the same size, when
Py,..., P; have distinct leading monomials of bounded degree and A and g are the 2x2 and 2x1 secrets.
Therefore, in our modified protocol, the coefficients ¢g®'? for a secret 2x2 matrix ®, are indistinguishable
from a random tuple (g''*) since the polynomials X?, i = 1..d are just distinct monomials.

We start this section with linear algebra tools and an overview and then give a full formalization
and the associated proofs of security. We end the section with experiments showing the efficiency of our
approach.

5.1.1 Linear algebra toolbox.

For the next protocol to hold, we need to adapt the difference polynomial to the matrix case. For
instance Lemma 8 holds in the matrix case provided that the, now matrices, ¥ and X commute and
that Y — X is invertible. Let I,, be the nxn identity matrix. Then, we will for instance use Y = sl and
X =rly with s #r.

Also to speed-up things with the DLM masks, we need to efficiently compute geometric sums of
matrices. Thanks to Fiduccia’s algorithm [18], this is easily done with a number of operations logarithmic
in the exponent, provided that one is not an eigenvalue of the matrix. Indeed, first, any matrix commutes
with the identity so the geometric sum can be computed via one matrix exponentiation, one matrix inverse
and one matrix multiplication: Z?:o Al = (A9 — [)(A —I,)~'. Then, second, Fiduccia’s algorithm
computes the exponentiation modulo the characteristic polynomial, using the square and multiply fast
recursive algorithm. This summarized in Algorithms 1 and 2 and analyzed in Appendix B.

Algorithm 1 Degree 2 modular monomial powers (2-MMP)

Input: d€Z,d>1, P=py+pi1Z+ Z* € Zy[Z] monic degree 2 polynomial.
Output: Z% mod P.

1: if d == 1 then return Z

2: T «+ 2-MMP(|d/2], P);

3: S+ (13 —t3po) + (2tot1 — tip1)Z; {T(Z)? modulo P(Z)}
4: if d is odd then

5. return (—si1pg) + (S0 — s1p1)Z; {Z - S(Z) modulo P(Z)}
6: else

7. return S.

8: end if

5.1.2 Formalization of the protocol.

The dynamic externalized polynomial evaluation scheme consist of the following algorithms Setup,
Update and Eval between a client C with state st¢ and the server & of state sts. The exchanges

10

Algorithm 2 Projected matrix geometric sum (PMGS)
Input: k€ Z, A= (2}) € Z2*2, st. A—1I, is invertible, 3 € Z2.
Output: Zf:o A'B.

1: Let 7(Z) = (ad — be) — (a +d)Z + Z?; {The characteristic polynomial of A}
2: Let F(Z) = fo+ f1Z = 2-MMP(k 4+ 1,7); {Z¥*+1 mod 7(Z), using Algorithm 1}
3: return (f1A + (fo — 1)12)(A - I2)7 ' {(AM = D) (A - 1)~}

are summarized in Table 10.

o (stc,sts) « Setup(1”, P): on input of the security parameters and the polynomial P, outputs the
client state st¢ and the server state stg, as detailed in Algorithm 3.

o {(sty,stls), reject} < Update(i,0, stc, sts): on input of an index i € 0..d, the difference data ¢, the
client state stc and the server state sts, outputs a new client state st;, and a new server state sts (such
that now the new i-th coefficient of the polynomial is P/ = P; +d, for P; the previous i-th coefficient),
or reject, as detailed in Algorithm 4.

o {z,reject} + Eval(stc, sts,r) : on input of the client state stc, the server state sts and an evaluation
point r, outputs a successful evaluation z = P(r) or reject, as detailed in Algorithm 5.

Algorithm 3 Setup(1”, P)

Input: 15;pe P, P =0 p; X' € Z,[X];
Input: a partially homomorphic cryptosystem E/D satisfying Equation (2), for any dot-product of size
d+ 1, modulo p.
Output: sts, stc.
1: Client: generates order p groups Gi, Go, G with non-degenerate pairing e : G; X Go — G and
generators g1, ga, gr = €(g1; g2);
2: Client: generates a public/private key pair (pk, sk) for E/D;
3: Client: randomly selects s & Z,\{0,1}, o, 8 & Zg, & ngz, s. t. s® — I is invertible;
4: Client: computes P(X) = Z?:o Xi(pia + ®'B), W = Epi(P), H = [¢}]i=1.a € G, K = gITD(S) €
G% and S = [g5 Ju—o..a-1 € G;
Client: ry = MTRoot(W); {root of the Merkle tree}
Client: sends pk,G1,Ga, g1, g2, Gr,e, W, H, S to the Server;
Client: return stc <+ (pk, sk, G1,Ga, g1, 92, Gr, e, 8,0, B, @, K, rw);
Server: Ty < MTTree(W); {the Merkle tree}
Server: return sts < (pk,G1,Ga,g1,92,Gr,e, W, Ty, H, S).

We have now the complete result for the Dynamic Verified Evaluation of Secret Polynomials, sum-
marized in Appendix A (a parallelization of the server part of Algorithm 5 is given in Appendix D).

Theorem 12. Under the security assumptions of Section 2, the protocol composed of Algorithms 3
to 5 (summarized in Table 10) is a fully secure verifiable polynomial evaluation scheme, as defined
in Definition 1 and the complexity bounds of its algorithms are given in Table 5.

For the complexity bounds we still consider the cardinality of the coefficient domain to be a constant
(so that, again, even exponentiations not involving the degree are considered constant) and we also
consider that one encryption/decryption with the linearly homomorphic cryptosystem requires a number
of arithmetic operations constant with respect to the degree.

Proof. Correctness. We use the left hand side of Lemma 8 and Equation (4). Applying this to
P, we directly obtain that: & = []%, [Tist e(Hi; Sir1)™ = 10, [Tiihe(a ™398)™ so that
€ = e(g1;92)9rP 127 12) . Denote by G(Z) = Z‘;j;1_ Now P(X) = P(X)a + G(X®)3, then ¢ =
G(r®)8 = G(r- [,®)B and thus P(r - I) = D(¢)a + ¢ = P(r)a + c. Therefore the Eval verification

11

Algorithm 4 Update(s, d, stc, sts)

Input: i € [0..d], § € Zj, (stc, sts) = Setup(1”, P).
Output: (st;, st's) = Setup(1%, P+ §X*) or reject.

_ = = e
Wy eQ

: Client: computes e; = E,(8), A = ¢2%;
Client: sends i, es, A to the Server;
Server: (w;, L;) < MTLeafPath(i, W, Ty); {gets w; and its uncles from the tree}
Server: TY;, < MTupdLeaf(Z, w; - €5, Ty); {updates the Merkle tree}
Server: sends w;, L; to the Client;
Server: return st's < sts\{Tw,w;, h;} U{T}y, wi - es} Ule{hi[]] A}
if ry = MTpathRoot (¢, w;, L;) then
Client: computes K'[j] < e(A[§]*"; g2) - K[j] for j = 1..2;
Client: computes rj;, = MTpathRoot(, w; - €5, L;);
Client: return st < stc\{K,rw} U{K/, 7} }.

. else{the stored root does not match the received element and uncles}

Client: return reject.
end if

Algorithm 5 Eval(stc, sts,)

Input: stc,sts and r € Zy;
Output: z = P(r) or reject.

1:
2:

3:

10:
11:
12:
13:
14:
15:

© PN a R

Client: computes r® and ¢ + ((r®)¥™ — L) - (r® — L)~ - 3 {via Algorithm 2}

Client: sends r to the Server;

Server: homomorphically computes (= WTHx = Hf 0 (r mod p)

{via Equation (2), see also, e.g., Remark 6 and Algorithm 7}
Server: £ = [lg,, lo,)T € G&; t = 1g,;
for i =1to d do {Following the ideas of Algorithm 6}
Server: t <+ S;_1-t";
Server: £[j] « £[j] - e(H;[j];t) for j = 1..2;
end for
Server: sends ¢, € to the Client;
Client: computes z = Dy () mod p;
if £[j]* gzl = K[j] for j = 1..2 then
Client: return z.
else

Client: return reject.
end if

Table 5: Complexity bounds for verifiable dynamic and ciphered polynomial evaluation (for groups and

prime fields of supposed constant order/cardinality, the asymptotics are here function of the degree d of the evaluated

polynomial: storage units are given in number of group/field elements, computational operations are given in number of

group/prime field arithmetic operations).

Server Communication Client
Storage O(d) o)
< | Setup O(d) O(d) O(d)
= | update || O(log(d)) O(log(d)) O(log(d))
S| Eval O(d) O(1) O(log(d))
is indeed that gQP(S Tzyrel2)(s=r)+P(rl2) L gp(s'jz) = gf(s). Now for the Update operation, P/ = P; + ¢
S0 that‘ P/() _ P/(S I2) _ (58 o+ P(S IQ) and e(f’(s-fz)[j];QQ) _ e(gl []]792) (f’(s-l2)[j];92) —
(A1 g2) - 97 = e(AL]*: ga) - KIJ] for j = 1.2,

Complexity bounds. In terms of storage, apart from the public/private key pair and the groups,

12

the client just has to store nine elements mod p, that is s, a # [0,0], B, and P, together with two
group elements, K; the server has to store the polynomial ciphered thrice, the ciphered powers of s and
the Merkle tree for the ciphered polynomial: all this is O(d). In terms of communications, during the
Update phase the client sends one index and three group elements, while receiving one group element
and the list of its log(d) uncles. During the Eval phase, only four elements are exchanged. Finally, in
terms of computations, the server performs O(d) operations for the Merkle tree generation at Setup;
fetches O(log(d)) uncles at Update; and O(d) (homomorphic) operations at Eval, thanks to Algorithm 6.
For the client, Update requires O(log(d)) arithmetic operations to check the uncles and to compute the
exponentiation s?, together with a constant number of other arithmetic operations, independent of the
degree. Similarly, computing (r®)9*! also requires O(log(d)) classical arithmetic operations thanks
to Algorithm 2 and the rest is a constant number of operations that are independent of the degree.

Soundness. Let <gg,g§, 9527 .. ,g§t> € Ggﬂ be a t-BSDH instance. For the setup phase, randomly

select o, 3,® and [po,...,p¢]. Then compute W = E(P), H = gﬁ, and let S = <G7g,gs,gs27...,gst>.
Finally homomorphically compute:

_ 2 t _ _
K:6(91;<92,9§7g§ o 9o >®[po,---,pt])-

These inputs are indistinguishable from random inputs to the protocol of Table 10. For any number of
update phases, randomly select § and compute es = F(§) and A = g{. Also compute K’ = e(g1; 57%)-K.
Finally, select a random evaluation point r, compute (¢,£) and call an attacker of the Eval part of the
protocol to get (¢, €") such that (D(¢"),€") # (D(C),€), even though both are passing the verification.
This means, again, that if, on the one hand, D(¢') = D((), then €577 = (=7 with £ # £'. Therefore
s = r and the secret is exposed. If, on the other hand, D(¢’) # D(¢) then, as « # [0, 0], set j € {1, 2} such

that afj] # 0 and we have again: (f[j] = e(gl;gg)rlr. This proves that the adversary

&'[4]
would solve the t-BSDH < -, e(gl;gg)ﬁ> challenge.

) alI(D(EH—-D()

Privacy. We show that the protocol is hiding both p; and p;.
For p; first. Let B = g® be a DLOG instance. For the setup phase, randomly select s,c, ®,d,

[po, .-, pa] and two non-zero elements by, bs € Z,,. 'Then compute W = E(P), h; = g‘f‘p"B‘bi[bl’b’é‘]T7

S = <gg,g§,g§2, . ,g§t>, and K = e(g?P(S)BG(S‘b)[bl’bQ]T;gg). These inputs are indistinguishable from

random inputs to the protocol of Table 10. For any update phase, randomly select § and compute
es = E(6) and A = gf°. Also compute K'[j] = e(A[j]*;g2) - K[j] for j = 1..2. Such updates are
indistinguishable from random updates to the protocol of Table 10. Randomly select any number of
evaluation points r and run the associated Eval phases, randomly alternated with Update phases. Now,
if an attacker can find from this transcript one coefficient p;[j] for j € {1,2}, then compute b = (p;[j] —
piali])/(®[b1, b2]T)[j] and the DLOG is revealed.

For p;, we proceed with a sequence of two indistinguishable games. Under DLM security, cf. Def-
inition 5, the parameter h;, or more precisely, the pair (E(p;), g?***®#), is indistinguishable from
(E(pi), gP***1) for some random 2-dimensional vectors T';. Therefore the protocol of Table 10 is in-
distinguishable, as a whole, from the same protocol where ®‘3 is everywhere replaced by I';, and c is
(now inefficiently) computed as > r‘I';. Now we prove that the latter is hiding. Let Z = E(w) be the

cipher of a secret w. Randomly select d and [ug, . . ., ug] & 24+, Compute W; = Z - E(u;) = E(w +u;).
Randomly select a and h; (so that I'; = log,, (ki) — (w + u;)a € ZZQ, exists, but remains unknown) for
i = 1..d. Randomly select s and compute K = e(H ® [1,s,...,5%;g2). For any number of updates,
randomly select d, compute es = E(d), so that § = p, — p; = (w + u}) — (w+u;) = u, — u;. Thus update
ul; < & 4 u; and, therefore, compute A = g9 and K'[j] = e(A[j]*'; g2) - K[j] for j = 1..2. Alternatively
run such updates with random Eval phases; all this is indistinguishable from a normal transcript of the
protocol. Now if from this transcript an attacker could find one p;, then compute w = p; — u; and the

encrypted value would be revealed. O

13

5.2 Experiments

To assess the efficiency of our protocol, we implemented Table 10 using the following libraries®: gmp-6.2.1
for modular operations, fflas-ffpack-2.4.3 for linear algebra, 1ibsnark for baseline polynomial eval-
uation verification, relic-0.6.0 for Paillier’s cryptosystem and pairings (we used a “bn-p254” pairing).

To observe the effect of the chosen homomorphic systems (Paillier and the pairing), we ran the
experiments, on a single core of an intel Gold 6126 2.6GHz for the Client and Horner computations and
on one or four cores for the Server, with a RSA modulus size of 2048 bits.

In Table 6, we thus compare the Server time to the Client time of our protocol, to that of a simple
(witness) polynomial evaluation (Horner-like) in this group and of an unciphered static polynomial
evaluation with a SNARK (a ciphered evaluation with these SNARK would require to arithmetize the
Homomorphic cryptosystem and seems still out of reach).

Table 6: Comparative behaviors of pairings and Paillier system on the Server and Client sides with a
254-bits group size for the protocol of Table 10 (on the client side, column ’pows’ is the time to perform the left
hand-side exponentiations (by s — r and by D(¢)a[j] + c[j]); column ’c’ is the time to perform the matrix geometric sum
(the clients’s only part non constant in d); and column "D’ is the time to perform the single 2048 bits Paillier’s deciphering;
below are some baseline comparisons: ’Horner’ is a witness simple polynomial evaluation in that group, ’libsnark’ is an
unciphered and static polynomial evaluation verification. Each experiment was performed 11 times and we report the

median value, with a maximum variance lower than 16.4% between runs).

Server Certif. Client Verif.
Degree ¢ & ¢ & pows c D
1 core 4 cores 1 core

256 0.12s 0.09s| 0.04s 0.03s
512 0.24s 0.17s| 0.07s 0.06s
1024 || 0.46s 0.34s| 0.14s 0.12s
2048 || 0.93s 0.68s| 0.25s 0.23s
4096 1.81s 1.38s| 0.49s 0.45s
8192 || 3.68s 2.75s| 1.00s 0.90s
16384 || 7.17s 5.46s| 1.96s 1.78s
32768 ||14.48s 10.97s| 3.97s 3.26s
65536 ||29.44s 22.12s| 7.83s 6.38s
131072]59.13s 43.94s|15.51s 12.92s
Client Server (1 core) Proof
1 core|d® 256 1024 8192 131072| size
Horner (no verif., no crypt.) |<0.1ms 0.2ms 1.6ms 32.0ms| -
libsnark (no crypt.) [3.8ms| 0.06s 0.20s 1.32s 18.90s| 287B
Here (v. & c. & dyn.)|1.6ms| 0.21s 0.80s 6.43s 103.07s| 320B

0.7ms <0.1ms 0.9ms

First of all, of course, the Server time, using homomorphic arithmetic, can be several orders of
magnitude slower than the simple polynomial evaluation, while indeed being clearly linear. Second, for
the protocol itself, we see that both homomorphic evaluations of the Server are quite similar, even if
the Paillier cryptosystem is more expensive for large modulus. Then, on the Client side and for the
considered degrees, the dominant computation is that of a single Paillier’s deciphering (and that the
only part non-constant in the degree is by far the most negligible). Third our Client is even faster than
an unciphered one (we use less pairings than libsnark) and for a large enough degree, we can observe
the logarithmic Client time to win over the linear time pure polynomial evaluation. Also, our ciphered
server slowdown remains within a factor close to four (or only two without Paillier) when compared to
the static and unciphered one.

Shttps://gmplib.org, https://linbox-team.github.io/fflas-ffpack, https://github.com/scipr-lab/libsnark.
git, https://github.com/relic-toolkit/relic.

14

https://gmplib.org
https://linbox-team.github.io/fflas-ffpack
https://github.com/scipr-lab/libsnark.git
https://github.com/scipr-lab/libsnark.git
https://github.com/relic-toolkit/relic

6 Low server storage dynamic proof of retrievability

Recall that Proofs of Retrievability (PoR) allow a client with limited storage, who has outsourced her
data to an untrusted server, to confirm via an efficient Audit protocol that the data is still being stored
in its entirety.

The lower bound of [5, Theorem 4] proves that a tradeoff is inevitable between low/high audit cost
and high/low storage overhead. Roughly speaking, for any PoR on an N-bit database, the product of
persistent storage overhead times audit computational complexity must be at least N.

The dynamic PoR schemes of [15, 40] optimize for fast audits. They incur a large O(N) storage
overhead on the server, but can perform audits with only (log N)®™") communication and computation
for the client and server.

Instead, [5] optimizes for small storage; their scheme has only sub-linear storage overhead of O(N/ log N),
but a higher audit cost of O(N) on the server, and O(v/N) client time and communication. The authors
demonstrate that, for reasonable deployment scenarios on commercial cloud platforms, the higher audit
cost is more than offset by the greatly reduced costs of extra persistent storage, especially if audits are
only performed a few times per day.

We here further improve on the low storage overhead approach of [5], by our scheme with a small
o(NN) storage overhead, but only O(log N) communication and client computation cost for audits. That
is, our new protocol still benefits from small storage overhead, while effectively pushing the higher
computational cost of audits (which is inevitable from the lower bound) entirely off the client and onto
the server. These savings are highlighted in Table 7.

An easy argument demonstrates that in fact our O(log N) client cost for audits is a optimal. If
each audit has o(log N) cost (and therefore transcript size) for audits, then the total number of possible
transcripts is o(NV), which is a contradiction with the definition of retrievability; not every N-bit database
could be recoverable via independent audit transcripts.

Table 7: Attributes of some selected DPoR schemes

Server Client
Protocol|| Extra Audit Audit Audit
Storage
Storage Comput. || Comm. Comput.
[40] O(N) O(logN) [|O(logN) || O(1) O(logN)

5] o(N) N+o(N)| O(VN) | 011) o(VN)
Here o(N) N+4+o(N)||O(logN) || O(1) O(logN)

6.1 Matrix based approach for audits

Here we summarize the DPoR presented in [5] upon which our new scheme is based. The basic premise
is to treat the data, consisting of N bits organized in machine words, as a matrix M € Z;**", where Z,
is a suitable finite field of size p. Crucially, the choice of ring Z, does not require any modification to the
raw data itself; that is, any element of the matrix M can be retrieved in O(1) time from the underlying
raw data storage. The scheme is based on the commutativity of matrix-vector products. During the
Setup phase, the client chooses a secret vector u of dimension m and computes v7 = uTM; both vectors
u and v are then stored by the client for later use, while the server stores the original data and hence the
matrix M in the clear. Reading or updating individual entries in M can be performed efficiently with
the use of Merkle hash trees and from the observation that changing one element of M only requires
changing one entry in the client’s secret control vector v. To perform an audit, the client and server
engage in a 1-round protocol:

1. Client chooses a random vector x of dimension n, and sends = to Server.
2. Server computes y = Mx and sends the dimension-m vector y back to Client.

3. Client computes two dot products uTy and vTx, and checks that they are equal.

15

The proof of retrievability relies on the fact that observing several successful audits allows, with high
probability, recovery of the correct matrix M, and therefore of the entire database.

The communication costs are O(n) and O(m) in steps 1 and 2 respectively, and the client computation
in step 3 is O(m + n), resulting in O(v/N) total communication and client computation when optimizing
the matrix dimensions to roughly m = n = v/N. While this square-matrix setup is the basic protocol
presented by [5], the authors also discuss a potential improvement in communication complexity. Instead
of z being uniformly random over Z, it can instead be a structured vector formed from a single random
element r € Z, as v = [ri]izl_,n Then the communication on step 1 is reduced to constant, and hence
the total communication depends only on the row dimension O(m). By choosing a rectangular matrix
M with few rows and many columns, the communication can be made arbitrarily small.

The tradeoff for this reduction in communication complexity is higher client storage of the control
vector v as well as higher client computation cost for the n-dimensional dot product vTz. In [5], the au-
thors found that the savings in communication were not worth the higher client storage and computation,
and their experimental evaluation was based on the square matrix version with overhead O(v/N).

6.2 Bootstrapping part of the client computation via ciphered and dynamic
polynomial evaluation

Now we show how to modify the reduced communication version of the DPoR protocol of [5] just presented
in order to eliminate the costly client storage of v € Z7 and computation of vTz during audits. Our
improved protocol is based on the observation that, when the audit challenge vector x is structured as
x = [r'], then the expensive client dot product computation of vTz is actually a polynomial evaluation:
if the entire of v are the coefficients of a polynomial P, then v7z is simply P(r). We therefore eliminate
the O(n) client persistent storage and computation cost during audits by outsourcing the (encrypted)
storage of vector v and computation of vTx = P(r) with our novel protocol for dynamic, encrypted,
verifiable polynomial evaluation scheme of Table 10. The obtained private-verification DPoR protocol,
combining the DPoR of [5] with our ciphered polynomial evaluation in Section 5, is presented in Table 8.

Table 8: Private verifiable Client/server DPoR, protocol with low storage server

Server Communications Client
N = mnlogyp 'y,s(iZ;, ()4,[3<$%(Z;§)27 <I><$42)20X2
Setu Gla GQv Gr of ord. p form uT < [’yl}i:()mfm—l € Z;n
P pairing e to G vl «—uTM € Zy
gen. g1, 92,97 v+ [(vper + * B)]k=0.n1 € ZZ*"
w < E(v), H < [gfﬁ]kzo,;n_l S/l
. 0 [Flk=0.n—1, K = g37.,5 < g3
Th MTTree(]W) Mp.H.5 TM MTRuot(]W), Tw H_MTRoot(’LU)
Ty < MTTree(w) Discard M, v, v, w, H, o, S.
Store M, Ty, w, Ty, H,S Store v, 7, 0, 3,8, P, K, 1y
A; <— MTLeafPath(k + 2:m, —
(Mir, L., (k +in, M, Tyr) o
Mg, Lo, wi L,
Update (wg, ka) < MTLeafPath(k, w, T},) ' Ml) e Tw < MTpathRoot(k, Wy, ka)
M L MTpathRoot(k + i-n, Mk, Lar,,.)
1! e5 A)
B My, < Aﬂkl W 4 Wk * €5 Migacs g < v (M), —]Wik)’ es < E(8), A« g§
Hylj) A for j = 1.2 Rl e(Al71"" 3 02) - Klj) for j = 1.2
Ty ¢ MTupdLeaf(k, wg, Ty,) T4 < MTpathRoot(k, wkes, Lqy,,)
Tar < MTupdLeaf(k + i-n, M, , Tar) a1 — MTpathRoot(k + i-n, M/, , Lz,)
n T 3 *
Audit forma <+ [P*]_, | € Zy — 7= L5 st (r® — Iy) € GLa(Zy)
y+ Mz, (=wTBz ¢+ ((r®)+! — L)(rd — 1) 14
& n— i— I Tk y,¢:€ cra1s—r aljl+cli] * & .
€ =TI Tl e(His Simg—1)™ 3 €l O Z K] for j =1.2
uTy = D(()

Theorem 13. The protocol of Table 8 is correct and sound.

Proof. For the sake of simplicity, we here only consider the case t = 1, that is a single control vector.

16

Correctness. Assume that all the parties are honest. After each update phase, thanks to the
correctness of the Merkle hash tree algorithms wT = F(uTM) and K = e(g¥7; g2). To see this, suppose a
modification of the database at indices i and k, and let M’ = M + (M/,, — M;x)&, where &y, is the single
entry matrix with 1 at position (4, k). We have uTM’ = uT M+uT (M}, — M) Eix = uT M+~ e (M, — M)
where ey, is the k-th canonical vector. Thus, v/ = v +v*(M},, — Mix)er, = v + dey, satisfies uTM’ = v'T.
Only the k-th coefficients are different in v and v/, and in w and w’ as well. For the latter, wj, = E(v},) =
E(v +0) = E(vg)E(0) = wiE(5). The server thus computes w’ such that w’ = E(uTM'). Moreover,
for j = 1.2, ¥'[j] = 9[j] + daljlex, so that, similarly, H.[j] = A[j]Hx[j] with A = ¢{*, and K'[j] =

o' [jlo v[jlo daljlexo o . Safj]s® o . s . .
e(gy 175 92) = e(gy 7 1" go) = Kljl-e(91": g2) = KIj)-e(A[j]*; g2). Now, concerning the audit
phase. Since we consider the polynomial evaluation as a dotproduct, the application of Proposition 8
to our notations gives: (s —7) (Z;le i ﬁisi_k_lrk) + 3t =) is’. Thus we have: & =
T T e(His Sicn)™ = TS Thico elon™; 687)7 = elgr; go) 2= Zico ™1™ Moreover,
aD(C) + ¢ = ave + ((r®)™! — L)(r® — L)'8 = ave + Y p—o r*® 3 = vz. Thus we have that

(S*’I”)(n—1 i—1

Klj) = giP)7 = g 7S o n TR ot i K1) = €5 rgp VY and, finally, uty =
uTMx =vTx.

Soundness. An attacker to the protocol must provide (y',¢’,£’) such that (y/,{’, &) # (y,¢, §), but
still uTy’ = Dy (¢’), with a non negligible advantage e. There are two cases: if (Ds (), &) # (Dsi (), €)
then the attacker had to break the polynomial evaluation; otherwise, it must be that uTy’ = uTy with
Y #y.

For the first case, Theorem 12 assesses the security of the polynomial evaluation. For the second case,
we consider T' = E,(t) the cipher of a secret ¢ by the homomorphic scheme. Here, we use again the fact
that the protocol of Table 8 is indistinguishable as a whole from the same protocol where, within the
polynomial evaluation of, ®/ is everywhere replaced by a random I';. Further, this is indistinguishable
from a third protocol where, at each Update of index i, a new I'; is also randomly redrawn and replaces
T'; in the client state. We thus continue the proof with this third game setting. Now, using e, the ¢-th
canonical vector of Zj", we can (abstractly) consider @ = u+te, and 97 = aTM = (uT+teg) M = v+t My ..
Then, for the Setup phase, we can randomly select m, n and £ < m. Then also M € Z"*", u € Z',
and compute vT = uTM. From this, compute wy = E(vg)TMex = E(vy, + tMy,) = E(x). We also
randomly select s, and hy (so that I'y = loggl(i_zk) — U exists, but is unknown). For any Update
phases, compute w), = wyTMev—Mee and select randomly a A (so that A} [j] = hi[f]A[j] for j = 1..2 now
correspond to a new I'y, = log, (h},) — a®y, still unknown).

Finally, the attacker provides a vector 3’ such that both @7(y’ —y) = 0 and 3’ # y mod p. Since ¢
is randomly chosen from 1..m, the probability that the vectors are distinct at index ¢, in other words
that y;, # y, mod p, is at least 1/m. If this is the case, then, denoting z = y’ — y, we have that z, # 0
mod p. Now, 4Tz = 0 implies that uTz +tz, = 0 so that the secret can be computed as t = —z,71 - (uTz)
mod p and the homomorphic cryptosystem is subject to an attack with advantage €¢/m. O

6.3 Experiments

We now compare our modification of the DPoR protocol with the one in [5], publicly available there:
https://github.com/dsroche/la-por.

Table 9 has three blocks of experiments, each for four database sizes ranging from 1GB to 1TB.
The first block of experiments is a run of the original statistically secure DPoR protocol with two
dotproducts for the verification, considering the matrix as 56 bits elements modulo a 57-bits prime. The
second block of experiments is our new modification, but still using close to square matrices. Subject
now to computational security, we have to use a larger coefficient domain, namely here a 254-bits prime
(with associated bilinear groups and a 2048-bits Paillier modulus, both estimated equivalent to a 112-bit
computational security). We separate the timings of the Update phase in two phases, the remaining
linear algebra phase and the new polynomial evaluation phase. In the third block of experiments we use
a more rectangular matrix, trying to reduce communications while not increasing too much the Server
computational effort.

Overall, we see first in Table 9, that changing the coefficient domain size increases the computational
effort of the server in the linear algebra phase. Still, reducing the dimension of the dotproduct for
the client, as shown in he third block, allows the client to be faster for databases larger than 100GB.

17

https://github.com/dsroche/la-por

Table 9: Modification of the DPoR audit protocol, with 254-bits groups, 2048-bits Paillier, on a Gold
6126 2.6GHz & 10 GB/COI‘e (real time are median values for a single run; each experiment was performed 11 times;

the maximum relative difference between the runs was at most 3.6%).

| Database IGB | 10GB [100GB | 1TB |
Private-verified audit using 57-bits prime [5, Figure 1]
Matrix view 12339x12432 | 3913139200 | 123831x123872 | 396281 x 396368
Server extra storage <0.01% <0.01% <0.01% <0.01%
Client Storage 169KB 535KB 1693KB 5418KB
Server Audit (1/16 cores) 0.13s/0.02s | 1.30s/0.17s 13.01s/1.62s | 191.83s/12.24s
Communications 169KB 535KB 1693KB 5418KB
Client Audit (1 core) 0.2ms 0.7ms 1.9ms 8.5ms
Square Dynamic-ciphered delegated polynomial evaluation with 254-bits groups of Table 8
Matrix view 5815x5816 | 18390x18390 | 58154x58154 | 186092x 186093
Server extra storage 0.12% 0.04% 0.01% <0.01%
Client storage 0.94KB 0.94KB 0.94KB 0.94KB
Server Audit (1/16 cores): matrix-vector step 1.1s/0.2s 11.3s/1.3s 113.4s/12.9s | 1152.5s/131.1s
Server Audit (1/16 cores): polynomial step 4.6s/0.7s 14.3s/1.8s 46.0s/5.3s 145.7s/16.4s
Communications 181KB 571KB 1803KB 5770KB
Client Audit (1 core): dotproduct step 3.2ms 8.4ms 13.1ms 37.9ms
Client Audit (1 core): polynomial step 1.7ms 1.7ms 1.7ms 1.7ms
Rectangular Dynamic-ciphered delegated polynomial evaluation with 254-bits groups of Table 8
Matrix view 6599x5125 | 7265x46551 | 7929x426519 | 8600x4026778
Server extra storage 0.11% 0.10% 0.09% 0.08%
Client storage 0.94KB 0.94KB 0.94KB 0.94KB
Server Audit (1/16 cores): matrix-vector step 1.1s/0.2s 11.3s/1.3s 113.2s/12.8s | 1147.9s/130.7s
Server Audit (1/16 cores): polynomial step 4.08/0.6s 36.8s/4.3s 335.78/36.7s | 3125.9s/340.0s
Communications 205KB 226KB 246KB 267KB
Client Audit (1 core): dotproduct step 3.7ms 4.0ms 4.4ms 4.8ms
Client Audit (1 core): polynomial step 1.7ms 1.7ms 1.7ms 1.7ms

In any case, the client audit computational effort is never larger than a few milliseconds and thus the
dominant part is most certainly communications. On this aspect, we see that our modification allows for
large reductions in both the Client storage (even with square matrices) and the overall communications.
Indeed, the client private state is the vector dimension, the Paillier’s private key, twelve group elements
and two Merkle tree roots; while the communications are mostly one vector of modular integers in the
smallest dimension.

The price to pay is from about a factor of four (large database) to an order of magnitude (tiny
database) for the server computations (more limited losses in the more realistic case where the server
can use multiple cores). In any case, the persistent client storage is going from dozens of MB to less than
one KB, and the communication volume can be decreased by more than two orders of magnitude.

Acknowledgments

We thank Gaspard Anthoine for providing us with some preliminary comparisons with the PBC and
libpaillier libraries and Anthony Martinez for the libsnark baseline benchmarking. We also thank Jean-
Louis Roch for fruitful exchanges about the parallelization of the server side and for pointing out [41].

7 Conclusion

We have presented a protocol verifying publicly a dynamic unciphered polynomial evaluation and then
a protocol verifying privately a dynamic ciphered polynomial evaluation. Now, combining efficient and
proven dynamicity for ciphered polynomial with public verifiability raises security issues and reminds
an open problem. Still, we have also presented a protocol verifying the outsourced evaluation of secret
polynomials. Client verification is of the order of a few milliseconds and is faster than direct polynomial
evaluation over a small finite field, as soon as the degree of the polynomial is larger than a few thousand.

18

This enables us in turn to reduce by several orders of magnitude the communications, Client storage
and Client computations for state-of-the-art low server-storage dynamic proofs of retrievability.

19

References

[1]

M. Abdalla, F. Benhamouda, and A. Passelegue. An algebraic framework for pseudorandom func-
tions and applications to related-key security. In R. Gennaro and M. Robshaw, editors, CRYPTO
2015, pages 388-409, Berlin, Heidelberg, 2015. Springer. doi:10.1007/978-3-662-47989-6_19.

M. Abdalla, F. Bourse, H. Marival, D. Pointcheval, A. Soleimanian, and H. Waldner. Multi-client
inner-product functional encryption in the random-oracle model. In C. Galdi and V. Kolesnikov,
editors, SCN 2020, Amalfi, Italy, September 14-16, volume 12238 of LNCS, pages 525—545. Springer,
2020. doi:10.1007/978-3-030-57990-6_26.

S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner products, from
standard assumptions. In M. Robshaw and J. Katz, editors, CRYPTO 2016, pages 333-362, Berlin,
Heidelberg, 2016. Springer. doi:10.1007/978-3-662-53015-3_12.

M. Ambrona, G. Barthe, and B. Schmidt. Generic transformations of predicate encodings: Con-
structions and applications. In J. Katz and H. Shacham, editors, CRYPTO 2017, pages 36-66,
Cham, 2017. Springer. doi:10.1007/978-3-319-63688-7_2.

G. Anthoine, J.-G. Dumas, M. Hanling, M. de Jonghe, A. Maignan, C. Pernet, and D. S. Roche.
Dynamic proofs of retrievability with low server storage. In 30th USENIX Security Sympo-
sium, August 11-13, pages 537-554, Aug. 2021. URL: https://www.usenix.org/conference/
usenixsecurity21l/presentation/anthoine.

G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. Provable
data possession at untrusted stores. In 14th ACM CCS, pages 598-609. ACM, 2007. doi:10.1145/
1315245.1315318.

N. Attrapadung and J. Tomida. Unbounded dynamic predicate compositions in abe from standard
assumptions. In S. Moriai and H. Wang, editors, ASTACRYPT 2020, pages 405436, Cham, 2020.
Springer. doi:10.1007/978-3-030-64840-4_14.

S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over large datasets.
In P. Rogaway, editor, CRYPTO 2011, Santa Barbara, CA, USA, August 14-18, 2011, volume 6841
of LNCS, pages 111-131. Springer, 2011. doi:10.1007/978-3-642-22792-9_7.

J. Benaloh. Dense probabilistic encryption. In First Annual Workshop on Selected Areas in Cryp-
tography, pages 120-128, Kingston, ON, May 1994. URL: http://sacworkshop.org/proc/SAC_
94_006. pdf.

A. Bishop, A. Jain, and L. Kowalczyk. Function-hiding inner product encryption. In T. Iwata and
J. H. Cheon, editors, ASIACRYPT 2015, Auckland, New Zealand, November 29 - December 3, 2015,
Part I, volume 9452 of LNCS, pages 470-491. Springer, 2015. doi:10.1007/978-3-662-48797-6_
20.

D. Boneh, J. Drake, B. Fisch, and A. Gabizon. Efficient polynomial commitment schemes for
multiple points and polynomials. ITACR Cryptol. ePrint Arch., 2020:81, 2020. URL: https://
eprint.iacr.org/2020/081.

R. P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM, 21(2):201-206, apr
1974. doi:10.1145/321812.321815.

X. Bultel, M. L. Das, H. Gajera, D. Gérault, M. Giraud, and P. Lafourcade. Verifiable private
polynomial evaluation. In T. Okamoto, Y. Yu, M. H. Au, and Y. Li, editors, ProvSec 2017, Provable
Security, pages 487-506, Cham, 2017. Springer. doi:10.1007/978-3-319-68637-0_29.

J. Camenisch, M. Dubovitskaya, K. Haralambiev, and M. Kohlweiss. Composable and modular
anonymous credentials: Definitions and practical constructions. In T. Iwata and J. H. Cheon,
editors, ASIACRYPT 2015, Auckland, New Zealand, November 29 - December 3, 2015, Part II,
volume 9453 of LNCS, pages 262-288. Springer, 2015. doi:10.1007/978-3-662-48800-3_11.

20

https://doi.org/10.1007/978-3-662-47989-6_19
https://doi.org/10.1007/978-3-030-57990-6_26
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-319-63688-7_2
https://www.usenix.org/conference/usenixsecurity21/presentation/anthoine
https://www.usenix.org/conference/usenixsecurity21/presentation/anthoine
https://doi.org/10.1145/1315245.1315318
https://doi.org/10.1145/1315245.1315318
https://doi.org/10.1007/978-3-030-64840-4_14
https://doi.org/10.1007/978-3-642-22792-9_7
http://sacworkshop.org/proc/SAC_94_006.pdf
http://sacworkshop.org/proc/SAC_94_006.pdf
https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1007/978-3-662-48797-6_20
https://eprint.iacr.org/2020/081
https://eprint.iacr.org/2020/081
https://doi.org/10.1145/321812.321815
https://doi.org/10.1007/978-3-319-68637-0_29
https://doi.org/10.1007/978-3-662-48800-3_11

[15]

[16]

[17]

[25]

[26]

[27]

[28]

D. Cash, A. Kiipcii, and D. Wichs. Dynamic proofs of retrievability via oblivious RAM. In T. Jo-
hansson and P. Q. Nguyen, editors, EUROCRYPT 2013, Athens, Greece, May 26-30, 2013, volume
7881 of LNCS, pages 279-295. Springer, 2013. doi:10.1007/978-3-642-38348-9_17.

D. Catalano and D. Fiore. Vector commitments and their applications. In K. Kurosawa and
G. Hanaoka, editors, Public-Key Cryptography - PKC 2013, Nara, Japan, February 26 - March 1,
2013, volume 7778 of LNCS, pages 55-72. Springer, 2013. doi:10.1007/978-3-642-36362-7_5.

K. Elkhiyaoui, M. Onen, M. Azraoui, and R. Molva. Efficient techniques for publicly verifiable
delegation of computation. In X. Chen, X. Wang, and X. Huang, editors, AsiaCCS 2016, Xi’an,
China, May 30 - June 3, 2016, pages 119-128. ACM, 2016. doi:10.1145/2897845.2897910.

C. M. Fiduccia. An efficient formula for linear recurrences. SIAM J. Comput., 14(1):106-112, 1985.
doi:10.1137/0214007.

D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and matrix com-
putations, with applications. In ACM CCS, pages 501-512, New York, NY, USA, 2012. ACM.
doi:10.1145/2382196.2382250.

D. Fiore, A. Nitulescu, and D. Pointcheval. Boosting verifiable computation on encrypted data. In
A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas, editors, Public-Key Cryptography — PKC 2020,
pages 124-154, Cham, 2020. Springer. doi:10.1007/978-3-030-45388-6_5.

L. Fousse, P. Lafourcade, and M. Alnuaimi. Benaloh’s dense probabilistic encryption revisited. In
A. Nitaj and D. Pointcheval, editors, AFRICACRYPT 2011, Dakar, Senegal, July 5-7, 2011, volume
6737 of LNCS, pages 348-362. Springer, 2011. doi:10.1007/978-3-642-21969-6_22.

A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: permutations over Lagrange-bases for
oecumenical noninteractive arguments of knowledge. TACR Cryptol. ePrint Arch., 2019:953, 2019.
URL: https://eprint.iacr.org/2019/953.

R. Gay, D. Hofheinz, E. Kiltz, and H. Wee. Tightly CCA-secure encryption without pairings. In
M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, pages 1-27, Berlin, Heidelberg, 2016.
Springer. doi:10.1007/978-3-662-49890-3_1.

R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computa-
tion to untrusted workers. In T. Rabin, editor, CRYPTO 2010, Santa Barbara, CA, USA, August 15-
19, 2010, volume 6223 of LNCS, pages 465—482. Springer, 2010. doi:10.1007/978-3-642-14623-7_
25.

V. Goyal. Reducing trust in the PKG in identity based cryptosystems. In A. Menezes, editor,
CRYPTO 2007, Santa Barbara, CA, USA, August 19-23, 2007, volume 4622 of LNCS, pages 430—
447. Springer, 2007. doi:10.1007/978-3-540-74143-5_24.

A. Juels and B. S. Kaliski Jr. PORs: Proofs of retrievability for large files. In 1/th ACM CCS,
pages 584-597. ACM, 2007. doi:10.1145/1315245.1315317.

W. Kahan and R.. J. Fateman. Symbolic computation of divided differences. SIGSAM Bull., 33(2):7—
28, 1999. doi:10.1145/334714.334716.

A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and their
applications. In M. Abe, editor, ASTACRYPT 2010, Singapore, December 5-9, 2010, volume 6477
of LNCS, pages 177-194. Springer, 2010. doi:10.1007/978-3-642-17373-8_11.

J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman & Hall/CRC Cryptogra-
phy and Network Security Series. CRC Press, 2020. URL: https://books.google.fr/books?id=
RsoOEAAAQBAJ.

S. Kim, K. Lewi, A. Mandal, H. Montgomery, A. Roy, and D. J. Wu. Function-hiding inner product
encryption is practical. In D. Catalano and R. D. Prisco, editors, SCN 2018, Amalfi, Italy, September
5-7, volume 11035 of LNCS, pages 544-562. Springer, 2018. doi:10.1007/978-3-319-98113-0_29.

21

https://doi.org/10.1007/978-3-642-38348-9_17
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1145/2897845.2897910
https://doi.org/10.1137/0214007
https://doi.org/10.1145/2382196.2382250
https://doi.org/10.1007/978-3-030-45388-6_5
https://doi.org/10.1007/978-3-642-21969-6_22
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-540-74143-5_24
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.1145/334714.334716
https://doi.org/10.1007/978-3-642-17373-8_11
https://books.google.fr/books?id=RsoOEAAAQBAJ
https://books.google.fr/books?id=RsoOEAAAQBAJ
https://doi.org/10.1007/978-3-319-98113-0_29

[31]

[32]

A

B. Laurie, A. Langley, E. Kasper, and Google. Certificate Transparency. RFC 6962, IETF, June
2013. URL: https://tools.ietf.org/html/rfc6962.

J. Lee. Dory: Efficient, transparent arguments for generalised inner products and polynomial
commitments. In K. Nissim and B. Waters, editors, TCC 2021, Raleigh, NC, USA, Novem-
ber 8-11, volume 13043 of Lecture Notes in Computer Science, pages 1-34. Springer, 2021.
doi:10.1007/978-3-030-90453-1_1.

B. Libert, S. C. Ramanna, and M. Yung. Functional commitment schemes: From polynomial com-
mitments to pairing-based accumulators from simple assumptions. In I. Chatzigiannakis, M. Mitzen-
macher, Y. Rabani, and D. Sangiorgi, editors, ICALP 2016, July 11-15, 2016, Rome, Italy, vol-
ume 55 of LIPIcs, pages 30:1-30:14. Dagstuhl, 2016. doi:10.4230/LIPIcs.ICALP.2016.30.

R. C. Merkle. A digital signature based on a conventional encryption function. In C. Pomerance,
editor, CRYPTO ’87, pages 369-378, 1988. doi:10.1007/3-540-48184-2_32.

P. Morillo, C. Rafols, and J. L. Villar. The kernel matrix Diffie-Hellman assumption. In J. H.
Cheon and T. Takagi, editors, ASTACRYPT 2016, pages 729-758, Berlin, Heidelberg, 2016. Springer.
doi:10.1007/978-3-662-53887-6_27.

A. Ozdemir, R. S. Wahby, B. Whitehat, and D. Boneh. Scaling verifiable computation using efficient
set accumulators. In S. Capkun and F. Roesner, editors, 29th USENIX Security Symposium, August
12-14, pages 2075-2092, 2020. URL: https://www.usenix.org/conference/usenixsecurity20/
presentation/ozdemir.

P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern,
editor, EUROCRYPT 99, Czech Republic, May 2-6, 1999, volume 1592 of LNCS, pages 223-238.
Springer, 1999. doi:10.1007/3-540-48910-X_16.

J. Roch, D. Traoré, and J. Bernard. On-line adaptive parallel prefix computation. In W. E. Nagel,
W. V. Walter, and W. Lehner, editors, Furo-Par 2006, Dresden, Germany, Aug. 28 - Sep. 1,
volume 4128 of Lecture Notes in Computer Science, pages 841-850. Springer, 2006. doi:10.1007/
11823285\ _88.

H. Shacham and B. Waters. Compact proofs of retrievability. In J. Pieprzyk, editor, ASTACRYPT
2008, Melbourne, Australia, December 7-11, 2008, volume 5350 of LNCS, pages 90-107. Springer,
2008. doi:10.1007/978-3-540-89255-7_7.

E. Shi, E. Stefanov, and C. Papamanthou. Practical dynamic proofs of retrievability. In ACM CCS,
pages 325-336, New York, NY, USA, 2013. ACM. URL: http://elaineshi.com/docs/por.pdf,
doi:10.1145/2508859.2516669.

M. Snir. Depth-size trade-offs for parallel prefix computation. J. Algorithms, 7(2):185-201, 1986.
doi:10.1016/0196-6774(86)90003-9.

A. Tomescu, I. Abraham, V. Buterin, J. Drake, D. Feist, and D. Khovratovich. Aggregatable
subvector commitments for stateless cryptocurrencies. In C. Galdi and V. Kolesnikov, editors,
SCN 2020, Amalfi, Italy, September 14-16, volume 12238 of LNCS, pages 45-64. Springer, 2020.
doi:10.1007/978-3-030-57990-6_3.

Overview of VESPo

The exchanges of Algorithms 3 to 5 are summarized in Table 10.

B

Intermediate Proofs

Now, we give a proof on the logarithmic complexity bound for the client verification. Then we give the
proofs of the propositions in Sections 3 and 4.

22

https://tools.ietf.org/html/rfc6962
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/978-3-662-53887-6_27
https://www.usenix.org/conference/usenixsecurity20/presentation/ozdemir
https://www.usenix.org/conference/usenixsecurity20/presentation/ozdemir
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/11823285_88
https://doi.org/10.1007/11823285_88
https://doi.org/10.1007/978-3-540-89255-7_7
http://elaineshi.com/docs/por.pdf
https://doi.org/10.1145/2508859.2516669
https://doi.org/10.1016/0196-6774(86)90003-9
https://doi.org/10.1007/978-3-030-57990-6_3

Table 10: Private, Dynamic, Ciphered and logarithmic polynomial evaluation

Server Communications Client
G1,Go, Gy groups of order p PeZ,X],1<d°(P)<d
Setup pairing ¢ to Gr, s & Z,\{0,1}, o, B & Zz, & ZZXQ,
gen. g1, g2, 9r = e(g1; 92) s.t. (s® —) € GLy(Zy)
Let P(X) < Y% Xt (pia + @)
W+ E(P), H < [¢}]i=1.q € G**¢
K g1 € Gh, S ¢ [5 Tkmo.a
Tw < MTTree(TV) V.S rw 4— MTRoot(TV)
Store W, Ty, H, S discard P, P, W, H, S.
Updare | 1) € AU il for j = 1.2 <LLA s & B(), A+ g}
(wi, L;) 4 MTLeafPath(i, W, Ty) = W = MTpathRoot(i, w;, L;)
W] = w; - €5 wf 4 w; - e5, K[j] < e(A[j]*'5 g2) - K[f]
Tw < MTupdLeaf (2, w}, Tyy) Ty < MTpathRoot (7, w}, L;)
Form z « [1,7,r2,...,r" A For r € Zp s.t. (r® — Iy) € GLy(Zy)
Audit CeWTHz ¢ ((r®)H — L)(rd — I,)'8
€+ I, Iimo e(Hi: Simpmn)™ 5 Ll gy I Z Ry for j = 1.2

Lemma 14. Algorithm 2, computing the matriz geometric sum, requires between 40+ 8[log,(d+1)] and
40 + 11[logy(d 4 1)] arithmetic operations.

Proof. Counting only (modular) field operations, Algorithm 1 requires between 8 and 11 times [log,(d)]
additions and multiplications depending on the binary decomposition of d. Then we have 5 operations
for the matrix inverse, twice 6 operations for the matrix-vector multiplications and 18 operations for the
matrix polynomial evaluation. Plus 5 operations for the characteristic polynomial. O

Proposition 9 (From page 8). The protocol of Table 2 is correct and sound.

Proof. Correctness. First, (= WTHzx = H?:o E(p;)™) = E(P(r)). Then, second, £ = HT © z =
i;(l) g?’“’P(S)Tk = g?P(S’T), by Lemma 8. Therefore, the verification is that ggP(S’r)(sf’"HP(” z gg(s)
and this is guaranteed by Equation (4).
Soundness. Let <gl,gf,gf2, e ,gft> € (Gr’frl be a t-BSDH instance and suppose that there exists
an attack to the Audit protocol.
Let [po, ..., pt] & ZL! for a degree t polynomial and d = t. Then compute W = E(P), Ty p =
Zf:kﬂ p YTkl = E;;(l)_k tx,;Y7 and homomorphically compute

2 t
K=e <<91,gf,gf s gt >® [p()7~~'7pt]3g2)

1—-k

together with H = [hg], where hy = <g1,gf,gf2, e ,gftlf > ®© [tk,0,---,tkt—1—k]. These inputs are

indistinguishable from a generic setup of the protocol of Table 2 and can thus be given to its attacker.
Finally, select a random evaluation point r and compute (¢,£). The supposition if that an attacker

of the Audit part of the protocol can get ({,¢’), with some advantage, such that (D({’),¢") # (D(¢),€),

even though both would be passing the verification. Now, on the one hand, if D(¢") = D((), then

£ # & and it must be that e(f;gg_r)gTD(C) = K and e(g’;gg_T)g:,I?(o = K. Therefore, if r # s, then

e({;gg_’“)ﬁ = 6(5’;gg_r)ﬁ. But this contradicts the fact that & # ¢/, so r = s, and the secret

can be exposed. On the other hand, if D({’) # D((), then it means that we must have the equality
1

n_ . BN =D P .
(e(§592)/(e(€'592))°7" = ;,I?(C) PO and therefore: (%) PEN=REO gp ". This proves that the
adversary would solve the t-BSDH < —re(g1; gg)$> challenge with the same advantage. O

Proposition 10 (From page 9). The protocol of Table 3 is correct and sound.

23

Proof. Correctness. For the update, the new polynomial is P’(s) = P(s) + ds’, so that the key is

d i—1
updated as K} = K; - e(¢%*";g). Now for the evaluation, first, £ = H H SPitk = g T s T e
i=1 k=0
¢@r (%) and, second, we have that:
e(&:K2/g")elg:9)* = (69")elg: 9)"") =
e(g; g)9rPIETIEPD = ¢(g; g) 7).

Hence we see that e(&;Ka/g")e(g;9)¢ = K1 and, therefore, the protocol is correct.
Soundness. Let <g,gs,gSQ, . ,gst> € G'*! be a t-BSDH instance. For the setup phase, set d = t

and randomly select [po, .. ., pi] & ZLT'. Then set S = <(G, 9.9°.9% ... ,gst> and

2 t
K1 :e(<g;gsvgs oo g® >®[P0>-~~»Pt]%9)-

These inputs are indistinguishable from generic inputs to the protocol of Table 3. For any number of
update phase, randomly select d, receive p; and L; from the Server, compute K} = K1e(S?; g) and refresh
rp. Finally, select a random evaluation point r, compute (¢, &) and call an attacker of the PVDUeval part
of the protocol to get ({',¢’) such that (¢',¢&") # (¢, €), even though both are passing the verification.
If ¢’ = ¢, then as £ # & it must be that » = s and the secret is revealed; otherwise, (' # ¢ and
we have both e(¢';Ka/g")e(g;9)¢ = K1, on the one hand, and K; = e(&Ka/g")e(g; g)¢, on the other

hand. This gives e(%;gs_r) = e(g¢~¢;) and thus e ((%)S_T;g> = e(g¢~¢";). Finally, we have that:

1
e (g;g) CTC = e(g;g)ﬁ. This proves that the adversary would solve the t-BSDH < — r,e(g;g)ﬁ>

challenge with the same advantage.

Proposition 11 (From page 9). In Table 3, the setup protocol requires O(d) arithmetic operations; the
update protocol requires O(log(d)) arithmetic operations; the verification protocol requires O(1) commu-
nications and arithmetic operations for the Client, and O(d) arithmetic operations for the Server.

Proof. For the update phase, the client computes the root of the Merkle tree from the new value p; + 0
and the path L; given by the server in O(log(d)). She also has to compute an exponentiation and a
product in Z,[X], this is in O(1).

For the verification phase, communications are just 3 group elements. The client work is only 2
pairing and 2 exponentiations and 1 product.

Now for the server. First, computing ¢ is d + 1 homomorphic multiplications and d additions.

_ d i-1 apize _ 17d i—1 ark pi
Second, the server has to compute & = [, [[,_oSr %1 = [[i2y (ke091_1_1) - Therefore, one

can use a Horner-like prefix computation [27]: consider to = 1, and ¢; = S;—1 - t}_4, then ¢ = So,
to = 5155 and therefore t; = S;_1(S;—2...(S2(S155)")"...)" = 2;10 S[fk_l. Thus one can use the
following Algorithm 6 to compute £. Computing £ then requires at most 2d exponentiations and 2d
multiplications. O

Algorithm 6 Homomorphic linear prefix evaluation of the difference polynomial
Input: r, [So,...,Sa-1], [P1,--- 7pd‘l"

d i—1 ok :
Output: {=][;_, (H;c:o Szr—k—l) :
LE=1Lt=1;
2: for i =1 to d do . .
3 t <+ Si—l . tr; {ti - ;;:10 Sz?;kfl}
4: £+ & -thi,
5
6

: end for
: return &.

24

C Paillier’s cryptosystem as the Linearly Homomorphic prim-
itive

Paillier’s homomorphic system works modulo some RSA composite number N. Now it is possible to use
it to compute evaluations modulo a different m (for instance a prime), provided that m is small enough:
consider the modulo m operations to be over Z, perform the homorphic operations, and use m only to
reduce after decryption. This is illustrated in Algorithm 7.

Algorithm 7 Homomorphic modular polynomial evaluation with a different Paillier modulus

Input: An integer r € [0..m — 1];
Input: A Paillier cryptosystem (FE, D) with modulus N > (m — 1)2.
Input: (E(po),...,E(pa)) € Z‘]iVH, such that Vi, p; € [0..m — 1] and d < ﬁ —1.

Output: ¢ € Zy such that D(¢) mod m = P(r) mod m = Z?:o pir® mod m.

s let zp =1 and ¢ = E(pp);

: for i =1toddo
let 2; = x;—1 -r mod m; {Now z; € [0.m — 1]}
let ¢ + ¢ E(p;)™;

end for

return c.

A S

Lemma 15. Algorithm 7 is correct.

Proof. If 0 < p; < (m — 1), then as z; is considered as an integer between 0 and m — 1, then 0
Zfzopimi < (d+1)(m—1)?2 < N by the constraints on d and N. Therefore Zgzopixi mod N
Zidzo pix; € Z and now D(¢) mod m = Z?:o pix; mod m = P(r).

oA

D Parallel prefix-like algorithm for the Server

We here provide the parallelization we used for the Server audits.

For the DPoR, the matrix-vector product part was already parallelized in [5, Table 6], a Server
auditing the 1TB database in a few minutes.

For the polynomial part, as the dimensions become more rectangular, as we can see in Table 9, the
Server’s polynomial part is sometimes not negligible anymore, thus also benefits from some parallelization.

For this, we would need to parallelize both the homomorphic dot-product and the Horner-like pair-
ings. On the one hand, the former operations, line 3 in Algorithm 5, can be blocked in independent
exponentiations and final multiplications in a binary tree. On the other hand, for the latter opera-
tions, a standard “baby steps / giant steps” approach can be employed for the iteration of lines 5-8
in Algorithm 5:

e First, for steps of size k, compute t’”k7 then ™ for Jj = 1..d/k as a parallel prefix; then iterates the
multiplications by the coefficients of S in parallel for the d/k blocks.

e Second, then all the pairings could be computed in parallel and their final multiplications performed
again with a binary tree.

This is exposed in Algorithm 8.

Lemma 16. Algorithm 8 is correct, work-optimal with work Wy(d) = O(d) and runs in time Wy/q +
o(W,) on q processors.

Proof. Correctness of phases A, B and D stems directly from the correctness of Algorithm 5. Phase C
is correct since the new variables u; satisfy {ug = So, ui41 = Sit1ul }.
Then, p is the prime group order, and for any homomorphic system satisfying Equation (2) we have:

e Phase A: requires d multiplications modulo p with depth O(log(d)) and the parallelism is thus only
bounded by Brent’s law [12, Lemma 2];

25

e Phase B: requires d+1 homomorphic exponentiations and d homomorphic multiplications with a depth
of b = d/q such operations and the parallelism is thus only bounded by Brent’s law;

e Phase C: requires d exponentiations and d— 1 multiplications in G,. But this is implemented in parallel
with a depth of b = d/q such operations, only after precomputing ¢ — 1 times b operations each with
a depth of log(b);

e Phase D: requires d pairings and d — 1 multiplications in G with a depth of b = d/q such operations
and the parallelism is thus only bounded by Brent’s law.

So only Phase C requires more operations in parallel than in sequence. And that number of operations
is 2d — 1/q if ran on ¢ processors. This latter work is in fact optimal for prefix-like computations as
shown in [41, Corollary 4] (see also [38]): indeed consider a family of binary gates 6, (a,b) that on inputs
a and b compute a - bPi. They satisfy the conditions of [41, Corollary 4] and thus computing all the wu; is
lower bounded by 2d — 1/g. O

Remark 17. The accumulated independent exponentiations/pairings of lines 11, 16 and 26 of Algo-
rithm 8 can in fact be gathered in small batches, where each batch can factorize some computations (e.g.
using a generalized Shamir trick with multiple exponentiations in Go, or using NAF windows, etc.).
Therefore, on the one hand, with respect to a purely sequential computation, the extra work required by
Phase C' (when used with more than 2 processors) is in fact batched. On the other hand, the other part of
Phase C cannot benefit from these batches and is therefore dominant, but is more parallel. Therefore, as
shown also in Table 11, this allows us to reach, on multiple cores, pretty good overall practical speed-ups.

Table 11: Parallel Server-side VESPo
Degree 5816 | 18390 | 58154 | 186093 | 426519 | 4026778

1 core 4.6s | 14.3s | 46.0s | 145.7s | 335.7s | 3125.9s
4 cores 1.3s 4.1s 12.8s 40.6s 92.2s 867.9s
8 cores 0.7s 2.1s 6.7s 20.9s 48.1s 448.5s
16 cores 0.7s 1.8s 5.3s 16.4s 36.7s 340.0s

This parallelism can be used to further reduce the Server latency for large databases, to allow faster
multi-user queries, and to make the scheme even more practically relevant.

26

Algorithm 8 Parallel Server Eval

Input: Group order p, polynomial degree d, evaluation point r and vectors W, S, H[j], all as in Algo-

rithm 5.

Input: Cutting parameter ¢ (e.g. can be the number of threads).

Output: SERVER ¢, £[j] for j = 1..2.

1: Let (b,r) s.t. d+1=bg+r, with 0 <r < g;
E(b+1) k=0.r—1
rb+1)+(k—1r)b k=r.q
{PHASE A: r* mod p, for i = 0..d}
po 1, p1—ri+1;
while i < d do

parfor k = 1..max(i;d — i) do
Pitk < pi - pr mod p;
end parfor
i — 2
end while ;
{PHASE B: ¢ = WT Bz = [[*,w!" ™7}

2: Set by

© P NP Rw

{[logy(d)] parallel steps}

10: parfor k = 1. q do {q Blocks of size b or b+ 1 in parallel}

11 Ck — H1 bk 1 i
12: end parfor

13: ¢« [T G _
{PHASE C: u; = [[i_o 87"y, for i = 0..(d — 1)}

{[logs(q)] parallel steps}

14: ug < SQ;

15: fork—ltoqfldo

160 Up, ubk’“ lb’“ ! HZ b1 41 SPret {[logy (b + 1)] parallel steps}
17: end for

18: parfor k =0..¢ — 1 do {q Blocks of size b — 1 or b in parallel}

19: for i =0 to byy1 — by —2 do
20: Upy i1 €= Shit1 ~ Up, 45
21: end for
22: end parfor 4
{PHASE D: € = [T{, [Tj—p e(Hi; Si—k—1)"
23: € = [lg,, lg, | € G2
24: for j =1 to 2 do

k

}

25: parfor k=1.qgdo {q Blocks of size b or b+ 1 in parallel}

26: Enli] = TTi%,., e(Hiljliui)

27: end parfor

28 &[]« 17— &kl

29: end for

{[logs(q)] parallel steps}

27

	Introduction
	Our contributions
	Related work

	Security properties and assumptions
	Tools for the verification of a polynomial evaluation
	Outsourced dynamic verification of the evaluation
	Merkle trees for logarithmic client storage
	Public Dynamic unciphered Polynomial Evaluation
	Efficient linear-time evaluation

	Fully private, dynamic and ciphered protocol for polynomial evaluation
	Private, dynamic, ciphered protocol
	Experiments

	Low server storage dynamic proof of retrievability
	Matrix based approach for audits
	Bootstrapping part of the client computation via ciphered and dynamic polynomial evaluation
	Experiments

	Conclusion
	Overview of VESPo
	Intermediate Proofs
	Paillier's cryptosystem as the Linearly Homomorphic primitive
	Parallel prefix-like algorithm for the Server

