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VESPo: Verified Evaluation of Secret Polynomials

(with application to low-storage dynamic proofs of retrievability)

Jean-Guillaume Dumas∗ Aude Maignan∗ Clément Pernet∗ Daniel S. Roche †

October 5, 2021

Abstract

We consider the problem of efficiently evaluating a secret polynomial at a given public point, when
the polynomial is stored on an untrusted server. The server performs the evaluation and returns a
certificate, and the client can efficiently check that the evaluation is correct using some pre-computed
keys. Our protocols support two important features: the polynomial itself can be encrypted on the
server, and it can be dynamically updated by changing individual coefficients cheaply without redo-
ing the entire setup. As an important application, we show how these new techniques can be used
to instantiate a Dynamic Proof of Retrievability (DPoR) for arbitrary outsourced data storage that
achieves low server storage size and audit complexity. Our methods rely only on linearly homomor-
phic encryption and pairings, and preliminary timing results indicate reasonable performance for
polynomials with millions of coefficients, and efficient DPoR with for instance 1TB size databases.

1 Introduction

Verifiable computing.

Verifiable computing, first formalized by [23], consists in delegating the computation of some function
to an untrusted server, who must return the result as well as a proof of its correctness. Generally, the
verification of a correct result should be much less expensive than computing it directly and result in a
provably low probability that the result is incorrect. While certified and verified computation protocols
date back decades, the practical need for efficient methods is especially evident in cloud computing,
wherein a low-powered device such as a mobile phone may wish to outsource expensive and critical
computations to an untrusted, shared-resource commercial cloud provider.

The extensive literature on verifiable computation protocols can be divided into general-purpose
computations — e.g., of an arbitrary algebraic circuit — and more limited and (hopefully) efficient
special-purpose computations of certain functions. In the latter category, one of the most important
problems is Verifiable Polynomial Evaluation (VPE), where a client wishes to outsource the evaluation
of a univariate polynomial P at a given point x and efficiently verify the result.

Verifiable Polynomial Evaluation.

A VPE scheme is conventionally composed of three algorithms. First, a client runs Setup(P ) to compute
some public representation of P (which may be stored on the server) as well as some private information
which will be used to verify later evaluations. This step may be somewhat expensive, but only needs to
be performed once.

The second algorithm, Eval(x, α), is run by the server using a public evaluation point x, as well
as possibly some additional information α provided by the client. The server produces the evaluation
y = P (x) as well as some proof or certificate β that this evaluation is correct.
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Finally, the third algorithm, Verify(y, β), is run by the client to check the correctness of the evaluation.
This verification should be always correct and probabilistically sound, meaning that an honest server can
always produce a result y and proof β that will pass the verification, whereas an incorrect evaluation
y will always fail the verification with high probability. Furthermore, the Verify algorithm should be
efficient, ideally much cheaper in time and/or space than the computation itself.

Additional protocol features.

In the simplest case, the considered polynomial P is static and stored in cleartext by both the server
and the client.

But constraints can then be added to this framework.

• Polynomial outsourcing.

When the client device has limited storage, or to facilitate multiple clients, the polynomial and its
computation must be externalized. This can always be trivially achieved by storing all client secrets
on the server via symmetric encryption and a saved cryptographic hash digest; the challenge is to
do so while minimizing the communication costs required for the client to verify an evaluation.

• Secret polynomial.

In some cases, to guarantee data privacy, the polynomial has to be hidden from the server, or the
client, or both. Typically, the polynomial will be stored under a fully- or partially-homomorphic
encryption scheme, in such a way that the server can still compute the (necessarily encrypted)
evaluation and certificate for verification.

This setting has been extensively studied in the literature, with both general-purpose protocols as
well as some specific for verified polynomial evaluation.

• Public verification

The verification protocol is said to be private when only a party which holds the secrets derived
during Setup can verify evaluations. That is, any potential verifiers (sometimes called readers)
must be trusted not to divulge secret information to the untrusted server.

In many applications, it is desirable also to have untrusted verifiers, who can check the result of an
evaluation without knowing any secrets. In this public verification setting, the client at setup time
publishes some additional information, distributed reliably but insecurely to any potential verifiers,
which may be used to check evaluations and proofs issued by the server.

• Dynamic updates.

Recall that the initial Setup protocol is expected to be much more costly than each Verify for the
client. This creates a challenge when the client wishes to update only a few of the coefficients of
the polynomial and later compute evaluations of this new, modified polynomial P ′.

A dynamic VPE protocol allows for such updates efficiently. Namely, the client and server storing
polynomial P for verified evaluation can engage in an additional Update(c, d) protocol, which
effectively updates P (x) to P (x) + cxd for future evaluations, along with any secret and/or public
verification information.

To the best of our knowledge, no prior work in the literature discusses dynamic updates for verified
polynomial evaluation, which is especially challenging when the polynomial (as well as any update)
needs to be hidden from the server. The importance of allowing efficient updates is motivated by
our application to verifiable data storage, which we explain next.

Proofs of Retrievability.

One important application of VC in general, and VPE in particular, is to Proofs of Retrievability (PoR),
somewhat overlapping with the problem of Provable Data Possession (PDP) [25, 6]. In these settings, a
client wishes to store her data on an untrusted server, then verify (without full retrieval) that the server
still stores the data intact. The crucial protocol is an Audit, wherein the client issues some challenge to
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the server, then verifies the response using some pre-computed information to prove that the original
data is still recoverable in its entirety.

A variety of tools have been employed to develop efficient PoR and PDP protocols, and some of
these are based on verifiable computing. Generally speaking, the PoR Audit can consist in performing
some verified computation over the stored data. Retrievability is proven by arguing that any sequence
of successful audits can be used to recover the original data, e.g., by polynomial interpolation.

Note that this recovery mechanism is not actually crucial except to prove the soundness of the audit
protocol; the important feature is how cheaply the audits can be performed by a server and resource-
constrained client.

1.1 Our contributions

We consider a client/server scheme where the client has a low computing and a low storage capacity and
where the server is untrusted. The client wants to externalize the storage of a polynomial P of degree
d. Then she needs to outsource the computation of an evaluation P (x) at a public point x. Thus she
sends the point x in clear to the server, which has to respond with a value y and a proof that y satisfies
y = P (x). Our contributions are the following:

1. first, we present a new unencrypted Verifiable Polynomial Evaluation scheme which supports ef-
ficient dynamic updates, meaning that updating only a few coefficients of P does not require
performing the whole setup phase again (Section 4 and Table 3). The polynomial is stored in
cleartext on the server, and the technique used to provide a correct and sound protocol uses both
Merkle trees and pairings. A Horner-like evaluation scheme is used to optimize the evaluation of
the difference polynomial for the proof, and no secrets are required to perform the verification.

2. Second, we combine a linearly homomorphic cryptosystem with techniques from the first scheme
in order to obtain an encrypted, dynamic and private protocol for verifiable polynomial evaluation
(Section 5 and Table 5). That is, the polynomial is stored encrypted on the server, and efficient
updates to individual coefficients can be performed. Note however, this scheme does not support
public verification as this verification now requires some secrets from the client.

3. Finally, we use our new encrypted, dynamic VPE protocol to develop a new Proof of Retrievabil-
ity scheme that supports small server storage, dynamic updates, and efficient audits (Section 6
and Table 9). With high probability, a single audit will succeed only if the entire data is fully
recoverable.

A complete security definition of verifiable polynomial evaluation can be found in Section 2. This
definition follows previous results, with the novel inclusion of an Update protocol.

Section 3 introduces the tools for verification of polynomial evaluation. A motivating example is
presented in the form of a direct extension of the bilinear pairing scheme proposed by [26] now supporting
an encrypted input polynomial (Section 3 and Table 2). Since the privacy of this protocol is not proven
and it does not support neither public verifiability nor dynamic updates, it motivates the more involved
contributions of Section 4 (for public verifiability and dynamicity, but on an unciphered polynomial) and
of Section 5 (for dynamicity on a ciphered polynomial, but without public verifiability).

The efficiency of our protocols is measured by the computational complexity of the server-side Eval
algorithm, the volume of persistent client storage, and the amount of communication and client-side
complexity to perform a Verify or Audit. Improving on previously-known results, our protocols all have
O (d) server-side computation, O (log d) communication and client-side computation time, and O (1)
client-side persistent storage. We include some practical timings in Sections 5.2 and 6.3.

In addition, our new PoR scheme requires only o (d) extra server space on the server. This improves
on [36] in terms of server storage and on [5] in terms of communication and client computation complexity
for Audit.

1.2 Related work

While ours is the first work we are aware of which considers verifiable polynomial computation while
hiding the polynomial from the server and allowing efficient dynamic updates, there have been a number
of prior works on different settings of the VPE problem.
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One line of work considers commitment schemes for polynomial evaluation [16, 14, 30, 21, 37, 12,
33, 19]. Here, the polynomial P is known only to the server, who publishes a binding commitment
without revealing P itself. The verifier then confirms that a given evaluation is consistent with the pre-
published commitment. The protocol of Kate et. al. [26], which fits in this model, introduced some of
the techniques that we employ for our private verification algorithm, namely the notion of the difference
polynomial (see Section 3). By contrast, our protocols aim to hide the polynomial P from the server,
while the client is fully trusted.

Another line of work considers polynomial evaluation as an encrypted function, which can be evaluated
at any chosen point. Function-hiding inner product encryption (IPE) [10, 28, 2] can be used to perform
polynomial evaluation without revealing the polynomial P , but this inherently requires linear-time for
the client, who must compute the first d powers of the desired evaluation point x.

Similarly, protocols using a Private Polynomial Evaluation (PPE) scheme have been developed in
[13]. This primitive, based on an ElGamal scheme, ensures that the polynomial is protected and that the
user is able to verify the result given by the server. Here the aim of the protocol is not to outsource the
polynomial evaluation, but to obtain P (x) and a proof without knowing anything about the polynomial.
To check the proof, as with IPE the client has to produce a computation which is linear in the degree of
P .

A third and more general approach which can be applied to the VPE problem is that of secure
evaluation of arithmetic circuits. These protocols make use of fully homomorphic encryption (FHE)
to outsource the evaluation of an arbitrary arithmetic circuit without revealing the circuit itself to the
server. The VC Scheme of [23] is based on a Yao’s label construction. During the preprocessing phase,
P is transformed into an arithmetic circuit. The circuit is garbled once in a setup phase and sent to the
server. To later perform a verified evaluation, the client sends an encryption of x, the server computes
P (x) through the garbled circuit, and the client can verify the result in time proportional to the circuit
depth, which for us is O (log d)

Using similar techniques, Fiore et al. and Elkhiyaoui et al. [8, 18, 17] propose high-degree polynomial
evaluations with a fully secure public verification solution. Very recently, Fiore et al. [19] propose a
new protocol for more general circuits, using SNARKs over a quotient polynomial ring. In contrast to
our work, these protocols use more expensive cryptographic primitives, and they do not consider the
possibility of efficiently updating the polynomial.

Then, Proof of retrievability (PoR) and Provable data possession (PDP) protocols also have an
extensive literature. PDPs generally optimize server storage and efficiency at the cost of soundness; a
PDP audit may succeed even when a constant fraction of the data is unrecoverable. PoRs have stronger
soundness guarantees, but at the expense of larger and more complicated server storage, often based on
erasure codes and/or ORAM techniques.

State-of-the-art PoR protocols either incur a constant-factor blowup in server storage with poly-
logarithmic audit cost [15, 36], or use negligible extra server storage space but require polynomial-time
for audits on the client and server [35, 5]. A lower bound argument from [5] proves that some time/space
tradeoff is inherent, although the proof does not distinguish between server and client computation time
during audits.

2 Security properties and assumptions

A verifiable dynamic polynomial evaluation (VDPE) scheme consists of three algorithms: Setup, Update,
VEval, between a client C with state stC , a server S with state stS and a verifier V with (potentially
public) state stV .

• (stC , stV , stS)← Setup(1κ, P ): On input of the security parameters and the polynomial P of degree
d, outputs the client state stC , the verifier stV and the server state stS .

• {(st′C , st′V , st′S), reject} ← Update(i, δ, stC , stV , stS): On input of an index i ∈ 0..d, data δ, the
client/verifier/server states stC/stV/stS , outputs new client/verifier/server states stC ’/stV ’/stS ’,
representing the polynomial P + δXi, or reject.

• {z, reject} ← VEval(stV , stS , r): On input of the verifier state stC , the server state stS and an
evaluation point r, outputs a successful evaluation z = P (r) or reject.
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The client may use random coins for any algorithm. This is the general setting for public verification,
the idea being that for a private verification, the client will play the role of the verifier too and their
states will be identical: stV = stC .

Adapted from [26], in order to take into account dynamicity, we propose the following security
properties:

Definition 1. (Setup,Update,VEval) is a secure publicly verifiable polynomial evaluation scheme if it
satisfies the following properties:

Correctness. Let d ∈ N, (a0, . . . , ad) in a ring R and P (X) =
∑d
i=0 aiX

i, then:

VEval(Setup(1κ, P ), r) = P (r)

and for any δ ∈ R and 0 ≤ i ≤ d:

VEval(Update(i, δ, stC , stV , stS), r) = VEval(stV , stS , r) + δri

or reject has been returned by one of the protocols.

Soundness. The soundness requirement stipulates that the client can always detect (except with negligible
probability) if any message sent by the server deviates from honest behavior. We use the following
game between two observers O1 & O2 (respectively playing the roles of the client and the verifier),
a potentially malicious server A and an honest server S, with the game:

1. A chooses an initial polynomial P . O1 runs Setup and sends the initial server part, stS , of
the memory layout to both A and S; and the verifier part to O2.

2. For a polynomial number of steps t = 1, 2, ..., poly(κ), A picks an operation opt where operation
opt is either Update or VEval. O1 executes the Update operations with both A and S, while
O2 executes the VEval operations with also both A and S

3. A is said to win the game, if any message sent by A differs from that of S and neither O1

nor O2 did output reject.

A VDPE scheme is sound, if no polynomial-time adversary A has more than negligible probability
in winning the above security game.

Privacy. A VDPE scheme is private, if no polynomial-time adversary has more than negligible proba-
bility in obtaining any coefficient of P , given access to the transcript of all exchanged messages for
any number of runs of Setup, Update or VEval, and the associated server parts stS , of the memory
layout.

Definition 2. (Setup,Update,VEval) is a secure privately verifiable polynomial evaluation scheme if
it verifies the Correctness, Soundness and Privacy requirements of Theorem 1, where the verifier
state stV is included in the client state stC and no polynomial-time adversary A has more than negligible
probability in winning the soundness security game when O1 also plays the of O2.

In Section 5 we apply our new verifiable polynomial evaluation protocols to the development of a
new Proof of Retrievability (PoR) scheme, provably achieving correctness, soundness, and retrievability
for PoR. We follow the exact same security definition for PoR as in [5], which we will not restate here
for the sake of brevity.

To prove the security of our protocols we rely on classical discrete logarithm and Diffie-Hellman like
assumptions, all related to polynomial computations.

The first assumption, a decisional one, is the linearly independent polynomial assumption: informally
it states that linearly independent polynomial evaluations “in the exponents” are merely indistinguishable
from randomness. The formal version is recalled in Theorem 4.

Then we need computational assumptions, including the hardness to compute discrete logarithms,
in Theorem 3, and polynomial extensions of the hardness to produce Diffie-Hellman-like secrets, in The-
orem 5, even with bilinear pairings, in Theorem 6.
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Definition 3 (Discrete Logarithm, DLOG, hardness assumption [27, Def. 9.63]). A discrete-logarithm
problem is hard relative a group G of group order p, a generator g and a randomly sampled element h
of the group, if for any probabilistic polynomial-time algorithms A, there exists a negligible function negl
such that

Pr [ADLOG(G, g, h) = x s.t. h = gx] ≤ negl(log(p)). (1)

Definition 4 (Linearly Independent Polynomial, LIP, assumption [1]). Let G = 〈g〉 be a group of prime

order p. The advantage of an adversary A against the (n, d)-LIP security of G, denoted Adv
(n,d)−lip
G (A),

is the probability of success in the game defined in Table 1, with A being restricted to make queries
P ∈ Zp[T1, . . . , Tn] such that for any query P , the maximum degree in one indeterminate in P is at
most d, and for any sequence (P1, . . . , Pq) of queries, the polynomials (P1, . . . , Pq) are always linearly
independent over Zp.

Table 1: Game defining the (n, d)-LIP security for a group G [1]
Init Challenge(P ) Response(b′)

~r
$← Znp If b == 0

Return b′ == bβ
$← Zp Then Return y ← gβP (~r)

b
$← {0, 1} Else Return y

$← G

In fact, the LIP security reduces to the Matrix Diffie-Hellman assumption (MDDH) [1, Theorem 1],
a generalization of the widely used decision linear assumption [22, 32, 3, 4, 7].

Definition 5 (t-Strong Diffie-Hellman, t-SDH, assumption [26, 11]). Let α ∈ Z∗p. Given as input a

(t+ 1)-tuple
〈
g, gα, gα

2

, . . . , gα
t
〉
∈ Gt+1, then for every adversary At−SDH , the probability

Pr
[
At−SDH(g, gα, gα

2

, . . . , gα
t

) =
〈
c, g

1
α+c

〉]
≤ negl(log(p)) (2)

for any value of c ∈ Zp\{−α}.

Definition 6 (t-Bilinear Strong Diffie-Hellman, t-BSDH, assumption, from [24, 26]). Let α ∈ Z∗p. Given

as input a (t + 1)-tuple
〈
g, gα, gα

2

, . . . , gα
t
〉
∈ Gt+1, in a group G with a symmetric bilinear pairing e,

for every adversary At−BSDH , the probability

Pr
[
At−BSDH(g, gα, gα

2

, . . . , gα
t

) =
〈
c, e(g; g)

1
α+c

〉]
≤ negl(log(p)) (3)

for any value of c ∈ Zp\{−α}.

We will also use a public-key partially homomorphic encryption scheme where both addition and
multiplication are considered. We need the following properties on the linearly homomorphic encryption
function E (according to the context, we use Epk or just E to denote the encryption function, similarly
for the decryption function, D or Dsk): computing several modular additions on ciphered messages
and modular multiplications but only between a ciphered message and a cleartext. For instance, Paillier
cryptosystems [34, 9, 20] can satisfy these requirements, via multiplication in the ground ring, for addition
of enciphered messages, and via exponentiation for ciphered multiplication.

D(E(m1)E(m2)) = m1 +m2 (4)

D(E(m1)m2) = m1m2 (5)

In terms of security, any IND-CPA scheme will be sufficient. Since we consider the semantic security
of the cryptosystem, we assume that adversaries are probabilistic polynomial time machines. More
precisely we consider Malicious adversaries: a corrupted server that controls the network and stops,
forges or listens to messages in order to gain information or fool the client.

Finally, we will use a Merkle hash tree to allow verifications of updates and therefore need to use a
cryptographic hash function with Second pre-image resistance.
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3 Tools for the verification of a polynomial evaluation

Our first step is to define a verification protocol for polynomial evaluation that supports a ciphered input
polynomial over a finite ring Zp. For this we propose an adaptation of both [26, 18]. It seems not to be
sufficient to cipher the polynomial, or to check consistency in the exponents, so we propose to use both.
For this, as in the former paper, we first need to define a difference polynomial that we will use to check
consistency.

Definition 7. For a polynomial P (X) ∈ Zp[X] =
∑d
i=0 piX

i of degree d, let its subset polynomials be:

Tk,P (X) =
∑d
i=k+1 piX

i−k−1 =
∑d−1−k
j=0 pj+k−1X

j.

Proposition 8. Let QP (Y,X) = P (Y )−P (X)
Y−X be the difference polynomial of a polynomial P ; then

QP (Y,X) =
P (Y )− P (X)

Y −X
=

d∑
i=1

pi

i−1∑
k=0

Y i−k−1Xk =

d−1∑
k=0

Tk,P (Y )Xk (6)

Proof. As Y i −Xi = (Y −X)(
∑i−1
k=0 Y

i−k−1Xk), we obtain that

QP (Y,X) =

d∑
i=1

pi

i−1∑
k=0

Y i−k−1Xk =

d−1∑
k=0

Xk

(
d∑

i=k+1

piY
i−k−1

)
.

This identity relates two evaluations of P : P (Y ) = P (X) + (Y −X)QP (Y,X), which allow one to

verify z
?
= P (r) by checking, for a secret s, that:

P (s) = z + (s− r)QP (s, r) (7)

For this, let E,D be the encryption and decryption functions of a partially homomorphic cryptosys-
tem, supporting addition of two ciphertexts and multiplication of ciphertext by a cleartext, as in Equa-
tions (4) and (5). Therefore it is possible to evaluate a ciphered polynomial at a clear evaluation point,

using powers of the evaluation point: for x = [1, r, r2, . . . , rd], denote by E(P )
ᵀ � x =

∏d
i=0E(pi)

ri =
E(P (r)), the homomorphic polynomial evaluation.

Remark 9. An implementation with Paillier cryptosystem of the evaluation P (r) in a modular ring Zm,
thus providing the functionnalities of Equations (4) and (5), requires some care: indeed these equations
are satisfied modulo an RSA composite number N not equal to m.

More precisely, Paillier cryptosystem will provide D(E(P (r))) ≡ (
∑d
i=0 pir

i) mod N . Thus a possi-
bility to recover the correct value, is to precompute ri mod m, thus use the following Algorithm 1, and
require that:

(d+ 1)(m− 1)2 < N (8)

Algorithm 1 Homomorphic modular polynomial evaluation with a different Paillier modulus

Input: An integer r ∈ [0..m− 1];
Input: A Paillier cryptosystem (E,D) with modulus N > (m− 1)2.
Input: (E(p0), . . . , E(pd)) ∈ Zd+1

N , such that ∀i, pi ∈ [0..m− 1] and d < N
(m−1)2 − 1.

Output: c ∈ ZN such that D(c) mod m ≡ P (r) mod m ≡
∑d
i=0 pir

i mod m.
1: let x0 = 1 and c = E(p0);
2: for i = 1 to d do
3: let xi ≡ xi−1 · r mod m; {Now xi ∈ [0..m− 1]}
4: let c← c · E(pi)

xi ;
5: end for
6: return c.
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Proof. If 0 ≤ pi ≤ (m − 1), then as xi is considered as an integer between 0 and m − 1, then 0 ≤∑d
i=0 pixi ≤ (d+ 1)(m− 1)2 < N by the constraints on d and N . Therefore

∑d
i=0 pixi mod N =∑d

i=0 pixi ∈ Z and now D(c) mod m =
∑d
i=0 pixi mod m ≡ P (r).

Similarly, if H = [hi] = [gai ], denote by H�x =
∏
i=0 h

xi
i = g

∑
aixi the dot-product in the exponents.

Then Table 2 shows how the server produces the evaluation via the partially homomorphic cipher and
how this evaluation is bound to be correct by the consistency check in the exponents.

Table 2: Verifiable Ciphered Polynomial Evaluation
Server Communications Client

Setup

G, GT groups of order p P ∈ Zp[X], 1 ≤ d◦(P ) ≤ d
symmetric pairing e s

$← Zp
generators g, e(g; g) W ← E(P ), K ← gP (s)

W,H←− H ← [gTk,P (s)]k=0..d−1

Discard P , W , H

VEval

x← [1, r, r2, . . . , rd]ᵀ
r←− r

$← Zp
ζ = W ᵀ � x

ξ = Hᵀ � x ζ,ξ−→ e(ξ; gs−r)e(g; g)D(ζ) ?
= e(K; g)

Proposition 10. The protocol of Table 2 is correct and sound (verifiable).

Proof. Correctness. First, ζ = W ᵀ � x =
∏d
i=0E(pi)

(ri) = E(P (r)). Then, second, ξ = Hᵀ � x =∏d−1
k=0 g

Tk,P (s)rk = gQP (s,r), by Theorem 8. Therefore, the verification is that e(g; g)QP (s,r)(s−r)+P (r) ?
=

e(g; g)P (s) and this is guaranteed by Equation (7).

Soundness. Let
〈
G, g, gs, gs2 , . . . , gst

〉
∈ Gt+1 be a t-SDH instance. Let [p0, . . . , pt]

$← Zt+1
p for a

degree t polynomial and d = t. Then compute W = E(P ), Tk,P =
∑t
i=k+1 piY

i−k−1 =
∑t−1−k
j=0 tk,jY

j .

Finally, homomorphically compute K =
〈
g, gs, gs

2

, . . . , gs
t
〉
� [p0, . . . , pt] and H = [hk], where hk =〈

g, gs, gs
2

, . . . , gs
t−1−k

〉
� [tk,0, . . . , tk,t−1−k]. These inputs are indistinguishable from random inputs to

the protocol of Table 2.
Finally, select a random evaluation point r 6= s, compute (ζ, ξ) and call an attacker of the VEval

part of the protocol to get (ζ ′, ξ′) such that (D(ζ ′), ξ′) 6= (D(ζ), ξ), even though both are passing the
verification. Now, if D(ζ ′) = D(ζ), then e(ξ; gs/gr)e(g; g)D(ζ) = e(K; g) and e(ξ′; gs/gr)e(g; g)D(ζ) =

e(K; g). Therefore, ξ
ξ′ = 1

1
s−r = 1 and ξ = ξ′, contradicting the attacker result. Thus D(ζ ′) 6= D(ζ) and

we have: (
ξ

ξ′

) 1
D(ζ′)−D(ζ)

= g
1
s−r . (9)

This proves that the t-SDH
〈
− r, g

1
s−r

〉
is broken.

We see here that using a decipherable partially homomorphic function for the coefficients of P is
required, otherwise one could not compute the exponentiation on ξ/ξ′ in the soundness proof.

Several issues remain with this protocol: first it is not dynamic. Indeed, for a dynamic version, the
problem is that updating only one coefficients of P requires to update up to d− 1 coefficients of H. This
work would be of the same order of magnitude as recomputing the whole setup. Second it is not fully
hiding the coefficients of P as they are just put in the exponents without any masking, and we do not
prove the privacy requirement. Third, the protocol is not fully publicly verifiable since the decryption
key of the partially homomorphic system is required.

We incrementally solve the first two issues in the sequel of this paper and obtain a thus fully secure
private protocol. We also are able to provide a dynamic protocol, publicly verifiable, but for an unciphered
polynomial. Combining all three properties, that is, designing a similar dynamic protocol for ciphered
polynomials, but publicly verifiable, remains an open question to us.
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4 Outsourced verification of dynamic polynomial evaluation

4.1 Merkle trees for logarithmic client storage

To avoid storing the polynomial coefficients on the client side, we use a Merkle hash tree [31, 29]. Then
it is sufficient to store the root of the Merkle tree. For our purpose, an implementation of such trees
must just provide the following algorithms:

• T ←MTCreateTree(X) creates a Merkle hash tree from a database X.

• r ← MTRootFromLeaves(X) computes from scratch the root of the Merkle hash tree of the
whole database X.

• (a, L) ←MTElementAndPath(i,X, T ) is an algorithm providing the client with the requested
leaf element a, together with the corresponding list L of Merkle tree uncles.

• r ←MTRootFromPath(i, a, L) computes the root of the Merkle hash tree from a leaf element a
and the associated path of uncles L.

• T ′ ←MTUpdateLeaf(i, a, T ) updates the whole Merkle tree T by changing the i-th leaf to be a.

The requirements are thus that:

∀i,X,MTRootFromLeaves(X) = MTRootFromPath (i,

MTElementAndPath(i,X,MTCreateTree(X)) ) (10)

∀i, a,X, Let (b, L)←MTElementAndPath(i,X,MTCreateTree(X)),

and let X ′ ← X\{(i, b)}
⋃
{(i, a)},

then MTUpdateLeaf(i, a,MTCreateTree(X)) = MTCreateTree(X ′)

(11)

4.2 Public Dynamic unciphered Polynomial Evaluation

Here we propose a protocol capable of verifying the evaluation of a dynamic polynomial P which supports
public verifiability. It consists in three algorithms (Setup,Update,PVDUeval) detailed Table 3. During
the Setup algorithm, the Client sends the unciphered polynomial to the Server and deletes it to minimize
the Server storage. The Client uses a random coin s to create some data to be published or to be sent to
the server. We introduce a third part named the Verifier. The Verifier collects the published data and
is authorized to run the Read and the PVDUeval algorithms. But she is not authorized to run the Init
algorithm and s is not known by the Verifier.

Theorem 11. The protocol of Table 3 is correct and sound.

Proof. Correctness. First, ξ =

d∏
i=1

i−1∏
k=0

Spixki−k−1 = g
∑∑

si−k−1pixk = gQP (r,s) and, second, we have that:

e(ξ,K2/g
r)e(g, g)ζ = e(ξ, gs−r)e(g, g)P (r)

= e(g, g)QP (r,s)(s−r)+P (r) = e(g, g)P (s).

Hence we see that e(ξ,K2/g
r)e(g, g)ζ = e(K1, g) and, therefore, the protocol is correct.

Soundness. Let
〈
G, g, gs, gs2 , . . . , gst

〉
∈ Gt+1 be a t-BSDH instance. For the setup phase, set

d = t and randomly select [p0, . . . , pt]
$← Zt+1

p . Then set S =
〈
G, g, gs, gs2 , . . . , gst

〉
. Finally compute

K1 =
〈
g, gs, gs

2

, . . . , gs
t
〉
� [p0, . . . , pt]. These inputs are indistinguishable from random inputs to the

protocol of Table 3.
For any number of update phase, randomly select δ, receive pi and Li from the Server, compute

K′1 = K1S
δ
i and refresh rp.

Finally, select a random evaluation point r, compute (ζ, ξ) and call an attacker of the PVDUeval part
of the protocol to get (ζ ′, ξ′) such that (ζ ′, ξ′) 6= (ζ, ξ), even though both are passing the verification.
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Table 3: Public and Dynamic unciphered polynomial evaluation

Server Communications Client

Setup

order p group G P ∈ Zp[X], 0 ≤ d◦(P ) ≤ d
pairing e to GT
gen. g, e(g; g) Let

s
$← Zp

K1 ← gP (s), S ← [gs
k

]k=0..d−1

TP ←MTCreateTree(P )
P,S←− rp ←MTRootFromLeaves(P )

Store P , TP , S Publish K1,K2 ← gs

discard P , S.

Update

i,δ←−
(pi, Li)←MTElementAndPath(i, P, TP )

pi,Li−→ rP
?
= MTRootFromPath(i, pi, Li)

K1 ← K1 · gs
iδ

TP ←MTUpdateLeaf(i, pi + δ, TP ) rP ←MTRootFromPath(i, pi + δ, Li)

publish K1

PVDUeval

Form x← [1, r, r2, . . . , rd]ᵀ
r←− r

$← Zp
ζ ← P (r)

ξ ←
∏d
i=1

∏i−1
k=0 S

pixk
i−k−1

ζ,ξ−→ e(ξ,K2/g
r)e(gζ , g)

?
= e(K1, g)

• if ζ ′ = ζ, then ξ
ξ′ = 1

1
s−r = 1 and ξ = ξ′, contradicting the attacker result.

• otherwise, ζ ′ 6= ζ and we have both e(ξ′,K2/g
r)e(g, g)ζ

′
= e(K1, g) = e(ξ,K2/g

r)e(g, g)ζ . This

gives e( ξ
′

ξ , g
s−r) = e(gζ−ζ

′
, g) and thus e(( ξ

′

ξ )s−r, g) = e(gζ−ζ
′
, g). Finally:

(
ξ

ξ′

) 1
ζ′−ζ

= g
1
s−r . (12)

This proves that the t-BSDH〈
− r, g

1
s−r

〉
is broken.

4.3 Efficient linear-time evaluation

As a first approach to evaluate our protocols, we consider that the cardinality of the coefficient domain
is a constant. Therefore, we count as arithmetic operations in the field not only the usual addition,
subtraction, multiplication and inversion, but also the exponentiations that are independent of the degree
of the polynomial. We thus express our asymptotic complexity bounds in Table 4, only with respect to
that degree d.

Table 4: Complexity bounds for the publicly verifiable dynamic and unciphered polynomial evaluation
of Table 3 for a degree d polynomial.

Server Communication Client

Storage O (d) O (1)

C
om

p
u

t. Setup O (d) O (d) O (d)

Update O (log(d)) O (log(d)) O (log(d))

PVDUeval O (d) O (1) O (1)

10



Theorem 12. The setup protocol of Table 3 requires O (d) arithmetic operations.
The update protocol of Table 3 requires O (log(d)) arithmetic operations.
The verification protocol of Table 3 requires O (1) communications and arithmetic operations for the

client, and O (d) arithmetic operations for the Server.

Proof. For the update phase, the client has to compute the root of the Merkle tree from the new value
pi + δ and the path Li given by the server in O (log(d)). She also has to compute an exponentiation and
a product in Zp[X], this is in O (1).

For the verification phase, communications are just 3 group elements. The client work is only 2
pairing and 2 exponentiations and 1 product.

Now for the server. First, computing ζ is d+1 homomorphic multiplications and d additions. Second,

the server has to compute ξ =
∏d
i=1

∏i−1
k=0 S

pixk
i−k−1 =

∏d
i=1

(∏i−1
k=0 S

rk

i−k−1

)pi
. Therefore, one can use a

Horner-like prefix computation: consider t0 = 1, and ti = Si−1 · tri−1, then t1 = S0, t2 = S1S
r
0 and

ti = Si−1(Si−2 . . . (S2(S1S
r
0)r)r . . .)r =

∏i−1
k=0 S

rk

i−k−1. Thus one can use the following Algorithm 2 to
compute ξ.

Algorithm 2 Homomorphic prefix evaluation of the difference polynomial

1: ξ = 1; t = 1;
2: for i = 1 to d do
3: t← Si−1 · tr;
4: ξ ← ξ · tpi .
5: end for
6: return ξ.

Thus, computing ξ requires at most 2d exponentiations and 2d multiplications.

5 Fully private, dynamic and ciphered protocol for polynomial
evaluation

So far we have a polynomial evaluation verification, that allows efficient updates of its coefficients.
We now propose a scheme which combine the polynomial evaluation with the externalization of the
polynomial itself. For this, two more ingredients are added: an efficient masking in the exponents
in order to fulfill the hiding security property and an outsourcing of the (ciphered) polynomial itself
in Section 5.1. This latter feature allows the client to not even store the polynomial and reduces her
need for storage to a small constant number of field elements. For this we use Merkle hash trees presented
in Section 4.1. They ensure the authenticity of the coefficient updates, with the storage of only one hash.

5.1 Private, dynamic, ciphered protocol

Now we add a masking of the polynomial coefficients in order to make the protocol hiding. For this we use
Theorem 4: indeed, LIP security states that in a group G of prime order, the values (gP1(s), . . . , gPm(s))
are indistinguishable from a random tuple of the same size, when P1, . . . , Pm are linearly independent
multivariate polynomials of bounded degree and s is the secret. Therefore, in our modified protocol, the
coefficients gβϕ

i

for a secret ϕ, are indistinguishable from a random tuple (gρi) of the same size since
the polynomials Xj , j = 1..m are independent distinct monomials.

The dynamic externalized polynomial evaluation scheme consist of the following algorithms Setup,
Update and VEval between a client C with state stC and the server S of state stS .

• (stC , stS)← Setup(1κ, P ): on input of the security parameters and the polynomial P , outputs the
client state stC and the server state stS , as detailed in Algorithm 3.

• {(st′C , st′S), reject} ← Update(i, δ, stC , stS): on input of an index i ∈ 0..d, the difference data δ,
the client state stC and the server state stS , outputs a new client state st′C and a new server state
st′S (such that now the new i-th coefficient of the polynomial is P ′i = Pi + δ, for Pi the previous
i-th coefficient), or reject, as detailed in Algorithm 4.
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Table 5: Private, Dynamic, Ciphered and logarithmic polynomial evaluation

Server Communications Client

Setup

order p group G P ∈ Zp[X], 1 ≤ d◦(P ) ≤ d
pairing e to GT , s, α, β, ϕ

$← Z∗p
gen. g, e(g; g) Let P̄ (X)←

∑d
i=0(αpi + βϕi)Xi

W ← E(P ), H̄ ← [gp̄i ]i=1..d

K̄ ← gP̄ (s), S ← [gs
k

]k=0..d−1

TW ←MTCreateTree(W )
W,H̄,S←− rW ←MTRootFromLeaves(W )

Store W , TW , H̄, S discard P , P̄ , W , H̄, S.

Update
h̄′i ← h̄i ·∆

i,eδ,∆←− eδ ← E(δ), ∆← gαδ

(wi, Li)←MTElementAndPath(i,W, TW )
wi,Li−→ rW

?
= MTRootFromPath(i, wi, Li)

w′i ← wi · eδ w′i ← wi · eδ, K̄ ← K̄ ·∆si

TW ←MTUpdateLeaf(i, w′i, TW ) rW ←MTRootFromPath(i, w′i, Li)

VEval

Form x← [1, r, r2, . . . , rd]ᵀ
r←− For r ∈ Zp

ζ ←W ᵀ � x c← β (rϕ)d+1−1
rϕ−1

ξ̄ ←
∏d
i=1

∏i−1
k=0 e(H̄i;Si−k−1)xk

ζ,ξ̄−→ ξ̄s−re(g; g)αD(ζ)+c ?
= e(K̄; g)

• {ξ, reject} ← VEval(stC , stS , r) : on input of the client state stC , the server state stS and an
evaluation point r, outputs a successful evaluation ξ = P (r) or reject, as detailed in Algorithm 5.

Algorithm 3 Setup(1κ, P )

Input: 1κ; p ∈ P, P =
∑d
i=0 piX

i ∈ Zp[X];
Input: a partially homomorphic cryptosystem E/D satisfying Equations (4) and (5), for any dot-product

of size d+ 1, modulo p.
Output: stS , stC .

1: Client: generates an order p group G with generator g and non-degenerate pairing e : G×G→ GT ;
2: Client: generates a public/private key pair (pk, sk) for E/D;

3: Client: randomly selects s, α, β, ϕ
$← Z∗p;

4: Client: computes P̄ (X) =
∑d
i=0(αpi + βϕi)Xi, W = Epk(P ), H̄ = [gp̄i ]i=1..d, K̄ = gP̄ (s) and

S = [gs
k

]k=0..d−1;
5: Client: rW = MTRootFromLeaves(W ); {root of the Merkle tree}
6: Client: sends pk,G, g,GT , e,W, H̄, S to the Server;
7: Client: return stC ← (pk, sk,G, g,GT , e, s, α, β, ϕ, K̄, rW );
8: Server: TW ←MTCreateTree(W ); {the Merkle tree}
9: Server: return stS ← (pk,G, g,GT , e,W, TW , H̄, S).

We have now in Theorem 13, the complete result for the Dynamic Verified Evaluation of Secret
Polynomials.

Theorem 13. Under the security assumptions of Section 2, the protocol composed of Algorithms 3 to 5
(summarized in Table 5) is a fully secure verifiable polynomial evaluation scheme, as defined in Theorem 1
and the complexity bounds of its algorithms are given in Table 6.

For the complexity bounds we still consider the cardinality of the coefficient domain to be a constant
(so that, again, even exponentiations not involving the degree are considered constant) and we also
consider that one encryption/decryption with the linearly homomorphic cryptosystem requires a number
of arithmetic operations constant with respect to the degree.
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Algorithm 4 Update(i, δ, stC , stS)

Input: i ∈ [0..d], a ∈ Zp, stS , stC .
Output: st′S , st

′
C or reject.

1: Client: computes eδ = Epk(δ), ∆ = gαδ;
2: Client: sends i, eδ,∆ to the Server;
3: Server: (wi, Li)←MTElementAndPath(i,W, TW ); {extracts wi and its uncles in the Merkle

tree}
4: Server: T ′W ←MTUpdateLeaf(i, wi · eδ, TW ); {updates the Merkle tree}
5: Server: sends wi, Li to the Client;
6: Server: return st′S ← stS\{TW , wi, h̄i}

⋃
{T ′W , wi · eδ, h̄i ·∆};

7: if rW = MTRootFromPath(i, wi, Li) then

8: Client: computes K̄′ ← K̄ ·∆si ;
9: Client: computes r′W = MTRootFromPath(i, wi · eδ, Li);

10: Client: return st′C ← stC\{K̄, rW }
⋃
{K̄′, r′W }.

11: else {else the stored root does not match the received element and uncles}
12: Client: return reject.
13: end if

Algorithm 5 VEval(stC , stS , r)

Input: stC , stS and r ∈ Zp;
Output: z = P (r) or reject.

1: Client: computes c← β (rϕ)d+1−1
rϕ−1 ;

2: Client: sends r to the Server;

3: Server: homomorphically computes ζ = W ᵀ � x =
∏d
i=0 w

(ri mod p)
i {via Equations (4) and (5), see

also, e.g., Theorem 9 and Algorithm 1}
4: Server: ξ̄ = 1GT ; t = 1G;
5: for i = 1 to d do
6: Server: t← Si−1 · tr;
7: Server: ξ̄ ← ξ̄ · e(H̄i; t);
8: end for
9: Server: sends ζ, ξ̄ to the Client;

10: Client: computes z = Dsk(ζ) mod p;
11: if ξ̄s−re(g; g)αz+c = e(K̄; g) then
12: Client: return z.
13: else
14: Client: return reject.
15: end if

Proof. Correctness. We use the left hand side of Theorem 8 and Equation (7). Applying this to P̄ , we
obtain that:

ξ̄ =

d∏
i=1

i−1∏
k=0

e(H̄i;Si−k−1)xk =

d∏
i=1

i−1∏
k=0

e(gP̄i ; gs
i−k−1

)r
k

= e(g; g)QP̄ (s,r).

Denote byG(Z) = Zd+1−1
Z−1 . Now P̄ (X) = αP (X)+βG(Xϕ), then c = βG(rϕ) and thus P̄ (r) = αD(ζ)+c.

Therefore the verification is indeed that

e(g; g)QP̄ (s,r)(s−r)+P̄ (r) ?
= e(g; g)P̄ (s).

Complexity bounds. In terms of storage, the client just has to store four elements mod p, that is s,
α, β, and ϕ, together with one group element, K̄; the server has to store the polynomial ciphered twice,
the ciphered powers of s and the Merkle tree for the ciphered polynomial: all this is O(d). In terms
of communications, during the Update phase the client sends one index and two group elements, while
receiving one group element and the list of its log(d) uncles. During the VEval phase, only three elements
are exchanged. Finally, in terms of computations, the server performs O(d) operations for the Merkle tree
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Table 6: Complexity bounds for verifiable dynamic and ciphered polynomial evaluation: for groups and
prime fields of supposed constant order/cardinality, the asymptotics are here function of the degree d
of the evaluated polynomial: storage units are given in number of group/field elements, computational
operations are given in number of group/prime field arithmetic operations.

Server Communication Client

Storage O (d) O (1)

C
om

p
u

t. Setup O (d) O (d) O (d)

Update O (log(d)) O (log(d)) O (log(d))

VEval O (d) O (1) O (log(d))

generation at Setup; fetches O(log(d)) uncles at Update; and O(d) (homomorphic) operations at VEval,
thanks to Algorithm 2. For the client, Update requires O(log(d)) arithmetic operations to compute the
exponentiations si and a constant number of other arithmetic operations, independent of the degree.
Similarly, computing (rϕ)d+1 also requires O(log(d)) classical arithmetic operations and the rest is a
constant number of operations that are independent of the degree.

Soundness. Let
〈
G, g, gs, gs2 , . . . , gst

〉
∈ Gt+1 be a t-BSDH instance. For the setup phase, ran-

domly select α, β, ϕ 6= 0 and [p0, . . . , pt]
$← Zt+1

p . Then compute W = E(P ), H̄ = gP̄ , and let

S =
〈
G, g, gs, gs2 , . . . , gst

〉
. Finally homomorphically compute K̄ =

〈
g, gs, gs

2

, . . . , gs
t
〉
� [p̄0, . . . , p̄t].

These inputs are indistinguishable from random inputs to the protocol of Table 5. For any number of
update phase, randomly select δ and compute eδ = E(δ) and ∆ = gαδ. Also compute K′ = KSαδi .
Finally, select a random evaluation point r, compute (ζ, ξ̄) and call an attacker of the VEval part of the
protocol to get (ζ ′, ξ̄′) such that (D(ζ ′), ξ̄′) 6= (D(ζ), ξ̄), even though both are passing the verification.

This means, again, that if D(ζ ′) = D(ζ), then ξ̄
ξ̄′

= 1
1
s−r = 1 and ξ̄ = ξ̄′, contradicting the attacker

result. Therefore it must be that D(ζ ′) 6= D(ζ) and then, as α 6= 0, we have again:(
ξ̄

ξ̄′

) 1
α(D(ζ′)−D(ζ))

= e(g; g)
1
s−r . (13)

This proves that the t-BSDH
〈
− r, e(g; g)

1
s−r

〉
is broken.

Privacy. We show that the protocol is hiding both pi and p̄i.
For p̄i first. Let B = gb be a DLOG instance. For the setup phase, randomly select s, α, ϕ 6= 0, d

and [p0, . . . , pd]
$← Zd+1

p . Then compute W = E(P ), h̄i = gαpiBϕ
i

, S =
〈
G, g, gs, gs2 , . . . , gst

〉
, and

K̄ = gαP (s)BG(sϕ). These inputs are indistinguishable from random inputs to the protocol of Table 5.
For any update phase, randomly select δ and compute eδ = E(δ) and ∆ = gαδ. Also compute K′ = KSαδi .
Such updates are indistinguishable from random updates to the protocol of Table 5. Randomly select any
number of evaluation points r and run the associated VEval phases, randomly alternated with update
phases. Now suppose that an attacker can find from this transcript one coefficient p̄i: from this, then
compute b = (p̄i − αpi)/ϕi and the DLOG is broken.

For pi, we proceed with a sequence of indistinguishable games:

1. Under LIP security [1, Theorem 3.1], the parameter h̄i, or more precisely, (E(pi), g
αpi+βϕ

i

), is
indistinguishable from (E(pi), g

αpi+ρi) for a random ρi. Therefore the protocol of Table 5 is
indistinguishable, as a whole, from the same protocol where βϕi is everywhere replaced by ρi, and
c is (now inefficiently) computed as

∑
ρir

i.

2. Now we prove the hiding property of the latter. Let Z = E(ω) be the cipher of a secret ω. Randomly

select d and [u0, . . . , ud]
$← Zd+1

p . Compute Wi = E(ω)E(ui) = E(ω+ ui). Randomly select α and
randomly select hi (so that ρi = log(hi) − α(ω + ui) exists, but remains unknown) for i = 1..d.
Randomly select s and compute K̄ = H� [1, s, . . . , sd]. For any number of updates, randomly select
δ, compute eδ = E(δ), so that δ = p′i − pi = (ω+ u′i)− (ω+ ui) = u′i − ui = δ. Therefore, compute

∆ = gαδ and K̄′ = K̄∆si . Alternatively run such updates with random VEval phases; all this is
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indistinguishable from a normal transcript of the protocol. Now if from this transcript an attacker
can find one pj , then compute ω = pj − uj and the homomorphic cryptosystem is broken.

5.2 Experiments

To assess the efficiency of our protocol, we implemented Table 5 using the following libraries1: gmp-6.2.1
for modular operations, libpaillier-0.8 for Paillier’s cryptosystem and pbc-0.5.14 for pairings. We
used a “type A” symmetric pairing over 256-bits group size2.

To observe the effect of the chosen homomorphic systems (Paillier and the pairing), we ran the
experiments, on a single core of a i7-6700 3.4GHz, in two sets: the first one with a low RSA modulus
size of 1024 bits, and the second one with a RSA modulus size of 2048 bits.

Table 7: Comparative behaviors of pairings and Paillier system on the Server and Client sides with a
256-bits group size for the protocol of Table 5: on the client side, column ’pows’ is the time to perform
the left hand-side exponentiations (by s − r and by ` = αD(ζ) + c); column ’c’ is the time to perform
the geometric sum (the only part non constant in d); column ’D’ is the time to perform the single
Paillier’s deciphering; and column ’e’ is the time for the right-hand side (one application of the pairing
to K̄); column ’Horner’ is a witness simple polynomial evaluation in that group. Each experiment was
performed 11 times and we report the median value, with a maximum variance lower than 5% between
runs.

Degree Paillier
Server Certif. Client Verif.

Horner
ζ ξ pows c D e

256 1024 0.10s 0.39s 0.2ms <0.1ms 1.4ms 1.3ms <0.1ms
512 1024 0.20s 0.78s 0.2ms <0.1ms 1.5ms 1.3ms 0.1ms
1024 1024 0.39s 1.56s 0.2ms <0.1ms 1.5ms 1.3ms 0.1ms
2048 1024 0.77s 3.12s 0.2ms <0.1ms 1.4ms 1.3ms 0.3ms
4096 1024 1.54s 6.33s 0.2ms <0.1ms 1.4ms 1.3ms 0.5ms
8192 1024 3.10s 12.41s 0.2ms <0.1ms 1.4ms 1.3ms 1.0ms
16384 1024 6.19s 25.26s 0.2ms <0.1ms 1.4ms 1.4ms 2.0ms
32768 1024 12.43s 51.04s 0.2ms <0.1ms 1.4ms 1.3ms 4.0ms
65536 1024 24.78s 101.53s 0.2ms <0.1ms 1.5ms 1.3ms 8.0ms
131072 1024 49.42s 202.50s 0.3ms <0.1ms 1.7ms 1.5ms 16.2ms

256 2048 0.34s 0.39s 0.2ms <0.1ms 10.2ms 1.3ms <0.1ms
512 2048 0.68s 0.79s 0.2ms <0.1ms 10.3ms 1.4ms 0.1ms
1024 2048 1.40s 1.55s 0.2ms <0.1ms 10.5ms 1.3ms 0.1ms
2048 2048 2.74s 3.12s 0.2ms <0.1ms 10.3ms 1.3ms 0.3ms
4096 2048 5.49s 6.20s 0.2ms <0.1ms 10.1ms 1.3ms 0.5ms
8192 2048 10.96s 12.42s 0.2ms <0.1ms 10.1ms 1.3ms 1.0ms
16384 2048 21.96s 25.09s 0.2ms <0.1ms 10.1ms 1.3ms 2.0ms
32768 2048 44.13s 50.73s 0.2ms <0.1ms 10.2ms 1.4ms 4.0ms
65536 2048 88.04s 101.61s 0.2ms <0.1ms 10.1ms 1.3ms 8.1ms
131072 2048 175.70s 202.84s 0.2ms <0.1ms 10.6ms 1.3ms 16.1ms

In Table 7, we thus compare the Server time to the Client time of our protocol, to that of a simple
(witness) polynomial evaluation in this group. First of all, of course, the Server time, using homomorphic
arithmetic, can be several orders of magnitude slower than the simple polynomial evaluation, while indeed
being clearly linear. Still for a large enough degree, we can observe the logarithmic Client time to win
over the linear time polynomial evaluation.

Second, for the protocol itself, we see that both homomorphic evaluations of the Server are quite
similar. Then, on the Client side and for the considered degrees, the dominant computation is that

1https://gmplib.org, http://hms.isi.jhu.edu/acsc/libpaillier, https://github.com/blynn/pbc.
2Type A symmetric pairings are constructed on the curve y2 = x3 + x over Fq for some prime q = 3 mod 4, with a

subgroup of points of order r dividing q + 1, and with embedding degree 2.
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of a single Paillier’s deciphering (and that the only part non-constant in the degree is by far the most
negligible).

Future work involves trying the RELIC framework (https://github.com/relic-toolkit/relic),
that might have more recent and more efficient implementations of Paillier’s system and pairings, thus
showing the practicality of our protocol for even smaller degrees.

6 Low server storage dynamic proof of retrievability

As we discussed in the introduction, one application area of verifiable computing protocols is Proofs of
Retrievability (PoR). These schemes allow a client with limited storage, who has outsourced her data to
an untrusted server, to confirm via an efficient Audit protocol that the data is still being stored in its
entirety.

The lower bound of [5, Theorem 4] proves that a tradeoff is inevitable between low/high audit cost
and high/low storage overhead. Roughly speaking, for any PoR on an N -bit database, the product of
persistent storage overhead times audit computational complexity must be at least N .

The dynamic PoR schemes of [15, 36] optimize for fast audits. They incur a large O (N) storage
overhead on the server, but can perform audits with only (logN)O(1) communication and computation
for the client and server.

The authors of [5] instead optimized for small storage overhead; their scheme (which we outline next)
has only sub-linear storage overhead of O (N/ logN), but a higher audit cost of O (N) on the server,

and O
(√

N
)

client time and communication overhead. The authors demonstrate that, for reasonable

deployment scenarios on commercial cloud platforms, the higher audit cost is more than offset by the
greatly reduced costs of extra persistent storage, especially if audits are only performed a few times per
day.

We here further improve on the low storage overhead approach of [5], by showing how to maintain a
small o (N) storage overhead, but achieving only O (logN) communication and client computation cost
for audits. That is, our new protocol still benefits from small storage overhead, while effectively pushing
the higher computational cost of audits (which is inevitable from the lower bound) entirely off the client
and onto the server. These savings are highlighted in Table 8.

Table 8: Attributes of some selected Proof of Retrievability schemes

Protocol

Server Client

Extra Audit Audit
Storage

Audit

Storage Comput. Comm. Comput.

Shi et al. [36] O (N) O (logN) O (logN) O (1) O (logN)

Anthoine et al. [5] o (N) N + o (N) O
(√

N
)

O (1) O
(√

N
)

Here o (N) N + o (N) O (logN) O (1) O (logN)

6.1 Matrix based approach for audits

Here we summarize the PoR presented in [5] upon which our new scheme is based.
The basic premise is to treat the data, consisting of N bits organized in machine words, as a matrix

M ∈ Zm×np , where Zp is a suitable finite field of size p. Crucially, the choice of ring Zp does not require
any modification to the raw data itself; that is, any element of the matrix M can be retrieved in O(1)
time from the underlying raw data storage.

The scheme is based on the commutativity of matrix-vector products. During the Setup phase, the
client chooses a secret vector u of dimension m and computes vᵀ = uᵀM ; both vectors u and v are then
stored by the client for later use, while the server stores the original data and hence the matrix M in
the clear.

Reading or updating individual entries in M can be performed efficiently with the use of Merkle hash
trees and from the observation that changing one element of M only requires changing one entry in the
client’s secret control vector v.
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To perform an audit, the client and server engage in a 1-round protocol:

1. Client chooses a random vector x of dimension n, and sends x to Server.

2. Server computes y = Mx and sends the dimension-m vector y back to Client.

3. Client computes two dot products uᵀy and vᵀx, and checks that they are equal.

The proof of retrievability relies on the fact that observing several successful audits allows, with high
probability, recovery of the correct matrix M , and therefore of the entire database.

The communication costs are O (n) and O (m) in steps 1 and 2 respectively, and the client compu-

tation in step 3 is O (m+ n), resulting in O
(√

N
)

total communication and client computation when

optimizing the matrix dimensions to roughly m = n =
√
N .

While this square-matrix setup is the basic protocol presented by [5], the authors also discuss a
potential improvement in communication complexity. Instead of x being uniformly random over Znp , it

can instead be a structured vector formed from a single random element r ∈ Zp as x = [ri]i=1..n Then
the communication on step 1 is reduced to constant, and hence the total communication depends only
on the row dimension O (m). By choosing a rectangular matrix M with few rows and many columns,
the communication can be made arbitrarily small.

The tradeoff for this reduction in communication complexity is higher client storage of the control
vector v as well as higher client computation cost for the n-dimensional dot product vᵀx.

In [5], the authors found that the savings in communication were not worth the higher client stor-
age and computation, and their experimental evaluation was based on the square matrix version with

overhead O
(√

N
)

.

6.2 Bootstrapping part of the client computation via ciphered and dynamic
polynomial evaluation

Now we show how to modify the reduced communication version of the PoR protocol of [5] just presented
in order to eliminate the costly client storage of v ∈ Znp and computation of vᵀx during audits.

Our improved protocol is based on the observation that, when the audit challenge vector x is struc-
tured as x = [ri], then the expensive client dot product computation of vᵀx is actually a polynomial
evaluation: if the entires of v are the coefficients of a polynomial P , then vᵀx is simply P (r).

We therefore eliminate the O (n) client persistent storage and computation cost during audits by
outsourcing the (encrypted) storage of vector v and computation of vᵀx = P (r) with our novel protocol
for dynamic, encrypted, verifiable polynomial evaluation scheme of Table 5. The obtained private-
verification PoR protocol, combining the PoR of [5] with our ciphered polynomial evaluation in Section 5,
is presented in Table 9.

Theorem 14. The protocol of Table 9 is correct and sound.

Proof. For the sake of simplicity, we first consider the case t = 1, that is a single control vector.
Correctness. Assume that all the parties are honest. After each update phase, thanks to the

correctness of the Merkle hash tree algorithms w = E(uM) and K̄ = gv̄σ. To see this, suppose a
modification of the database at indices i and j, and let M ′ = M + (M ′ij −Mij)Eij where Eij is the single

entry matrix with 1 at position (i, j). We have uM ′ = uM + u(M ′ij −Mij)Eij = uM + γiej(M
′
ij −Mij)

where ej is the j-th canonical vector. Thus, v′ = v+γi(M ′ij−Mij)ej = v+δej satisfies uM ′ = v′. Only the
j-th coefficients are different in v and v′, and in w and w′ as well. For the latter, w′j = E(v′j) = E(vj+δ) =
E(vj)E(δ) = wjE(δ). The server thus computes w′ such that w′ = E(uM ′). Moreover, v̄′ = v̄ + αδej ,

so that, similarly, H̄ ′j = H̄j∆ with ∆ = gαδ, and K̄′ = gv̄
′σ = gv̄σgαδejσ = K̄gαδsj = K̄∆sj . Now,

concerning the audit phase: Since we consider the polynomial evaluation as a dotproduct, the application
of Proposition 8 to our notations gives: (s− r)(

∑n−1
i=1

∑i−1
j=0 v̄is

i−j−1rj) +
∑n−1
i=0 v̄ir

i =
∑n−1
i=0 v̄is

i. Thus
the audit phase is:

ξ̄ =

n−1∏
i=1

i−1∏
j=0

e(H̄i;Si−j−1)xj =

n−1∏
i=1

i−1∏
j=0

e(gv̄i ; gs
i−j−1

)r
j

= e(g; g)
∑n−1
i=1

∑i−1
j=0 v̄is

i−j−1rj .
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Table 9: Private verifiable Client/server PoR protocol with low storage server
Server Communications Client

Setup

N = mn log2 p γ
$← Ztp

order p group G form u← [γik]k=1..t,i=0...m−1 ∈ Zt×mp

pairing e to GT v ← uM ∈ Zt×np

gen. g, e(g; g) α, β
$← (Z∗p)t, s, ϕ

$← Z∗p
Let v̄ ← [(αvkj + βϕj)]k=1..t,j=0..n−1

w ← E(v), H̄ ← [gv̄kj ]k=1..t,j=0..n−1

σ ← [sj ]j=0..n−1, K̄ = gv̄σ, S ← gσ

TM ←MTCreateTree(M)
M,w,H̄,S←− rM ←MTRootFromLeaves(M)

Tw ←MTCreateTree(w) rw ←MTRootFromLeaves(w)
Store M,TM , w, Tw, H̄, S Discard M , v, v̄, w, H̄, σ, S.

Store γ, rM , α, β, s, ϕ, K̄, rw

Update

(Mij , LMij )←MTElementAndPath(j + i·n,M, TM )
i,j←−

(w.j , Lw.j )←MTElementAndPath(j, w, Tw)
Mij ,LMij ,w.j ,Lw.j−→ rw

?
= MTRootFromPath(j, w.j , Lw.j )

rM
?
= MTRootFromPath(j + i·n,Mij , LMij

)

H̄j ← H̄j∆
M ′ij ,eδ,∆←− δ ← γi(M ′ij −Mij), eδ ← E(δ), ∆ = gαδ

w.j ← w.jeδ K̄ ← K̄ ·∆sj

Tw ←MTUpdateLeaf(j, w.j , Tw) rw ←MTRootFromPath(j, w.jeδ, Lw.j )
TM ←MTUpdateLeaf(j + i·n,M ′ij , TM ) rM ←MTRootFromPath(j + i·n,M ′ij , LMij

)
Store updated M

Audit
form x← [rj ]j=0...n−1 ∈ Znp

r←− r
$← Z∗p

y ←Mx

ζ = wᵀ � x c← β (rϕ)n−1
rϕ−1

ξ̄ =
∏n−1
i=1

∏i−1
j=0 e(H̄.i;Si−j−1)xj

y,ζ,ξ̄−→ ξ̄s−re(g; g)αD(ζ)+c ?
= e(K̄; g)

uᵀy
?
= D(ζ)

Moreover αD(ζ) + c = αvx+ β (rϕ)n−1
rϕ−1 = αvx+ β

∑n−1
j=0 ϕ

jrj = v̄x, thus we have that

ξ̄s−re(g; g)αD(ζ)+c = e(g, g)(s−r)(
∑n−1
i=1

∑i−1
j=0 v̄is

i−j−1rj)+v̄x = e(g, g)v̄σ = e(K̄; g).

Finally, we get uy = UMx = vx.
Soundness. An attacker to the protocol must provide (y′, ζ ′) such that (y′, ζ ′) 6= (y, ζ), but still

uᵀy′ = Dsk(ζ̄ ′), with a non negligible advantage ε. There are two cases: if Dsk(ζ̄ ′) 6= Dsk(ζ̄) then the
attacker had to break the secure polynomial evaluation; otherwise, it must be that uᵀy′ = uᵀy with
y′ 6= y. For the first case, Theorem 13 assesses the security of the polynomial evaluation.

For the second case, we consider X = Epk(x) the cipher of a secret x by the homomorphic scheme.
Here, as in Theorem 13, we use the fact that the protocol of Table 9 is indistinguishable as a whole
from the same protocol where, within the polynomial evaluation of, βϕi is everywhere replaced by a
random ρi. Further, this is indistinguishable from a third protocol where, at each update of index i, a
new ρ′i is also randomly redrawn and replaces ρi in the client state. We thus continue the proof with
this third game setting. Now, using ek the k-th canonical vector of Zmp , we can consider ū = u + xek
and v̄ᵀ = ūᵀM = (uᵀ + xek

ᵀ)M = vᵀ + xMk,∗. Then, for the Setup phase, we can randomly select m, n
and k ≤ m. Then also M ∈ Zm×np , u ∈ Zmp , and compute vᵀ = uᵀM . From this, set wj = XMkjE(vj) =
E(vj + xMkj) = E(v̄j), for j = 1..n. We also randomly select s, α and hj (so that ρj = log(hj) − αv̄j
exists, but remains unknown). For any Update phases, compute w′j = wjX

M ′kj−Mkj and select randomly
a ∆ (so that h′j = hj∆ now corresponds to a new ρ′j = log(h′j)− αv̄′j still unknown).

Finally, the attacker provides a vector y′ such that both ūᵀ(y′− y) = 0 and y′ 6= y mod p. Since k is
randomly chosen from 1..m, the probability that the vectors are distinct at index k, in other words that
ȳk 6= yk mod p, is at least 1/m. If this is the case, then, denoting z = ȳ− y, we have zk 6= 0 mod p and
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ūᵀz = 0 implies that uᵀz+xzk = 0 so that x ≡ −z−1
k · (uᵀz) mod p and the homomorphic cryptosystem

is broken with advantage ε/m.
The same reasoning works mutatis mutandis with t > 1, but selecting t at random, and then selecting

t random locations to put the secret x, once in each one of the t columns of u. The advantage to break
the homomorphic scheme would become tε/m.

6.3 Experiments

We now compare our modification of the PoR protocol with the one in [5], publicly available there:
https://github.com/dsroche/la-por.

Table 10 has three blocks of experiments, each for four database sizes ranging from 1GB to 1TB. The
first block of experiments is a run of the original statistically secure PoR protocol with two dotproducts
for the verification, considering the matrix as 56 bits elements of modulo a 57-bits prime. The second
block of experiments is our new modification, but still using close to square matrices. Subject now to
computational security, we have to use a larger coefficient domain, namely here a 256-bits prime. We
separate the timings of the Update phase in two phases, the remaining linear algebra phase and the new
polynomial evaluation phase. In the third block of experiments we use a more rectangular matrix, trying
to reduce communications while not increasing too much the computational effort.

Table 10: Modification of the PoR protocol, with 256-bits groups, 1024-bits Paillier, on 1 core i7-6700
3.40GHz & 64 GB ram

Database 1GB 10GB 100GB 1TB

Private-verified audit using 57-bits prime [5, Table 1]

Matrix view 12339×12432 39131×39200 123831×123872 396281×396368
Client Audit 1.7ms 1.3ms 21.8ms 78.8ms
Server Audit 0.25s 2.38s 153.04s 1748.69s

Client Storage 194KB 612KB 1 935KB 49 540KB
Communications 194KB 612KB 1 935KB 49 540KB

Dynamic-ciphered delegated polynomial evaluation with 256-bits groups of Table 9

Matrix view 5793×5793 18318×18318 57927×57927 185364×185364
Client Audit (dotproduct part) 1.7ms 20.3ms 56.8ms 79.9ms
Client Audit (polynomial part) 3.0ms 3.0ms 3.1ms 3.8ms

Server Audit (matrix-vector part) 4.3s 43.2s 433.2s 4 441.7s
Server Audit (polynomial part) 11.0s 35.2s 111.9s 357.8s

Client storage 0.38KB 0.38KB 0.38KB 0.38KB
Communications 181KB 572KB 1 810KB 5 792KB

Dynamic-ciphered delegated polynomial evaluation with 256-bits groups of Table 9

Matrix view 6600×5085 7265×46187 7929×423187 8600×3995319
Client Audit (dotproduct part) 1.9ms 2.1ms 2.3ms 2.5ms
Client Audit (polynomial part) 3.0ms 3.1ms 3.1ms 3.1ms

Server Audit (matrix-vector part) 4.3s 42.1s 434.0s 4 534.0s
Server Audit (polynomial part) 9.7s 90.4s 830.4s 7 781.7s

Client storage 0.38KB 0.38KB 0.38KB 0.38KB
Communications 206KB 227KB 248KB 269KB

Overall, we see first in Table 10, that changing the coefficient domain size increases the computational
effort of the server in the linear algebra phase. Still, reducing the dimension of the dotproduct for the
client, as shown in he third block, allows the client to be faster for databases larger than 100GB. Still the
client audit computational effort is never larger than a few milliseconds and thus the dominant part is
most certainly communications. On this aspect, we see that our modification allows for large reductions
in both the Client storage (even with square matrices) and the overall communications. Indeed, the
client private state is the vector dimension, the Paillier’s private key, five integers modulo p, one group
element and two Merkle tree roots; while the communications are mostly one vector of modular integers
in the smallest dimension.

The price to pay is from about a factor of four to an order of magnitude for the server computations.
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But the persistent client storage is going from dozens of MB to about 400 bytes, and the communication
volume can be decreased by more than two orders of magnitude.

Moreover, we mention as possible future work the potential to parallelize the polynomial part of
the server’s computation. The matrix-vector product part is already trivially parallelized, but as the
dimensions become more rectangular, as we can see in Table 10 the polynomial part starts to dominate.
For this, a standard “baby steps / giant steps” approach could be employed, and all pairings computed
in parallel as well. This could be used to further reduce the server latency for large databases and make
the scheme more practically viable.
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