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Reducing the complexity of quantum algorithms to treat quantum chemistry problems is essential to
demonstrate an eventual quantum advantage of noisy-intermediate scale quantum devices over their classi-
cal counterpart. Significant improvements have been made recently to simulate the time-evolution operator
U (t ) = eiĤt , where Ĥ is the electronic structure Hamiltonian, or to simulate Ĥ directly (when written as a
linear combination of unitaries) by using block encoding or qubitization techniques. A fundamental measure
quantifying the practical implementation complexity of these quantum algorithms is the so-called 1-norm of
the qubit representation of the Hamiltonian, which can be reduced by writing the Hamiltonian in factorized or
tensor-hypercontracted forms, for instance. In this paper, we investigate the effect of classical preoptimization
of the electronic structure Hamiltonian representation, via single-particle basis transformation, on the 1-norm.
Specifically, we employ several localization schemes and benchmark the 1-norm of several systems of different
sizes (number of atoms and active space sizes). We also derive a formula for the 1-norm as a function of the
electronic integrals and use this quantity as a cost function for an orbital-optimization scheme that improves over
localization schemes. This paper gives more insights about the importance of the 1-norm in quantum computing
for quantum chemistry and provides simple ways of decreasing its value to reduce the complexity of quantum
algorithms.

DOI: 10.1103/PhysRevResearch.3.033127

I. INTRODUCTION

Quantum chemistry has been identified as the killer ap-
plication of quantum computers, which promises to solve
problems of high industrial impact that are not tractable for
their classical counterparts [1–4]. Unfortunately, quantum de-
vices are noisy and only shallow circuits can be implemented
with a relatively accurate fidelity. Hence, even though we
know how to solve the electronic structure problem with,
for instance, the quantum phase estimation [5–9] algorithm,
this remains out of reach in practice and one has to come
up with new algorithms that can actually be run within this
noisy intermediate-scale quantum (NISQ) era [10]. Reducing
circuit depth has been achieved by interfacing quantum and
classical devices, thus leading to hybrid quantum-classical
algorithms such as the variational quantum eigensolver (VQE)
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[11]. Since then, variational algorithms have been successfully
applied to the estimation of ground-state (see Refs. [12–15]
and references therein) and excited-state energies [16–26], as
well as molecular properties [27–30].

However, it remains unclear if these algorithms can provide
a clear quantum advantage in the long run, especially due
to the difficulty in circuit optimization [31] and to the large
overhead in the number of measurements required to achieve
sufficient accuracy [32,33], though significant progress has
been made recently [33–45]. This led to the development of
strategies for reducing the resources required to implement
quantum algorithms (such as gate complexity) for both the
fault-tolerant and NISQ era. For simulating the time-evolution
operator U (t ) = eiĤt , where Ĥ is the electronic Hamilto-
nian, Campbell has shown that using a randomized compiler
is better suited than the Trotter-Suzuki decomposition, the
so-called quantum stochastic drift protocol (qDRIFT) [46].
One can also directly simulate the Hamiltonian by using a
linear combination of unitaries (LCU), generalized by the
block encoding or qubitization formalism [47–50]. Most of
these algorithms have a gate complexity that scales with re-
spect to the parameter λQ = ∑

i |hi|, where Ĥ = ∑
i hiP̂i is

the qubit Hamiltonian and P̂i are Pauli strings [51]. Low-
ering the value of λQ—usually referred to as the 1-norm
of the Hamiltonian—has a significant impact on quantum

2643-1564/2021/3(3)/033127(16) 033127-1 Published by the American Physical Society

https://orcid.org/0000-0002-7712-7638
https://orcid.org/0000-0002-8818-3379
https://orcid.org/0000-0003-1706-015X
https://orcid.org/0000-0002-7157-7654
https://orcid.org/0000-0002-8406-6626
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.033127&domain=pdf&date_stamp=2021-08-06
https://doi.org/10.1103/PhysRevResearch.3.033127
https://creativecommons.org/licenses/by/4.0/


EMIEL KORIDON et al. PHYSICAL REVIEW RESEARCH 3, 033127 (2021)

algorithms, and techniques such as double-factorization [4],
tensor hypercontraction [52], and n-representability con-
straints [33] have proven successful in this respect.

In this paper, we investigate how the value of the 1-norm
and its scaling with respect to the number of orbitals can be
reduced by single-particle basis rotations. As a starting point,
we consider the use of localized orbitals that are commonly
available in most quantum chemistry codes. Generating such
orbitals presents a simple and effortless way of reducing gate
complexity by classical preoptimization of the Hamiltonian
representation.

We show that the use of localized orbitals has a significant
impact on the 1-norm of all systems studied, from simple one-
dimensional hydrogen chains (also studied in Refs. [33,52]) to
much more complex organic and inorganic molecules. Addi-
tionally, we connect the expressions of the 1-norm before and
after the fermion-to-qubit mapping. This expression is used to
define a cost function for single-particle basis rotations, and
is shown to reduce the value of λQ even more than standard
localization schemes.

The paper is organized as follows. After introducing the
electronic structure problem in Sec. II A, the impact of
the 1-norm on quantum algorithms is detailed in Sec. II B.
Then, we review the localization schemes applied in this
paper in Sec. II C followed by our so-called 1-norm orbital-
optimization (OO) method in Sec. II D. Finally, preceded by
the computational details in Sec. III, the scaling of the 1-
norm when increasing the number of atoms is investigated
in Sec. IV A for hydrogen and alkane chains, followed by a
benchmark on several systems in Sec. IV B and a study of
the effect of increasing the active space size in Sec. IV C.
Conclusions and perspectives are given in Sec. V.

II. THEORY

A. Electronic structure Hamiltonian in second quantization

In quantum chemistry, the second quantization formalism
is usually employed to describe the electronic properties of
molecules. Under the Born-Oppenheimer approximation, Ne

electrons can rearrange around Na nuclei by occupying a
restricted set of N spatial molecular orbitals (MOs). The or-
thonormal MO basis {φp(r)} is built from linear combination
of atomic orbitals (AOs) and is usually obtained from an in-
expensive mean-field calculation, e.g., with the Hartree–Fock
(HF) method [53]. In this basis, the molecular Hamiltonian
can be expressed in a spin-free form that reads (in atomic
units)

Ĥ =
N∑
pq

hpqÊpq + 1

2

N∑
pqrs

gpqrsêpqrs, (1)

where Êpq = ∑
σ â†

pσ âqσ and êpqrs = ∑
σ,τ â†

pσ â†
rτ âsτ âqσ are

the one- and two-body spin-free operators. In Eq. (1), the
coefficients

hpq =
∫

φ∗
p(r1)

(
−1

2
∇2

r1
−

Na∑
A=1

ZA

r1A

)
φq(r1)dr1 (2)

are the so-called one-electron integrals which encode, for
each individual electron, the associated kinetic energy and

Coulombic interaction with the Na nuclei of the molecule
(with riA = |ri − RA| and ZA the distance between electron
i and nuclei A, and the atomic number of atom A). The
coefficients

gpqrs = (pq|rs) =
∫∫

φ∗
p(r1)φ∗

r (r2)
1

r12
φq(r1)φs(r2)dr1dr2

(3)

are the so-called two-electron integrals encoding the Coulom-
bic repulsion between each pair of electrons (with ri j =
|ri − r j | the distance between electrons i and j). Solving
the electronic structure problem consists of solving the time-
independent Schrödinger equation

Ĥ |��〉 = E� |��〉 , (4)

with |��〉 an electronic eigenstate with corresponding ener-
gies E�. This is only possible in the case of small molecules
and small basis sets due to the exponential scaling of the
computational cost with respect to the size of the system. A
commonly employed approach is the so-called active space
approximation which divides the MO space into three parts:
the core (frozen occupied orbitals), the active, and the vir-
tual spaces (deleted unoccupied orbitals), such that only the
electrons inside the active space are treated explicitly. This
approximation will be used throughout this paper and is
equivalent to finding the eigenstates of an effective Hamil-
tonian ĤFC also called the frozen-core Hamiltonian (see
Appendix A).

The electronic Hamiltonian can be mapped onto an ap-
propriate representation for quantum computers by doing
a fermion-to-qubit transformation (such as Jordan–Wigner
[51]), resulting in a linear combination of Pauli strings P̂j ∈
{I, X,Y, Z}⊗N ,

ĤQ =
S∑
j

h j P̂j . (5)

Here, S denotes the sparsity of the Hamiltonian and generally
scales as O(N4), but sometimes O(N2) for a sufficiently large
system and a localized basis [54].

B. The 1-norm in quantum computing

The term 1-norm in quantum computing refers to a norm
induced on a Hilbert-space operator by its decomposition as
a sum of simpler terms. To calculate a 1-norm, we write an
operator Ĥ (e.g., a Hamiltonian) in the form

Ĥ =
∑

j

b j B̂ j, (6)

where the B̂ j are operators on C22N
and b j are complex num-

bers. Typically, the operators B̂ j are chosen to be either unitary
(B̂†

j B̂ j = 1) or unital (B̂†
j B̂ j < 1). We define the 1-norm of

Ĥ (induced by this decomposition) to be the 1-norm on the
vector �b (with components b j):

λB = λB(Ĥ) =
∑

j

|b j |. (7)
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(It is common to suppress the dependence on the Hamiltonian
Ĥ when λB is unambiguous.) For example, under the above
decomposition into Pauli operators [Eq. (5)], we have

λQ ≡ ||�h||1 =
∑

j

|h j |. (8)

In general, λB is a norm on the space spanned by the set {B̂ j}
as long as this set is linearly independent, as the mapping
Ĥ ↔ �b is then bijective and linear. The Pauli operators P̂j

used above make a natural choice for B̂ j as they span the set
of 22N × 22N matrices, and so induce a norm for any operators
on the Hilbert space. Pauli operators are also unitary, and may
be easily implemented in a quantum circuit [57], making them
a common choice for Hamiltonian decompositions. However,
unlike other operator size measures, 1-norms may be heav-
ily optimized by a change of operator basis (whereas e.g.,
the 2-norm or infinity-norm are both invariant under unitary
rotation). As operator 1-norms play a role in determining the
cost of many quantum computing algorithms, this makes them
a key target of study in quantum algorithm research.

A versatile method for implementing an arbitrary (non-
Hermitian) operator on a quantum device is the LCU method
[47], which involves a decomposition over a set {B̂ j} of strictly
unitary operators. As Ĥ is typically not unitary, the original
LCU technique requires postselection, but this forms the ba-
sis for unitary methods such as qubitization [49]. These, in
turn, underpin many proposals for quantum computing on a
quantum computer [4,52,56], and the dependence on λB is
pulled directly through. We give a brief description here of the
key identity in LCU methods to show where the dependence
on λB appears. LCU methods all require a control register
with states | j〉 that encode the index to the operator B̂ j . (One
need only encode those operators B̂ j that are relevant to the
target Ĥ.) Then, these methods encode the coefficients of Ĥ
on the register by preparing the state 1√

λB

∑
j

√
b j | j〉. Then,

consider implementing the joint unitary
∑

j | j〉〈 j| ⊗ B̂ j (that
is, applying the unitary operator B̂ j to a system conditional
on the control register being in the state j). Postselecting the
control register returning to the initial state performs the LCU
operation to the register:

1√
λB

∑
j

√
b j〈 j|

[∑
j

| j〉〈 j|B̂ j

]
1√
λB

∑
j

√
b j | j〉

= 1

λB

∑
j

b j B̂ j = 1

λB
Ĥ. (9)

We see here that λB emerges naturally as the normalization
constant of the LCU unitary. This dependence is passed on to
any LCU-based method, suggesting that minimizing λB is key
to optimizing any such techniques.

The 1-norm can also play a role in methods where Hamil-
tonian simulation is implemented stochastically. For instance,
in the qDRIFT [46] method, Hermitian terms B̂ j in the
Hamiltonian are chosen at random, weighted by |bj |/λB, and
exponentiated on a system as eiτ B̂ j (λB appears here immedi-
ately as the normalization of the probability distribution). To

first order, this implements the channel on a state ρ̂ [46],

E (ρ̂ ) = ρ̂ + i
∑

j

b jτ

λB
(B̂ j ρ̂ − ρ̂B̂ j ) + O(τ 2), (10)

which can be observed to be the unitary evolution of ρ̂ under
eiĤdt for dt = τ/λB. To approximate time evolution for time
t to error ε then requires repeating this process O(2λ2

Bt2/ε)
times. This has been extended upon recently [58], yielding a
more complicated λB dependence.

A final situation where the 1-norm of an operator plays
a role is in tomography. One may, in principle, measure the
expectation value of an arbitrary Hermitian operator Ĥ on a
state ρ by repeatedly preparing ρ̂, rotating into the eigenbasis
of Ĥ, and reading out the device. The variance in averaging
M shots of preparation and measurement is directly given by
the variance of Ĥ on ρ̂:

Var[〈Ĥ〉] = 1

M
[〈Ĥ2〉 − 〈Ĥ〉2]. (11)

However, in practice (especially in the NISQ era), arbitrary
rotations into an unknown basis may be costly. As expecta-
tion values are linear, given a decomposition of Ĥ over {B̂ j},
one may instead perform Mj different preparations of ρ̂ and
measurements in the basis of each B̂ j and sum the result,

〈Ĥ〉 =
∑

j

b j〈B̂ j〉, (12)

with variance

Var[〈Ĥ〉] =
∑

j

|b j |2
Mj

[〈
B̂2

j

〉 − 〈
B̂ j

〉2] =:
∑

j

|b j |2
Mj

Vj . (13)

Typically, the Vj are not known in advance, but if B̂ j are
chosen to be unital (by a suitable rescaling of bj), then one
can bound Vj < 1. One can confirm (e.g., via the use of
Lagrange multipliers [33]) that the least number of measure-
ments required to bound Var[〈Ĥ〉] below some error ε2 can be
found by choosing Mj = M|b j |/λB, and that this yields a total
number of measurements

M =
∑

j

Mj = λ2
B

ε2
, (14)

first mentioned by [32]. State tomography is essential in hy-
brid quantum-classical algorithms such as a VQE. In the VQE,
the Hamiltonian is usually expressed as a linear combina-
tion of Pauli operators, meaning λB = λQ. As the number of
measurements is one of the biggest overheads in the practi-
cal implementation of VQE, lowering the 1-norm would be
highly beneficial. One way to do so is to add constraints
to the Hamiltonian based on the fermionic n-representability
conditions, which has led to a reduction of up to one order of
magnitude for hydrogen chains and the H4 ring molecule [33].
Another hybrid algorithm that would benefit for a decrease in
the 1-norm is the constrained-VQE algorithm, as this would
decrease the higher-bound used in the penalty term, thus im-
proving convergence [59].

As the above considerations imply, many of the most com-
petitive algorithms have a strong dependence on 1-norms for
various choices of the basis decomposition {B̂ j}, as shown in
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TABLE I. Lowest asymptotic scaling of different quantum algo-
rithms involving the λ parameters. λ denotes the 1-norm of the qubit
Hamiltonian in Eq. (15), λSF (denoted λW in Ref. [50]) the one of the
singly factorized fermionic Hamiltonian, λDF the one of the doubly
factorized Hamiltonian and λζ the one of the nonorthogonal tensor
hypercontracted Hamiltonian representation. S is the sparsity of the
electronic Hamiltonian and � the average rank of the second tensor
factorization [4,56]. See text for further details.

Method Toffoli/T complexity

Database method [55] O(N4λ/ε)
qDRIFT [46] O(λ2/ε2)
Qubitization (sparse method) [50] O((N + √

S )λ/ε)
Qubitization (single factorization) [50] O(N3/2λSF/ε)
Qubitization (double factorization) [4] O(NλDF

√
�/ε)

Tensor hypercontraction [52] Õ(Nλζ /ε)

VQE No. of measurements
State tomography [11,12,32] M ≈ λ2/ε2

Basis rotation grouping [41] M ≈ λ2
SF/ε

2

Table I. The 1-norm induced by a Pauli decomposition, λQ

[Eq. (8)], scales with the number of orbitals somewhere in
between O(N ) and O(N3). This depends on the system, and
whether N increases because the number of atoms increases
for a fixed number of basis functions per atom or because the
number of basis functions per atom increases while fixing the
number of atoms. As far as we are aware, this scaling has only
been numerically benchmarked for the H4 ring Hamiltonian
[33,52] and one-dimensional hydrogen chains [52], which re-
main quite far from realistic chemistry problems encountered
in enzymatic [1] and catalytic reactions [4]. In this paper, we
perform a similar benchmark on a larger set of organic and
inorganic molecules, from hydrogen and carbon chains to the
FeMoco and ruthenium complexes.

The 1-norm used in many of the aforementioned algo-
rithms in Table I takes the following form [50,52]:

λ = λT + λV , (15)

where

λT =
N∑
pq

∣∣∣∣∣hpq + 1

2

N∑
r

(2gpqrr − gprrq )

∣∣∣∣∣ (16)

and

λV = 1

2

N∑
pqrs

|gpqrs|, (17)

with λV � λT . Note that the difference between Eqs. (16)
and (17) and Eqs. (A10) of Ref. [52] comes from a different
convention when writing the electronic Hamiltonian in Eq. (1)
and the fact that N refers to spatial orbitals in this work instead
of spin-orbitals. This norm of the Hamiltonian expressed as a
LCU is used in the database method of Babbush et al. [55], the
qubitized simulation by the sparse method of Berry et al. [50]
(further improved by Lee et al. [52]) and the qDRIFT protocol
of Campbell [46].

Further attempts have been made to reduce the number
of terms in the Hamiltonian. For instance, one may perform

a low rank decomposition of the Coulomb operator V̂ such
that the 1-norm of the—now singly factorized—Hamiltonian
reads [50,52]

λSF = 1

4

L∑
�=1

(
N∑
p,q

∣∣W (�)
pq

∣∣)2

, (18)

where W (�)
pq are obtained from a Cholesky decomposition

of the gpqrs tensor. Note that λSF is a higher-bound of λV ,
and so this decomposition tends to increase the 1-norm. To
improve over this low-rank factorization, one can write the
Hamiltonian in a doubly-factorized form [4] by rotating the
single-particle basis to the eigenbasis of the Cholesky vectors,
such that the corresponding 1-norm λDF is much lower than
after a single factorization. One can also use the tensor hyper-
contraction representation of the Hamiltonian [52]. However,
applying the qubitization algorithm on this Hamiltonian di-
rectly is not efficient, as its associated 1-norm λTHC is even
larger than λV . To bypass this issue, Lee et al. provided a
diagonal form of the Coulomb operator by projection into
an expanded nonorthogonal single-particle basis, thus leading
to a nonorthogonal THC representation of the Hamiltonian
with an associated 1-norm λζ that scales better than any prior
algorithm [52].

As readily seen in this section, the λ norm depends on how
you represent your Hamiltonian. However, there is a unique
way to write the Hamiltonian as a sum of unique Pauli strings,
or equivalently as a sum of unique products of Majorana
operators (see Appendix C). Doing so allows us to express
the qubit 1-norm λQ in Eq. (8) as a function of the electronic
integrals,

λQ = λC + λT + λ′
V , (19)

where

λC =
∣∣∣∣∣

N∑
p

hpp + 1

2

N∑
pr

gpprr − 1

4

N∑
pr

gprr p

∣∣∣∣∣, (20)

λT =
N∑
pq

∣∣∣∣∣hpq +
N∑
r

gpqrr − 1

2

N∑
r

gprrq

∣∣∣∣∣, (21)

λ′
V = 1

2

N∑
p>r,s>q

|gpqrs − gpsrq| + 1

4

N∑
pqrs

|gpqrs|. (22)

The first term λC corresponds to the absolute value of the
coefficient of the identity term that emerges when rearranging
the Hamiltonian in terms of unique Majorana operators, see
Eq. (C8). It is invariant under orbital rotations and can be
added to the energy as a classical constant together with the
nuclear repulsion energy and, if one employs the frozen core
approximation (see Appendix A), the mean-field energy of the
frozen core. Thus, this term (apart from being small compared
to λT and λ′

V ) will not be important for quantum algorithms
and we will leave it out of our results, redefining the 1-norm
as λQ = λT + λ′

V . λT represents the absolute values of the
coefficients of the quadratic term in Majorana operators and
λ′

V of the quartic term. Notice that λ′
V is slightly different

from λV of Ref. [52] also given in Eq. (17) (which added a
slight correction to the one of Ref. [50]). In this paper, we
add another correction that comes from the swapping of two
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Majorana operators. We confirm that this is the correct form
by directly comparing λQ with the norm of the qubit Hamilto-
nian after doing a qubit-to-fermion transformation in Eq. (8).
Note that λ′

V � λV (see Appendix C for more information).
By expressing the 1-norm of the qubit Hamiltonian in Eq. (5)
with respect to the electronic integrals, we can compute
its value before doing any fermion-to-qubit transformation,
which can be costly for large systems.

C. Localized orbitals

As discussed previously, different approaches have already
been considered to minimize the 1-norm of a given Hamilto-
nian Ĥ. In this paper, we choose to tackle the problem from
a chemistry point of view by focusing on the use of orbital
transformations (i.e., single-particle states rotations). More
precisely, we investigate the use of orbital localization tech-
niques as a classical preoptimization method to express the
electronic structure Hamiltonian Ĥ in a basis (see Appendix
B for details about electronic integral transformations) that
presents natural advantages for quantum computing. Note that
exploiting spatial locality to reduce the 1-norm has already
been mentioned in Ref. [52], or to reduce the number of
significant integrals in Ref. [54].

In computational chemistry, localization schemes repre-
sent state-of-the-art orbital-rotation techniques employed in
various situations. For example, localized orbitals (LOs) are
regularly used to alleviate the computational cost of numerical
simulations in post-HF methods such as second-order Møller
Plesset [60–63], coupled cluster [64–67], and multireference
methods [68–71]. They can also be used to partition a system
in spatially localized subsystems that are treated at different
levels of theory [72–84]. In the context of quantum algorithms
for the NISQ era, one may, for instance, consider performing
a calculation with a classical mean-field method to produce
localized orbitals and using the orbitals localized in the spatial
region of interest as a basis for a calculation with a quantum
algorithm. In the current paper, we demonstrate that LOs can
also be of significant help beyond isolating the spatial region
that is of chemical interest by reducing the qubit 1-norm
λQ of the electronic Hamiltonian Ĥ after a fermion-to-qubit
transformation.

In the following, we introduce the orbital localization
schemes considered in this paper where the notations ψ̃p(r)
and χμ(r) are used to denote orthogonal LOs and nonorthog-
onal AOs, respectively.

1. Lowdin orthogonal atomic orbital

The first approach we investigate to generate LOs is the or-
thogonalization of atomic orbitals method (OAO). In practice,
several techniques exist to produce orthogonal AOs [85,86].
Here, we focus on Löwdin’s method [87,88], known to gen-
erate orthogonal LOs with a shape that is the closest to the
original AOs (in the least square sense). In practice, orthogo-
nal Löwdin orbitals ψ̃p(r) are built via a linear combination
of the N original AOs,

ψ̃p(r) =
N∑

μ=1

χμ(r)C̃μp, (23)

where the orbital coefficient matrix C̃ takes a very simple form
like

C̃ = S−1/2, (24)

and Sμν = ∫
drχ�

μ(r)χν (r) is the overlap matrix encoding the
overlap between different nonorthogonal AOs.

From a practical point of view, this method represents
one of the simplest and numerically cheapest localization
methods, where the computational cost is dominated by the
exponentiation of the overlap matrix and typically scales as
O(N3). However, this approach is defined with respect to
the full AO space and cannot be straightforwardly applied
to the practical case of active space calculations where only
a restricted set of MOs—formed by linear combination of
AOs—is used.

2. Molecular orbital localization schemes

Fortunately, other localization schemes can be used in any
circumstances (i.e., with or without active space approxima-
tion). Among the possible approaches, we focus on three of
them: the Pipek-Mezey [89] (PM), Foster-Boys [90] (FB), and
Edmiston-Ruedenberg [91] (ER) methods. From a practical
point of view, these methods fundamentally differ from OAO
as they generate LOs out from MOs and not AOs. In practice,
all these methods start from a set of orthogonal canonical MOs
(CMOs) {φs}N

s=1 obtained with an initial mean-field calcula-
tion (e.g., HF or density functional theory). The CMOs form
linear combinations of AOs as

φs(r) =
N∑
μ

χμ(r)Cμs, (25)

with C the CMO-coefficient matrix. A set of LOs {ψ̃p}N
p=1 is

then generated by applying a unitary transformation matrix
U (with U†U = UU† = 1) to express each LO as a linear
combination of the original CMOs,

ψ̃p(r) =
N∑
s

φs(r)Usp, (26)

or, in a more compact matrix form,

C̃ = CU, (27)

where C̃ is the LO-coefficient matrix. In practice, the shape of
the LOs is numerically determined by modifying the unitary U
to optimize a cost function L based on a relevant localization
criterion (depending on the scheme considered). This localiza-
tion can be prone to many local minima and the OO process
is usually realized with different numerical techniques (e.g.,
Jacobi rotations [92,93], gradient descent [94], Newton, and
trust-region methods [95–97], etc.). In chemistry, the question
of how to realize an efficient OO process in practice still
constitutes an active topic of research which goes way beyond
the scope of our paper (we refer the interested reader to Ref.
[98] and references within). Let us now focus on the different
criteria used in the FB, PM, and ER methods together with
their respective numerical costs.

In the FB scheme [90], the localization criterion is the
square of the distance separating two electrons r2

12 = |r2 −
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r1|2 and the set of LOs is obtained by minimizing the follow-
ing cost function

LFB =
N∑
p

∫∫
|ψ̃p(r1)|2r2

12|ψ̃p(r2)|2dr1dr2, (28)

which represents the average value of the distance criterion
over the set of orbitals to be optimized. In practice, a single
estimation of the cost function LFB requires a decomposition
in the AO basis that generates five nested sums, thus leading
to a scaling of O(N5). However, specific manipulations (see
Refs. [90] and [98]) can reduce the total computational cost
of the FB method to O(N3) multiplied by the number of times
LFB is called (which intrinsically depends on the optimization
algorithm considered in practice). Note that extensions of the
FB scheme exist and are based on the orbital variance [99] or
the fourth-moment method [100], resulting in more localized
orbitals, especially for basis sets augmented by diffuse func-
tions.

In the case of the ER method, the inverse distance 1/r12

[proportional to the two-body electronic repulsion operator,
see Eq. (3)] is used as a criterion, and the LOs are obtained by
maximizing

LER =
N∑
p

∫∫
|ψ̃p(r1)|2 1

r12
|ψ̃p(r2)|2dr1dr2. (29)

The computational cost of a single estimation of LER scales
as O(N5) (multiplied by the number of times LER is called),
though it can be reduced up to O(N3) by the use of density
fitting or the Cholesky decomposition.

Finally, the PM scheme adopts a very different point of
view. PM orbitals are generated by maximizing the Mulliken
charge of each orbital [89],

LPM =
NA∑

A=1

N∑
p

(
Qp

A

)2
, (30)

where

Qp
A =

∑
μ∈A

N∑
ν

C̃μpSμνC̃νp (31)

is the contribution of orbital p to the Mulliken charge of
atom A. In this case, the numerical cost of one call of LPM

essentially depends on the triple sums over the MOs and AOs
in Eqs. (30) and (31). As a result, the computational cost of the
global PM method scales as O(N3) (multiplied by the number
of times LPM is called). Note that the traditional PM method
is ill-defined since Mulliken charges are basis set sensitive
and do not have a basis set limit. Various partial charge es-
timates can be used instead of Mulliken charges [101], such
as intrinsic orbitals that are basis set insensitive and lead to
a cheaper and better behaved localization procedure than PM
localization [102,103].

In summary, the construction of OAOs is the cheapest
approach but can’t be used when considering active space.
Somewhat more expensive are PM and FB, which share an
equivalent scaling, and, finally, ER, which is the most compu-
tationally demanding method.

D. 1-norm orbital-optimization

One of the main contributions of this paper is the use of an
OO process specifically dedicated to the minimization of the
qubit 1-norm λQ. To proceed, we introduce a unitary operator

UOO = e−K (32)

with an anti-Hermitian generator

KT = −K =

⎛
⎜⎜⎜⎜⎝

0 K12 K13 . . . K1N

−K12 0 K13 . . . K2N

−K13 −K13 0 . . . K3N
...

...
...

. . .
...

−K1N −K2N −K3N . . . 0

⎞
⎟⎟⎟⎟⎠.

(33)
This operator is then used to transform a reference MO basis
into a new basis denoted by {φ′

q} with C′ = CUOO, for which
the optimal orbitals are obtained by minimizing the following
cost function:

LOO = λQ({φ′
q}) (34)

by varying the N (N − 1)/2 off-diagonal independent ele-
ments of the matrix K. This optimization can be carried out for
a reference MO basis that consists of canonical HF orbitals,
but could equally well be carried out on a subspace of the full
MO-basis, e.g., only the set of fractionally occupied orbitals in
an active space-type calculation, or only a subset of localized
orbitals resulting from a preliminary localization using one of
the methods discussed above.

In practice, to realize the OO of the 1-norm, we choose to
use brute-force optimization algorithms which autonomously
estimate the local derivatives of the cost function (i.e., gradi-
ents and Hessians). This choice is motivated by the expression
of λQ in Eq. (19) that contains many absolute values and for
which analytical derivatives are clearly nontrivial to estimate.
Numerically, the main bottleneck of the OO method is linked
to the repetitive transformation of the two-electron integrals
realized at each step of the process. As a result, the core algo-
rithm scales as O(N5) (similar to the ER localization scheme).
However, with the computational effort deployed to estimate
the numerical gradient and Hessian of the complicated cost
function [given in Eq. (34)], this scaling should increase more
especially when treating large systems.

III. COMPUTATIONAL DETAILS

The geometries of the small systems considered in this
paper were optimized using the ADF program of the Amster-
dam Modeling Suite [104] with a quick universal force-field
optimization, sufficient for our purposes. These geometries
are provided in the Supplemental Material [105]. The first ge-
ometry in Ref. [1] with a charge of +3 is used for FeMoco and
the geometries in Ref. [4] (all with a charge of +1) were used
for the Ruthenium metal complexes. The electronic integrals
of the Hamiltonian were computed using the restricted HF
method from the PYSCF package [106]. For large molecules,
the frozen-core approximation was invoked according to Ap-
pendix A. All the localization schemes used to transform the
Hamiltonian were already implemented in the PYSCF pack-
age. For our 1-norm OO scheme, the SLSQP optimizer was
used from the SCIPY package [107] and the Python version
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of the L-BFGS-B optimizer of the OPTIMPARALLEL package
[108]. The choice of these optimizers has been motivated by
their capacity to automatically approximate gradients (and
Hessians) for minimization. This represents an interesting tool
when no evident analytical gradient/Hessian can be deter-
mined as for the 1-norm. A fast algorithm to estimate this
λQ [Eq. (19)] was implemented in the OPENFERMION package
[109], allowing users to calculate 1-norms of large molecular
Hamiltonians without employing expensive fermion-to-qubit
mappings.

IV. RESULTS

In this section, we study the scaling of λQ with respect to
the number of orbitals. First, we fix the basis set and increase
the number of atoms, in the spirit of Refs. [33,52]. Concerning
the orbital localization schemes, we allow rotations between
the active occupied and virtual spaces as this can lead to a
better localized orbital basis.

Then we benchmark the value of λQ for several different
chemical systems and active space sizes, using the differ-
ent localization schemes and our 1-norm orbital-optimized
scheme. When considering an active space, we always choose
our active space based on the CMOs by considering the Nact

orbitals around the Fermi level (i.e., around the highest oc-
cupied and lowest unoccupied MOs). We localize only inside
the active space (i.e., the localizing unitary in Eq. (26) only
has indices corresponding to active orbitals) such that the
subspace spanned by the active space remains invariant under
the unitary rotations. Although this means that the expectation
values of observables remain the same inside the active space
when an exact solver is used, one can converge to different
expectation values when approximate solvers are considered,
such as the truncated unitary coupled cluster ansatz (that be-
comes exact if not truncated [110]). However, rotating from
the CMO to the LMO basis will not necessarily deteriorate
the results of the (approximate) simulation, as LMOs have sig-
nificant importance in local correlation treatments in post-HF
methods like second-order Møller Plesset [60–63], coupled
cluster [64–67], embedding approaches [72–84], and mul-
tireference methods [68–71] on classical computers. Hence,
using localized orbitals could lead to similar advantages in
quantum computing simulations, and could also inspire new
ansatz proposals based on embedding strategies. This is left
for future work.

Finally, to study the scaling of λQ for large molecules, we
increase the size of the active space Nact while fixing the basis
set and the number of atoms.

A. Hydrogen and alkane chains: Scaling of the 1-norm by
increasing the number of atoms

In this section, we investigate the performance of the lo-
calization schemes together with our brute-force OO method,
studying the scaling of λQ with respect to the number of
orbitals by increasing the number of atoms in small systems.
Inspired by Refs. [33,54], we consider linear chains of hydro-
gens with a spacing of r = 1.4 Å and linear alkane chains (for
which the geometry has been optimized). Results are shown
in Fig. 1 and Table II.

FIG. 1. The 1-norm λQ (in Hartree) with respect to (a) the num-
ber of atoms in a linear hydrogen chain (same as the number of
orbitals) and (b) the number of orbitals in a linear alkane chains
(ethane, propane, butane, etc. up to decane), for different orbitals in
the STO-3G basis. The constant term in the Hamiltonian is ignored.
Assuming a polynomial scaling of λQ = O(Nα ), we fit log10 λQ =
α log10 N + β and show the plot with log-log axes. The fitting and
regression coefficients are given in Table II.

The orbital-optimizer method is not included for the linear
hydrogen chains, because the gradient-estimating optimizer
has trouble finding the approximate gradient in the first step
of the optimization. The reason for this is that the localization
schemes already come so close to the optimal solution that
the optimizer estimates the gradient to be zero or positive
in each direction. The STO-3G basis results in the local-
ized orbitals resembling just 1s AOs on every nucleus which
are very localized and therefore have a minimal 1-norm. As
linear hydrogen chains are very artificial systems and give
limited information on the scaling of λQ for actual interesting
chemical systems, we thought the results of the conventional
localization schemes to be sufficient here.

As readily seen, all localization schemes perform com-
parably well in reducing the 1-norm compared to canonical
MOs. Indeed, the scaling of the 1-norm decreases significantly
from O(N2.31) to O(N1.34) for the hydrogen chains, and from
O(N2.21) to O(N1.38) for the alkane chains. In terms of con-
crete values, for the largest N studied in Fig. 1, we can see a
reduction of λQ by more than a factor of 13 for the hydrogen
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TABLE II. Fitting and regression coefficients from Fig. 1.

Hydrogen chain α β R2

CMO 2.31 −1.54 0.9990
PM 1.47 −0.70 0.8832
FB 1.34 −0.61 0.9967
ER 1.34 −0.54 0.9643
OAO 1.46 −0.99 0.9846

Alkane chain α β R2

CMO 2.21 −0.82 0.9978
PM 1.41 0.93 0.9965
FB 1.38 1.08 0.9976
ER 1.39 1.13 0.9926
OAO 1.43 0.92 0.9954
OO 1.44 0.76 0.9964

and 5 for the alkane chains, when passing from the CMO
basis to the LO ones. In the alkane chains, we do not see any
significant distinction between the different schemes. While α

for the orbital-optimization scheme is slightly higher than the
best localization scheme, it is not so informative here as the
λQ associated to the OO has the lowest absolute value for any
orbital space. In the hydrogen chains, it seems that the PM
scheme is slightly less efficient. Surprisingly, the AO-based
Löwdin orthogonalization method does not provide any fur-
ther improvement over other localized orbitals, which might
be due to the simplicity of the systems for which localization
schemes can generate extremely localized orbitals.

B. Benchmarking λQ for a variety of molecules and active spaces

To benchmark the impact of the localization schemes on
the 1-norm, we calculated λQ for a variety of molecules and
active spaces. Whenever we consider the full space of orbitals,
we include the value of λQ obtained from the Hamiltonian
expressed in the OAO basis. When an active space is consid-
ered, we use the frozen-core approximation and we localize

the orbitals inside the active space. The resulting λQ values
are tabulated in Table III, where the lowest ones obtained
from standard localization schemes for each system are in
bold. Apart from the different localization schemes, results
of our brute force optimizer are also shown. Note that we
start the optimization with already localized orbitals, such
that it always gives a lower 1-norm than the best localization
scheme. On most molecules, we had the best experience with
the L-BFGS-B optimizer. Unfortunately, this optimizer was
not able to estimate the gradient of λQ with respect to UOO

on the smallest molecules (H2 and LiH), which may be due to
infinitesimal changes in λQ when changing UOO. This is why
we employed the SLSQP optimizer here.

To identify the origin of the significant reduction of the
1-norm and its scaling, we focus on the transformation of the
two-electron integrals defined in Eq. (3) with the following
permutational symmetries (for real-valued integrals):

(pq|rs) = (pq|sr) = (qp|rs) = (qp|sr)

= (rs|pq) = (rs|qp) = (sr|pq) = (sr|qp), (35)

and we divide the indices of this tensor in seven separate
classes: (1) pppp, (2) pqqq, (3) pqpq, (4) ppqq, (5) pqrq, (6)
pprs, (7) pqrs, where the indices p, q, r, and s are all different.
The above notations are used in Fig. 2 and correspond to the
sum of the absolute values of the electronic integrals associ-
ated to these indices [and the ones related by symmetries in
Eq. (35)], e.g.,

pqrq ≡
∑

p�=q �=r

|gpqrq| + |gpqqr | + |gqprq| + |gqpqr |

=
∑

p�=q �=r

4|gpqrq|

pqrs ≡
∑

p�=q �=r �=s

|gpqrs| (36)

for the cases (5) and (7), respectively. These contributions can
give us some insight as to how the localized orbitals affect the
norm of the diagonal and off-diagonal parts of the tensor and

TABLE III. Values of λQ for relatively small test molecules in the cc-pVDZ basis-set. The active space size is indicated as (ne, N ),
where ne is the number of electrons in N the number of spatial orbitals. The lowest 1-norm obtained from standard localization schemes
for each system are in bold. Superscripts (a) and (b) refer to the use of the SLSQP and the L-BFGS-B optimizer used for in our 1-norm
orbital-optimization scheme (denoted as optimizer in the table), respectively. The rightmost column shows the percentage of reduction obtained
from the 1-norm-optimized orbitals compared to the CMOs.

Molecule Active space CMO PM FB ER OAO Optimizer % reduction

H2 Full space (2,10) 101 135 116 93 103 90(a) 10.9%
LiH Full space (4,19) 185 177 190 178 153 134(a) 27.6%
H2O Full space (10,24) 717 678 710 662 616 576(b) 19.7%
HLiO Full space (12,33) 993 787 831 768 788 668(b) 32.7%
H2CO Full space (16,38) 1792 1419 1417 1343 1327 1101(b) 38.6%
HNCH2 Full space (16,43) 3096 1813 1670 1588 1645 1240(b) 60.0%
C3H6 (24,45) 2316 1223 1145 1137 N/A 995(b) 57.0%
C4H6 (30,45) 1760 974 1054 1048 N/A 812(b) 53.9%
C5H8 (38,45) 1821 818 801 799 N/A 698(b) 61.7%
HNC3H6 (32,50) 3796 1493 1244 1232 N/A 1085(b) 71.4%
HNC5H10 (48,50) 2632 1098 989 1002 N/A 842(b) 68.0%
HNC7H14 (50,50) 2610 751 705 707 N/A 616(b) 76.4%
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FIG. 2. Sum of absolute values of different parts of the two-
electron integral tensor on a logarithmic scale (see text for further
details on the notations). It shows the second stable Ruthenium
intermediate in a minimal ANO-RCC basis for an active space of
100 electrons in 100 spatial orbitals.

are represented in Fig. 2 for the second stable intermediate
Ruthenium complex in different orbital bases. As readily seen
in this diagram, localization schemes do not lead to a uniform
reduction of the norm of every term, but tend to maximize
some of them (the pppp term), minimize others (the pqrs
term), and leave others relatively unchanged (the ppqq term).
However, the pqrs contribution clearly dominates in the CMO
basis, being more than one order of magnitude larger than any
of the other terms. Especially, the orbital-optimizer can give
an even better reduction of this term. This explains why the
localization schemes can be used to reduce the 1-norm, as
reducing the pqrs norm by one order of magnitude (as seen
in Fig. 2) will play a much more important role than increas-
ing the pppp one by the same order of magnitude. As the
magnitude of these integrals depends on the overlap densities
ψp(r)ψq(r) and ψr (r)ψs(r), it is clear that localization will
reduce the number of numerically significant contributors. For
an extended system, integrals in which p and q as well as r and
s are localized on the same atoms are expected to dominate.
This explains the observation that the pqrs norm becomes
comparable to the ppqq and pprs terms when employing lo-
calized orbitals.

C. Effect of increasing the size of the active space on λQ

Let us now investigate how λQ scales with respect to the
number of active orbitals for large and complex systems. We
selected test molecules based on two important recent papers
in the field of quantum computing for quantum chemistry:
FeMoco—an iron-molybdenum complex that constitutes the
active site of a MoFe protein which plays an important role
in nitrogen fixation [1]—and all the stable intermediates and
transition states of the catalytic cycle presented in Ref. [4].
This catalytic cycle describes the binding and transformations
of carbon dioxide CO2, a molecule with infrared absorption
properties that makes it a potent and the most important green-
house gas.

For the calculations to remain doable in a reasonable
amount of time, the ANO-RCC minimal basis (with scalar
relativistic corrections) is used. This should be sufficient for
the current purpose of studying 1-norm reductions within an
active space, but we note that larger basis sets will be required
to reach chemical accuracy [111]. The scaling of λQ with

FIG. 3. An illustration of how to decrease the 1-norm on the
formaldimine molecule: Moving from CMOs to LOs with a Jacobi
rotation between occupied π -bonding and virtual π∗-antibonding
orbitals.

respect to the number of active orbitals Nact for different
orbital bases are reported in detail in Fig. 4. Comparing
the scaling reported in this section and the ones obtained in
Sec. IV A, we see that the scaling is larger when increasing
the number of active orbitals than when increasing the num-
ber of atoms, as expected. However, the impact of localized
orbitals on the 1-norm is similar in both cases, as it reduces
the scaling by almost one order of magnitude. We also do not
see any significant distinction between the 1-norm associated
to the different conventional localization schemes. The brute-
force orbital-optimizer, however, gives a consistent 10–25%
improvement over the conventional localization schemes. In
the largest active spaces considered (Nact � 85), the orbital-
optimization scheme can converge very slowly due to the need
for four-index transformations at every step, combined with
the noncontinuous and complicated landscape of λQ. Because
of this, the user is usually forced to cut off the optimizer at
some point or choose a high threshold of convergence. In spite
of this, we got similar good results in the largest active spaces
we considered, indicating that the optimizer is not limited to a
specific active space size.

The scaling results for all large molecules are summarized
in Table IV. The scaling lies in the order of O(N2.6) to O(N2.9)
when using CMOs, while it lies around O(N2) or slightly
higher when using LOs. One gets a bit of a misleading picture
looking at just the scaling of the orbital optimizer, as it has
the lowest absolute value of λQ at every point. The cause is
that the cost function of the orbital optimizer has more local
minima and is harder to converge compared to conventional
localization schemes.

For the localization schemes, it is usual that the bigger
the active space is, the more λQ can be reduced compared
to CMOs. This can be rationalized as follows. When the
active space increases, it may involve orbitals localized on
atoms which have negligible overlap with the other orbitals.
Another possibility is that the additional orbitals may have a
positive effect on the localization procedure. As an illustra-
tion, see the example shown in Fig. 3 where we consider an
occupied π -bonding orbital mixing with its associated virtual
π∗-antibonding orbital for the formaldimine molecule. By ro-
tating those two orbitals via a Jacobi rotation, we move from a
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TABLE IV. Scaling of λQ with respect to the active space size Nact for different orbital bases, assuming log10 λQ = α log10 Nact + β with
the associated R2 value. The minimal ANO-RCC basis-set is considered.

Molecule αCMO βCMO R2
CMO αPM βCMO R2

PM αFB βCMO R2
FB αER βCMO R2

ER αOO βOO R2
OO

FeMoco 2.83 −3.37 0.9996 2.03 −1.60 0.9477 1.94 −1.26 0.9580 1.98 −1.49 0.949 1.89 −1.2 0.9688
Ru SI I 2.63 −2.84 0.9957 2.36 −3.13 0.9465 2.17 −2.47 0.9865 2.25 −2.78 0.9763 2.21 −2.80 0.9927
Ru SI II 2.83 −3.71 0.9997 2.27 −2.81 0.9530 2.11 −2.26 0.9867 2.22 −2.68 0.9770 2.20 −2.8 0.9915
Ru TS II−III 2.95 −4.22 0.9998 2.16 −2.29 0.8919 1.98 −1.66 0.9659 2.13 −2.26 0.9234 2.12 −2.44 0.9946
Ru SI V 2.75 −3.41 0.9979 2.42 −3.37 0.9063 2.13 −2.33 0.9798 2.33 −3.09 0.9526 2.21 −2.83 0.9926
Ru SI VIII 2.84 −3.79 0.9989 2.22 −2.54 0.8630 2.12 −2.24 0.9659 2.18 −2.48 0.9323 2.19 −2.73 0.9901
Ru TS VIII−IX 2.82 −3.57 0.9995 2.23 −2.51 0.8645 2.09 −2.07 0.9706 2.19 −2.44 0.9039 2.19 −2.66 0.9883
Ru SI IX 2.8 −3.66 0.9987 2.42 −3.36 0.9240 2.22 −2.69 0.9876 2.34 −3.14 0.9663 2.23 −2.91 0.9967
Ru SI XVIII 2.79 −3.46 0.9986 2.31 −2.87 0.9302 2.12 −2.16 0.9854 2.26 −2.74 0.9557 2.24 −2.87 0.9929

maximal value of λQ for θ = 0 (corresponding to the original
CMOs) to a minimal value for θ = π/4 (corresponding to the
new LOs). This way, we see that the larger the active space,
the more degrees of freedom we have to perform a better
orbital localization. For the biggest active space chosen, an

FIG. 4. Scaling of λQ (in Hartree) with respect to the size of
the active space for different orbitals for (a) FeMoco and (b) the
Ruthenium transition state II-III in a minimal ANO-RCC basis. The
constant term in the Hamiltonian is ignored. Assuming polynomial
scaling of λQ = O(Nα

act ), we fit log10 λQ = α log10 Nact + β and show
the plot with log-log axes. The fitting parameters and regression
coefficients are given in Table IV.

active space of 100 electrons in 100 orbitals, λQ is reduced by
an order of magnitude. This illustrates the potential of using
widely available and computationally cheap classical preop-
timizations, together with our dedicated orbital-optimizer, to
reduce the cost of quantum simulations.

V. CONCLUSIONS

Numerically, we have seen that exploiting the locality of
the basis gives rise to a lower variance in the Hamiltonian
coefficients, reducing λQ. This results in a significant reduc-
tion of the absolute values of the integrals. The off-diagonal
elements of the two-electron tensor play the biggest role here.

To find an even better basis rotation that minimizes λQ, one
can use a brute-force orbital optimizer as we have done in this
paper. This method could be realized in practice only because
we have an efficient way of computing λQ directly in terms of
the molecular integrals [Eq. (19)], avoiding doing a fermion-
to-qubit mapping explicitly. Expressing it as λQ = λT + λ′

V ,
this improves a bit over the equation of λV in Ref. [52],
holding into account the representation of the Hamiltonian in
terms of unique Pauli strings. The direct orbital optimizer can
be used in quite large active spaces, reliably converging for
active spaces with up to Nact ≈ 80 orbitals, sometimes more.
For the largest active spaces considered, it converges very
slowly due to the need for four-index transformations at every
step, which are costly because of the large dimensionality of
the system, combined with the noncontinuous and compli-
cated landscape of λQ. This gives rise to the need to either
set a high threshold of convergence or cut off the optimizer
at some point, where the user is satisfied with the result.
While this is problematic, there is no a priori reason not to
try this optimizer on the (potentially large) active spaces of
the molecule one is considering. This can be a point of further
study.

We benchmarked a range of various molecules and active
spaces for which we showed achieving a significant reduction
of λQ. Apart from this benchmark, we investigated the scaling
of λQ with the size of the system N . There are multiple paths
one can take here to increase N . A popular way to do this in the
literature is considering either a hydrogen chain or hydrogen
ring and increase the amount of atoms. We benchmarked the
scaling of λQ for a hydrogen chain and a linear alkane chain
by increasing the number of atoms as well, where our results
show a scaling of O(N2.3) and O(N2.2), respectively. Here we
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saw localized orbitals can give approximately a factor of N
lower scaling of O(N1.3) and O(N1.4), respectively. As this
gives one limited information how big λQ will be in real
eventual applications of quantum algorithms, we decided to
investigate the scaling on relevant highly correlated molecules
such as FeMoco (important in nitrogen fixation) and ruthe-
nium metal complexes (important in carbon dioxide capture).
Even though we used a minimal basis to make the scaling
calculations feasible on these molecules, there is no reason
to believe λQ will scale differently with respect to the active
space size on a bigger basis set. Here we showed that the
scaling is a factor of N larger, and with localized orbitals can
be brought down to λQ ≈ O(N2), depending on the molecule
in consideration. Our dedicated orbital optimizer was able to
consistently give an even further improvement of 10–25% on
these molecules. As a concrete example, consider the largest
active space considered of FeMoco: this factor of N difference
would result in a reduction by two orders of magnitude in the
amount of measurements needed for tomography [Eq. (14)],
if one wants chemical accuracy. This indicates that the simple
and efficient classical preprocessing by widely available local-
ization techniques, together with our dedicated optimizer, will
help to make simulations with large active spaces feasible.

ACKNOWLEDGMENTS

We sincerely thank Susi Lethola for his helpful comments
on localization schemes. S.Y. and B.S. acknowledge support
from the Dutch Research Council (NWO). E.K. acknowledges
support from Shell Global Solutions BV.

APPENDIX A: FROZEN CORE HAMILTONIAN

Applying the frozen core approximation to the electronic-
structure Hamiltonian consists of assuming the existence of a
set of frozen orbitals (always occupied), another set of active
orbitals (belonging to an active space), and a set of virtual
orbitals (always unoccupied). Based on this partitioning, ev-
ery Slater determinant |�〉 used to describe properties of the
system take the form

|�〉 = |�frozen�active〉, (A1)

where the left contribution �frozen is the part of the deter-
minant encoding the frozen orbitals of the system (always
occupied) whereas �active is a part encoding the occupancy of
the remaining electrons in the active orbitals of the system. In
this context, if one considers that every correlated electronic
wave function is always expanded with Slater determinants
following Eq. (A1), one can demonstrate by projections that
the system Hamiltonian takes an effective form

〈�| Ĥ |�〉 ≡ 〈�active| ĤFC |�active〉 , (A2)

with ĤFC the so-called frozen core Hamiltonian defined as
follows:

ĤFC = Ĥactive + EMF
frozen + V̂ . (A3)

Here, Ĥactive is the Hamiltonian encoding the one- and two-
body terms only acting in the active space,

Ĥactive =
active∑

tu

htuÊtu +
active∑
tuvw

gtuvw êtuvw, (A4)

where t, u, v,w denote active space orbitals. The second term
EMF

frozen is a scalar representing the mean-field-like energy ob-
tained from the frozen orbitals,

EMF
frozen = 2

frozen∑
i

hii +
frozen∑

i j

(2gii j j − gi j ji ), (A5)

and the third term

V̂ =
active∑

tu

VtuÊtu, with Vtu =
frozen∑

i

(2gtuii − gtiiu) (A6)

represents an effective one body potential which encodes
the interaction of the frozen electrons with the active space
electrons. To summarize, the main effect of the frozen core
approximation [Eq. (A3)] is first to introduce an energetic
shift [Eq. (A5)] and second to augment the one body term
of the Hamiltonian operator [Eq. (A4)] (that only lives in the
active space) with an additional effective one body operator
[Eq. (A6)].

APPENDIX B: ELECTRONIC INTEGRALS
TRANSFORMATION

Preparing the electronic Hamiltonian in a given orthogonal
orbital basis {φp(r)}N

p=1 is a crucial step for realizing concrete
quantum computing applications. In practice, such a process
can be realized classically via electronic integral transforma-
tions. For this, we assume that the orthogonal orbitals can be
expressed as a linear combination of AOs such that

φp(r) =
∑

μ

χμ(r)Cμp, (B1)

where we assume that the functions χμ(r) as well as the
coefficient matrix C are real valued, as is usually done in
nonrelativistic quantum chemistry. Based on our knowledge
of this matrix C, one can transform the one- and two-electron
integrals from the AO basis to the orthogonal orbital basis. To
do so, one starts from the one- and two-electron integrals in
the AO basis, respectively hμν and gμνγ δ , and implements the
following two- and four-index transformations:

hpq =
∑
μν

hμνCμpCνq (B2)

and

gpqrs =
∑
μνγ δ

gμνγ δCμpCνqCγ rCδs. (B3)

From a computational point of view, the numerical cost of
processing electronic integrals is essentially governed by the
four-index transformation. This transformation is known to
scale as O(N5) (see Ref. [112]), when not employing approx-
imations such as density fitting (see Ref. [113]).
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APPENDIX C: EXPLICIT FORM OF λQ IN TERMS OF
MOLECULAR INTEGRALS

To derive a formula for λQ in terms of the molecular
integrals, one needs to keep track of what happens to the coef-
ficients in the Hamiltonian [Eq. (A2)] after a fermion-to-qubit
transformation of the fermionic operators. This is nontrivial,
since, e.g., the Jordan-Wigner transformation transforms a
single arbitrary product of fermionic operators â†

pâ†
r âsâq into

16 different Pauli strings because of the products of X̂−iẐ
2 and

X̂+iẐ
2 . The Hamiltonian in the form of Eq. (A2) is actually not

best suited for this derivation. Instead, it is helpful to express
the Hamiltonian in terms of Majorana operators that have the
convenient property of being Hermitian operators that square
to identity:

γ̂pσ,0 = âpσ + â†
pσ , γ̂pσ,1 = −i(âpσ − â†

pσ ), (C1)

{γ̂i, γ̂ j} = 2δi jI, γ̂
†
i = γ̂i, γ̂ 2

i = I. (C2)

To find a representation of the Hamiltonian in terms of Ma-
jorana operators, one could directly replace â†

p = γ̂p,0−iγ̂p,1

2 and

âq = γ̂q,0+iγ̂q,1

2 in the Hamiltonian or follow the procedure in
Ref. [4]. We chose the latter approach, detailed below.

It is well known that the electron repulsion integral tensor,
when written as a N2 × N2 matrix g(pq),(rs) with the composite
indices pq and rs, is positive semidefinite. This makes it
possible to define a Cholesky decomposition g = LL†. We
write

gpqrs =
∑

�

∑
pqrs

L�
pqL�

rs, (C3)

with L a lower triangular matrix. Since gpqrs is symmetric in
p, q and in r, s, for a given �, L�

pq is an N × N symmetric
matrix (also called a Cholesky vector in the Cholesky de-
composition). This leads to the following expression for the
Hamiltonian:

Ĥ =
∑

pq

∑
σ

hpqâ†
pσ âqσ + 1

2

∑
pqrs

∑
στ

gpqrsâ
†
pσ â†

rτ âsτ âqσ

=
∑
pqσ

[
hpq − 1

2

∑
r

gprrq

]
â†

pσ âqσ

+ 1

2

∑
�

∑
pqrs

∑
στ

L�
pqL�

rsâ
†
pσ âqσ â†

rτ âsτ

=
∑
pqσ

h′
pqâ†

pσ âqσ + 1

2

∑
�

(∑
pqσ

L�
pqâ†

pσ âqσ

)2

, (C4)

where h′
pq = hpq − 1

2

∑
r gprrq. Using the relation

â†
pσ âqσ + â†

qσ âpσ =
{
I + i(γ̂pσ,0γ̂pσ,1), p = q
i
2 (γ̂pσ,0γ̂qσ,1 + γ̂qσ,0γ̂pσ,1), p �= q,

(C5)

one can show that∑
pqσ

Mpqâ†
pσ âqσ =

∑
p

MppI + i

2

∑
pqσ

Mpqγ̂pσ,0γ̂qσ,1, (C6)

where Mpq can be replaced by any symmetric matrix (like
L�

pq or h′
pq). Employing Eq. (C6) in Eq. (C4) leads to the

expression of the Hamiltonian in terms of Majorana operators:

Ĥ =
∑

p

h′
ppI + i

2

∑
pqσ

h′
pqγ̂pσ,0γ̂qσ,1

+ 1

2

∑
�

(∑
p

L�
ppI + i

2

∑
pqσ

L�
pqγ̂pσ,0γ̂qσ,1

)2

. (C7)

After working out the square and substituting back∑
�

∑
pqrs L�

pqL�
rs = gpqrs, we obtain

Ĥ =
(∑

p

hpp + 1

2

∑
pr

gpprr − 1

2

∑
pr

gprr p

)
I

+ i

2

∑
pqσ

(
hpq +

∑
r

gpqrr − 1

2

∑
r

gprrq

)
γ̂pσ,0γ̂qσ,1

− 1

8

∑
pqrsστ

gpqrsγ̂pσ,0γ̂qσ,1γ̂rτ,0γ̂sτ,1. (C8)

We now want to determine the value of λQ after a fermion-
to-qubit mapping of this Hamiltonian in which all products
of Majorana operators should be distinct. We use a fermion-
to-qubit mapping such that single Majorana operators are
mapped to single unique Pauli strings, such as the Jordan-
Wigner transformation [51],

γ̂i,0 → X̂iẐi−1 . . . Ẑ0, and γ̂i,1 → ẐiẐi−1 . . . Ẑ0, (C9)

where we used the composite index i = pσ . Note this is
not only true for the Jordan-Wigner transformation but also
for for example the Bravyi-Kitaev transformation [114]. The
only thing left to do is to make sure that the sum over four
indices used to evaluate λQ is indeed truly quartic. Looking at
Eq. (C8), this is not yet the case. If pσ = rτ or qσ = sτ , the
corresponding Majorana operators will square to identity and
will reduce to quadratic and identity terms. Below we employ
the permutational symmetry of the real-valued integrals gpqrs

to obtain the most compact representation.
We first reorder the Majorana’s and distinguish between the

same and opposite spin cases:

− 1

8

∑
pqrsστ

gpqrsγ̂pσ,0γ̂qσ,1γ̂rτ,0γ̂sτ,1

= 1

8

∑
pqrs

∑
στ

gpqrsγ̂pσ,0γ̂rτ,0γ̂qσ,1γ̂sτ,1

= 1

8

∑
pqrs

∑
σ

gpqrsγ̂pσ,0γ̂rσ,0γ̂qσ,1γ̂sσ,1

+ 1

8

∑
pqrs

∑
σ �=τ

gpqrsγ̂pσ,0γ̂rτ,0γ̂qσ,1γ̂sτ,1. (C10)

For the opposite spin case, all operator products are unique
and quartic, so no further work is needed. For the same spin
case, it is useful to identify cases in which two or more indices
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of the same type of Majorana operators are equal:

1

8

∑
pqrs

∑
σ

gpqrsγ̂pσ,0γ̂rσ,0γ̂qσ,1γ̂sσ,1 = 1

8

∑
pq

∑
σ

gpqpqγ̂pσ,0γ̂pσ,0γ̂qσ,1γ̂qσ,1 + 1

8

∑
p�=r,q

∑
σ

gpqrqγ̂pσ,0γ̂rσ,0γ̂qσ,1γ̂qσ,1

+ 1

8

∑
q �=s,p

∑
σ

gpqpsγ̂pσ,0γ̂pσ,0γ̂qσ,1γ̂sσ,1 + 1

8

∑
p�=r,q �=s

∑
σ

gpqrsγ̂pσ,0γ̂rσ,0γ̂qσ,1γ̂sσ,1

= 1

4

∑
pq

gpqpqI + 1

8

∑
p�=r,q �=s

∑
σ

gpqrsγ̂pσ,0γ̂rσ,0γ̂qσ,1γ̂sσ,1, (C11)

where we applied the identity relation γ̂ 2
i = I and for the

second term used that integrals are symmetric in exchanging
p and r while the product of Majorana operators is antisym-
metric under this exchange. This nullifies this and the third
term. The first term can be absorbed in the scalar term. For the
truly quartic term, we may make further use of permutational
symmetries to get the most compact form:

1

8

∑
p�=r,q �=s

∑
σ

gpqrsγ̂pσ,0γ̂rσ,0γ̂qσ,1γ̂sσ,1

= 1

8

∑
p>r,s>q

∑
σ

(gpqrsγ̂pσ,0γ̂rσ,0γ̂qσ,1γ̂sσ,1

+ grqpsγ̂rσ,0γ̂pσ,0γ̂qσ,1γ̂sσ,1 + gpsrqγ̂pσ,0γ̂rσ,0γ̂sσ,1γ̂qσ,1

+ grspqγ̂rσ,0γ̂pσ,0γ̂sσ,1γ̂qσ,1)

= 1

4

∑
p>r,s>q

∑
σ

(gpqrs − gpsrq )γ̂pσ,0γ̂rσ,0γ̂qσ,1γ̂sσ,1. (C12)

Combining all terms, we end up with the expression

Ĥ =
(

N∑
p

hpp + 1

2

N∑
pr

gpprr − 1

4

N∑
pr

gprr p

)
I

+ i

2

N∑
pqσ

(
hpq +

N∑
r

gpqrr − 1

2

N∑
r

gprrq

)
γ̂pσ,0γ̂qσ,1

+ 1

4

N∑
p>r,s>q

∑
σ

(gpqrs − gpsrq )γ̂pσ,0γ̂rσ,0γ̂qσ,1γ̂sσ,1

+ 1

8

N∑
pqrs

∑
σ �=τ

gpqrsγ̂pσ,0γ̂rτ,0γ̂qσ,1γ̂sτ,1. (C13)

We then take the sum of absolute values of the coefficients
and perform the sums over spin in the quartic term explicitly
(amounting to a factor of 2) to get the following form of λQ:

λQ = λC + λT + λ′
V , (C14)

where λC corresponds to the constant term in Eq. (C13),
λT to the quadratic, and λV to the quartic term in Majorana
operators. They have the form

λC =
∣∣∣∣∣

N∑
p

hpp + 1

2

N∑
pr

gpprr − 1

4

N∑
pr

gprr p

∣∣∣∣∣, (C15)

λT =
N∑
pq

∣∣∣∣∣hpq +
N∑
r

gpqrr − 1

2

N∑
r

gprrq

∣∣∣∣∣, (C16)

λ′
V = 1

2

N∑
p>r,s>q

|gpqrs − gpsrq| + 1

4

N∑
pqrs

|gpqrs|. (C17)

This λ′
V is slightly different to the λV of Ref. [52] in

calculating the λ for the sparse algorithm of Berry et al.
[50], which should actually be the same as λQ. This is due
that we took into account the swapping of majorana opera-
tors in Eq. (C12). In Ref. [52], this corresponds to the term
V̂ ′ = 1

8

∑
α,β∈{↑,↓}

∑
p,q,r,s VpqrsQ̂pqαQ̂rsβ . It is hard to see here

that the product Q̂pqαQ̂rsα is antisymmetric in swapping p, r
and q, s, but it becomes clear when one realizes that Q̂pqα =
iγ̂pσ,0γ̂qσ,1, indicating the usefulness of Majorana operators.
As the absolute values give that

|gpqrs − gpsrq| � |gpqrs| + |gpsrq| ∀ p, q, r, s (C18)

such that λ′
V < λV (except when gpqrs and gpsrq always have

opposite signs, in which case they would be equal).
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[114] V. Havlíček, M. Troyer, and J. D. Whitfield, Operator locality
in the quantum simulation of fermionic models, Phys. Rev. A
95, 032332 (2017).

033127-16

https://doi.org/10.1021/acs.accounts.8b00672
https://doi.org/10.1021/acs.jctc.9b00959
https://doi.org/10.1021/acs.jctc.8b01112
https://doi.org/10.1021/acs.jctc.9b00682
https://doi.org/10.1021/acs.jctc.8b01009
https://doi.org/10.1021/acs.jctc.0c00222
https://doi.org/10.1002/qua.981
https://doi.org/10.1016/j.comptc.2012.12.013
https://doi.org/10.1063/1.1747632
https://doi.org/10.1103/PhysRev.105.102
https://doi.org/10.1063/1.456588
https://doi.org/10.1103/RevModPhys.32.300
https://doi.org/10.1103/RevModPhys.35.457
https://doi.org/10.1007/BF01113521
https://doi.org/10.1016/0009-2614(75)85235-3
https://doi.org/10.1021/ct400793q
https://doi.org/10.1007/BF00581477
https://doi.org/10.1021/ct300473g
http://arxiv.org/abs/arXiv:1610.08423
https://doi.org/10.1063/1.3590361
https://doi.org/10.1063/1.4769866
https://doi.org/10.1021/ct401016x
https://doi.org/10.1021/ct400687b
https://doi.org/10.1021/acs.jctc.0c00964
https://doi.org/10.1002/jcc.1056
http://link.aps.org/supplemental/10.1103/PhysRevResearch.3.033127
https://doi.org/10.1002/wcms.1340
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.32614/RJ-2019-030
https://doi.org/10.1088/2058-9565/ab8ebc
https://doi.org/10.1063/1.5133059
https://doi.org/10.1016/S0009-2614(98)00111-0
https://doi.org/10.1016/0021-9991(73)90085-5
https://doi.org/10.1016/0009-2614(93)87156-W
https://doi.org/10.1103/PhysRevA.95.032332

