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Abstract. We address formally the problem of opinion dynamics when
the social network composed of conformists and contrarians are not only
influenced by their neighbors, but also by an external influential entity
referred to as a marketer. The population of contrarians tries to have an
opinion that is the opposite of the opinion held by the conformists. The
influential entity tries to sway the overall opinion as close as possible
to the desired opinion by using a specific influence budget. The main
technical issue addressed is finding how the marketer should allocate its
budget among the agents such that the agents’ opinion will be as close as
possible to the desired opinion while taking into account the behavior of
the contrarian population. Our main results show that the marketer has
to prioritize certain agents over others based on their initial condition,
their influence power in the social graph and the population class they
belong to. Numerical examples illustrate the analysis.

1 Introduction

During the last decade, social networks gained increasing importance in our daily
life. Consequently, more and more companies are using digital social networks to
promote specific goods and/or ideas. This motivated the scientific community to
give more attention to the analysis of opinion dynamics in social networks. This
is a challenging task since human behavior is very different from one individual
to another and the interactions in the network can change over time. Various
mathematical models [7, 9, 6, 10, 1, 4] have been proposed in order to capture
different features of this complex dynamics. Empirical models based on in vitro
and in vivo experiments have also been developed [5, 16, 13].

Some mathematical model target consensus as collective asymptotic behavior
of the network [7, 9] while some others lead to the network clustering [10, 1, 14]. In
order to enforce consensus some recent studies propose the control of one or few
agents (see [3, 8]). Besides these methods of controlling opinion dynamics towards
consensus, we also find few attempts to control the discrete-time dynamics of
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opinions such that, as many as possible reach a certain set after a finite number
of influences [11]. In very recent work ([15]) the authors developed a formal
method for the optimal space-time allocation of a budget allowing an influencer
to bring the consensus value of the network as close as possible to a desired
value.

It is noteworthy that most of the proposed mathematical models consider
that the opinions of two interacting individuals are approaching one to another.
Although this behavior seems to be sociologically accepted, one can also provide
real-life situations in which interactions are antagonistic. In this case, the dis-
tance between the opinions of two interacting individuals will increase (see [1, 12,
17]). To the best of our knowledge, there exists no attempt to control this kind
of opinion dynamics, and only analysis of the asymptotic behavior is reported.

In this paper, we consider the challenging problem that requires to minimize
the distance between the average of opinions and a desired value using a given
control/marketing budget over a social network split into two groups. Basically,
this social network with the contrarian population represents a model for real
cases such as supporters of competing teams, parties, etc. On top of this as-
sumption on the network structure, we also assume that the maximal marketing
influence cannot instantaneously make the opinion of one individual to be equal
with the desired value.

To provide a mathematical model we consider that the opinion dynamics
is fast enough such that we can assume it evolves in continuous time and we
want to design a marketing strategy that minimizes the distance between the
average of the opinions and the desired value after a campaign with certain
budget constraints. This results in a linear-impulsive closed-loop dynamics in
which the jumps are controlled by the influencer. Our main result shows that
the optimal control strategy consists of influencing as much as possible the most
central/popular (see [2] for a formal definition of centrality) individuals of the
network.

It is worth highlighting that in this study we do not control the state of
the influencing entity which is assumed to be constant. Instead, we control the
influence weight that the marketer can have on different individuals of the so-
cial network. It was shown in [15] that this approach allows highlighting the
effectiveness of targeted marketing with respect to broadcasting strategies when
budget constraints are present.
Notation. Let R := (−∞,∞), R≥0 := [0,∞), and Z≥0 := {0, 1, 2, . . .}. We use
E for the expectation taken over the relevant stochastic variables and 1(·) for
the indicator function, taking the value 1 when the condition is satisfied and 0
otherwise.

2 Problem statement

We consider a social network populated by agents belonging to the set V :=
{1, 2, . . . , N} with the connections given by ai,j indicating the influence of agent
j on agent i. All agents belong to the class of conformists denoted by the set



V+ or to the class of contrarians denoted by V−. We use cn ∈ {1,−1} to denote
the agent class with cn = 1 for all n ∈ V+ and cn = −1 for all n ∈ V−. These
two sets are non-intersecting and may be interpreted as two hostile camps as
considered in [17].

The opinion of all agents belongs to the interval [−1, 1] and we denote the
collection of all opinions by x ∈ [−1, 1]N . The internal opinion dynamics of the
network is given by

ẋi =
∑
j∈V

ai,jxj − |ai,j |xi (1)

for all i ∈ V. The above dynamics is similar to a standard consensus model as
in [6] but ai,j may be positive or negative depending on the interaction type.

In this work, we focus on antagonistic interaction between agents that belong
to different classes and standard consensus interactions among agents of the same
class, i.e., contrarians or conformist. Basically, this implies that ai,j = cicj |ai,j |.
As a result of this extra term, agents i and j will have a consensus only if i, j
belong to the same class. If they belong to different classes, agent i will try to
have an opinion in opposition to agent j. We can write the overall dynamics for
all agents as

ẋ = −Lx (2)

where L is a Laplacian-like matrix with

Li,j =

{∑
k∈V |ai,k| for all i = j ∈ V,

−ai,j for all i 6= j ∈ V (3)

The influence of the external entity (marketer) with a desired opinion d is
limited to a campaign occurring at t = 0. We model this influence through an
impulsive control/jump at t = 0. Due to the contrarian population, the marketer
may also desire to bring some agents closer to the opinion −d but has must select
the best agents due to budget constraints. We, therefore, model the impulsive
control as follows

xn(0+) = (1− |un|)xn(0) + und (4)

for all n ∈ V with un ∈ [−ū, ū], with ū denoting the control saturation and∑
n∈V |un| ≤ B is the budget constraint.

The main objective of this paper is to provide an optimal control u such that
the distance between the average opinion of all agents and the desired opinion

d ∈ {−1, 1}, given by
∣∣∣ 1>

Nx
N −d

∣∣∣ is minimized asymptotically. Given x0 ∈ [−1, 1]N ,

the optimization problem can be stated formally as follows

MinimizeuJ(u) := limt→∞

∣∣∣∣1>Nx(t)

N
− d
∣∣∣∣

where ẋ(t) = −Lx(t), x(0) = x0 ∀t > 0,
under (4) with un ∈ [−ū, ū]∀n ∈ V

and
∑
n∈V |un| ≤ B.

(5)



3 Analysis

To begin our analysis, we first characterize the asymptotic opinions of the agents
under the dynamics (2). For this purpose, we rely on results established in [17].

Proposition 1. Given the opinions x(0+) formed after the campaign, we have

lim
t→∞

x(t) = cv>x(0+) (6)

where v is the left eigen-vector of the matrix L associated with eigenvalue 0 with∑
n∈V |vn| = 1 and sign(vn) = sign(cn).

Proof. First, we use Lemma 1 in [17] to conclude that if (2) establishes modular
consensus (consensus in absolute value of each xn, then

lim
t→∞

x(t) = ρv>x(0+) (7)

where ρn ∈ {1,−1} for all n ∈ V. By construction in (3), we have that ai,j is
positive for i 6= j only when they both belong to the same set V+ or V− and is
negative otherwise. This implies that V+ or V− form hostile camps as defined in
[17], allowing us to apply Lemma 2 from [17]. This states that modular consensus
is established for quasi-strongly connected graphs with ρi = −ρj for all i, j in
opposite camps. Since we pick sign(vn) = sign(cn), we have that ρn = cn. �

Proposition 1 allows us to study the impact of the control on the cost function
in 5. We provide the optimal control u which will minimize this cost in the
following. We define a sorting index

γn := |vn||cnd− xn(0)| (8)

Theorem 1. If card(V+) = card(V−), the final cost is invariant to the control
and J(u) = 1 for all u. If card(V+) > card(V−) and the desired opinion be d,
then the optimal control u∗ is given by

u∗o(n) =


co(n)ū if n ≤

⌊
B
ū

⌋
Bco(n) − co(n)ū

⌊
B
ū

⌋
if n =

⌊
B
ū

⌋
+ 1

0 otherwise

(9)

where o : V → V is a bijection such that γo(1) ≥ γo(2) ≥ · · · ≥ γo(N). When
card(V+) < card(V−), setting −d as the desired opinion and applying u∗ mini-
mizes the cost J(u).

Proof : First, we rewrite the minimization (5) problem as follows

Minimizeu limt→∞

∣∣∣∣1>Nx(t)

N
− d
∣∣∣∣

where ẋ(t) = −Lx(t), ∀t > 0,
xn(0+) = (1− u+

n − u−n )xn(0) + u+
n d− u−n d, ∀n ∈ V

u+
n , u

−
n ∈ [0, ū], such that u+

nu
−
n = 0, ∀n ∈ V,∑

n∈V u
+
n + u−n ≤ B.

(10)



in order to separate the positive and negative control action. Note that we have
that

lim
t→∞

x(t) = cv>x(0+) (11)

since the dynamics in (0,∞) is given by ẋ = −Lx and using [1].
Denoting x∗ := v>x(0+), which is a scalar and belongs to the interval [−1, 1],

we have that the final cost is given by

J =

∣∣∣∣∑n∈V cn

N
x∗ − d

∣∣∣∣ =

∣∣∣∣card(V+)− card(V−)

N
x∗ − d

∣∣∣∣ . (12)

We use G :=

∣∣∣∣card(V+)− card(V−)

N

∣∣∣∣. Therefore,

1. if card(V+) = card(V−), we have J = d for any x∗,
2. if card(V+) > card(V−), we have J = |Gx∗ − d|,
3. and if card(V+) < card(V−), J = |Gx∗ + d|.

This implies that minimizing the final cost J is equivalent of minimizing
(x∗ − d)2 for case 2 and (x∗ + d)2 for case 3. We have

∂((d− x∗)2)

∂u+
n

= −2(d− x∗)vn,
∂((d− x∗)2)

∂u−n
= 2(d− x∗)vn,

∂((d+ x∗)2)

∂u+
n

= 2(d+ x∗)vn,
∂((d+ x∗)2)

∂u−n
= −2(d+ x∗)vn.

(13)

In the two cases cases, 2(d−x∗) and 2(d+x∗) are respectively positive functions
which hold true for all n. Applying Lemma 1 (provided in the Appendix) for
each case, we have the result by setting un = u+

n − u−n . �
Theorem 1 provides the control strategy to be implemented in order to min-

imize the cost J(u), which implies minimizing the distance between the average
final opinion and the desired opinion. When the number of contrarians and
conformists are the same, the opinions are polarised around 0 in a symmetric
fashion. Therefore, the final average opinion is always 0, leading to a fixed cost
of J(u) = |d|.

Nominally, we assume that the set of contrarians is a minority, i.e., card(V+) >
card(V−). In this case, we select the most influential agents based on the index
γ which depends on the vector centrality v as well as the distance to the de-
sired opinion. However, since the contrarians oppose the conformists, the opti-
mal strategy is to push the contrarians closer to −d and the conformists closer to
d. Since the conformists are a majority, the minimal cost is when all conformists
are at d and all contrarians at −d. The control in Theorem 1 precisely achieves
this, i.e. it brings the conformists as close as possible to d and the contrarians
as close as possible to −d, under the budget constraints.

Note that when card(V−) = 0, i.e. there are no antagonistic relations, the
optimal control u∗ in Theorem 1 matches the result in [15] (which considers
ai,j ≥ 0 for all i, j) as expected. When the population of contrarians are larger,
i.e. card(V+) < card(V−), the minimal cost occurs when all conformists are at
−d and all contrarians at d. This is achieved by simply setting the new desired
opinion to be −d and applying the control in Theorem 1.



4 Numerical illustration

To demonstrate and compare the numerical results the following budget alloca-
tion strategies are adopted:
Strategy 1: Optimal Budget Allocation, where the budget is allocated to agents
according to Theorem 1.
Strategy 2: Uniform Budget Allocation, where budget is allocated uniformly
to all the agents with negative control for contrarians, i.e. ui = ci

B
N .

Strategy 3: Positive Budget Allocation, where budget is allocated uniformly
and an identical control is applied to all the agents, i.e. ui = B

N .

Strategy 3 corresponds to traditional advertising campaigns through Televi-
sion or radio broadcasts as the same advertising action is applied to all agents
regardless of their individual characteristics. The network structure we consider
is a strongly connected directed graph with 10 nodes (N=10) and the number of
conformists is greater than that of the contrarians (|V |+ > |V |−). The strongly
connected graph is represented in Figure 1. The initial opinions are uniformly
chosen between [−1, 1] and represented in Table 1.

Fig. 1: Red and cyan nodes represent
conformists and contrarians, respec-
tively with the size scaled based on
vector centrality v.
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Fig. 2: Opinion dynamics with the con-
trol applied impulsively at t = 0, red
and cyan plots represent conformists
and contrarians.

In Figure 1, the red and cyan nodes represent the conformist and the contrarian
agents, respectively and the size of the nodes represents the agent’s centrality.
The centralities of all the agents are also represented in Table 1. As stated in
Section 2, positive and negative values of c represents conformists and contrar-
ians respectively. Consider that the budget B = 4, the maximum control that
can be allocated to each agent ū = 0.7, and opinions before the campaign as
given in Table 1. When no control action is applied, we see that J(0) = 0.8877.
Using strategy 1, budget allocation is performed based on the influence power
of an agent γ (represented in Table 1) while satisfying the budget constraints.



The budget of [0.7, 0.7, 0.7, 0.7, 0.7, 0.5] is allocated to the agents [8, 3, 10, 9, 5,
4] and the resultant cost J(u∗) = 0.7331. To better understand the advantage

Agents 1 2 3 4 5 6 7 8 9 10

c 1 1 1 1 -1 1 -1 1 1 -1

Initial Opinion 0.8 0.7 0.5 0.3 -0.3 0 -0.4 0.2 -0.5 0.6

Centrality 0.075 0.054 0.224 0.095 -0.111 0.052 -0.108 0.160 0.057 -0.064

Gamma (γ) 0.015 0.016 0.112 0.067 0.078 0.052 0.065 0.128 0.085 0.101

Table 1: Data

of the designed marketing strategy (strategy 1), the results obtained are com-
pared with the ones obtained from strategy 2 and 3. Using strategy 2, the total
available budget B = 4 is allocated uniformly among N agents and the resultant
cost is 0.7728. Next, with strategy 3, the positive budget is uniformly allocated
to all the agents and the cost obtained is 0.8646.
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Strategy 1 (Optimal allocation)

Strategy 2 (Uniform Allocation)

Strategy 3 (Positive Uniform Allocation)

Fig. 3: Cost vs Budget.

Finally, we consider a large-scale network with 300 nodes, formed by 279 con-
formists and 21 contrarians. The graph is constructed in the following manner,
among the 300 agents, 25 nodes are taken to be central and influence 30 to 60
agents, while the remaining 275 have 1 to 30 agents they influence. The initial
opinion of the agents are generated by the formula xi(0) = −1 + 2i

N .
As seen in Figure 3, the cost with no control (or when budget B = 0) is

the same for all strategies i.e., J(0) = 1. It is clear from the plot that the cost



is smaller using Strategy 1 (based on Theorem 1) for any budget between 0
and Nū = 210 compared to the other strategies. Note that when B = Nū,
there is enough budget to allocate the maximum control to all agents, making
Strategy 1 and 2 equivalent. However, for strategy 3, due to positive budget
allocation even to contrarians, the cost is significantly higher (J = 0.48) even
when B = Nū = 210.

5 Conclusion

In this work, we have shown how an optimal campaign strategy can be designed
for the control of opinion dynamics over a social network. The main novelty of
this work, with respect to previous works on control of opinion dynamics is that
we consider the presence of contrarians in the network, which have an antag-
onistic relationship with the other agents. The external entity or the marketer
wants to bring the average opinion of all agents as close as possible to a de-
sired opinion d. Interestingly, we see that the optimal strategy involves bringing
the conformists closer to d and the contrarians closer to −d, and allocating the
available budget among the best agents sorted according to a centrality measure
and the distance of their initial opinions to d or −d. The future directions to
this work would involve considering multiple-campaigns or a continuous control
as well as the presence of a competing marketer, resulting in a non-cooperative
game.

A Appendix

Lemma 1. Given an optimization problem (OP) under the following standard
form

minimize
y∈RN

C(y+, y−)

subject to ysi − ȳ ≤ 0, ∀i ∈ {1, ..., N}, s ∈ {+,−}
−ysi ≤ 0, ∀i ∈ {1, ..., N}, s ∈ {+,−}

−B +

N∑
i=1

y+
i + y−i ≤ 0

(14)

where N ∈ N, N ≥ 1, ȳ < 1, B ≥ 0 and C(y) is a decreasing convex function
in yi such that the following condition holds.
For all i ∈ {1, . . . , N}, ∃g(y) ≥ 0 such that

∂C(y)

∂y+
i

= −kig(y) and
∂C(y)

∂y−i
= kig(y)

for some ki ∈ R.



Then an optimal solution y∗ to this OP is given by water-filling as follows

y+∗
o(i) =


ȳ if i ≤

⌊
B
ȳ

⌋
and ko(i) > 0

B − ȳ
⌊
B
ȳ

⌋
if i =

⌊
B
ȳ

⌋
+ 1 and ko(i) > 0

0 otherwise

(15)

and

y−∗o(i) =


ȳ if i ≤

⌊
B
ȳ

⌋
and ko(i) < 0

B − ȳ
⌊
B
ȳ

⌋
if i =

⌊
B
ȳ

⌋
+ 1 and ko(i) < 0

0 otherwise

(16)

where o : {1, . . . , N} 7→ {1, . . . , N} represents an ordering function which can be
any bijection for Case 2 and, one satisfying |ko(1)| ≥ |ko(2)| ≥ · · · ≥ |ko(N)| for
Case 1.

Proof: Note that all the constraint functions of the considered OP are affine,
which corresponds to sufficient conditions for applying KKT conditions. Since
the OP is convex, KKT conditions are necessary and sufficient for optimality.
By denoting the Lagrangian by

`(y, λ+, λ̄+, λ̂, λ−, λ̄−) = C(y) +

 N∑
i=1

∑
s∈{+,−}

λ̄si (y
s
i − ȳ)− λsiysi


+ λ̂+

(
−B +

N∑
i=1

y+
i + y−i

)
.

(17)

Let us assume that
∂C(y)

∂yi
= kig(y), in this case the first necessary and

sufficient condition for optimality can be simplified to write

kig(y?) = λ+?
i − λ̄

+?
i + λ̂? + λ−?i − λ̄

−?
i (18)

which must hold for all i ∈ {1, . . . , N}. The primal feasibility conditions write

0 ≤ ys?i ≤ ȳ ∀i ∈ {1, . . . , N}, s ∈ {+,−},

and
N∑
i=1

y+?
i + y−?i ≤ B. (19)

All the KKT multipliers must satisfy the dual feasibility conditions: λs?i ≥ 0,

λ̄s?i ≥ 0, λ̂s? ≥ 0 for all i ∈ {1, . . . , N}, s ∈ {+,−}. At last, the complementary
slackness conditions are given by

λ̄s?i (ys?i − ȳ) = 0,

λs?i y
?
i = 0,

λ̂?

[(
N∑
i=1

y+?
i + y−?i

)
−B

]
= 0.



Since g(y?) is identical for all i ∈ {1, . . . , N} and s ∈ {+,−} and is non-

negative, we must have λs?i , λ̄s?i and λ̂∗ chosen so that (18) holds. We get y+
i y
−
i =

0, ∀i ∈ {1, ..., N}.
Take y? from (16). Set λs?j = λ̄s?j = 0 for j =

(
O
⌈
βk

ū

⌉)
and s = + if kj > 0

and s = − if kj < 0 as it is the only component with a non-saturated solution.
For any n, y+∗

n = 0 if kn < 0 and y−∗n = 0 if kn > 0 can be imposed as the
left hand side of (18) will be negative and positive correspondingly and letting
λsn 6= 0 will be possible.

For any i such that O(i) < j, we have ki ≥ kj and this can be satisfied by

setting y
sign(ki)?
i = ȳ and having λ̄

sign(ki)?
i > 0 and λsi = 0. On the other hand,

for any i such that O(i) > j, we set y∗i = 0 and the KKT conditions are satisfied
if λ̄si = 0 and λs?i > 0. The solution from (16) can also be verified to satisfy (19)
and therefore, we have it satisfying all the KKT conditions.

�

References

1. Altafini, C.: Consensus problems on networks with antagonistic interactions. IEEE
Transactions on Automatic Control 58(4), 935–946 (2013)

2. Bonacich, P., Lloyd, P.: Eigenvector-like measures of centrality for asymmetric
relations. Social Networks 23, 191–201 (2001)

3. Caponigro, M., Piccoli, B., Rossi, F., Trélat, E.: Sparse feedback stabilization of
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