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Abstract—Autonomous control of reconfigurable robots is cru-
cial for their deployment in diverse environments. The devel-
opment of such skills is however hampered by the diversity
in hardware and task constraints. We advocate the use of
artificial intelligence-based approaches to improve scalability to
different conditions and portability to platforms of comparable
traversability skills. In particular, we succeed in tackling the
problem of staircase traversal via a reinforcement learning-based
control framework applicable to different articulated tracked
robots, powerful enough to generalize to varying conditions learnt
in simulation and to transfer to reality in a zero-shot setting. Our
extensive experiments demonstrate the robustness of the frame-
work in learning tasks with increased risk and difficulty induced
by platform diversification and increased control dimensionality.

I. INTRODUCTION

Autonomous 3D navigation has a tremendous potential for
robotic applications that range from operation in hazardous
environments to providing assistance to humans. In the latter
case, a robot may encounter steps and staircases that may
have to be avoided or traversed by passive adaptation that
palliates minor collisions. Most often, however, ensuring robot
and environment safety requires active robot control.

Staircase negotiation has been predominantly addressed us-
ing conventional control, assuming proper knowledge of robot
kinematics and dynamics. As a result, rudimentary changes of
the platform or the task may render the adaptation of such
solutions cumbersome if not impossible. Domain expertise is
essential yet scarce and hard to obtain in realistic conditions
due to the elevated accident risk.

On the other hand, machine learning-based approaches are
better suited as they lower the need for ad-hoc solutions
customized to specific platforms and endow a robot with the
capability of safe and autonomous obstacle negotiation [1].
Using machine learning then raises the question of the type
of learning to be sought, such as learning from demonstration
(LfD), behaviour cloning [2], reinforcement learning (RL) or
their combination (as for example in [3]). For the staircase
negotiation task that we consider, it is impractical, if not
impossible, to obtain sufficiently rich demonstrations. In this
respect, RL-based approaches are particularly well suited
while allowing the emergence of novel behaviors.

The work is performed in the context of the project REACT, project
VITAAL and is financed by Brest Metropole, the region of Brittany and the
European Regional Development Fund.

Fig. 1: Pipeline overview: the desired behavior is developed
via RL in simulation and transferred in reality

In our current work we pursue a RL-based paradigm for
the acquisition of robot controllers with desired behaviour
properties such as safety and bumpiness through reward
function design, in line with our earlier works, [4], [5]. In
particular, we consolidate the training of effective controllers
in simulation, by developing and comparing these skills on
two distinct articulated, tracked robot vehicles in simulation
and further successfully transferring the skill onto one of the
real robots. On top of attaining our main goal that consists
in successful staircase negotiation by the real robot, we also
present new insights that are the product of quantitative as
well as qualitative cross-comparison of behaviors among task
variants and between robots. Concretely, the current work
advances the state-of-the-art in the following points:

• We successfully acquire RL-based staircase negotiation
controllers for two robotic platforms in simulation, both
exhibiting the desired behavior properties.

• We quantitatively compare controllers obtained for dif-
ferent robots and task variants via Kullback-Leibler (KL)
policy divergence.

• The efficacy of the obtained controllers is demonstrated
in reality by transfer to a commercial robot (see Fig. 1).

The rest of the paper is organized as follows. Section II
presents an overview of earlier approaches for robot control
in staircase negotiation by articulated tracked robots. In section
III we detail our framework for RL-based staircase negotiation
learning in simulation, followed by the procedure for transfer-
ring and evaluating the obtained behaviors onto a real robot in
section IV. Finally, in section V we present experiments that
demonstrate the effectiveness of the framework in simulation
as well as in reality through multiple variants of the main task.
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II. CONTROL METHODS IN OBSTACLE NEGOTIATION

Robot navigation is dictated by the environment where the
robot operates. As obstacle negotiation in outdoor as well as
indoor environments requires advanced traversability skills,
tracked robots equipped with additional sub-tracks (flippers)
have been developed. More recently, the obstacle negotiation
potential of such platforms is being studied for improving the
autonomy of frail people, either for transporting humans or
objects in 3D environments.

Therefore, a strong interest has been shown by the scientific
community in modelling the kinematics and dynamics of
such robots, in order to exploit their full potential. Although
articulated front and/or rear flippers drastically increase the
negotiation capability of complex obstacles, they inevitably
increase complexity of control, kinematics calculation and
estimation of robot dynamics. The presence of a robotic arm
further elevates control difficulty due to additional degrees of
freedom (DOF) and safety constraints.

Among multiple control methods reviewed by [6], neural-
network based control that relies on unsupervised learning or
reinforcement learning allows to learn effective controllers for
high-dimensional observation and action spaces or decision
making from raw input data such as pixels [1] in contrast
to learning-free control methods. In the sequel, we review
representative works from both categories that treated the
problem of indoor navigation of tracked robots, while high-
lighting limitations and open challenges. For reference, Table
I provides a coarse overview of those works.

Table I: Overview of related works

Work Method DOF Input data
sensors

Mourikis et al. [7] State-feedback
linearization 3 RGB camera,

gyroscope
Nagatani et al. [8] Fuzzy, vision-based 4 Laser sensors

Ben-Tzvi et al. [9] Fuzzy 3 Motor encoders,
compass

Zhang et al. [10] Fuzzy, resolved motion
rate controller 3 Gyroscope

Pecka et al. [11] Neural, RL 2 IMU,
laser sensors

Endo et al. [12] Proportional-integrative 4 IMU

Ejaz et al. [13] Neural, RL,
end-to-end 2 Depth camera

Standard control Preliminary works on autonomous stair-
case traversal were devoted to highly customized, standard
robot control. One of the first such works was presented in
[7] relying on estimation of step edges and gyroscopic data. A
highly customized platform was presented in [9], where thanks
to a sophisticated track platform the problem of staircase
traversal is tackled, further aided by an actively controlled pen-
dulum. Unfortunately, approaches that are highly customized
to specific hardware bear limited potential in general.

To palliate the increased cognitive load experienced by users
that tele-operate such platforms, the authors of [8] propose a
motion planning framework where the robot exploits side laser
sensors in order to perceive the geometry of ahead obstacles
and adapt flippers so that they are tangential to the surface.
Upon the definition of the robot negotiation limits, the authors
consider that the system is able to negotiate any uneven terrain,

yet being based on exhaustive sensory data. The framework
of [14] is comparatively superior as the system is endowed
with passive flippers that push against a traversed obstacle to
improve traction, combined with an accident warning system
that is based on estimation of the normalized energy stability
margin (NESM). Still, the robot is not autonomous and the
overall approach is weakly generalizable.

Another approach relying on precise estimation of the stair-
case configuration was proposed in [12] where the robot could
autonomously negotiate a staircase using proprioceptive state
estimation. That approach showed prominent performance,
however, the system could only negotiate a staircase known
beforehand. One of the most elaborate analysis was presented
in [10] using a common tracked platform with 2 additional
DOF due to a controllable arm. The derived analytical solution
is indicative of the high complexity of modelling the interac-
tion between a multi-DOF system and the traversed surface.
That system lacked congruent control of tracks, flippers and
the arm and needed full knowledge of geometry, kinematics
and physical characteristics which can be difficult to acquire.

Learning-based control Learning-based approaches appear
more suitable for developing controllers when robot kinemat-
ics and dynamics are harder to model. The authors of [15]
identify two main categories of learning-based methods: ter-
rain traversability analysis and end-to-end while [1] presents
the diversity of employed learning techniques along with
challenges. One of the main requirements is scalability to high-
dimensional state and action spaces. Priors could bootstrap
learning, still, this demands more attention in the design
of the search policy algorithm in order to ignore irrelevant
policy properties. Generalization and robustness are relevant
for robots that are required to learn various tasks under varying
conditions.

To the best of our knowledge, earlier work on learning-based
control for actively articulated tracked robots is relatively
scarce. At the same time, in staircase ascent and descent
where it is hard to model the dynamics of physical interaction,
learning-based techniques are particularly promising.

Policy endowment with properties such as bumpiness or
stability can be performed in different ways. Constraints may
be introduced in a RL optimization problem as in [11] while
safety and reward can be associated in a single function [16].
Another more sophisticated approach was demonstrated in
[11] where authors incorporated constraints into the optimiza-
tion problem of relative entropy policy search using RL. Still,
results were limited to the traversal of a palette.

Authors of [13] use images for the navigation of a tracked
robot in indoor environments, improving dueling double deep
Q-network model with layer normalization and noise injection
and propose an original algorithm for its training. Still, this
approach is only employed for navigation on 2D surfaces.

Deep Q-Network (DQN) was one of the first deep RL
algorithms and had shown fascinating results at that time [17].
Over the years, RL algorithms have witnessed a significant
evolution with the current state-of-the-art being composed of
actor-critic algorithms which benefit from state-action value
estimation as in pure value-based DQN and directly optimize
policy parameters through gradient ascent.



3

Indicatively, the off-policy Deep Deterministic Policy Gra-
dient (DDPG) algorithm [18] moved discrete action space to
a continuous one as an approximate DQN. Still the major
improvement of DDPG, which has introduced Twin-Delayed
DDPG (TD3), corresponds to enhanced DDPG with delayed
policy improvement, clipped double Q-Learning and target
policy smoothing. In parallel to the latter algorithm, Soft
Actor-Critic (SAC) was proposed which contains the same
features combined with a novel policy entropy based maxi-
mization. An earlier on-policy algorithm is Proximal Policy
Optimization (PPO) which yields more conservative updates.

III. ROBOT CONTROL FRAMEWORK

Following a typical RL-based problem formalization, given
a state st ∈ S the agent selects actions at ∈ A according to
a policy π and transits to the next state st+1 ∈ S receiving
the reward rt ∈ R. The array of consecutive state-action pairs
τ = {s0,a0, .., sT−1,aT−1} creates the trajectory known as
roll-out. The set of st,at, rt, st+1 observed along a roll-out
is used by RL algorithms to perform policy optimization.
In the sequel, we detail the chosen action and state spaces,
present reward function design and employed controller for
the problem of the staircase traversal, the way KL divergence
is used to compare policies and finally their transfer to reality.

A. Problem description
We consider a robot that can minimally control 3 DOF

corresponding to front and rear flipper angles and linear
velocity, occasionally complemented with 2 extra DOF of
a robotic arm whose use can prove particularly useful in
staircase ascent and descent. Therefore, the entire continuous
5 DOF action space forms the following action vector:

a = (ψfronta , ψreara , va, φ
1
a, φ

2
a) (1)

a ∈ [ψmina , ψmaxa ]2 × [vmina , vmaxa ]× [φmina , φmaxa ]2

where ψfronta and ψreara are front and rear flipper angles,
va is the applied main tracks velocity and φ1a and φ2a are
the angles of the two arm joints. Superscripts min and max
denote the kinematic limits of the corresponding DOF. We
deliberately exclude yaw control since the traversal of a
staircase prescribes that a robot maintains a fixed, orthogonal
to the steps orientation along the staircase.

The observation state vector s ∈ S is defined as follows:
s = (pfrontx , pfronty , prearx , preary , vs, ψ

front
s , ψrears , φ1s, φ

2
s)
(2)

where pfrontx , pfronty and prearx , preary are the local coordi-
nates of the next and previous step edge respectively, vs is the
robot linear velocity, ψfronts and ψrears are the flipper angles
and φ1s, φ2s are the arm joint angles (see Fig. 2).

State parameters were determined as a group rather than
distinctively, in order to avoid redundancy and maximize
complementarity between state dimensions. As a result, the
pitch was excluded from the state because eq. (2) already
allows to capture that parameter indirectly. Specifically, as the
state contains the flipper angles and the coordinates of the front
and rear step edges, this corresponds in reality to a specific
pose of the platform onto the staircase at a certain pitch.

(a) (b)
Fig. 2: (a) Front and rear obstacle (step edge) coordinate

systems; (b) side schematic view of the robot on a staircase

B. Reward function design

In this section we present reward functions used to obtain
policies allowing ascent and descent staircase traversals. To
guide learning we assign the following positive reward pro-
portional to the traversed path from start to finish:

Rtr(τ) =

∑Nτ
t=1 xt
Dmax

(3)

where Rtr(τ) represents the episode return along a trajectory τ
whose maximal value can attain 1, xt is the traversed distance
during time step t, Nτ is the number of time steps in the
current episode and Dmax is the total distance between start
and finish. While only positive rewards can produce policies
that accomplish a given task, those may be sub-optimal in
terms of features such as safety. Furthermore, the situations
that may compromise the safety of the robot differ between
ascending and descending a staircase. To account for robot
safety in different contexts we introduce negative penalties
alongside with the positive reward.

In detail, to reduce the risk of tip-over during ascent we
assign a negative reward proportional to the deviation of the
robot centroid. On the other hand, when the robot descends
a staircase accidents are mostly due to platform shaking and
bumps, therefore we tackle this via a negative reward propor-
tional to platform acceleration. In either case, the scale of a
negative reward is normalized to avoid biasing. Independently
of the chosen negative reward rt, the overall time step return
Rt then becomes:

Rt =
xt

Dmax
+ rt. (4)

The next two subsections present the design of the aforemen-
tioned negative rewards.

1) Center of gravity stabilization: Whenever the center of
gravity (COG) destabilizes it may lead to robot tip-over. In
detail, during ascent the COG position leads to tip-over only
when its projection point Cx crosses the lowermost edge of
the robot support polygon, namely, the point of contact of the
rear flipper with the staircase (cf. Fig. 2 (b)). In accordance
with [5], the COG-based penalty rDt is set as:

rDt =

{
−1, if tip over

−KD ∗Dt, otherwise (5)
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where KD is the normalizer and Dt the COG deviation. We
assign this penalty only in ascent tasks and when the robot
COG projection is located between staircase step edges.

In [4] a robot learnt a stable behavior by favoring poses
with low COG with respect to the underlying surface A′ that
represents the Normalized Energy Stability Margin (NESM)
[19]. The presence of an arm nonetheless may place the
COG low but also close to the ”safety zone” border [10],
without violating the NESM. To overcome this, we use the
Stability Margin (SM) that estimates the distance between the
lowermost robot edge and the COG projection on the ground.

Since it is difficult to estimate where exactly the lowermost
robot edge touches the ground, we instead minimize the
deviation of the COG projection Cx on the staircase from the
projection point O of the robot geometric center. We can thus
guarantee that the robot respects the SM criterion. We consider
that the arm has to place the COG as close as possible to the
point O - the most stable point along both X and Y axes,
optimizing both the SM and the NESM. Thus, in eq. (5) the
deviation is set as D =

√
d2 + h2 where d and h are the

distances between O and the projections of the COG on the
X and Y axis respectively.

Besides safety, we further observed that the contact of the
robot tracks with the surface cannot alone guarantee proper
traction. In reality, it is essential that sufficient force is exerted
from the robot to the ground which is possible when the
projection of the COG Cx is located near the perpendicular
projection of the geometrical center O on the staircase. This
leads to more uniformly distributed traction along the entire
platform. Finally, we further penalize the robot when it loses
stability and tips over that happens when its pitch reaches π/2.

2) Platform shaking reduction: The effect of gravity to
the movement of the robot switches between ascent and
descent, by hindering ascent and accelerating descent that may
endanger the robot and lead to tip-overs. Even if no accident
happens, every staircase edge traversal causes platform shak-
ing and collisions which influence the robot and potentially
an object that is being transported. These events are repetitive
when the robot traverses every step, but the greatest impact can
be observed in the beginning of the traversal when the robot
COG traverses the uppermost stair edge. At that moment the
robot velocity can be instantaneously increased leading to a
shock, slippage and, at worst, tip-over. The end of traversal is
also crucial because if the rear flippers are pushed down the
rear robot part just falls down from the step.

Such behaviours lead to distinctive pitch velocity peaks,
therefore the controller should mitigate such events. Letting
Wt denote pitch velocity and KW the normalization coeffi-
cient, the corresponding negative reward is:

rWt =

{
−1, if tip over

−KW ∗Wt, otherwise (6)

This penalty is assigned only in descent tasks and when the
robot traverses the staircase, namely, when the COG projection
on the staircase is located between the staircase nosing limits.

C. Controller learning details

In designing a controller learnt via RL there are several
alternatives that can be considered [17]. Approximators such
as tile or coarse coding tend to suffer from the curse of dimen-
sionality and do not generalize well due to sensitivity to grain
size. The main advantage of artificial neural networks over
other function approximators is their generalization capability
and straightforward increase of depth which was well studied.

Another common choice is radial basis function neural net-
works (RBF-NN) which were widely applied before the emer-
gence of deep neural networks. RBF-NN converges quickly to
global optima with less trials and errors, still, they have proved
of limited use due to absence of tractable and stable integration
into more complex deep neural network architectures.

Shallow networks with one hidden layer tend to have more
parameters to approximate the same function in contrast to
deep networks with less parameters and the additional ability
to learn different representations at intermediate levels. Thus,
we have opted for a multi-layer perceptron (see Fig. 1). The
first layer is composed of 9 neurons on which the state vector
s is received every time step. In the sequel, the input is
forwarded through 2 dense layers to the output layer which
forms the action vector a.

Following up on the discussion at section II, SAC and
TD3 are considered to be more sample efficient than PPO,
since they are off-policy and converge faster to higher returns.
Still, we use PPO in our work to optimize the parameters of
the policy because it is more straightforward to implement,
less sensitive to hyper-parameter changes and shown the most
favorable results in deep RL.

D. KL divergence-based policy comparison

We can quantitatively compare a pair of trained policies via
a commonly used probability distribution divergence measure,
namely, the KL divergence. Often, RL algorithms exploit
the divergence as metric to be optimized or a constraint of
policy updates as for example in PPO where updates of the
policy parameters are constrained through a penalty on KL
divergence.

We denote the reference policy for a given task as πq and
we wish to find how the policy πp diverges from πq (assuming
same observation and action spaces). The process of learning a
policy amounts to learning the mean and variance statistics of
the underlying probability distribution, rather than the exact
probability distribution for each possible state-action pair.
Making the hypothesis of a normally distributed policy with
mean and variance that depend on the state, a policy can then
be sampled randomly over the total space of observations with
actions chosen according to that policy. Thus, once the total set
of observations has been sampled, the corresponding actions
are prescribed by one of the two policies being compared,
namely, the reference policy πq . After having determined the
state-actions pairs over which the policies will be compared,
we then calculate the divergence as:

DKL(πp, πq) =
∑
s,a

πp(s,a)log
πp(s,a)

πq(s,a)
(7)
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(a) (b)
Fig. 3: (a) Experimentation setup along with coordinate

frame hierarchy; (b) architecture of deployed robot system

Training a policy is always a stochastic procedure and
as such a policy is a random variable itself, together with
the number of state-action pairs that we choose to calculate
divergence. We currently determine empirically the number
of times needed to train a policy as well as the number of
samples taken in the calculation of the divergence, though a
more consistent estimation is possible if required.

IV. CONTROLLER DEPLOYMENT ON REAL ROBOT

System description We begin by presenting the experi-
mentation set-up used to obtain the ground-truth robot and
environment state. This allows to establish an upper bound
on the effectiveness of a controller in reality with moderate
state errors while allowing the development and evaluation of
alternative robot localization approaches later on. On the other
hand, we opted for injecting noise in the state during policy
learning in simulation (cf. [4]) to make it more robust to errors
in general as well as to reduce the risk of accidents.

To obtain the robot pose we employed visual markers whose
pose can be reliably obtained via calibrated cameras and stan-
dard toolkits. We distinguish markers into static and dynamic
with associated coordinate frames Sm and Dm (see Fig. 3). We
use the notation jTi for the transformation between coordinate
frames, denoting translation and rotation of the coordinate
frame i within the coordinate frame j. We can then obtain
transformations CTSm and STSm , the latter being measured
manually. The dynamic marker is placed onto the robot and
used to locate its base coordinate frame with respect to camera
C, via a constant transformation RTDm set manually.

The camera was placed in front of the operational space of
the robot, ensuring proper coverage of the robot as well as the
staircase. Its purpose is to associate the robot and the staircase
into a common hierarchy of coordinate frames, allowing at any
moment to retrieve the coordinates of the front and rear step
edges with respect to the robot (recall eq (2)). The staircase
is then represented as a series of static transformations SiTS
where Si is the coordinate frame associated to a step edge.

The staircase perception task could also be performed by a
robot using its on-board sensors but we refrain to do so to keep
our set-up generic and independent of the robot. Perception of
a staircase before descent is more challenging but this problem
resides out of our current scope.

Policy deployment from simulation to reality In the
beginning of an experiment the robot faces the staircase and

the controller is activated upon the approaching of front and
rear step edges. For the task of staircase negotiation, it turns
out that only a subspace of the entire action space spanned by
the flipper and arm joints is useful. This is something that we
take into account by constraining the action space from which
actions can be sampled. As a direct consequence of the fact
that joints are allowed to move in a significantly smaller space,
this provides sufficient time to perform a necessary action and
adaptation of low-level controllers from the simulated platform
to the real one and makes this transfer zero-shot. Crucially,
constraining the action space further serves in ensuring safety
of the platform, since learning is stochastic and non-previously
encountered conditions may lead to accidents. For example,
overly raising rear flippers while ascending or front flippers
while descending, combined with acceleration can provoke a
tip-over. To prevent such behaviours, the limits of rear flippers
while ascending and front flippers while descending were set
as ψrears , ψfronts ∈ [−π/4, 0]2 respectively.

The deployed system architecture is shown in Fig. 3 (b).
The Marker monitor detects markers in the camera image.
The Environment monitor builds and maintains the geometric
relationships between the staircase and the robot, within a
single transformation hierarchy and provides the front-most
and rearmost step coordinates (recall eq. (2)). The Robot
state monitor provides information about the robot flippers
and arm configuration, its velocity and IMU data. The Safety
estimator receives the output of Environment monitor and
Robot state monitor, evaluates safety metrics such as the COG
deviation and angular velocity and its output is concatenated
with data provided by Environment monitor. That output is
fed to Execution controller which decides whether to block
motors in the case of upcoming accidents or halt the system
when the experiment terminates. Otherwise, state output data
pass to Policy which samples the action vector a which is sent
to the robot actuators. The latter executes those actions and
Marker monitor observes changes in the environment. Finally,
the output of Safety estimator is logged via Logger.

V. EXPERIMENTS

In this section we present the experiments that we performed
with two different platforms, namely, Absolem1 [11] and
Jaguar V4 Manipulator2. Extensive simulated and real-world
experiments were performed with varying degree of difficulty
for the task of staircase negotiation, allowing us to successfully
deal with the associated challenges (cf. video3).

A. Description of platforms and associated tasks

In Table II we juxtapose the two articulated tracked robots
for which we trained the various controllers. Their simulated
models matched the geometric and mass characteristics of the
real ones, making use of vendor provided geometric models.
The two robots possess similar obstacle negotiation properties
thanks to the presence of flippers, with the main difference
being that Absolem can independently move each flipper in

1bluebotics.com, github.com/mariogianni/trav nav indigo ws
2jaguar.drrobot.com/specification V4Arm.asp
3partage.imt.fr/index.php/s/LDyp6QRp4nGGKd2/download

bluebotics.com
github.com/mariogianni/trav_nav_indigo_ws
jaguar.drrobot.com/specification_V4Arm.asp
partage.imt.fr/index.php/s/LDyp6QRp4nGGKd2/download
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TABLE II: Robot characteristics and task variants
Description Jaguar Absolem

Photo
Mass, kg 41 29
Length, m 0.98 1.196
Width, m 0.7 0.61
Height, m 0.4 0.46
Task Task id Task id
Ascent, 3DOF, Default Jag-Asc-3-Def Abs-Asc-3-Def
Ascent, 3DOF, COG Jag-Asc-3-COG Abs-Asc-3-COG
Descent, 3DOF, Ang. Jag-Des-3-Ang Abs-Des-3-Ang
Ascent, 5DOF, COG Jag-Asc-5-COG None
Descent, 5DOF, Ang. Jag-Asc-5-Ang None

contrast to Jaguar where front and rear flippers are coupled.
To make consistent comparisons, we therefore chose to couple
Absolem flippers as well.

It follows that each robot has at most 4 DOFs corresponding
to linear velocity, angular velocity, front and rear flipper
angles, with Jaguar having 2 additional DOFs due to its arm.
For the staircase traversal task though we have deemed that
yaw angular velocity control was unnecessary during traversal
after the following observations; (i) a robot can easily align
itself with the staircase before traversal and (ii) the robot
remains aligned during traversal thanks to the coupled front
and rear flippers grip on the steps. Thus, the maximum number
of DOF is 3 for Absolem and 5 for the Jaguar.

Each task of Table II is thus characterized by the direction
of traversal (Ascent or Descent), the number of DOF of the
action space and the type of reward used to guide learning
(Default refers to the use of eq. (3), COG refers to the use of
eq. (4) and (5) and Ang refers to the use of eq. (4) and (6)).

B. Simulation environment

The simulation environment used for training is shown in
Fig. 4. The Gazebo simulator (gazebosim.org) is employed
using the Contact Surface Motion (CSM) model of tracks
[20] for both robots. Adding a new robot has no impact on
the overall training time since each robot controller can be
trained independently and all of them in batch, server-side
simulations. The simulation environment further allows to vary
staircase size in ranges of real-world staircases (cf. [4] for
details). We note that this is an essential step in succeeding to
transfer the policies trained in simulation into the real-world
and can be thought of as a data augmentation step, that favors
generalization over multiple obstacle shapes and further deals
with the influence of noise in the state estimation process.

The robot starts off at the usual location at either the
ground floor or the first floor depending on traversal direction,
aligned with the staircase and has to achieve the goal position
by respecting the preset criteria (both positive and negative
rewards are assigned during traversal). The episode ends if
the robot tips over, exits the training area, reaches the goal or
exceeds the maximal episode time step length.

We evaluate 8 task variants as listed in Table II differing
by traversal direction, DOF variation, applied criterion and

Fig. 4: Simulation environment

robotic platform. The Jaguar robot model starts always with a
vertically stretched arm that is fixed in 3 DOF tasks, flippers
of both platforms are parallel to the floor in the beginning and
φ1a, φ

2
a ∈ [−90◦, 90◦]2. Finally, penalties are evaluated and

assigned only when robots reside on the staircase.

C. Results

1) Performance for ascent tasks: Fig. 5 (a) shows the mean
smoothed episode return over independent learning trials with
min-max bands, for (Jag-Asc-3-COG) and (Abs-Asc-3-COG).

Mean episode return starts from −0.23 and −0.44 for the
two tasks, because of the negative penalty and the failure of
the robots to advance to the goal, and converges to 0 by the
end of learning for both policies. The max bands can attain
the values of 0.26 and 0.28 episode return respectively. This
means that the robots learn to control flipper angles and the
linear velocity. The episode return for the policy (Abs-Asc-3-
COG) is lower in the beginning because the Absolem COG is
higher and car tip-over more easily. None of the two learning
curves reaches the maximum return 1 as it is impossible to
put the COG closer to the point O (see Fig. 2) than a certain
distance. This is normal since the robots cannot be entirely
parallel to the ground while they traverse the staircase.

Fig. 5 (b) shows the evolution of the COG during learning.
Both policies reduce the COG deviation at the same pace and
reach minimal values after 8000 time steps, or 120 episodes.
The Absolem policy exhibits higher COG deviation equal
to 0.19 m due to the higher COG placement in the initial
configuration where flippers are extended, still, it decreases
the initial COG by 17%. The Jaguar policy decreases the
COG deviation by 36% down to 0.075 m that approximately
represents the COG deviation along the Y axis.

The learning process for two robots is fairly similar. Fur-
thermore, the same value of episode return is achieved by the
end of training. The COG curves exhibit similar behaviour
and converge at different values, due to differences in mass
distributions. Those differences also change robot control
features, still both robots achieve the goal by minimizing
the COG deviation. Note, however, that the absolute COG
deviation difference between Absolem and Jaguar noticed at

gazebosim.org
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(a)

(b)

Fig. 5: Ascent task learning analysis

the end of learning in Fig. 5 (b), is not transposed to an
equivalent absolute difference in the total reward in Fig. 5 (a),
thanks to the normalization of each negative penalty. These
results strongly indicate that the framework is applicable to
different robot models for the ascent task.

2) Performance for descent tasks: Figure 6 (a) presents
learning curves for tasks (Jag-Des-3-Ang) and (Abs-Des-3-
Ang). The firsts starts at −0.1 episode return and converges
to the value 0.1. The second policy convergences similarly but
starts at −0.3 episode return and ends at −0.1. Both platform
policies exhibit similar learning behaviour separated by around
0.2 that can be explained by robot dynamics, because the
Absolem is exposed to higher pitch angular velocity. This
is seen in Fig. 6 (b) where the mean angular velocity of a
platform during an episode is higher for the Absolem, due to
a higher centroid position over the surface in the resting state.
The Absolem policy decreases its angualr velocity by the end
of learning by 13%, while the Jaguar policy drops it by 10%.
Minimal angular velocity values are attained by 5000 steps, but
from this moment onward the learning curves slight increase.
This may happen due to optimization of traversal time as the
robot spends less time in staircase traversal. As before, these
results suggest that the framework is effective for both robots.

3) KL divergence between policies: Figure 7 presents KL
divergences for learned controllers in the 3 DOF tasks. We
omitted 5 DOF tasks since the simulated model of Absolem
robot does not include an arm. An (i, j)th cell of the heat map
represents the divergence between a controller with row index i
and a controller with column index j, namely, to DKL(πi, πj).
If the KL divergence is low for two policies, then this implies
that very similar actions are chosen for the same observations.

The heat map allows the extraction of some very useful
insights. For example, for a given staircase traversal direction
and total reward design, the two robots develop different
policies. This can be particularly seen in divergences (1,4) and

(a)

(b)

Fig. 6: Descent task learning analysis

(2,5) and demonstrates the importance of separate controller
training for the different robots. Despite the fact that, in simu-
lation, the robots share the same motors, the same observations
and the same action space, the differences in geometry and
mass distribution result in different necessary flipper actions
throughout the traversal. It further suggests an operator that
is sufficiently skilled to operate a given platform, will not
be necessarily able to operate a slightly different platform.
We can further observe that for a given robot and traversal
direction, alternating the total reward function also induces
a quantitative change in the employed actions, for example
in divergences (1,2) and (4,5). This justifies our interest for
optimizing staircase negotiation with more elaborate criteria
than merely arriving to the goal.

Finally, the highest divergences are noticed between policies
where the staircase traversal is different, namely for (1,6) and
(2,6). This clearly suggests that staircase ascent and descent
require independent treatment, as dynamics and risks signifi-

Fig. 7: Mean Kullback-Leibler divergence between policies
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Fig. 8: Performance evaluation of policies when deployed on
Absolem (left) and Jaguar (right) robots.

cantly differ. Two pairs of policies were found unexpectedly
similar however, i.e. (1,5) and (3,4), an event that can be
attributed to the stochasticity of training.

We finally performed a quantitative analysis of policy
adequacy on different platforms provided in Fig. 8. This
experiment is destined to assess how well a policy trained on
one robot would perform when deployed to another robot. We
performed 10 such trials (rollouts) for a given task. Policies
(Jag-Asc-3-Def) and (Abs-Asc-3-Def) are evaluated on the ba-
sis of time steps spent in a rollout. As we can see, if we deploy
a policy on a platform for which it was trained, then the robot
spends less episodes until task completion. Characteristically,
rollous tested on Absolem last around 47 time steps if we
use the (Abs-Asc-3-Def) policy against 80 time steps if (Jag-
Asc-3-Def) policy is used where performance is significantly
degraded. Similarly, deployment of the (Jag-Asc-3-Def) on
Jaguar requires on average 39 time steps as opposed to 51
when the (Abs-Asc-3-Def) policy is applied.

Deployment of (Jag-Asc-3-Cog) on Absolem further reveals
a slight performance degradation in terms of COG deviation
measured at 0.206 against 0.188 when (Abs-Asc-3-Cog) is
deployed. In contrast, the deployment of these two policies on
Jaguar seems equally performant.

With respect to descent, the deployment of the (Jag-Des-3-
Ang) and (Abs-Des-3-Ang) policies on the Jaguar robot clearly
favors the robot specific policy, but the same policies perform
equally well on Absolem. We can conclude that a policy
trained and deployed on the same robot provides the best
performance, otherwise performance can only be degraded.

4) Real-world performance: Policies (Jag-Asc-5-COG) and
(Jag-Des-5-Ang) were tested in two staircases presented in
Table III (we recall that the arm is actively involved in the op-
timized controllers). The respective experiments are included
in the supplementary video. Overall, we have performed 10
trials for each task id (5 trials per staircase) discussed in this
section, all of which were successful.

Policy (Jag-Asc-5-COG) was tested on the big staircase, the
robot achieving the task by keeping the rear flippers pushed
down, the front flippers up, the first arm joint was inclined
clockwise and the second arm joint counter-clockwise. The

TABLE III: Staircases configurations
Name Number of steps Height Length
Big 5 0.195 0.275
Small 3 0.17 0.305

TABLE IV: Observed mean target values on real staircases
Task id Stair Cy, m D, m Ang. vel., rad/s

Jag-Asc-5-COG Big 0.11 ± 0.01 0.12 ± 0.01 0.33 ± 0.06
Jag-Asc-5-COG Small 0.1 ± 0.01 0.11 ± 0.01 0.36 ± 0.09
Jag-Des-5-Ang Big 0.16 ± 0.02 0.09 ± 0.02 0.23 ± 0.06
Jag-Des-5-Ang Small 0.12 ± 0.02 0.05 ± 0.02 0.23 ± 0.09

flipper configuration ensures that the robot has the contact
points with rear and front stair steps. The entire arm is moved
forward to decrease COG deviation, which minimizes tip-
over risks or getting stuck. A point of ambiguity emerges for
the arm as certain configurations decrease Cy and increase
Cx at the same time, or vice versa, hence minimizing COG
deviation D is not straightforward. Remarkably, the obtained
results of the learnt controller show that the robot learnt to
incline forward the first arm link and backward the second link,
which is indeed the best configuration. For reference, Table IV
provides average observed values for some key parameters.

The accomplishment of the descent task (Jag-Des-5-Ang)
on the big staircase merits more attention. One of the most
important aspects is the linear velocity control (see provided
video), where the robot moves smoothly and adapts its velocity
very attentively that leads to increased time in the staircase
traversal. Naturally, this greatly reduces the mean perceived
angular velocity by 0.1 rad/s, as opposed to the ascent task.

The ascent and descent tasks were further successfully
accomplished on the small staircase composed of 3 steps, each
of height 0.17 m and length 0.305 m. The values reported
in Table IV allow us to draw the same conclusions between
ascent and descent, as for the big staircase.

VI. CONCLUSION

We have presented an effective RL framework for control
learning of staircase negotiation in multiple task variants. In
particular, we trained controllers for two robotic platforms in
simulation with reward function designs suited for ascent and
descent and different staircases. Results show learning conver-
gence and optimization of targeted behaviour features for both
platforms within 150 episodes. We employed KL divergence
to quantitatively compare the obtained policies, allowing us to
consolidate earlier empirical findings. Most importantly, we
succeeded in deploying the controllers learned in simulation
to a commercial robotic platform in firstly encountered real-
world staircases. The robot was able to successfully ascend
and descend while respecting the underlying criteria.

Our framework can accommodate further improvements
that would further increase the autonomy of the deployed
system. Although we managed to train effective controllers
for normal situations, accidents might still happen as the robot
may encounter new situations not explored in training, hence
incremental learning is an interesting perspective. Also, full
3D navigation autonomy implies the development of multiple
individual controllers that need to be coordinated with each
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Fig. 9: Snapshots of staircase negotiation with congruent control of 5 DOF. Top row; ascent by minimizing COG deviation.
Bottom row; descent by minimizing pitch angular velocity

other. We seek to address these challenges in the future as well
as explore the possibility to use raw sensory data as input to
the learnt controllers.
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