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KINK NETWORKS FOR SCALAR FIELDS IN DIMENSION 1 + 1

We consider a scalar eld equation in dimension 1+1 with a positive external potential having non-degenerate isolated zeros. We construct weakly interacting pure multi-solitons, that is solutions converging exponentially in time to a superposition of Lorentz-transformed kinks, in the case of distinct velocities. We nd that these solutions form a 2K-dimensional smooth manifold in the space of solutions, where K is the number of the kinks. We prove that this manifold is invariant under the transformations corresponding to the invariances of the equation, that is space-time translations and Lorentz boosts. each of which is parallel to the linear space E := H 1 (R) × L 2 (R) which we call the energy space, see Section 2.1.

∂ 2 t φ(t, x) -∂ 2 x φ(t, x) + W (φ(t, x)) = 0, (t, x) ∈ R × R, φ(t, x) ∈ R.
We study (1.1) for potentials W satisfying the following conditions: (A1) W (φ) ≥ 0 for all φ ∈ R, (A2) Ω := W -1 (0) ⊂ R has no accumulation points, (A3) W (ω) > 0 for all ω ∈ Ω.

(A4)

∞ 0 W (φ) dφ = 0 -∞ W (φ) dφ = ∞.
Any ω ∈ Ω is called a vacuum. We sort them in the increasing order, so that Ω = {ω n } n∈I , I ⊂ Z, ω n < ω n+1 for all n, n + 1 ∈ I. Typical examples include the φ 4 model W (φ) = (1 -φ 2 ) 2 , the φ 6 model W (φ) = φ 2 (1 -φ 2 ) 2 , and the sine-Gordon model W (φ) = 1 -cos(φ).

We denote (φ 0 , φ0 ) a generic element of the phase space. The potential energy E p , the kinetic energy E k and the total energy E are given by

E p (φ 0 ) = R 1 2 (∂ x φ 0 ) 2 + W (φ 0 ) dx, E k ( φ0 ) = R 1 2 ( φ0 ) 2 dx, E(φ 0 , φ0 ) = R 1 2 ( φ0 ) 2 + 1 2 (∂ x φ 0 ) 2 + W (φ 0 ) dx.
The set of nite energy states (φ 0 , φ0 ) is a union of |I| 2 ane spaces, called sectors, (

E m,n := {(φ 0 , φ0 ) : E(φ 0 , φ0 ) < ∞ and lim

x→-∞ φ 0 (x) = ω m , lim x→∞ φ 0 (x) = ω n },
Equation (1.1) admits static solutions. They are the critical points of the potential energy. The trivial ones are the vacuum elds φ(t, x) = ω n for some n ∈ I. The solution φ(t, x) = ω n has zero energy and is the ground state in E n,n . There are also non-constant static solutions φ(t, x) connecting two consecutive vacua, that is One can discribe all these solutions. For all n, n ∈ I with |n -n | = 1 there exists a function H n,n (x) such that all the static solutions satisfying (1.3) are φ(t, x) = H n,n (x -a) for some a ∈ R.

(1.3)
These solutions are the ground states in E n,n :

(1.4) inf (φ 0 , φ0 )∈E n,n E(φ 0 , φ0 ) = E p (H n,n ).

If n = n + 1, we call these static solutions the kinks. If n = n -1, we call them antikinks. Remark 1.1. There is in general no canonical choice of H n,n among the family of its space translates. For every pair n, n ∈ I such that |n -n | = 1, we make an arbitrary choice.

An important property of the equation (1.1) is the invariance by space-time translations and Lorentz transformations (1.5) (t, x) = t 0 + γ(t + vx ), x 0 + γ(x + vt ) ⇔ ⇔ (t , x ) = γ(t -t 0 -v(x -x 0 )), γ(x -x 0 -v(t -t 0 )) ,

where (t 0 , x 0 ) ∈ R 2 , -1 < v < 1 and γ := (1 -v 2 ) -1/2 , that is, if ψ(t , x ) is a solution of (1.1) in some region of the (t , x )-space-time, then φ(t, x) := ψ(t , x ) is a solution of (1.1) as well, in the corresponding region of the (t, x)-space-times. Applying this transformation to the static solutions found above, we obtain the moving kinks and antikinks φ(t, x) = H n,n (γ(x -vt -a)), |n -n | ≤ 1.

One can easily check that these are all the travelling waves, that is all the nite-energy solutions of (1.1) such that φ(t, x) = ψ(x -vt) for some function ψ : R → R and some v ∈ R.

Denition 1.2. Let K ∈ {0, 1, 2, . . .}. If n = (n 0 , n 1 , . . . , n K ) ∈ I K+1 is a sequence such that |n k-1 -n k | = 1 for all k ∈ {1, . . . , K}, we say that n is a chain of vacua. We say that

S (K) := {v = (v 1 , . . . , v K ) ∈ R K : -1 < v 1 < . . . < v K < 1}
is the set of admissible velocities.

Fix K ∈ {0, 1, 2, . . .} and a chain of vacua n.

Given v = (v 1 , . . . , v K ) ∈ S (K) and a = (a 1 , . . . , a K ) ∈ R K , we set H(v, a; t, x) := ω n 0 + K k=1 H n k-1 ,n k (γ k (x -v k t -a k )) -ω n k-1 , where γ k := (1 -v 2 k ) -1 2
is the Lorentz factor. Thus, for t large, H(v, a) is a superposition of translated and Lorentz-transformed kinks, separated by large distances.

1.2. Statement of the results and comments. Our rst goal is to construct smooth multisoliton solutions, that is solutions converging to H(v, a; t, x) in the energy space. The function space relevant for us is the space of functions dened for large times whose energy decays exponentially.

For T ∈ R and δ > 0, we set

ψ 2 H T,δ := sup t>T e 2δt R |∂ t ψ(t, x)| 2 + |∂ x ψ(t, x)| 2 + |ψ(t, x)| 2 dx < ∞.
We can state our result on the existence and uniqueness of solutions which converge to multi-kinks exponentially in time.

Theorem 1.3. For all K ∈ N 0 , chain of vacua n, v ∈ S (K) and a ∈ R K , there exist

T 0 ∈ R, δ 0 > 0 and Ψ(v, a; •, •) ∈ H T 0 ,δ 0 such that φ(t, x) := H(v, a; t, x) + Ψ(v, a; t, x) is a solution of (1.1). If T ∈ R, δ > 0 and ψ ∈ H T,δ is such that φ(t, x) = H(v, a; t, x) + ψ(t, x) is a solution of (1.1), then ψ(t, x) = Ψ(v, a; t, x).
Next, we consider the action of the transformations (1.5) on the set of the constructed solutions. This is not a trivial task, since there is no absolute time, hence functions decaying exponentially in time t could have some other behaviour with respect to another time t . It is easy to check that, under this transform, H(v, a) is mapped to H(v , a ), where (1.6)

v j := v j -v 1 -v j v , a j := (γ j ) -1 γ j (a j + v j t 0 -x 0 )
(the formula for v j is the well-known velocity-addition formula in Special Relativity).

Theorem 1.4. The set of the solutions constructed in Theorem 1.3 is invariant under the transformations (1.5): if (t, x) and (t , x ) are related by (1.5), then

H(v, a; t, x) + Ψ(v, a; t, x) = H(v , a ; t , x ) + Ψ(v , a ; t , x ),
where v and a are given by (1.6).

Finally, we address the question of smoothness of these objects.

Theorem 1.5. If K ∈ N 0 , n is a chain of vacua and A ⊂⊂ S (K) × R K is an open set with compact closure, then (T 0 , δ 0 ) in Theorem 1.3 can be chosen uniformly for all (v, a) ∈ A. The function

Ψ : A × (T 0 , ∞) × R → R constructed in Theorem 1.3 is of class C ∞
and all its partial derivatives decay exponentially in t → ∞.

Remark 1.6. Uniqueness of pure multi-kink solutions could also be proved, modulo minor technicalities, under the assumption of convergence faster than any power of t (instead of the exponential convergence). Uniqueness under no assumptions on the rate of convergence remains an interesting open problem. Note that in the elliptic case this was achieved by del Pino, Kowalczyk and Pacard [START_REF] Del Pino | Moduli space theory for the Allen-Cahn equation in the plane[END_REF], and for KdV and generalised KdV by Martel [START_REF] Martel | Asymptotic N -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF].

Remark 1.7. We can say that S (K) × R K is the parameter manifold of multikinks in the forward time direction for a given chain of vacua (under the assumption of exponential in time convergence), and Φ denes the solution map. The Lorentz transforms act on this parameter manifold, and the quotient manifold parametrises the multikink solutions, up to invariances of the equation. It has dimension 0 for K = 1 and dimension 2K -

3 if K ≥ 2.
Remark 1.8. In the statement of Theorem 1.4, Ψ(v, a; t, x) and Ψ(v , a ; t , x ) are, a priori, welldened only if both t and t are large enough, but in fact, under our assumptions, the problem is globally well-posed, so that the Lorentz transform is well-dened.

Remark 1.9. A well-known open problem is to describe the collisions, that is the behaviour of a given multikink as t → -∞, see for example [START_REF] Goodman | Kink-antikink collisions in the φ 4 equation: the n-bounce resonance and the separatrix map[END_REF] for a mathematically non-rigorous discussion. It is expected that, for generic W , the collisions are inelastic, meaning that for t → -∞ the solution has a dierent behaviour than for t → ∞. In this paper, we only consider the evolution in one time direction.

1.3. Comparison with previous works. Several multi-soliton constructions followed the paper by Martel [START_REF] Martel | Asymptotic N -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF] cited above, see [START_REF] Combet | Multi-soliton solutions for the supercritical gKdV equations[END_REF][START_REF] Ming | Multi-solitons and related solutions for the water-waves system[END_REF], and in particular [START_REF] Côte | Multi-solitons for nonlinear Klein-Gordon equations[END_REF][START_REF] Côte | Multi-travelling waves for the nonlinear Klein-Gordon equation[END_REF] devoted to the Klein-Gordon equations, very similar to (1.1). These works focused on the questions of existence, smoothness and uniqueness of multi-solitons for given velocity and shift parameters.

Our contribution is to study the solution map, which involves the examination of smooth dependence of solutions with respect to the velocities and shifts. The action of Lorentz transforms on multi-solitons for wave equations was not claried in the existing literature either.

All of these works followed the scheme introduced in [START_REF] Martel | Asymptotic N -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF] and [START_REF] Merle | Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity[END_REF], based on energy estimates, weak compactness and weak continuity of the ow. Here, we propose an alternative approach, based on the Contraction Principle, which we believe is a convenient way of proving smooth dependence with respect to velocities and shifts. Most likely, the weak compactness approach of [START_REF] Martel | Asymptotic N -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF][START_REF] Merle | Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity[END_REF] could also be adopted. We point out, however, that proving smooth dependence on the parameters is a more dicult task than proving smoothness of each multi-soliton with respect to t and x. Indeed, the latter can be easily deduced from the regularising eect of the equation. In contrast, we believe that smoothness with respect to the velocities and shifts cannot be directly inferred from the arguments of [START_REF] Côte | Multi-solitons for nonlinear Klein-Gordon equations[END_REF][START_REF] Côte | Multi-travelling waves for the nonlinear Klein-Gordon equation[END_REF].
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2. Kinks, multikinks and their coercivity properties 2.1. Finite energy sectors. We prove that any nite energy state lies in one of the sectors dened by (1.2).

Proposition 2.1. If φ 0 : R → R is a measurable function which satises E p (φ 0 ) < ∞, then

φ 0 ∈ C(R) and there exist m, n ∈ I such that lim x→-∞ φ 0 (x) = ω m , lim x→∞ φ 0 (x) = ω n .
Proof. The proof is based on the so-called Bogomolny trick. Consider the auxiliary function

Γ(φ) := φ 0 2W (y) dy.
Then Γ is a strictly increasing C 1 function and assumption (A4) yields lim φ→±∞ Γ(φ) = ±∞.

Since ∂ x φ 0 ∈ L 2 (R), it is clear that φ 0 ∈ C(R). Fix x 1 , x 2 ∈ R, x 1 < x 2 . We will check that (2.1) |Γ(φ 0 (x 2 )) -Γ(φ 0 (x 1 ))| = x 2 x 1 1 2 (∂ x φ 0 ) 2 + W (φ 0 ) dx - 1 2 x 2 x 1 |∂ x φ 0 | -2W (φ 0 ) 2 dx ≤ x 2 x 1 1 2 (∂ x φ 0 ) 2 + W (φ 0 ) dx.
By approximation, we can assume φ 0 ∈ C 1 ([x 1 , x 2 ]). The chain rule yields

|∂ x Γ(φ 0 (x))| = |∂ x φ 0 (x)| 2W (φ 0 (x)) = 1 2 (∂ x φ 0 (x)) 2 + W (φ 0 (x)) - 1 2 |∂ x φ 0 | -2W (φ 0 ) 2 ,
and it suces to integrate in x.

Since E p (φ 0 ) < ∞, we deduce that lim x→∞ Γ(φ 0 (x)) exists and is nite. This implies, in turn, that lim x→∞ φ 0 (x) exists and is nite. It is immediate from the denition of E p that E p (φ 0 ) < ∞ implies lim x→∞ φ 0 (x) ∈ Ω. The situation is analogous for x → -∞.

We skip the discussion of the Cauchy theory for (1.1). By well-established methods, one can obtain that (1.1) is locally well-posed in each sector E m,n and the energy is conserved. The computation above shows, using again the assumption (A4), that a solution of nite energy is bounded, which implies the absence of blow-up, hence global well-posedness in each sector. We thus have the following result, which we state without proof. Proposition 2.2. For all m, n ∈ I, (φ 0 , φ0 ) ∈ E m,n and t 0 ∈ R there exists a unique solution 

(φ, ∂ t φ) ∈ C(R, E m,n ) of (1.1) such that (φ(t 0 ), ∂ t φ(t 0 )) = (φ 0 , φ0 ).
H n,n+1 (x) = G -1 n (x), with G n (ψ) := ψ ψ n,n+1 dy 2W (y) for all ψ ∈ (ω n , ω n+1 ),
where ψ n,n+1 ∈ (ω n , ω n+1 ) is chosen arbitrarily. Since, by assumption, ω n and ω n+1 are nondegenerate zeros of W , we see that

lim ψ→ωn G n (ψ) = -∞ and lim ψ→ω n+1 G n (ψ) = ∞, thus H n,n+1 is a well-dened smooth increasing function, lim x→-∞ H n,n+1 (x) = ω n and lim x→∞ H n,n+1 (x) = ω n+1 .
It satises the dierential equation

(2.3) ∂ x H n,n+1 (x) = 2W (H n,n+1 (x)).
We also dene the antikink

H n+1,n (x) := H n,n+1 (-x),
which satises the dierential equation

∂ x H n+1,n (x) = -2W (H n+1,n (x)).
We denote m n := W (ω n ) > 0 the mass corresponding to the vacuum ω n . The exponential decay of H n,n (x) and its derivatives for |x| large will be essential for our analysis.

Proposition 2.3. Let n, n ∈ I with |n -n | = 1. The function H n,n is of class C ∞ . For any k ∈ {0} ∪ N there exists C = C(n, n , k) > 0 such that ∂ k x H n,n (x) -δ 0,k ω n ≤ Ce mnx , for all x ≤ 0, (2.4) 
∂ k x H n,n (x) -δ 0,k ω n ≤ Ce -m n x , for all x ≥ 0.
where δ 0,0 = 1 and δ 0,k = 0 for k > 0.

Proof. We consider the case n = n + 1 and x ≤ 0; the remaining cases are reduced to this one using the symmetries of the problem.

Since 2W (y) = m 2 n (y -ω n ) 2 (1 + O(y -ω n )) as y > ω n and y → ω n , we have (2W (y)) -1/2 = (m n (y -ω n )) -1 + O(1), and (2.2) yields G n (ψ) = 1 m n log(y -ω n ) + O(1), y > ω n , y → ω n .
Thus,

1 m n log(H n,n+1 (x) -ω n ) = x + O(1), x → -∞, which implies (2.4) for k = 0.
The bound for ∂ x H n,n+1 (x) follows from (2.3) and the fact that 2W (ψ) is a locally Lipschitz function. For k ≥ 2, (2.4) is proved by induction, dierentiating k -2 times W (H n,n+1 (x)) using the chain and Leibniz rules. Proposition 2.4. All the nite-energy stationary solutions of (1.1) are

• the vacua φ(t, x) = ω n for some n ∈ I, • the kinks φ(t, x) = H n,n+1 (x -a) for some n, n + 1 ∈ I and a ∈ R, • the antikinks φ(t, x) = H n+1,n (x -a) for some n, n + 1 ∈ I and a ∈ R. Proof. A stationary eld φ(t, x) = ψ(x) is a solution of (1.1) if and only if (2.5) ∂ 2 x ψ(x) = W (ψ(x)), for all x ∈ R.
We seek solutions of (2.5

) such that E p (ψ) < ∞, in particular ψ ∈ C(R), so (2.5) and W ∈ C ∞ (R) yield ψ ∈ C ∞ (R). Multiplying (2.5) by ∂ x ψ we get ∂ x 1 2 (∂ x ψ) 2 -W (ψ) = ∂ x ψ ∂ 2 x ψ -W (ψ) = 0, so 1 2 (∂ x ψ(x)) 2 -W (ψ(x)) = k is a constant. But then E p (ψ) < ∞ implies k = 0.
We obtain rst order autonomous equations, called the Bogomolny equations,

(2.6)

∂ x ψ(x) = 2W (ψ(x)) or ∂ x ψ(x) = -2W (ψ(x)), for all x ∈ R. If there exists x 0 ∈ R such that ψ(x 0 ) = ω ∈ Ω, then ψ(x) = ω for all x ∈ R. We thus assume ψ(x) /
∈ Ω for all x ∈ R. We now argue that the sign in (2.6) is always the same. Indeed, the smoothness of ψ implies that the sets {x :

∂ x ψ(x) = 2W (ψ(x))} and {x : ∂ x ψ(x) = -2W (ψ(x))} are closed, and ψ(x) /
∈ Ω implies that they are disjoint. Thus one of them is empty.

We consider the case ∂ x ψ(x) = 2W (ψ(x)) for all x ∈ R, the other case being analogous. In particular, ψ is an increasing function.

If ψ(0) = ψ 0 ∈ (ω n , ω n+1 ) for some n, n+1 ∈ I, then there exists a ∈ R such that H n,n+1 (a) = ψ 0 , and the uniqueness of solutions of ODEs yields ψ(x) = H n,n+1 (x -a) for all x ∈ R, thus ψ is a kink.

If ψ(0) < min Ω, then we could not have lim x→-∞ ψ(x) ∈ Ω, since ψ is increasing. Similarly, ψ(0) > max Ω is impossible.

2.3. Coercivity near a static kink. Let n, n + 1 ∈ I and let φ 0 : R → R be a state such that

E p (φ 0 ) < ∞, lim x→-∞ φ 0 (x) = ω n and lim x→+∞ φ 0 (x) = ω n+1 . Letting x 1 → -∞ and x 2 → ∞ in (2.1), we obtain E p (φ 0 ) ≥ Γ(ω n+1 ) -Γ(ω n ) = ω n+1 ωn 2W (y) dy.
Inspecting the proof of (2.1), we see that equality holds if φ 0 = H n,n+1 , so that

E p (H n,n+1 ) = ω n+1 ωn 2W (y) dy, E p (φ) ≥ E p (H n,n+1
).

The case lim x→-∞ φ(x) = ω n+1 and lim x→+∞ φ(x) = ω n is analogous, and we obtain (1.4).

Let n, n ∈ I such that |n -n | = 1. Writing φ = H n,n + v, we have the Taylor expansion

E p (v) = E p (H n,n ) + 1 2 v, L n,n v ,
where (here and later) •, • denotes the L 2 (R) inner product and

(2.7)

L n,n := -∂ 2 x + W (H n,n ) = -∂ 2 x + V n,n , with V n,n (x) := W (H n,n (x)). Note that |V n,n (x)-m 2 n | e mnx as x → -∞, and |V n,n (x)-m 2 n | e -m n x as x → ∞.
Spectral information on L n,n is obtained using standard arguments. For the convenience of the Reader, we state without proof a minor modication of Lemma 2.6 from [START_REF] Kowalczyk | A sucient condition for asymptotic stability of kinks in general (1+1)-scalar eld models[END_REF].

Proposition 2.5. [7, Lemma 2.6] The operator L n,n dened by (2.7) has the following properties:

(1) L n,n is self-adjoint on L 2 (R), with domain H 2 (R), ( 2 
) ker(L n,n ) = span(∂ x H n,n ) and spec(L) ⊂ {0} ∪ [λ, +∞) for some λ > 0, ( 3 
) for any Z ∈ L 2 (R) such that Z, ∂ x H n,n = 0 there exists λ 0 > 0 such that for all g ∈ H 1 (R) g, L n,n g ≥ λ 0 g 2 H 1 - 1 λ 0 Z, g 2 .
2.4. Coercivity near a moving kink. The Lorentz transformation corresponding to the velocity v ∈ (-1, 1) followed by a shift in the x direction by a ∈ R is given by

x = γ(x -a -vt), t = γ(t -v(x -a)), γ := (1 -v 2 ) -1/2 .
In the sequel, given space-time variables (t, x), we will use (t , x ) to denote their transform as above.

The inverse transform is

x = a + γ(x + vt ), t = γ(t + vx ).
Let n, n satisfy |n -n | = 1, -1 < v < 1 and a ∈ R. We would like to understand the linearised ow around the moving kink solution

φ(t, x) := H n,n (x ) = H n,n (γ(x -vt -a)).
It is convenient to formulate (1.1) and its linearisation as rst order in time systems. If φ = (φ, φ), then (1.1) can be written as

∂ t φ(t, x) = J DE(φ(t, x))
where

J := 0 1 -1 0 , DE(φ) := -∂ 2 x φ + W (φ) φ
are the standard symplectic matrix and the Fréchet derivative of the energy. The linearisation

around the moving kink H n,n (γ(x -vt -a)) is (2.8) ∂ t h(t, x) = J L v,n,n (vt + a) h(t, x)
where

L v,n,n (a) = -∂ 2 x + V n,n (γ(• -a)) 0 0 1 . The one-dimensional kernel of L n,n induces a two-dimensional iterated kernel of L v,n,n . We dene Y 0 n,n (v; x) := ∂ x H n,n (γx), -γv∂ 2 x H n,n (γx) , (2.9) Y 1 n,n (v; x) := -vx∂ x H n,n (γx), γ∂ x H n,n (γx) + γv 2 x∂ 2 x H n,n (γx) , ψ 0 n,n (v; x) := J Y 0 n,n (v; x), ψ 1 n,n (v; x) := J Y 1 n,n (v; x).
The signicance of these objects for the dynamics of is explained by the next lemma, which we state without proof.

Lemma 2.6. The following functions are solutions of (2.4):

h(t, x) = Y 0 n,n (v; x -vt -a), h(t, x) = Y 1 n,n (v; x -vt -a) + γ((1 -v 2 )t -va)Y 0 n,n (v; x -vt -a).
If h(t, x) is any solution of (2.4), then

d dt ψ 0 n,n (v; • -vt -a), h(t) = 0, d dt ψ 1 n,n (v; • -vt -a), h(t) = - 1 γ ψ 0 n,n (v; • -vt -a), h(t) . Proof. See [1, Lemma 4.3]. Here, •, • denotes the inner product in L 2 (R) × L 2 (R).
The quadratic form associated to the linear equation (2.4) above is

Q v,n,n (a; h 0 , h 0 ) = 1 2 ( ḣ0 ) 2 + 2v ḣ0 ∂ x h 0 + (∂ x h 0 ) 2 + V n,n (γ (• -a)) h 2 0 dx.
By the Lorentz transform, we can translate Proposition 2.5 to a coercivity property around L v,n,n , which yields the following result.

Proposition 2.7. For any n, n such that |n -n | = 1 and -1 < v < 1, there exists λ 0 > 0 such that for all h 0 and a ∈ R the following bound holds:

Q v,n,n (a; h 0 , h 0 ) ≥ λ 0 h 0 2 E - 1 λ 0 ψ 0 n,n (v; • -a) , h 0 2 + ψ 1 n,n (v; • -a) , h 0 2 .
Proof. For a proof in a slightly more general setting, see [START_REF] Chen | Lyapunov-type characterisation of exponential dichotomies with applications to the heat and Klein-Gordon equations[END_REF]Lemma 4.4], or the earlier work [4, Proposition 1] for a dierent proof of a very similar result.

2.5. Coercivity near a multikink. In this subsection, we collect the coercivity properties for the linear operator around a multikink. Let K ∈ N, n be a chain of vacua, v ∈ S (K) and a ∈ R K . We set γ j := (1 -v 2 j ) -1/2 for 1 ≤ j ≤ K. In general, various constants in the estimates below depend on v and a, but can be chosen uniformly for (v, a) ∈ A ⊂⊂ S (K) × R K . We are interested in the linear equation (2.10)

∂ t h(t, x) = J L(v, a; t, x)h(t, x), where L(v, a; t, x) = -∂ 2 x + V (v, a; t, x) 0 0 1 with (2.11) V (v, a; t, x) := V n 0 ,n 1 (γ 1 (x -v 1 t -a 1 )) + K-1 j=1 V n j ,n j+1 (γ j+1 (x -v j+1 t -a j+1 )) -m 2 n j .
Using notations from (2.9), for 1 

≤ j ≤ K we dene Y 0 j (t, x) := Y 0 n j-1 ,n j (v j ; x -v j t -a j ) , Y 1 j (t, x) := Y 1 n j-1 ,n j (v j ; x -v j t -a j ) , and 
ψ 0 j (t, x) := J Y 0 j (t, x), ψ 1 j (t, x) := J Y 1 j (t,
d dt ψ 1 j (t), h(t) + 1 γ j ψ 0 j (t), h(t) e -ηt h(t) E .
Proof. See the proof of Lemma 4.8 in [START_REF] Chen | Lyapunov-type characterisation of exponential dichotomies with applications to the heat and Klein-Gordon equations[END_REF].

Remark 2.9. Since, for any v, a and t, L(v, a; t) is a self-adjoint operator on L 2 (R) × L 2 (R) and J is a skew-adjoint operator on the same space, (2.12) can be equivalently written

∂ t ψ 0 j (t), h(t) + ψ 0 j (t), J L(v, a; t)h(t) = ∂ t ψ 0 j (t) -J L(v, a; t)ψ 0 j (t), h(t) e -ηt h(t) E ,
in other words (2.14)

∂ t ψ 0 j (t) -J L(v, a; t)ψ 0 j (t) E * e -ηt .
Analogously, (2.13) can be equivalently written (2.15)

∂ t ψ 1 j (t) -J L(v, a; t)ψ 1 j (t) + γ -1 j ψ 0 j (t) E * e -ηt .
Following [START_REF] Côte | Multi-solitons for nonlinear Klein-Gordon equations[END_REF][START_REF] Côte | Multi-travelling waves for the nonlinear Klein-Gordon equation[END_REF], as well as earlier papers [START_REF] Martel | Stability and asymptotic stability for subcritical gKdV equations[END_REF][START_REF] Martel | Asymptotic N -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF] in the KdV setting, we construct a quadratic functional allowing to control the error in a neighborhood of a multi-soliton. The point is that the quadratic form Q v,n,n (a; h 0 , h 0 ) dened above contains a term depending on v. In order to study a neighbourhood of a multikink, we need a functional which looks like Q v,n j-1 ,n j (v j t + a j ; h 0 , h 0 ) near the j-th kink. Set

χ j (t, x) := χ x -v j t -a j ρt ,
where ρ is a small positive number, χ is a smooth bump function such that χ(x) = 1 for x ∈ [-1, 1] and χ(x) = 0 for x ∈ R\ [-2, 2].

Using the notation (2.11), we dene the quadratic form

Q v,a (t; h 0 , h 0 ) = 1 2 R ( ḣ0 ) 2 + (∂ x h 0 ) 2 + 2 K j=1 χ j (t)v j ḣ0 ∂ x h 0 + V (t)h 2 0 dx.
Proposition 2.10. Fix K ∈ N and a chain of vacua n. For any A ⊂⊂ S (K) × R K there exist

T 0 ∈ R and λ 0 > 0 such that for all (v, a) ∈ A, h 0 ∈ E and t ≥ T 0 Q v,a (t; h 0 , h 0 ) ≥ λ 0 h 0 2 E - 1 λ 0 K j=1 ψ 0 j (t), h 0 2 + ψ 1 j (t), h 0 2 .
Proof. See [1, Lemma 4.6].

Proofs of the main results

3.1. Function spaces. For given

T ∈ R, we denote C ∞ 0 ([T, ∞) × R) the set of functions [T, ∞) × R → R which are restrictions to [T, ∞)×R of functions in C ∞ 0 (R 2 ). Similarly, if A ⊂⊂ S (K) ×R K is an open set with compact closure, we denote C ∞ 0 (A×[T, ∞)×R) the set of functions A×[T, ∞)×R → R which are restrictions to A × [T, ∞) × R of functions in C ∞ 0 (R 2K+2 ).
Fix K ∈ N, a chain of vacua n and (v, a) ∈ S (K) × R K . For T ≥ 0, δ > 0 and s ∈ N, we consider the space H s T,δ of functions g : (T, ∞) × R → R, which is dened as the completion of the set

C ∞ 0 ([T, ∞) × R) for the norm g 2 H s T,δ := sup t>T e 2δt R r+u≤s (∂ r t ∂ u x g(t, x)) 2 dx.
In other words, H s T,δ is the space of functions whose partial derivatives of order < s belong to H T,δ = H 1 T,δ . The denition also makes sense for s = 0 and gives a weighted L ∞ L 2 space, which we denote L 2

T,δ = H 0 T,δ . If b ∈ L ∞ ((T, ∞) × R), then (3.1) bh L 2 T,δ ≤ b L ∞ t,x h L 2 T,δ , for all b, h : (T, ∞) × R → R.
By the Chain Rule and the embedding H 1 (R) ⊂ L ∞ (R), we also obtain

(3.2) bh H T,δ b X h H T,δ .
where the norm X is dened as

(3.3) b X := b L ∞ t,x + ∂ t b L ∞ t L 2 x + ∂ x b L ∞ t L 2
x .

It is clear that X is an algebra. Finally, again using

H 1 (R) ⊂ L ∞ (R), we have (3.4) gh H T,δ 1 +δ 2 g H T,δ 1 h H T,δ 2 .
Note that, if ρ is a standard smooth space-time approximation of identity and g ∈ H s T,δ , then lim →0 + ρ * g -g H s T,δ = 0. If, instead of (v, a) being xed, they are allowed to vary in an open set with compact closure A ⊂⊂ S (K) × R K , we consider the space C k (A, H s T,δ ) of functions g : A × (T, ∞) × R → R, which is dened as the completion of the set C ∞ 0 (A × [T, ∞) × R), for the norm

g 2 C k (A,H s T,δ ) := sup (v,a)∈A sup t>T e 2δt R |p|+|q|≤k r+u≤s ∂ p v ∂ q a ∂ r t ∂ u x g(v, a, t, x) 2 dx,
in other words the space of functions whose partial derivatives of order < s belong to H T,δ , and depend in a C k way on the parameters (v, a) ∈ A. Here, p, q ∈ N K are multi-indices. Note that, if g ∈ H s T,δ , then

(3.5) lim t→∞ e 2δt R r+u≤s (∂ r t ∂ u x g(t, x)) 2 dx = 0. Similarly, if g ∈ C k (A, H s T,δ ), then (3.6) lim t→∞ sup (v,a)∈A e 2δt R |p|+|q|≤k r+u≤s (∂ p v ∂ q a ∂ r t ∂ u x g(v, a, t, x)) 2 dx = 0.
If E is a normed vector space, we denote B(E) the unit ball in E.

In the sequel, we adopt the convention of dropping arguments of functions from right to left, that is, if f : X × Y → Z is a function, then for x ∈ X, f (x) denotes the function Y → Z given by f (x)(y) := f (x, y), and similarly for more arguments, thus for example the symbole H can designate the function (v, a; t, x) → H(v, a; t, x). φ := H(v, a) + g solves (1.1). In the next lemma, we prove energy estimates for the linearised problem.

Lemma 3.1. For all K ∈ N, a chain of vacua n, A ⊂⊂ S (K) × R K and δ 0 suciently small (depending on A), there exists T 0 such that if T ≥ T 0 , then for any (v, a) ∈ A and f ∈ L 2 T,δ 0 there exists a unique solution R(v, a)f := h ∈ H T,δ 0 of the equation

(3.8) ∂ 2 t h -∂ 2 x h + V (v, a)h = f, f, h : (T, ∞) × R → R.
Moreover, R(v, a) is a bounded operator L 2 T,δ 0 → H T,δ 0 , whose norm stays bounded when T ≥ T 0 and (v, a) ∈ A.

Proof.

Step 1 (a priori estimates). Let f ∈ L 2 T,δ and assume h ∈ H T,δ is a weak solution of (3.8).

We will show that (3.9)

h H T,δ ≤ C δ f L 2 T,δ
, where C δ depends on δ, but not on T, v or a. Since, in this proof, v and a are considered as xed, we will write V instead of V (v, a).

Without loss of generality, we can assume h and f are smooth functions. Indeed, if ρ is a standard smooth approximation of identity in dimension 2, then

∂ 2 t (ρ * h) -∂ 2 x (ρ * h) + V (ρ * h) = ρ * f -ρ * (V h) + V (ρ * h).
If (3.9) holds for smooth functions, then we obtain

ρ * h H T,δ ≤ C δ ρ * f -ρ * (V h) + V (ρ * h) L 2 T,δ
, for all > 0. Both ρ * (V h) and V ρ * h converge to V h in L 2 T,δ as → 0, hence we get (3.9) in the limit.

We now prove (3.9) for smooth functions by means of an energy estimate, that is, we compute the time-derivatives of Q (t; h(t), h(t)) and of the projections of h on the iterated kernel. One additional diculty is caused by the fact that V is not a sum of localised terms, and approaches distinct values

m 2 n 0 , m 2 n 1 , . . . , m 2 n K
in the regions between the kinks. In order to deal with this issue, we decompose V in the following way. Let x 0 > 0 to be chosen later.

Let V 1 be a smooth function such that V 1 (x) = m 2 n 0 for x ≤ -x 0 and V 1 (x) = m 2 n 1 for x ≥ x 0 . For 2 ≤ j ≤ K, let V j be a smooth function such that V j (x) = 0 for x ≤ -x 0 and V j (x) = m 2 n j -m 2 n j-1 for x ≥ x 0 . We require ∂ x V j L ∞ x -1 0 for all 1 ≤ j ≤ K. We set V 1 (x) := V n 0 ,n 1 (γ 1 x) -V 1 and, for 2 ≤ j ≤ K, V j (x) := V n j-1 ,n j (γ j x) -m 2 n j-1 -V j .
Then V 1 , . . . , V K are smooth exponentially decaying functions and, see (2.11),

V (t, x) = K j=1 V j (x -v j t -a j ) + K j=1 V j (x -v j t -a j ).
In the remaining part of this proof, we call negligible the terms which can be made h(t) 2 E + h(t) E f (t) L 2 upon taking T 0 and x 0 large enough. The sign means equality up to negligible terms. We have

d dt Q (t; h(t), h(t)) = R ∂ t h∂ 2 t h + ∂ x h∂ t ∂ x h + V h∂ t h dx + d dt R J j=1 χ j (t)∂ t hv j ∂ x h dx + 1 2 R h 2 ∂ t V dx. Note that R h 2 ∂ t V dx = R h 2 ∂ t K j=1 V j (• -v j t -a j ) + K j=1 V j (• -v j t -a j ) dx = - K j=1 R h 2 v j ∂ x V j (• -v j t -a j ) dx - K j=1 R h 2 v j ∂ x V j (• -v j t -a j ) dx. Since ∂ x V j L ∞ x -1
0 , the rst sum is negligible. Integrating by parts the terms in the second sum, we obtain

1 2 R h 2 ∂ t V dx K j=1 R v j h∂ x hV j (• -v j t -a j ) dx.
We also have

d dt K j=1 χ j ∂ t hv j ∂ x h dx = K j=1 R ∂ t χ j ∂ t hv j ∂ x h dx (3.10) + K j=1 R χ j ∂ 2 t hv j ∂ x h dx + K j=1 R χ j ∂ t hv j ∂ t ∂ x h dx. Since ∂ t χ j L ∞ t -2
, the rst term of the right hand side is negligible. In the second term of the right-hand side above, we replace ∂ 2 t h by ∂ 2 x h -h -V h + f . Integrating by parts, we see that ∂ 2 x h and h yield negligible terms (whenever the dierentiation hits χ j , it produces a 1 t factor). By the same argument, the third term of the right hand side of (3.10) is negligible. Consider the term

R v j χ j V h∂ x h dx = R v j χ j h∂ x h K i=1 V j (• -v j t -a j ) + K i=1 V j (• -v j t -a j ) dx.
Since V j are exponentially decaying, the terms V i for i = j can be neglected. Integrating by parts, we see that the terms V i can be neglected as well, and we are left with

R v j χ j V h∂ x h dx R v j h∂ x hV j (• -v j t -a j ) dx.
Note that in the third term of (3.10), we perform integration by parts

J j=1 χ j ∂ t hv j ∂ t ∂ x h dx = - 1 2 J j=1 ∂ x χ j v j (∂ t h) 2 dx.
Combining the estimates above, we obtain

(3.11) d dt Q (t; h(t), h(t)) c 0 h(t) 2 E + f (t) L 2 h(t) E ,
where c 0 can be made arbitrarily small by taking T 0 and x 0 large.

Next, we compute the time derivatives of the projections on the iterated kernel. Using the notation from Section 2.5, we can rewrite (3.8) as

∂ t h(t) = J L(v, a; t)h(t) + (0, f (t)).
Using the self-adjointness of L(v, a; t) and the skew-adjointness of J , we have

d dt ψ 0 j (t), h(t) = ∂ t ψ 0 j (t), h(t) + ψ 0 j (t), ∂ t h(t) = ∂ t ψ 0 j (t) -J L(v, a; t)ψ 0 j (t), h(t) + ψ 0 j (t), (0, f (t)) .
Using (2.14), we infer

d dt ψ 0 j (t), h(t) e -ηt h(t) E + f (t) L 2 .
Similarly, (2.15) yields

d dt ψ 1 j (t), h(t) ψ 0 j (t), h(t) + e -ηt h(t) E + f (t) L 2 .
Therefore, integrating from ∞, for zero modes, we obtain that

ψ 0 j (t), h(t) e -(η+δ)t η + δ h H T 0 ,δ + 1 δ e -δt f L 2 T 0 ,δ and ψ 1 j (t), h(t) e -(η+δ)t (η + δ) 2 + e -(η+δ)t η + δ h H T 0 ,δ + 1 δ + 1 δ 2 e -δt f L 2 T 0 ,δ
.

For the quadratic form part, using (3.11) and the bootstrap assumptions, we integrate from ∞ and conclude that

|Q (t; h(t), h(t))| c 0 e -2δt 2δ h 2 H T 0 ,δ + e -2δt 2δ f L 2 T 0 ,δ h H T 0 ,δ .
Therefore by the coercivity, one has

h(t) 2 E e -(η+δ)t (η + δ) 2 + e -(η+δ)t η + δ 2 h 2 H T 0 ,δ + 1 δ + 1 δ 2 2 e -2δt f L 2 T 0 ,δ + c 0 e -2δt 2δ h 2 H T 0 ,δ + e -2δt 2δ f L 2 T 0 ,δ h H T 0 ,δ ,
where c 0 can be made arbitrarily small by taking T 0 and x 0 large, yielding (3.9).

Step 2 (existence and uniqueness of solutions). Let f ∈ L 2 T,δ . Take T ≥ T and let f T (t) := χ(t -T )f (t), where χ is a smooth decreasing function such that χ(t) = 1 for t ≤ -1 and χ(t) = 0 for t ≥ 0. Then lim T →∞ f T -f L 2 T,δ = 0, see (3.5). Let h T (t, x) be the solution of (3.12)

∂ 2 t h T -∂ 2 x h T + V (t)h T = f T such that h T ( T ), ∂ t h T ( T ) = (0, 0)
. This solution exists by the standard local Cauchy theory. Since f (t) = 0 for all t ≥ T , we have h(t) = 0 for all t ≥ T , in particular h ∈ H T,δ .

By

Step 2, we have that (h T ) T satises the Cauchy condition in H T,δ as T → ∞, hence it converges. Let h ∈ H T,δ be the limit. Passing to the limit in (3.12), we obtain that (3.8) holds in the sense of distributions.

Uniqueness follows directly from the a priori estimate.

In the next lemma, we are interested in the dependence on the parameters, thus V should be seen again as a real-valued function dened on A × [T 0 , ∞) × R. Lemma 3.2. For K ∈ N, a chain of vacua n, A ⊂⊂ S (K) × R K , δ 0 suciently small (depending on A) and δ 1 ∈ (0, δ 0 ), there exists T 0 such that if l ∈ N 0 , s ∈ N, T ≥ T 0 , then for any b ∈

B(C 0 (A, H T,δ 0 )) ∩ C l (A, H s T,δ 0 ), f ∈ C l (A, H s-1 T,δ ) there exists a unique solution h ∈ C l (A, H s T 0 ,δ 1 )
of the equation

∂ 2 t h -∂ 2 x h + (V + b)h = f, f, b, h : A × (T 0 , ∞) × R → R.
Proof.

Step 1 (existence of solutions). Let l = 0 and s = 1. For given (v, a) ∈ A, we rewrite the equation as follows:

(3.13) h(v, a) = R(v, a) f (v, a) -b(v, a)h(v, a) .
The embedding H 1 (R) ⊂ L ∞ (R) implies, by taking T 0 large enough, that b L ∞ ((T 0 ,∞)×R) can be made as small as we wish. Thus, by (3.1) and Lemma 3.1, (3.13) denes a contraction in H 1

T 0 ,δ 1 .
Step 2 (continuity with respect to the parameters). For each (v, a) ∈ A, let h(v, a) be the function constructed in Step 1. We will prove that h ∈ C 0 (A, H 1 T 1 ,δ 0 ). To this end, take (v, a), (v , a ) ∈ A and denote, for the sake of brevity, h :

= h(v , a ), f := f (v , a ), V := V (v , a ) and b := b(v , a ), as well as h := h(v, a), f := f (v, a), V := V (v, a) and b := b(v, a). We have ∂ 2 t (h -h) -∂ 2 x (h -h) + V (h -h) = f -f -(V -V )h -b (h -h) + (b -b) h.
By the a priori estimate, it suces to check that lim

(v ,a )→(v,a) f -f L 2 T 0 ,δ 0 + (V -V )h L 2 T 0 ,δ 0 + (b -b) h L 2 T 0 ,δ 0 = 0 (indeed, since b L ∞ t,x
is small, the term b (h -h) can be absorbed). As for f -f , this is clear.

Continuity of b implies (b -b) h L 2
T 0 ,δ 0 → 0. Finally, V -V is bounded and converges to 0 locally in t, so (3.6) implies the desired bound.

Step 3 (dierentiability). We prove regularity of h by induction on s, and then on l. First, we x l = 0. If s = 1, there is nothing to do. Let s ≥ 2. We prove existence of the partial derivatives. Dene h t as the solution of

∂ 2 t h t -∂ 2 x h t + (V + b)h t = ∂ t f -(∂ t V + ∂ t b)h.
By the induction hypothesis, h t ∈ C 0 (A, H s-1 T 0 ,δ 1 ). We prove that ∂ t h = h t in the weak sense. For xed (v, a), we consider r (t, x) := h(v, a; t + , x) -h(v, a; t, x) -h t (v, a; t, x).

It satises the equation

∂ 2 t r -∂ 2 x r + (V + b)r = f -f -(V + b -V -b)h -∂ t f + (∂ t V + ∂ t b)h = (f -f -∂ t f ) -(V + b -V -b -(∂ t V + ∂ t b))h -(∂ t V + ∂ t b)(h -h),
where we have denoted V (v, a; t, x) := V (v, a; t + , x), and similarly for f , h and b . We need to check that the right hand side is o( ) in L 2 T 0 ,δ 1 as → 0. For the rst two terms, this follows from the dierentiability of V, b and f , and the uniform boundedness of h in L 2 T 0 ,δ 1 . For the third term, we use the continuity of h with respect to t. By the a priori bound, r H T 0 ,δ 1 , implying

∂ t h = h t . Analogously, one proves that ∂ x h ∈ H s-1 T 0 ,δ 1 , thus h ∈ H s T 0 ,δ 1
, nishing the induction step with respect to s.

The induction step with respect to l is similar, so we only sketch the argument for ∂ v k h. Dene h v k as the solution of

∂ 2 t h v k -∂ 2 x h v k + (V + b)h v k = ∂ v k f -(∂ v k V + ∂ v k b)h. By the induction hypothesis, h v k ∈ C 0 (A, H s-1
T 0 ,δ 1 ) (note that it is here that the loss in the exponential convergence rate occurs, due to the polynomial growth of ∂ v k V ). We prove that ∂ v k h = h v k in the weak sense. For xed (v, a), we consider r (t, x)

:= h(v + e k , a; t, x) -h(v, a; t, x) -h v k (v, a; t, x),
where e k := (0, . . . , 1, . . . , 0) is the k-th element of the standard basis of R K . It satises the equation

∂ 2 t r -∂ 2 x r + (V + b)r = f -f -(V + b -V -b)h -∂ v k f + (∂ v k V + ∂ v k b)h = (f -f -∂ v k f ) -(V + b -V -b -(∂ v k V + ∂ v k b))h -(∂ v k V + ∂ v k b)(h -h),
where we have denoted V (v, a; t, x) := V (v + e k , a; t, x), and similarly for f , h and b . We need to check that the right hand side is o( ) in L 2 T 0 ,δ 1 . For the rst two terms, this follows from the dierentiability of V, b and f , and the uniform boundedness of h in L 2 T 0 ,δ 1 . For the third term, we

know from the Step 2 that lim →0 h -h L 2 T 0 ,δ 0 = 0, hence lim →0 (∂ v k V + ∂ v k b)(h -h) L 2 T 0 ,δ 1 = 0
for any δ 1 < δ 0 .

3.3. Formulation as a xed point problem and conclusions. In order to make the formulas which follow shorter, we denote

H k (v, a; t, x) := H n k-1 ,n k (γ k (x -v k t -a k ))
the k-th kink. Plugging the decomposition (3.7) into (1.1), we obtain the following equation for the error term g = g(v, a):

∂ 2 t g(v, a) -∂ 2 x g(v, a) + V (v, a)g(v, a) = N (v, a; g(v, a)),
where we dene

N (v, a; g) := -W (H(v, a) + g) + K k=1 W (H k (v, a)) + V (v, a)g.
We are going to reformulate this equation as a xed point problem for a contraction.

We need to study some properties of composition with a smooth function in the relevant functional spaces. Before stating the next lemma, we recall that B(E) denotes the unit ball in a normed space E.

Lemma 3.3. Let F ∈ C ∞ (R).
For any C 0 ≥ 0, T 0 ≥ 0 and δ 0 > 0 there exists C 1 ≥ 0 such that

F (φ + g) -F (φ) H T 0 ,δ 0 ≤ C 1 g H T 0 ,δ 0 , (3.14) F (φ + g) -F (φ) -F (φ)g H T 0 ,2δ 0 ≤ C 1 g 2 H T 0 ,δ 0 . (3.15)
for all g ∈ B(H T 0 ,δ 0 ) and φ satisfying φ X ≤ C 0 .

Proof. The bound (3.14) follows from (3.15) and (3.2).

In order to prove (3.15), we write

F (φ + g) -F (φ) -F (φ)g = g 2 1 0
(1 -σ)F (φ + σg) dσ. For any A ⊂⊂ S (K) × R K and l, s ∈ N, there exist T 0 ∈ R and δ 0 > 0 such that (3.16)

F (φ + σg) L ∞ t,x + ∂ t (F (φ + σg)) L ∞ t L 2 x + ∂ x (F (φ + σg)) L ∞ t L 2
F (H) -F (ω n 0 ) + K k=1 F (H k ) -F (ω n k-1 ) ∈ B(C l (A, H s T 0 ,δ 0 ))

and

(3.17)

(F (H) -F (H j ))∂ x H j ∈ B(C l (A, H s T 0 ,δ 0 )),
for all 1 ≤ j ≤ K.

Moreover, if 0 < δ 1 ≤ δ 0 and g ∈ C k (A, H s T 0 ,δ 1 ), then (3.18)

F (H + g) -F (H) ∈ C k (A, H s T 0 ,δ )
for any 0 < δ < δ 1 .

Proof.

Step 1. We prove that, if j < k, then 

(H j -ω n j )(H k -ω n k-1 ) ∈ B(C k (A, H s T 0 ,δ 0 )), (3.19) 
(H j -ω n j )∂ x H k ∈ B(C k (A, H s T 0 ,δ 0 )), (3.20) 
(H k -ω n k-1 )∂ x H j ∈ B(C k (A, H s T 0 ,δ 0 )).
|∂ p v ∂ q a ∂ r t ∂ u x (H j (v, a; t, x) -ω n j )| ≤ e -δ(x-v j t-a j ) + . Indeed, if |p| + |q| + r + u > 0 then ∂ p v ∂ q a ∂ r t ∂ u
x (H j (v, a; t, x) -ω n j ) is the sum of a nite number of terms, each of which is a polynomial in (t, x) with bounded coecients depending on (v, a), multiplied by ∂ n x H j for some n ∈ N. Similarly,

|p|+|q|≤l r+u≤s |∂ p v ∂ q a ∂ r t ∂ u x (H j (v, a; t, x) -ω n j )| ≤ e -δ(v k t+a k -x) + .
Taking logarithms, we see that e -δ(x-v j t-a j ) + e -δ(v k t+a k -x) + e -δ 0 t , if T 0 is large enough and δ 0 small enough.

The proofs of (3.20) and (3.21) are very similar, so we skip them.

Step 2. We proceed by induction with respect to K. If K = 1, the left hand side is identically 0,

so let K ≥ 2.
Note the formula

F (φ 1 + φ 2 -φ 3 ) -F (φ 1 ) -F (φ 2 ) + F (φ 3 ) = (φ 1 -φ 3 )(φ 2 -φ 3 ) 1 0 1 0 F (σ 1 φ 1 + σ 2 φ 2 + (1 -σ 1 -σ 2 )φ 3 ) dσ 1 dσ 2 ,
obtained by applying the Fundamental Theorem twice. Applying it with φ 2 := H K , φ 3 := ω n k-1

and

φ 1 := H := F (ω n 0 ) + K-1 k=1 F (H k ) -F (ω n k-1 ) ,
Lemma 3.8. Let Ψ : A × (T 0 , ∞) × R → R be the function constructed in Proposition 3.6. Then ∂ a k Ψ exists for all (v, a) ∈ A and solves the equation

∂ 2 t ∂ a k Ψ -∂ 2 x ∂ a k Ψ + W (H + Ψ)∂ a k Ψ = -(W (H + Ψ) -W (H k ))∂ a k H k . Moreover, ∂ x Ψ = -K k=1 ∂ a k Ψ and ∂ t Ψ = -K k=1 v k ∂ a k Ψ.
Futhermore, ∂ v k Ψ exists for all (v, a) ∈ A and solves the equation

∂ 2 t ∂ v k Ψ -∂ 2 x ∂ v k Ψ + W (H + Ψ)∂ v k Ψ = -(W (H + Ψ) -W (H k ))∂ v k H k . Finally, ∂ a k Ψ, ∂ v k Ψ ∈ C(A, H T 0 ,δ ) if δ > 0 is small enough.
Proof. We rst prove that v, Ψ(v, a) is continuous with respect to (v, a) ∈ A as a H T 0 ,δ -valued map for any 0 < δ < δ 0 . Let (v, a), (v , a ) ∈ A. We have

N (v, a ; Ψ(v , a )) -N (v, a; Ψ(v, a)) H T 0 ,δ ≤ N (v , a ; Ψ(v , a )) -N (v, a ; Ψ(v , a )) H T 0 ,δ + N (v, a ; Ψ(v , a )) -N (v, a; Ψ(v , a )) H T 0 ,δ + N (v, a; Ψ(v , a )) -N (v, a; Ψ(v, a)) H T 0 ,δ .
By (3.27), the rst term converges to 0 as (v , a ) → (v, a). By (3.26), the second term as well. The third term is estimated using (3.25), which yields the bound c 0 Ψ(v , a )) -Ψ(v, a)) H T 0 ,δ where c 0 can be made arbitrarily small. By (3.2), we also have

lim (v ,a )→(v,a) (V (v , a ) -V (v, a))Ψ(v , a ) H T 0 ,δ = 0, so the right hand side of (∂ 2 t -∂ 2 x + V (v, a))(Ψ(v , a ) -Ψ(v, a)) = N (v , a ; Ψ(v , a )) -N (v, a; Ψ(v, a)) -(V (v , a ) -V (v, a))Ψ(v , a )
is bounded in H T 0 ,δ by o(1) + c 0 Ψ -Ψ H T 0 ,δ , and Lemma 3.1 allows to absorb the second term, thus nishing the proof of lim (v ,a )→(v,a) Ψ(v , a ) -Ψ(v, a) H T 0 ,δ = 0.

Let k ∈ {1, . . . , K} and dene Θ : A × (T 0 , ∞) × R → R as the solution of (3.28)

∂ 2 t Θ -∂ 2 x Θ + W (H + Ψ)Θ = -(W (H + Ψ) -W (H k ))∂ a k H k , given by Lemma 3.2. Set b := W (H + Ψ) -V . Since Ψ ∈ C 0 (A, H T 0 ,δ ), (3.18) yields W (H + Ψ) - W (H) ∈ C 0 (A, H T 0 ,δ ) (upon diminishing δ if necessary). By (3.16), we also have W (H) -V ∈ C 0 (A, H T 0 ,δ ), thus b ∈ B(C 0 (A, H T 0 ,δ )) (again modifying δ and T 0 if necessary). By Lemma 3.7 and Lemma 3.2, Θ ∈ C 0 (A, H T 0 ,δ ). Let (v, a) ∈ A. We will verify that if T 0 is large enough (depending on A), then ∂ a k Ψ(v, a; t, x) exists for all (t, x) ∈ (T 0 , ∞) × R and ∂ a k Ψ(v, a) = Θ(v, a). To this end, for 0 < | | small enough, consider Ξ : (T 0 , ∞) × R → R given by Ξ (t, x) := Ψ(v, a + e k , t, x) -Ψ(v, a, t, x) -Θ(v, a, t, x),
where e k := (0, . . . , 1, . . . , 0) is the k-th element of the standard basis of R K . Our goal is to verify

that lim →0 | | -1 Ξ H T 0 ,δ = 0.
In the computation below, we denote a := a + e k and Ψ (v, a, t, x) := Ψ(v, a , t, x). We consider (v, a) as being xed, but below we omit the argument (v, a) for the sake of brevity, thus we write H instead of H(v, a) etc. We observe that Ξ solves the equation

(∂ 2 t -∂ 2 x + V )Ξ = (∂ 2 t -∂ 2 x + V )(Ψ -Ψ -Θ) = (∂ 2 t -∂ 2 x )Ψ -(∂ 2 t -∂ 2 x )Ψ + V (Ψ -Ψ) -(∂ 2 t -∂ 2 x -V )Θ = -W (H + Ψ ) + W (H + Ψ) + K j=1 (W (H j ) -W (H j )) + V (Ψ -Ψ) + (W (H + Ψ) -V )Θ + (W (H + Ψ) -W (H k ))∂ a k H k ,
where in the last equality we use (3.28).

We claim that the right hand side is bounded in H T 0 ,δ by o(| |) +c 0 Ξ H T 0 ,δ , with c 0 small (upon adjusting T 0 and δ). Lemma 3.1 will then allow to conclude.

We further rearrange the terms of the right hand side above as follows, using the fact that H j = H j for j = k:

(3.29) -W (H + Ψ ) -W (H + Ψ) -W (H + Ψ)(Ψ -Ψ) -W (H + Ψ ) -W (H + Ψ ) + W (H k ) -W (H k ) + (W (H + Ψ ) -W (H k ))∂ a k H k -(W (H + Ψ ) -W (H + Ψ))∂ a k H k -W (H + Ψ) -V (Ψ -Ψ -Θ).
Consider the last line, noting that Ψ -Ψ -Θ = Ξ . As in the proof of Lemma 3.5, we write

-W (H + Ψ) + V = -W (H + Ψ) + W (H) + -W (H) + V .
Using Lemmas 3.3 and 3.4, we obtain a bound in H T 0 ,δ 3 for some δ 3 > 0. Enlarging T 0 if necessary and using (3.4), we conclude that

-W (H + Ψ) + V Ξ H T 0 ,δ ≤ c 0 Ξ H T 0 ,δ .
Regarding the fourth line, using (3.14) together with the fact that lim →0 Ψ -Ψ H T 0 ,δ = 0, we obtain the bound o( ) in H T 0 ,δ . Consider now the rst line of (3.29). By (3.15), we have

W (H + Ψ ) -W (H + Ψ) -W (H + Ψ)(Ψ -Ψ) H T 0 ,δ Ψ -Ψ 2 H T 0 ,δ Ψ -Ψ H T 0 ,δ = Θ + Ξ H T 0 ,δ + Ξ H T 0 ,δ .
Using the Fundamental Theorem and H -H = H k -H k , we rewrite the second line of (3.29) as (3.30) In the case of space-time translations, the claim is clear, so let us consider a Lorentz boost with velocity v, (t, x) = (γ(t + vx ), γ(x + vt )), (t , x ) = (γ(t -vx), γ(x -vt)). Without loss of generality, we can assume v ∈ (0, 1). Let g := Ψ(v, a), φ := H(v, a) + g, φ(t , x ) := φ(t, x), h := φ -H(v , a ). Recall that g is dened for all (t, x) ∈ R 2 thanks to the global well-posedness. Since H(v , a ; t , x ) = H(v, a; t, x), we have h(t , x ) = g(t, x). We wish to prove that R (∂ t h(t , x )) 2 + (∂ x h(t , x )) 2 + h(t , x ) 2 dx e -δt for some δ > 0. Equivalently, observing that γ(t + vx ) = γ -1 t + vx, where γ := (1 -v 2 ) -1/2 , R (∂ t g(γ -1 t + vx, x)) 2 + (∂ x g(γ -1 t + vx, x)) 2 + g(γ -1 t + vx, x) 2 dx e -δt .

(H k -H k ) 1 0 -W (H + Ψ + σ(H k -H k )) + W (H k + σ(H k -H k )) dσ = -(H k -H k )(H -H k + Ψ )
We consider separately the regions x ≥ -t 2γv and x ≤ -t 2γv . In the rst region, it suces to use the exponential in time decay of g and its derivatives, uniformly in x, which follows from Theorem 1.5 and the embedding H 1 (R) ⊂ L ∞ (R).

Consider the second region. Set (t 0 , x 0 ) := (t /(2γ), -t /(2vγ)) and let ∆ be the cone in the (t, x) plane R × R with vertex at (t 0 , x 0 ), delimited by the half-lines {(t 0 , x) : x ≤ x 0 } and {(t 0 + v(xx 0 ), x) : x ≤ x 0 }. An elementary computation shows that (t, x) ∈ ∆ implies x -v k t -a k x, thus |H(v, a; t, x) -ω n 0 | + |∂ t H(v, a; t, x)| + |∂ x H(v, a; t, x)| e -δx , 21 uniformly for (t, x) ∈ ∆, with a constant independent of t 0 . In particular, proving that x 0 -∞ (∂ t g(γ -1 t + vx, x)) 2 + (∂ x g(γ -1 t + vx, x)) 2 + g(γ -1 t + vx, x) 2 dx e -δt . is equivalent, since W (ω n 0 + g) g 2 for |g| small, to verifying that (3.31)

x 0 -∞ 1 2
(∂ t φ(γ -1 t + vx, x)) 2 + 1 2 (∂ x φ(γ -1 t + vx, x)) 2 + W (φ(γ -1 t + vx, x)) dx e -δt .

For the same reason, the exponential decay in time of g implies (3.32)

x 0 -∞ 1 2 (∂ t φ(t 0 , x)) 2 + 1 2 (∂ x φ(t 0 , x)) 2 + W (φ(t 0 , x)) dx e -δt .

By the Green's theorem applied for the smooth vector eld ( 1 2 (∂ t φ) 2 + 1 2 (∂ x φ) 2 + W (φ), -∂ t φ∂ x φ), in the region ∆, (3.32) implies (3.31).
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 1 Setting of the problem. We study scalar elds in dimension 1 + 1. Let W : R → [0, +∞) be a function of class C ∞ and consider the Lagrangian action φ) 2 -W (φ) dx dt, for real-valued functions φ = φ(t, x). The Euler-Lagrange equation associated with L is the non-

  x) = ω n , lim x→∞ φ(t, x) = ω n , for some n, n ∈ I and |n -n | = 1.

3. 2 .

 2 Energy estimates. For given v = (v 1 , . . . , v K ) ∈ S (K) and a = (a 1 , . . . , a K ) ∈ R K , we seek g = g(v, a) ∈ H s T,δ such that (3.7)

x 1 ,

 1 so (3.2) and (3.4) yield the claim. Lemma 3.4. Let F ∈ C ∞ (R).

3 ,

 3 together with the Chain and Leibniz Rules, |p|+|q|≤l r+u≤s

Proof of Theorem 1 . 5 . 2 and Lemma 3. 8 .

 1528 Induction with respect to s and l. The induction step follows from Lemma 3.Proof of Theorem 1.4. Fix (v, a) ∈ S (K) × R K . We should prove that, applying a space-time translation or a Lorentz transform to H(v, a) + Ψ(v, a) yields a function converging exponentially in time to H(v , a ), where (v , a ) is given by(1.6). The uniqueness part of Theorem 1.3 will then yield the conclusion.

  The functions H n,n are studied in detail in Section 2.2.It is not dicult to see that for n -n ≥ 2 we have

	inf (φ 0 , φ0 )∈E n,n	E(φ 0 , φ0 ) =	inf

(φ 0 , φ0 )∈E n ,n E(φ 0 , φ0 ) = n -1 l=n E p (H l,l+1 ),

but the inmum is not attained, and there is no ground state in E n,n or E n ,n . Constant solutions, kinks and antikinks are all the stationary states of (1.1), see Section 2.2.

  2.8. For any chain of vacua n, v ∈ S (K) and a ∈ R K there exist T 0 ∈ R and η > 0 such that if h(t, x) is a solution of (2.10), then for all t ≥ T 0

	(2.12)	d dt	ψ 0 j (t), h(t)	e -ηt h(t) E ,
	(2.13)			

x).

Lemma 2.6, combined with the exponential decay from Proposition 2.3, leads to the following result. Proposition

  W (H k + τ (H -H k + Ψ ) + σ(H k -H k )) dτ dσ. H T 0 ,δ . Using the exponential decay of ∂ a k H k and its derivatives for |x -a k -v k t| 1, we also obtain (H k -H k )(H -H k ) H T 0 ,δ . Moreover, since H k -H k X , 20another application of the Fundamental Theorem givesW (H k + τ (H -H k + Ψ ) + σ(H k -H k )) -W (H k + τ (H -H k + Ψ )) X .Thus, up to terms bounded in H T 0 ,δ by O(2), (3.30) is the same as-(H k -H k )(H -H k + Ψ )Adding the third line of (3.29), we obtain-(H k -H k -∂ a k H k )(H -H k + Ψ ) W (H k + τ (H -H k + Ψ )) dτ. -H k -∂ a k H k X = 2 1 0 (1 -σ)∂ 2 a k H k (v, a + σ e k ) dσ 3.2) yields (H k -H k -∂ a k H k )Ψ H T 0 ,δ 2 . Using the exponential decay of ∂ 2 a k H k and its derivatives for |x -a k -v k t| 1, we also obtain (H k -H k -∂ a k H k )(H -H k ) H T 0 ,δ 2 .This nished the proof of the required estimate of (3.29).The proofs of existence of the other partial derivatives are similar, so we skip them. The formulas for ∂ x Ψ and ∂ t Ψ follow from the fact that ∂x H = -K k=1 ∂ a k H and ∂ t H = -K k=1 v k ∂ a k H.
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Since H k (v, a ) -H k (v, a) X = 1 0 ∂ a k H k (v, a + σ e k ) dσ X , (3.2) yields (H -H)Ψ k + τ (H -H k + Ψ )) dτ. Since H k (

we obtain

The last integral is bounded, and all its derivatives as well. Observing that H -ω n K-1 = K-1 j=1 (H jω n j ) and using K -1 times (3.19), we obtain (3.16).

Step 3. In order to prove (3.17), since ∂ x H j and all its derivatives in v, a, t, x are bounded by a polynomial in t, it suces to check that

But we observe that

hence it suces to prove that Step 4. Finally, in order to prove (3.18), we write

In order to prove continuity, we observe that F (H + σg) is continuous from A to the space X dened by (3.3), uniformly in σ, so it suces to apply (3.2).

Next, we dierentiate under the integral sign in (3.24), using again the fact that we can absorb polynomials in t by diminishing δ. Lemma 3.5. For any A ⊂⊂ S (K) × R K , δ 0 small enough (depending on A) and 0 < δ < δ 0 , there

We rewrite the integrand as

By Lemma 3.3, the rst term is uniformly bounded in H T,δ 0 . By Lemma 3.4 applied with F = W , the second term is uniformly bounded in H T,δ 3 for some δ 3 > 0. Hence, (3.25) follows from (3.4).

We have

Similarly as above, Lemmas 3.3 and 3.4 yield uniform boundedness of the right hand side in H T,δ 0 , proving (3.26). Analogously, ∂ v k N (v, a; g) is uniformly bounded in H T,δ , which proves (3.27). Proposition 3.6. For any A ⊂⊂ S (K) × R K , there exist T 0 , δ 0 > 0 such that the following is true.

Proof. Fix (v, a) ∈ S (K) × R K , and let R(v, a) be given by Lemma 3.1.

Given T ∈ R, δ > 0 and g ∈ B(H T,δ ), we dene Φ(g) := R(v, a)N (v, a; g).

It follows that φ solves (1.1) if and only if g = Φ(g).

By Lemmas 3.1 and 3.5, if T is large enough, then Φ is a contraction in B(H T,δ ). Since the constants in Lemmas 3.1 and 3.5 are uniform in (v, a) ∈ A, T 0 and δ 0 can be chosen uniformly for (v, a) ∈ A.

Proof of Theorem 1.3. The existence part follows from Proposition 3.6, applied for A being the singleton {(v, a)}.

Let ψ ∈ H T,δ be such that φ = H(v, a) + ψ solves (1.1). Without loss of generality, we can assume T ≥ T 0 and δ ≤ δ 0 , so that Ψ(v, a) ∈ B(H T,δ ). Upon modifying δ and T , we can assume ψ ∈ B(H T,δ 0 ).

If T is large enough, then Φ is a contraction on this set, implying uniqueness.

Lemma 3.7. For any A ⊂⊂ S (K) × R K , l, s ∈ N, T 0 suciently large, δ 0 suciently small (both

and

for all 0 < δ < δ 0 .

Proof. By Lemma 3.4,

By (3.18), we have

Taking the sum, we obtain the conclusion.