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Twist-induced local curvature of filaments in DNA toroids
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Summary. — DNA toroidal bundles form upon condensation of one or multiple
DNA filaments. DNA filaments in toroidal bundles are hexagonally packed, and
collectively twist around the center line of the toroid. In a previous study, we
and our coworkers argue that the filaments’ curvature locally correlates with their
density in the bundle, with the filaments less closely packed where their curvature
is higher. We base our claim on the assumption that twist has a negligible effect
on the local curvature of filaments in DNA toroids. However, this remains to be
proven. We fill this gap here, by calculating the distribution of filaments’ curvature
in a geometric model of twisted toroidal bundle, which we use to describe DNA
toroids by an appropriate choice of parameters. This allows us to substantiate our
previous study and suggest directions for future experiments.

1. – Introduction

DNA is a negatively charged polymer. While its subunits repel each other in neutral
solutions, they can effectively attract each other when in the presence of positive ions with
high valency, thanks to a phenomenon known as DNA condensation [1]. When one or
multiple DNA filaments condense, they most commonly aggregate into toroidal bundles.
In DNA toroids, filaments are laterally packed as in a hexagonal lattice, and the whole
lattice rotates around the toroid center line [2]. We provide a pictorial representation of
such bundle in fig. 1.

In a recent paper, we and our coworkers use cryoelectron microscopy to reveal a novel
structural feature of DNA toroids. Along the direction denoted by eR in fig. 1, the
distance between neighboring filaments decreases with their distance from the z-axis [3].
In the same paper, we explain this behavior by means of a simple theory of mechanical
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Fig. 1. – Geometry of a twisted toroidal bundle. On the left, the reference frame used to locate
points within a toroidal volume. On the right, a pictorial representation of a discrete bundle of
filaments, which features the lateral hexagonal packing observed in DNA toroids.

equilibrium, based on the competition between local filament-filament interactions and
DNA bending rigidity. The key mechanism in our theory is that the elastic energy
penalty due to DNA bending rigidity promotes the accumulation of filaments in the
regions of the bundle where their curvature is low. We choose to neglect the collective
twist of DNA filaments around the toroid center line, i.e. to describe them as circles lying
perpendicular to the z-axis. In this case, curvature clearly decreases with the distance
from the z-axis, producing a distribution of filaments consistent with the experiments at
mechanical equilibrium.

Our prediction in ref. [3] relies on the assumed distribution of filaments’ curvature
in the bundle, which neglects twist. However, twist can spatially redistribute curvature
within the bundle, possibly invalidating our assumption. This is the problem we tackle
here. In sect. 2, we introduce a simple geometric model of twisted toroidal bundle, which
allows us to determine the expected distribution of the filaments’ curvature as a function
of twist. Then, in sect. 3, we adapt our model to the case of DNA toroids and assess the
validity of the assumption used in ref. [3].

2. – Geometric model of twisted toroidal bundle

We model a toroidal bundle as a continuous family of curves that surrounds a circular
center line with radius R, following the approach used in ref. [4]. The center line is
a curve with arc length s ∈ [0, 2πR] and position vector R(s) = R eR(s) (fig. 1). To
describe the space surrounding the center line, we introduce the local frame of reference
(es, eρ, eφ), where es = ∂sR, eρ = − cosφ eR + sinφ ez, eφ = ∂φeρ (fig. 1). This
allows us to locate each point x in space in terms of its distance ρ from the center line,
x(s, ρ, φ) = R(s) + ρ eρ(s, φ).

The geometry of the bundle is fully determined by the field et(s, φ, ρ), which locally
corresponds to the unit tangent of the filament passing through x(s, φ, ρ). We prescribe
a form of et that implicitly accounts for the chiral interactions between neighboring
DNA filaments. We take inspiration from the theory of cholesteric liquid crystals, which
predicts that dense packings of screw-like objects self-organize in a so-called double-twist
geometry [5]. In a straight bundle featuring double-twist, filaments are helices with pitch
2π/Ωs and tilt angle θs = arctan(Ωsρ) with respect to the central axis of the bundle
(see fig. 5 in ref. [6]). To mimic the double-twist geometry in our toroidal bundle, we
define the field of tangents as et = cos[θ(ρ, φ)] es + sin[θ(ρ, φ)] eφ. Assuming rotational
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Fig. 2. – Curvature distribution in a twisted toroid. (A) Distribution of filaments’ curvature at

different values of ˜Ω, over a two-dimensional domain φ ∈ [0, 2π] × ρ̃ ∈ [0, ρ̃max
˜Ω

]. To facilitate
view, cross-sections are rescaled so as to be equally sized. (B) Two arcs with curvature of

opposite sign, on a torus. (C) Distribution of filaments’ curvature at different values of ˜Ω, over

the x-axis defined in panel A. The domain of each curve is [−ρ̃max
˜Ω

, ρ̃max
˜Ω

], which depends on ˜Ω.

invariance around the z-axis implies that θ(ρ, φ) does not depend on s. Further assuming
that DNA bundles are incompressible implies the no-splay condition∇·et = 0, where∇ is
the gradient operator, which is satisfied by θ(ρ, φ) = arcsin (f(ρ)/ [1− ρ cos(φ)/R]) [7,8],
where f(ρ) is an arbitrary function of ρ. In the following, we make the simplest linear
choice f(ρ) = Ωρ, consistent with previous works on twisted toroids (for instance, see
ref. [7]). Note that the limited domain of the arcsin in the expression of θ imposes an
upper bound on the tubular radius, ρ < ρmax

Ω = R/(1 + ΩR).
The parameter Ω governs the amount of twist in our bundle. It is related to the

number of turns a filament makes around the toroid center line, but unfortunately not
through a simple relation [4]. The case Ω = 0 corresponds to an untwisted bundle, and
the sign of Ω determines the handedness of the twist.

From now on, we use R as unit of length and denote non-dimensional quantities by a
tilde. We can calculate the field of filaments’ local curvature c̃(ρ̃, φ) through the relation
c̃ en = (et ·∇) et, where en is the field of local unit normals to the filaments. Rather than
detailing its cumbersome expression [8], in fig. 2(A) we plot c̃2 over the cross-section of

a toroid with tubular radius ρ̃max
˜Ω

, for different values of ˜Ω. Note that the profile of c̃2

over a cross-section does not depend on the tubular radius.

3. – Conclusion

At ˜Ω = 0, the bundle does not twist and filaments are circles perpendicular to the
z-axis. In this case, curvature decreases with the distance from the z-axis (fig. 2(A)), as

in our previous paper [3]. If ˜Ω �= 0, twist alters the spatial distribution of curvature. At
˜Ω > 0, a local curvature drop emerges at the boundary of the bundle cross-section, close
to the z-axis (fig. 2(A)). This low-curvature region forms due to a local change of sign

of the filaments’ curvature. In fact, as ˜Ω increases, filaments transition from a state of
“positive” curvature, in which they wind around the z-axis like the white arc in fig. 2(B),
to a state of “negative” curvature, in which they wind around the toroid center line like
the black arc in fig. 2(B), passing through a state of zero curvature at the transition. As
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˜Ω increases, this local curvature drop shifts along the x-axis (fig. 2(A), (C)), towards the
center of the bundle cross-section.

We now estimate the distribution of curvature in the DNA toroids of ref. [2]. These
toroids have a radius R∗ � 25 nm and (non-dimensional) tubular radius ρ̃∗ = ρ∗/R∗ �
1/3. Differently than our model, the rate of twist of DNA bundles changes along the
toroid center line, most of the twist being localized in so-called twist walls [2]. Between
twist walls, the bundle rotates rather slowly, and we showed elsewhere that the experi-
mental data is consistent with a local ˜Ω∗ = Ω∗R∗ � 0.13 [8]. Assuming this amount of
twist, our analysis suggests that the distribution of curvature within a toroid of tubular
radius ρ̃∗ is analogous to that of the ˜Ω = 0 case (fig. 2(C)). Note that ρ̃∗ < ρ̃max

˜Ω=0.13
,

therefore the regions with sizeable deviations between the values of c̃2 of the ˜Ω = 0 and
˜Ω = 0.13 models in fig. 2(C) are not a concern for us.

To conclude, our results substantiate the no-twist approximation used in ref. [3] that
the curvature of DNA filaments decreases with the distance from the center of the toroid.
This hypothesis may fail close to twist walls, where the increased local twist may induce
a non-monotonic dependence of the filaments’ curvature on the distance from the center.
If curvature and spacing correlate, as proposed in ref. [3], close to twist walls we may
expect a non-monotonic dependence of the filaments spacing on the distance from the
center. In principle, this possibility could be investigated in future experiments, similar
to those in ref. [3]. Beyond DNA toroids, the coupling between twist and curvature in
bundles of biological filaments is relevant also in other contexts, such as in the mechanics
of the eukaryotic flagellum (see, e.g., ref. [9]).
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Saclay (COmUE) Nov. 2019.
[9] Cicconofri G., Noselli G. and DeSimone A., eLife, 10 (2021) e58610.


