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Abstract

PyLlama is a handy Python toolkit to compute the electromagnetic re-
flection and transmission properties of arbitrary multilayered linear media,
including the case of anisotropy. Relying on a 4× 4-matrix formalism, PyL-
lama implements not only the transfer matrix method, that is the most
popular choice in existing codes, but also the scattering matrix method,
which is numerically stable in all situations (e.g., thick, highly birefringent
cholesteric structures at grazing incident angles). PyLlama is also designed
to suit the practical needs by allowing the user to create, edit and assemble
layers or multilayered domains with great ease. In this article, we present the
electromagnetic theory underlying the transfer matrix and scattering matrix
methods and outline the architecture and main features of PyLlama. Finally,
we validate the code by comparison with available analytical solutions and
demonstrate its versatility and numerical stability by modelling cholesteric
media of varying complexity. A detailed documentation and tutorial are pro-
vided in a separate user manual. Applications of PyLlama range from the
design of optical components to the modelling of polaritonic effects in polar
crystals, to the study of structurally coloured materials in the living world.
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photonic crystals; cholesterics; surface phonon polaritons

PROGRAM SUMMARY

Program Title: PyLlama – Python Toolkit for the Electromagnetic Modelling of
Multilayered Anisotropic Media
Developers repository link: https://github.com/VignoliniLab/PyLlama

Licensing provisions: GPLv3
Programming language: Python
Supplementary material: User guide and tutorials at https://pyllama.readthedocs.io/
Nature of problem: Computation of the optical reflection and transmission coef-
ficients of arbitrary multilayered linear media, composed of an arbitrary number
of layers, possibly mixing isotropic and anisotropic, absorbing and non-absorbing
materials, for linearly or circularly polarized light.
Solution method: Implementation of both the transfer matrix method (faster) and
the scattering matrix method (more robust) relying on a 4× 4 matrix formalism.
Additional comments including Restrictions and Unusual features: Integration of
a physical model to handle cholesteric structures, blueprint for the integration of
user-created custom systems, hassle-free export of spectra for non-programmers
even for complex and/or custom systems. External routines include: Numpy [1],
Scipy [2], as well as Sympy [3] (optional).

References

[1] Numpy, https://numpy.org/

[2] Scipy, https://www.scipy.org/

[3] Sympy, https://www.sympy.org/

1. Introduction

Multilayered media made of anisotropic materials are widespread in na-
ture [1] and in nanotechnologies, especially for optoelectronic [2], optical
and photonic applications [3, 4]. For instance, chiral nematic (or cholesteric)
structures consist in birefringent units arranged into periodic helicoidal archi-
tectures, which can selectively reflect circularly-polarised light in a specific
wavelength range [5, 6, 7, 8, 9, 10]. In living organisms, these structures
are responsible for the vibrant blue of Pollia condensata fruits [11] and the
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shiny green of Scarabeid beetles [12]. They can also be fabricated through
self-assembly mechanisms from bio-compatible materials, such as cellulose
nanocrystals [13], cellulose derivatives [14] or their composites [15, 16], with
applications in photonic pigments, color printing and optical sensors [13, 17,
18, 19, 16]. In optical engineering, multilayered anisotropic media have been
used to realize linear polarizers, waveplates and birefrigent filters for laser
and telecommunication technologies, imaging systems, displays or gas sens-
ing [3, 20]. More recently, they opened new perspectives for subdiffraction
wave focusing [21, 22] thanks to surface phonon polaritons [23] and low-loss
surface wave guiding [24, 25].

Analytical solutions for the optical properties of anisotropic multilayers
are only available in specific situations (e.g., for periodic cholesterics, at nor-
mal incidence [6, 26] or at oblique incidence with certain restrictions [7, 27]).
A rigorous and general theoretical framework was established with the semi-
nal contributions of Billard [28], Teitler and Henvis [29], and Berreman [30],
who expressed the electromagnetic problem as a 4 × 4 matrix ordinary dif-
ferential equation. 4× 4 matrix formalisms experienced many developments
over the years [31, 32, 33, 34, 35, 36, 37, 38], including faster algorithms [39]
and a correct treatment of degeneracies causing singularities [40, 41]. Besides
commercial solutions, such as the powerful program WVASE [42] dedicated
to ellipsometry analysis [43], freely-available and open-access codes [44, 45]
generally exploit the elegant transfer matrix method [46] to propagate the
solution from layer to layer, as originally proposed by Berreman [30]. Un-
fortunately, such an approach can become numerically unstable for large
systems in presence of evanescent modes due to the coexistence of exponen-
tially decaying and growing waves (in the forward propagating direction)
in the multilayer. This shortcoming was addressed by Ko and Sambles [33],
who suggested to use a scattering matrix to treat all evanescent modes as for-
ward or backward decaying waves. Scattering matrix formalisms have gained
popularity in the framework of the rigorous coupled wave analysis (RCWA)
for periodically-corrugated multilayered media [47, 48, 49, 50, 51] to avoid
numerical instabilities. Some freely-available RCWA codes [52, 53, 54] can
be used for uncorrugated multilayered anisotropic media, yet with an un-
necessary complexity. The scattering matrix method has been implemented
recently for the study of cholesterics but at normal incidence only [55].

Here, we present a freely-available and open-source Python toolkit named
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“PyLlama” 1 that implements both the transfer matrix and the scattering
matrix methods to compute the reflection and transmission properties of arbi-
trary (linear and uncorrugated) multilayered media in all possible situations.
While the transfer matrix method proves being faster, the scattering matrix
method ensures numerical stability in all cases. PyLlama can thus deal with
systems composed of an arbitrary number of layers of any thicknesses, mixing
isotropic and anisotropic, absorbing and non-absorbing materials, studied at
all possible incident angles and wavelengths for both linear and circular polar-
izations. Surface waves may be excited by modelling the Otto-Kretschmann
configurations [56, 41].

In addition to robustness, we designed the code to be convenient to
use and included tools that are particularly suitable for the modelling of
cholesteric liquid crystals. First, layers are treated as building blocks. The
optical calculations occur internally at the layer level and the user can write
their own routines, in form of new classes, to pile up layers into stacks ac-
cording the parameters of their choice without having to handle optical pa-
rameters. Second, the code is organised in modules. Periodic structures can
be easily combined into master structures with sub-periodicities, and differ-
ent pre-defined structures can be stacked onto each other, in order to enable
the modelling of complex situations, such as beetle cuticles made of a com-
bination of cholesterics and absorbing layers [12, 57] or stacks of cellulose
nanocrystal cholesteric structures separated by a nematic layer [58]. Third,
once the user has defined which structures they need to model, a level of
automation has been added to allow for the calculation of spectra and the
export in MATLAB and/or Pickles with only a few lines of code. Lastly,
more specific to cholesterics, we incorporated a physical model [10] that de-
scribes the cholesteric helicoid in various situations (choice of handedness,
tilt, vertical compression of tilted helicoids). In particular, this enables the
optical modelling (at normal and oblique incidences) of distorted cholesterics
for which the distortion impacts the angular response, polarisation selectivity,
and overall reflection spectrum of the structure [59, 10, 55, 60, 16].

PyLlama addresses a need from the scientific community for a simple,
robust and flexible program, with many possibilities for future developments
and improvements thanks to its object-oriented organisation and detailed
documentation.

1Python toolkit for multilayered anisotropic media

4



xy

k
s,→

E
s,→

H
s,→

k
s,←

E
s,←

H
s,←

xy

k
p,→

E
p,→

H
p,→

k
p,←

E
p,←

H
p,←

s-polarisation

p-polarisation

θ
in

θ
in

a

b

c

x

y

Entry Multilayer stack Exit

z
k

→

k
←

...

z
0

z
1

z
N

ψ
0

ψ
1

ψ
N

z
N-1

L
a
y
e
r 

0

L
a
y
e
r 

1

L
a
y
e
r 

N
-2

L
a
y
e
r 

N
-1

E
x

–H
x

H
y

E
y

z
2

...

ψ
i

E
p, →

E
s, ←

E
s, →

E
p, ←

E
p, →

0

E
s, →

0

in
ci

d
e
n
t

re
fle

cte
d

k
→

tr
a
n
sm

it
te

dLayer i
ε

i
, h

i

z
i z

i+1

ψ
i+1

ψ
i

Figure 1: a, b) Schematic of an incident and a reflected s-polarised waves (a) or p-polarised
waves (b) upon the stack. The plane of incidence is the (x, z) plane. The wavevectors
ki and kr form an angle θ with the z-axis. c) Schematic of the multilayer stack bounded
by the entry and exit half-spaces. This schematic clarifies the notations used in the main
text.

The following sections are organized as follows. Section 2 describes the
electromagnetic theory underlying the 4 × 4 matrix formalism, as well as
the transfer matrix and scattering matrix methods to propagate the solution
throughout the multilayer stack. Section 3 outlines the architecture and main
features of PyLlama. Several practical examples of optical computations and
comparisons with analytical solutions are given to illustrate the method and
show its versatility. The performance and stability of the transfer matrix
and scattering matrix methods are compared in Section 4 on the example
of a cholesteric structure. Finally, we provide concluding remarks in Sec-
tion 5. The Appendices contain details about the numerical analysis of the
so-called partial waves in optical layers, a description of the discrete model
for cholesterics, and all the material and wave parameters used to construct
the figures.

2. Theory

2.1. Description of the problem

We consider a multilayer stack composed of N layers perpendicular to
the z axis and translationally-invariant in the (xy) plane, see Fig. 1. The
layers are indexed from 0 to N − 1 to match Python’s indexing convention.
Each layer i is bounded by two interfaces at zi and zi+1, with an arbitrary
thickness hi, and described by an arbitrary permittivity tensor ǫi, which

5



may contain complex values to describe absorbing materials. The multilayer
stack is enclosed between two semi-infinite isotropic media called “entry” and
“exit” with refractive indices nentry and nexit, respectively.

The multilayer stack is illuminated from the entry half-space by a planewave
at frequency ω propagating in the (xz)-plane at an angle θin from the surface
normal z. The wavevector k of the incident planewave is thus given by

k =





kx
ky
kz



 = k0





Kx

Ky

Kz



 , (1)

with k0 =
2π
λ
. Here, Kx = nentry sin(θin) and Ky = 0 are constant throughout

the multilayer stack.
In the isotropic half-spaces and layers, planewaves can be decomposed into

s and p polarisations, see Fig. 1(a,b). The s-polarised wave has its electric
field perpendicular (s from the German senkrecht, perpendicular) to the plane
of incidence (xz), along y, and the p-polarised wave has its electric field in
the plane of incidence (xz). Of particular relevance for helicoidal structures,
the waves can also be described in a circular polarisation basis denoted as R
and L for the right and left-handed polarisations, respectively. Our objective
here is to compute the complex reflection and transmission coefficients of the
multilayer stack, defined as rkj and tkj, where j indicates the polarisation of
the incident wave, either in the linear or the circular polarisation basis, and
k indicates the polarisation of the reflected or transmitted wave, respectively.
Note that for multilayers containing anisotropic layers, the cross-terms in the
linear polarisation basis (rps, rsp, tps and tsp) can be non-zero. The reflectance
and the transmittance can then be calculated respectively as Rkj = |rkj|

2

and Tkj = |tkj|
2 cos(θin)/ cos(θout) [61], where θout = asin [nentry sin(θin)/nexit]

is the angle of the planewave transmitted in the exit half-space.

2.2. 4× 4 matrix formalism

Maxwell’s equations set relationships between the 3 components of the
electric field and the 3 components of the magnetic field of a lightwave in a
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given medium, which, in a matrix form, read



















0 0 0 0 − ∂
∂z

∂
∂y

0 0 0 ∂
∂z

0 − ∂
∂x

0 0 0 − ∂
∂y

∂
∂x

0

0 ∂
∂z

− ∂
∂y

0 0 0

− ∂
∂z

0 ∂
∂x

0 0 0
∂
∂y

− ∂
∂x

0 0 0 0



































Ex

Ey

Ez

Hx

Hy

Hz

















=
1

c

∂

∂t

















Dx

Dy

Dz

Bx

By

Bz

















. (2)

Introducing the permittivity ǫ, permeability µ and optical activity ρ and ρ
′

tensors of the material to relate the D and B fields to the E and H fields,
applying translational-invariance in the x and y directions and considering
harmonic fields (the exp (−iωt) convention is used hereafter), Eq. (2) can be
rewritten as
















0 0 0 0 − ∂
∂z

0
0 0 0 ∂

∂z
0 −iKx

0 0 0 0 iKx 0
0 ∂

∂z
0 0 0 0

− ∂
∂z

0 iKx 0 0 0
0 −iKx 0 0 0 0

































Ex

Ey

Ez

Hx

Hy

Hz

















= −
iω

c

















ǫxx ǫxy ǫxz ρxx ρxy ρxz
ǫyx ǫyy ǫyz ρyx ρyy ρyz
ǫzx ǫzy ǫzz ρzx ρzy ρzz
ρ′xx ρ′xy ρ′xz µxx µxy µxz

ρ′yx ρ′yy ρ′yz µyx µyy µyz

ρ′zx ρ′zy ρ′zz µzx µzy µzz

































Ex

Ey

Ez

Hx

Hy

Hz

















.

(3)
Expressing the normal (z) components as a function of the tangential (x, y)
components, taking out the third and six rows and rearranging the matrices
finally leads to the famous 4 × 4 matrix ordinary differential equation [28,
29, 30]

∂Ψ(z)

∂z
=

iω

c
∆(z)Ψ(z), (4)

where Ψ = [Ex, Hy, Ey,−Hx]
T is a vector describing the field at position z.2

The elements of the matrix ∆ depend on the wavevector constant compo-
nent Kx and on the material permittivity, permeability and optical activity.
When the material is non-magnetic and non-optically active, the matrix∆(z)

2The field can indifferently be represented by the vector Ψ = [Ex, Hy, Ey,−Hx]
T as in

Refs. [30, 35, 39, 41, 55], or by Ψ = [Ex, Ey, Hx, Hy]
T as in Ref. [44].
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explicitly reads

∆(z) =











−Kx
ǫzx
ǫzz

1− K2
x

ǫzz
−Kx

ǫzy
ǫzz

Kx

ǫzz

ǫxx −
ǫxzǫzx
ǫzz

−Kx
ǫxz
ǫzz

ǫxy −
ǫxzǫzy
ǫzz

ǫxz
ǫzz

0 0 0 1
ǫyx −

ǫyzǫzx
ǫzz

−Kx
ǫyz
ǫzz

ǫyy −K2
x −

ǫyzǫzy
ǫzz

ǫyz
ǫzz











, (5)

where the z-dependence is in the permittivity tensor ǫ.

2.3. Propagation in a homogeneous layer

Let us now consider a homogeneous layer i located between two interfaces
at positions zi and zi+1, see Fig. 1(c). The corresponding 4× 4 matrix ∆i is
then constant throughout the layer thickness and Eq. (4) directly leads to

Ψ(zi+1) = exp (ik0hi∆i)Ψ(zi) = RiΨ(zi) (6)

where hi = zi+1 − zi is the layer thickness and Ri describes the propagation
from zi to zi+1.

Discarding the layer label i for the sake of legibility, there are different
ways to calculate the propagator R:

1. Expanding R as an infinite sum, as exp (ik0h∆) = 1 + ik0h∆ −
1
2
k2
0h

2∆2+... as suggested by Berreman [30], or via Pad’s decomposition
as in Ref. [44]. This is directly implemented in the matrix exponential
function expm in Pythons package Scipy (version 1.4.1) and in MAT-
LAB (version R2019b).

2. Factorizing ∆ = PQ∆P−1 where Q∆ is a diagonal matrix containing
the eigenvalues and P the eigenvectors of ∆. This leads to an eigen-
decomposition of R as R = PQP−1, with identical eigenvectors and
eigenvalues straightforwardly related those of ∆, see below. This was
also suggested by Berreman [30] and is implemented in Passler and
Paarmann’s code [41, 45].

3. Using an algorithm based on Sylvester’s formulas applied to biaxial
crystals, as proposed by Palto et al. [39], which is expected to converge
faster and requires less calculation steps than Pad’s decomposition.

In the second approach, which we will follow here, the fields in the layer
are decomposed into four partial waves [61]. The eigendecomposition has a

8



clear physical meaning, as sketched in Fig. 2a. The matrix P contains the
eigenvectors pj of ∆ as

P =
[

p0 p1 p2 p3

]

, (7)

where pj = [Ej,x, Hj,y, Ej,y,−Hj,x]
T in P thus represent the partial wave

field components in the homogeneous layer. The diagonal matrix Q =
exp(ik0hQ∆) depends on the corresponding eigenvalues qj of ∆ as

Q =









eik0hq0 0 0 0
0 eik0hq1 0 0
0 0 eik0hq2 0
0 0 0 eik0hq3









. (8)

It thus describes the coherent propagation of the partial waves in the layer,
where the eigenvalues qj represent the z-components of the corresponding
wavevectors Kj,z.

The four partial waves can generally be represented as a pair of waves
travelling forward (towards +z, subscript→) and a pair of partial waves that
travel backward (towards −z, subscript ←). The two partial waves within
each pair can then be identified according to their polarisation. In PyLlama,
the partial waves are sorted as follows

• j = 0: forward direction (→), mostly polarised along the x axis,

• j = 1: forward direction (→), mostly polarised along the y axis,

• j = 2: backward direction (←), mostly polarised along the x axis,

• j = 3: backward direction (←), mostly polarised along the y axis

but this is only one possibility 3. Details about the numerical analysis of the
partial waves is provided in Appendix A.

Let us emphasize that the sorting is quite irrelevant for obtaining the
transfer and scattering matrices of the multilayer stack (when one does not
wish to extract transfer and scattering matrices for subsets of the system), the
only constraint being that the intermediate matrices used in the calculation
be invertible. The sorting allows avoiding such situations.
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2.4. Transfer matrix method

The computation of Ri for layer i allows us to relate, via Eq. (6), the
tangential components of the electric and magnetic fields at the interface zi
to those at the interface zi+1.

Imposing the continuity of the field tangential components at each in-
terface naturally leads to a generalization of the propagator for a multilayer
stack of N layers (N + 1 interfaces) as [30, 46]

ΨN = RΨ0, (9)

with

R =

x

N−1
∏

i=0

Ri =

x

N−1
∏

i=0

PiQiP
−1
i , (10)

and
x
∏

N−1

i=0 is a left-side matrix product.4

It is usually more convenient to express the electromagnetic field in terms
of s and p polarisations in the entry and exit isotropic half-spaces. For a
planewave in an isotropic medium, the s- and p-polarised components of the
electric and magnetic fields are related to the tangential components of the
fields as [61]









Ex

Hy

Ey

−Hx









= L









Ep,→

Es,→

Ep,←

Es,←









, (11)

with

L =









cos(θ) 0 cos(θ) 0
n 0 −n 0
0 1 0 1
0 n cos(θ) 0 −n cos(θ)









. (12)

3In Ref. [31], the partial waves are sorted according to their polarisation first and their
direction second (which would correspond to the order 0, 2, 1, 3, here).

4We define here the matrix Qi similarly to Berreman [30], but its inverse (Q′

i = Q−1

i )
is sometimes used in the literature [41, 44]; in this case, the left-side product in Eq. (9)

should be replaced by a right-side product
y
∏

N−1

i=0
PiQ

′

iP
−1

i , leading to a propagator that
is the inverse of the one considered here.
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Here, n = {nentry, nexit} and θ = {θin, θout} for the entry and exit media,
respectively. Combining the corresponding matrices, Lentry and Lexit, at both
ends of Eq. (9), we can now define the transfer matrix T of the multilayer
stack relating the ingoing and outgoing fields at the first interface z0 to the
ingoing and outgoing fields at the last interface zN ,









Ep,→(zN )
Es,→(zN)
Ep,←(zN )
Es,←(zN)









= T









Ep,→(z0)
Es,→(z0)
Ep,←(z0)
Es,←(z0)









. (13)

with
T = L−1exitRLentry. (14)

The complex reflection and transmission coefficients are finally obtained
as

rpp =
T30T23 − T20T33

T22T33 − T32T23

rps =
T31T23 − T21T33

T22T33 − T32T23

rsp =
T20T32 − T30T22

T22T33 − T32T23

rss =
T21T32 − T31T22

T22T33 − T32T23

tpp =T00 + T02rpp + T13rsp

tps = T01 + T02rps + T03rss

tsp =T10 + T12rpp + T03rsp

tss = T11 + T12rps + T13rss (15)

These coefficients can conveniently be assembled into a Jones matrix and
expressed on the circular polarisation basis from [61]

[

rRR rRL

rLR rLL

]

=

([

1 1
i −i

])

−1 [
rpp rps
rsp rss

] [

1 1
−i i

]

(16)

[

tRR tRL

tLR tLL

]

=

([

1 1
−i i

])

−1 [
tpp tps
tsp tss

] [

1 1
−i i

]

(17)
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2.5. Scattering matrix method

The scattering matrix method was proposed as a solution to the numerical
instabilities encountered by the transfer matrix method in certain situations,
such as cholesteric liquid crystals [33]. The scattering matrix relates the
waves coming in the multilayer stack from both sides to the waves coming
out from it, in contrast with the transfer matrix which relates the waves at
the first interface to the waves at the last interface, see Eq. (13).

Following the transfer matrix formalism above, the transition from the
set of partial waves in layer i to those in layer i+ 1 can simply be expressed
as

Pi+1

[

Ei+1,→(zi+1)
Ei+1,←(zi+1)

]

= PiQi

[

Ei,→(zi)
Ei,←(zi)

]

(18)

Knowing the travel direction and the z coordinate at which the electric fields
are evaluated enables us to determine whether they are ingoing or outgoing
waves, as schematised on Fig. 2b. Equation (18) can be rearranged with
linear operations to dispatch the forward- and backward-propagating waves
into ingoing and outgoing waves, leading to

Pi,out

[

Ei,→(zi+1)
Ei+1,←(zi+1)

]

= Pi,in

[

Ei+1,→(zi+1)
Ei,←(zi+1)

]

,

Ei,→(zi+1) = Qi,→Ei,→(zi),
Ei,←(zi+1) = Qi,←Ei,←(zi),

(19)

where the matrices Pi,out, Pi,in, Qi,→ and Qi,← are defined as

Pi,out =
[

pi,0 pi,1 −pi+1,2 −pi+1,3

]

,
Pi,in =

[

pi+1,0 pi+1,1 −pi,2 −pi,3

]

,

Qi,→ =









eik0hqi,0 0 0 0
0 eik0hq1,0 0 0
0 0 1 0
0 0 0 1









,

Qi,← =









1 0 0 0
0 1 0 0
0 0 eik0hqi,2 0
0 0 0 eik0hqi,3









.

(20)

Ei,→(zi+1) and Ei,←(zi+1) can then be eliminated from Eq. (19),

Pi,outQi,→

[

Ei,→(zi)
Ei+1,←(zi+1)

]

= Pi,inQi,←

[

Ei+1,→(zi+1)
Ei,←(zi)

]

. (21)
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This eventually leads to the definition of the scattering matrix Si,i+1 between
interfaces i and i+ 1, as

[

Ei+1,→(zi+1)
Ei,←(zi)

]

= Si,i+1

[

Ei,→(zi)
Ei+1,←(zi+1)

]

(22)

with
Si,i+1 = Q−1i,←P

−1
i,inPi,outQi,→. (23)

Evidently, the combination of scattering matrices to describe multilayer
stacks cannot be as straightforward as matrix multiplications in the case of
the transfer matrix method. For example, the construction of Si,i+2 would
require removing Ei+1,→ and Ei+1,←. As above, this can be done by linear
operations.

Rewriting the scattering matrices in terms of their 2× 2 quadrants,

Si,i+1 =

[

S
(1)
00 S

(1)
01

S
(1)
10 S

(1)
11

]

,

Si+1,i+2 =

[

S
(2)
00 S

(2)
01

S
(2)
10 S

(2)
11

]

,

Si,i+2 =

[

S
(0)
00 S

(0)
01

S
(0)
10 S

(0)
11

]

,

(24)

eventually leads to the following expressions for the quadrants of Si,i+2,

S
(0)
00 = S

(2)
00 C

−1S
(1)
00 ,

S
(0)
01 = S

(2)
01 + S

(2)
00 C

−1S
(1)
01 S

(2)
11 ,

S
(0)
10 = S

(1)
10 + S

(1)
11 S

(2)
10 C

−1S
(1)
00 ,

S
(0)
11 = S

(1)
11 S

(2)
11 + S

(1)
11 S

(2)
10 C

−1S
(1)
01 S

(2)
11 ,

(25)

with

C =

[

1 0
0 1

]

− S
(1)
01 S

(2)
10 (26)

Carrying this combination for all layers of the stack, including the isotropic
entry and exit media (with analytical formulas for their eigenvectors and
with their propagation matrix set to identity), and expressing the forward-
and backward-propagating electric fields in terms of incident, reflected and
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transmitted waves eventually leads to the total scattering matrix of the mul-
tilayered stack,









Ep,→(zN)
Es,→(zN )
Ep,←(z0)
Es,←(z0)









= S









Ep,→(z0)
Es,→(z0)
Ep,←(zN )
Es,←(zN ),









. (27)

The reflection and transmission coefficients can be then obtained straight-
forwardly from the scattering matrix elements,

rpp = S20

rps = S21

rsp = S30

rss = S31

tpp = S00

tps = S01

tsp = S10

tss = S11

(28)

The reflection and transmission coefficients in the circular polarisation
basis can finally be obtained from Eqs. (16) and (17), respectively.

3. Implementation

3.1. Code architecture

PyLlama is practically structured to separate the implementation of the
theory from the user, and at the same time to allow the user to access details
about the optical calculations on demand. As schematised on Fig. 3, the
code is organised into:

• Classes that carry the optical calculations: the class Structure repre-
sents the multilayer stack and lists the layers it consists in; the class
Layer represents one layer and its partial waves, its child class Half-
Space being the equivalent for the entry and exit semi-infinite media;
and the class Wave represents optical waves.

• Classes that contain routines to construct Structures from appropri-
ate parameters. They are children of a master class Model and solely
serve the purpose of building Structures in a way that is easier to
manipulate for the user than the class Structure itself. A few models
are already implemented in PyLlama.
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pyllama.Wavepyllama.Structure
pyllama.Layer

k0, Kx, elec, magnet, 

poynting...

epsilon, thickness, 

eigenvalues, eigenvectors, 

partial_waves...
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N_periods...
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Level of automation
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Figure 3: Schematic of the code organisation. The optical calculations are carried out in
the classes Structure, Layer with its subclass HalfSpace and Wave. The children classes
of Model generate Structures from chosen parameters according to the user’s need and
are more convenient to handle. Some models are predefined (a slab with SlabModel, a
periodic stack with StackModel, a cholesteric with CholestericModel and a combination
of several models with MixedModels) and the user may write their own additional routines.
Lastly, the class Spectrum give an additional level of automation and allows the user to
use the code as a black box, when and if needed.
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• A class Spectrum that allows for a further level of automation for com-
mon operations such as calculating a full spectrum (in linear or circular
polarisation) and exporting the calculated data. This class enables the
use of the code as a black-box – though any detail on the optics remains
accessible.

3.2. Optical calculations

Each partial wave in PyLlama is represented by the class Wave that con-
tains fields for the electric field (Wave.elec), the magnetic field (Wave.magnet),
the Poynting vector (Wave.poynting) as well as the constant component of
the wavevector Kx = qj (Wave.Kx).

The class Layer contains fields for the layer permittivity ǫ (Layer.eps),
its thickness h (Layer.thickness), and the wavevector constant projec-
tion on the x axis kx = Kxk0 (Layer.Kx and Layer.k0). With these pa-
rameters, the 4 × 4 matrix ∆ (Layer.D) is calculated with the function
Layer.build D() from the other fields of Layer. The class Layer also im-
plements the calculation of the partial waves described in Section 2.3 as a
list of four Wave instances stored in a field Layer.partial waves. The en-
try and exit isotropic media are represented by the class HalfSpace, which
is a children of Layer with the only differences residing in the calculation
of the eigenvectors (calculated analytically) and eigenvalues (set to 1 for no
propagation phenomena).

The eigenvalues and eigenvectors are calculated from the matrix∆ (Layer.D)
with Pythons numerical package Numpy or Pythons symbolic package Sympy.
The eigenvalues are unique but the eigenvectors are defined up to a normali-
sation factor that depends on the algorithm (for example, Numpy normalises
each eigenvector so that its module is 1). The eigenvectors calculated with
one or another numerical method might therefore differ by a factor −1 or i,
which will inhibit their sorting in the way that is described in Appendix A.
This does not prevent the use of the transfer or scattering matrix methods
to go from one layer to the next. However, the eigenvectors of the entry and
exit HalfSpaces need to be set in a specific order to allow for the decom-
position of the incident, reflected and transmitted electric fields into their
appropriate components. In general, if the eigenvectors are calculated an-
alytically (formulas may be found in the literature for specific anisotropic
media [61, 39, 34, 55, 35]), the analytical formulas enable to sort them as
forward and backward pairs with distinct polarisations (as p and s in the
isotropic entry and exit semi-infinite spaces) and this would allow the user to
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access intermediate transfer or scattering matrices for specific layers in the
stack.

One key point emerging from the 4 × 4 matrix formalism is the possi-
bility to treat all layers of the stack independently: once the matrix ∆ has
been calculated for each layer (and the eigenvalues, eigenvectors and partial
waves that arise from it) as instances of the Layer class, the Layers can
be treated as building blocks to build a stack. In PyLlama, we represent
the multilayer stack as a Structure, which contains a list of Layers (field
Structure.layers) as well as the entry and exit half-spaces (fields Struc-
ture.entry and Structure.exit). Once all Layers of the Structure have
been characterised, they can be combined together with the half-spaces, ei-
ther with the transfer matrix method or with the scattering matrix method,
to obtain the reflection and transmission coefficients.

The class Structure contains several functions that implement the opti-
cal calculations:

• Structure.build transfer matrix() calculates the transfer matrix
of the stack (entry half-space, consecutive layers, and exit half-space)

• Structure. build scattering matrix to next(this layer, next layer)

calculates the scattering matrix for the layer this layer and the in-
terface between this layer and the following layer next layer

• Structure. combine scattering matrices(S ab, S bc) combines the
scattering matrices Sa,b S ab and Sb,c S bc into the scattering matrix
Sa,c

• Structure.build scattering matrix() calculates the scattering ma-
trix for the complete multilayer stack

• Structure.get fresnel(method=<"SM"|"TM">) calculate the reflec-
tion and transmission coefficients, which take the form of a Jones ma-
trix. The user may choose the underlying matrix method with the ar-
gument method. The reflection coefficients can be converted to circular
polarisation with the function Structure.fresnel to fresnel circ.

• Structure.get refl trans(method=<"SM"|"TM"|"EM">, circ=<True|False>)

calculates the reflectance and transmittance directly. The argument
circ enables to choose between linear and circular polarisation bases.
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The transfer matrix can also be calculated with the direct exponential
of ∆ (without the diagonalisation) through the choice "EM".

The user manual contains tutorials and a detailed documentation con-
taining all implemented classes and functions as well as their parameters and
returns.

3.3. Periodic stacks

Many interesting multilayer stacks are periodic (such as Bragg stacks and
cholesterics). Their optical properties can of course be modelled by building
a periodic structure “by hand” (e.g., a periodic list of permittivities) but they
can also be characterised by their repeating unit to speed up the calculations:
transfer matrices and scattering matrices can therefore be calculated for a
repeating unit only, and combined together in a second step.

The basic situation is straightforward for the transfer matrix method. As
shown in Eq. (9), the propagatorR of a stack ofN layers (excluding the entry
and exit isotropic half-spaces) is equal to the product of the propagators of

all layers, R =
x
∏

N−1

i=0 Ri. When the N layers of the stack correspond to
Nper repeating units made of n layers each, the propagator of the repeating

unit is Rper =
x
∏

N−1

i=0 Ri such that the transfer matrix of the Nper repeating

units is R =
x
∏

Nper−1

i=0 Rper.
To speed up the computation time, the decomposition of the stack is

different than multiplying one matrix per repeating unit. The total number
of repeating units Nper is decomposed in powers of two: Nper =

∑

2k for the
appropriate list of kps (the list of kps associated with Nper is the binary form
of Nper: we obtain it by converting Nper to binary). We calculate the transfer
matrix for sub-units that contain 2m repeated units Rm

per form between 0 and
the higher power of two in the decomposition, and store them in a database.
Then, we select the matrices that we need to build up the full system of Nper

repeated units.
For the scattering method, Eq. (25) shows how to combine Si,i+1 (the

scattering matrix of the layer i and its next interface with the layer i + 1)
with Si+1,i+2 (the scattering matrix of the layer i + 1 and its next interface
with the layer i + 2) into the scattering matrix Si,i+2, which encompasses
the layer i, the layer i + 1, and the interface from the layer i + 1 to the
layer i + 2. For a periodic stack, the repeating unit starts at the layer 0
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and finishes at the interface between the layer N − 1 layer and the layer 0
of the next repeating unit. However, the last period of the stack does not
end by an interface between the layer N − 1 and the layer 0, but with an
interface between the layer N − 1 and the isotropic half-space. Therefore,
the combination of the repeated motive is only done Nper−1 times (with the
decomposition of Nper − 1 into powers of two) for the Nper − 1 first periods,
and the last period is added afterwards.

3.4. Useful routines and customisation

In principle, a direct implementation of the theory behind the transfer
matrix or the scattering matrix methods is sufficient to obtain the reflectance
and transmittance for a multilayer stack once the layers have been properly
constructed. However, the construction of the layers from scratch can become
tedious. We designed the class Model and its children as user-friendly rou-
tines that build Structures made of appropriate Layers and HalfSpaces.
Model is a parent class in which we set features that are common to all models
and we wrote a few children classes, SlabModel, StackModel, StackOpti-
calThicknessModel and CholestericModel. The user can therefore write
a custom layer-building block of code, without having to re-write any of the
underlying theory, with suitable parameters that are relevant to the physical
stack being modelled.

A Model essentially represents an empty multilayer stack, consisting in
two semi-infinite media separated by no layer. The idea behind the code ar-
chitecture is that the children classes of Model contain additional parameters
used to build a Structure that is relevant to the stack, for example:

• SlabModel represents a slab of homogeneous material and its param-
eters are its permittivity (optionally calculated from an inputted per-
mittivity and a rotation angle (in radians) rotangle rad around an
arbitrary axis rotaxis) eps, its thickness (in nanometers) thickness.

• StackModel represents an arbitrary multilayer stack and its parameters
are a list of permittivities eps list and a list of thicknesses thick-

ness list corresponding to its layers, as well as a number of periods
N per that could in principle be set to one if the lists of permittivities
and thicknesses contain an item for each layer.

• StackOpticalThicknessModel represents a stack of isotropic layers
which all have the same optical thickness and its parameters are a
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list of refractive indices n list and the total thickness of the stack
total thickness.

• CholestericModel represents a cholesteric material made of birefrin-
gent units and its parameters are a Cholesteric object representing
the (potentially distorted) helicoidal architecture cholesteric, the ex-
traordinary and ordinary refractive indices of the birefringent units
n e and n o and the number of repeating units where one unit is
cholesteric. Our CholestericModel class interacts with our Cholesteric
library: a Cholesteric instance is a parameter to build a Cholester-

icModel.

Each children class of Model contains a redefinition of the parent func-
tion Model.build structure() that overrides it and creates Layers in a
routine that uses the model parameters. The user manual contains tutorials
explaining how to create custom children classes appropriately.

3.5. Practical examples

Figure 4 shows examples of results obtained with our different models
and validated with available analytical formulas. Figure 4a and b display
the case of an isotropic Bragg stack. The system consists in a periodic unit
of two layers that are repeated 10 times, including the entry and exit half-
spaces that are the same as the first and last layers (with no thickness).
The reflection spectra of the isotropic Bragg stack calculated with our code
and the model StackModel agrees with Yeh’s matrix method [61] for s and
p-polarisations. Here we display spectra for an angle of incidence θin = 60◦.

Figure 4c and d display the case of an isotropic non-homogeneous slab
analysed by Yeh [61]. The slab has a thickness L in the order of hundreds of
nanometers, a refractive index n0 at z = 0 and a refractive index zs at z = L.
The refractive index profile across the slab is continuous with an exponential
profile defined by:

n(z) = n0

(

ns

n0

)z/L

(29)

Yeh gives analytical formulas for the reflection spectrum and also shows an-
alytically that a series of N discrete layers with appropriate thicknesses and
refractive indices can be used to model the non-homogeneous slabs, with a
precision that increases when the resolution N increases. We used our model

21



Analytical

PyLlama

n
=

2
.2

2
0

0
 n

m

n
=

1
5

0
0

 n
m

×10
(          )
a

b

c

d

e

f

Figure 4: Comparison of PyLlama’s results with other methods in the case of isotropic
layers and uniaxial crystals. a, b) Isotropic Bragg stack. a) Schematic of the situation: the
system consists in a periodic pattern of two layers that are repeated 10 times (the entry
and exit half-spaces are the same as the first and last layers). b) Reflection spectrum of
the isotropic Bragg stack calculated with PyLlama and with Yeh’s matrix method [61] for
an angle of incidence θin = 60◦. c, d) Isotropic non-homogeneous slab with exponentially
varying refractive index. c) Refractive index profile: index varying continuously (blue),
discretely with 20 layers of the same thickness (orange) and discretely with 4 layers of the
same thickness (green). d) Reflectance calculated with PyLlama in the discrete scenarios
and with Yeh’s analytical formulas in the continuous scenario [61]. e, f) Uniaxial crystals
extracted from a cholesteric structure with a rotation angle around the z axis φi = 15◦

and 30◦. The direction of the electric field of the four partial waves calculated numerically
with PyLlama matches these calculated analytically [35]. The angle of incidence is e) 0◦

and f) 60◦.
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StackModel and input a list of N permittivities (calculated from the N re-
fractive indices) and a list of N thicknesses, all identical. We could also have
used StackModel and calculated the individual thicknesses outside, it was
more convenient to create a dedicated model. If we were to work often with
non-homogeneous slabs, we could also have imagined a model NonHomoge-
neousSlabModel taking a function n(z) (lambda z : n0 * (ns / n0) **

(z / L) in our case) as a parameter and automatically handling the split-
ting in layers of the same thickness. This illustrate the main idea behind the
creation of models: the user can write up the classes (children of Model) that
they wish in order to model structures by handling the parameters that the
user think are convenient.

Figure 4e shows the direction of the eigenvectors computed for a single
layer of nematic crystal (taken here as an individual Layer in a Structure

generated by a CholestericModel) and compares it with analytical predic-
tions [35]. The agreement is quantitative. It is interesting to note that the
electric field follows the cholesteric rotating director at normal incidence, as
predicted by De Vries [6] and confirmed here.

Cholesterics are of special concern in the present work. For modelling
purposes, these continuous non-homogeneous materials are assimilated to
discrete stacks of slices where each slice i (at depth si on the helical axis)
possesses a director ni and rotation angle φi, leading to a permittivity tensor
ǫ(φi). A more general discussion on cholesterics is provided in Appendix B.

The Cholesteric library allows the user to manipulate (distort, com-
press) the structure in a physical way, and then export the slices directors
to build up the corresponding multilayer stack from which to calculate the
reflectance. Details about the physical models derivation and how it handles
vertical compression may be found in Ref. [10]. This enables us to easily
model different configurations of practical interest. Figure 5 showcases a few
configurations that our Cholesteric library can generate and that we can
optically model: a right-handed cholesteric, a left-handed cholesteric, oblique
incidence of light upon a straight or tilted cholesteric, a vertically compressed
cholesteric, and a distorted cholesteric. To account for the tilt of a helicoid,
we set the z-axis along the helical axis and we calculate the effective angle
of incidence upon the stack with the absolute angle of incidence and the tilt
of the Cholesteric.

As we can see from the cases represented here, the handedness, the angle
of incidence and the distortion strongly impact the peak wavelength, the peak
shape and the polarisation selectivity (reflectance from unpolarised light can
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Figure 5: Collection of cholesteric-specific situations implemented in PyLlama (right-
handed cholesteric, left-handed cholesteric, tilt, oblique incidence, vertical compression,
distortion combining a tilt and a vertical compression), and their reflection spectra spec-
tra calculated numerically. The user can easily mix-and-match these situations. Both the
3D representations of the cholesterics and the optical spectra are automatically computed
through PyLlama.

even be higher than 50% in some cases). Each time, a Cholesteric object
describes the physical architecture and the required parameters are extracted
to build up an optical model upon it and enables to calculate reflection
spectra in the circular-polarisation basis.

We use this example to illustrate results obtained with PyLlama and to
demonstrate how flexible it is to handle custom structures. The user may
add supplementary features to our Cholesteric library, or pair an external
library to PyLlama in a similar way to model custom stacks.

3.6. Mixing multiple stacks

Throughout our code, Layers are treated as independent units and can
be added to a Structure provided that the wavevector x-component stays
the same. Similarly, Structures can be stacked together to model the be-
haviour of complex samples such as understanding the self-assembly of dry
cellulose nanocrystal films that creates distorted domains [62], explaining
the polarization independence of hydroxypropyl cellulose films distorted by
cross-linking [60] or tuning the distortion to obtain samples with a particular
polarization selectivity [55] or gaining insight on mechanical deformations
imposed on cellulose nanocrystal elastomers [16]. Combining models into a
master model allows to take advantage of sub-periodicities within each model
and to keep the computation time fast.
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Figure 6: a, b) Schematic representation and reflection spectra under 45◦ incidence of a) a
right-handed and b) a left-handed cholesteric with the same pitch (500 nm) and with the
same number of pitches (30). c, d) Reflection spectra for the stacks of c) the right-handed
cholesteric on top of the left-handed cholesteric and d) the left-handed cholesteric on top
of the right-handed cholesteric.

The class MixedModel, child of Model, takes as additional parameter a
list of models models list to be combined (in the order of the list). They are
screened in order to add only the models that are compatible with the first one
from the list (in terms of the conservation of the wavevectors tangential com-
ponent). The function MixedModel.get refl() overrides its parent function
Model.get refl() and calls for get refl TM multiple structures (respec-
tively, SM), which builds up transfer or scattering matrices for each sub-model
and combines them with a cautious handling the interfaces between consec-
utive models for the scattering matrix method.

An example is given on Fig. 6 where two periodic CholestericModels

of opposite handedness and same pitch are stacked upon each other in a
different order. The resulting spectrum for the stacked cholesterics under
oblique incidence show a difference depending on which cholesteric is on top
of the other.

3.7. A level of automation

The classes Structure, Layer, HalfSpace and Wave contain every func-
tion that is necessary to calculate the reflectance of a mutlilayer stack at
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a specific wavelength, and the class Model and its children enable to build
Structures easily from appropriate parameters.

In order to enable the use of our code without requiring extensive pro-
gramming skills and/or manipulation of the theoretical concepts to calculate
reflection spectra for a given multilayer stack, we embedded our models in-
side the class Spectrum that provides a level of automation to the user to
calculate the reflectance and transmittance for a range of wavelengths (to
get a full spectrum) and export the data for further analysis in Python or
in MATLAB, while the optics calculations are occurring in the background.
The user who decides to write custom models can integrate them to the class
Spectrum too.

Spectrum contains a list of wavelengths inputted by the user, a dictio-
nary whose keys correspond to the model parameters and whose values cor-
respond to the values assigned to these parameters inputted by the user, and
an empty dictionary which will contain the calculated reflection spectra. The
function Spectrum.calculate refl trans() enables to calculate reflection
spectra in the linear polarisation basis or in the circular polarisation basis
with a choice of the matrix method with the parameter, and with a display
of the calculation progress with the parameter talk=<False|True>. Results
for (potentially both) polarisation bases are then added to Spectrum.data.
The function Spectrum.export() enables to export the content of Spec-

trum.data for further processing in Python or in MATLAB. Its argument is
a filename path out which extension should be .pck for an export with Pick-
les and further use in Python or .mat for an export in MATLAB-compatible
format.

When pairing Model and its children with the class Spectrum, spectra
from complex structures are straightforward to obtain even without much
experience in programming. The custom Models created by the user can also
be with the class Spectrum. The user manual contains tutorials explaining
how to incorporate custom children classes appropriately.

4. Comparison between the transfer matrix and scattering matrix

methods

The calculations behind the transfer matrix and the scattering matrix
methods have been detailed in Section 2.4 and 2.5, and show that the combi-
nation of subsequent Layers with the transfer matrix method simply consist
in matrix multiplications, Eq. (9) while their combination with the scattering
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Figure 7: Comparison between the scattering matrix (SM) and transfer matrix (TM)
methods a) Evolution of two matrix elements of indices (0, 0) and (2, 0) in the complex
plane. The size of the system increases from one layer to a full pitch made of 20 layers to
125 pitches made of 125×20 layers. b) The colormap displays the combinations that cannot
be calculated with the TM method. The configurations a), b) and c) are pinpointed on
the colormap. c, d) The TM and SM methods give identical results at low birefringence
and for thin systems (c) while the TM method becomes numerically unstable at high
birefringence and for thick systems (d). The pitch and the Bragg wavelength λBragg are
given in Appendix B: the pitch p is the periodicity and the Bragg wavelength equals
np cos(θin), where n is the average refractive index of the cholesteric.

matrix method requires to unpack matrix elements, to combine them exter-
nally and to reassemble them into a new scattering matrix, Eq. (25). The
scattering matrix method is consequently slower than the transfer matrix
method, but it is also more robust and stable.

Figure 7a shows the evolution of selected (representative) matrix ele-
ments from the transfer and scattering matrices when the number of layers
in a cholesteric structure increases (Appendix Appendix B provides details
about the structure). They are plotted in the complex plane. As one can
see, the values obtained with the transfer matrix method are continuously
growing, while the values obtained with the scattering matrix method are
converging. In fact, at each calculation step, the values of the scattering
matrix represent transmission and reflection coefficients, Eq. (28), and their
modulus is therefore always under 1, while with the transfer matrix method,
reflection coefficients are calculated as ratios between given matrix elements,
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Eq. (15).
Usually, reflection spectra calculated from both methods lead to the same

result (Figure 7c: a cholesteric structure with a birefringence ne − no =
0.015 and 375 pitches). However, when the number of layers becomes too
large or the birefringence becomes too high, the transfer matrix method fails
dramatically (Figure 7d: a cholesteric structure with ne−no = 0.035 and 1125
pitches) while the scattering matrix remains stable. Figure 7b displays which
combinations of birefringences and number of pitches are not compatible with
the transfer matrix method.

The transfer matrix method remains useful as it is faster than the scat-
tering matrix method: computing a spectrum on the visible range (400 to
800 nm with a resolution of 1 nm) corresponding to the cholesteric structure
on Figure 7c takes on average 6.5s with the transfer matrix method against
14.0s with the scattering matrix method (averaged over 10 runs with HP
EliteBoox x360 1030 G2, with a standard deviation under 0.1).

5. Concluding remarks

We have presented a stable and versatile Python toolkit for the elec-
tromagnetic modelling of anisotropic multilayer stacks. PyLlama relies on
known concepts and numerical techniques, but it answers a need from the
scientific community for a simple, freely-available and open-source program
for the purpose. It is accessible to use without extended programming ex-
perience even for complex multilayer stacks (distorted cholesterics, stacks
containing periodic sub-structures...), and it is also easy to customise with-
out having to re-write any optical calculation.

The strength of PyLlama is undoubtedly its capability to deal with ar-
bitrary multilayers even in extreme situations (large number of layers, high
birefringence, grazing angles of incidence) thanks to the implementation of
the scattering matrix method, and to switch seamlessly to the transfer matrix
method for faster computation speed, when suitable. PyLlama thus allows
performing a side-by-side comparison between the transfer matrix and the
scattering matrix methods.

Many additional functionalities could be added in the near future with-
out considerable efforts, like the possibility to incorporate magneto-optic
effects [37], and to compute spatial field distribution in the stack [41] and
Bloch modes for periodic media [63]. Classes dedicated to the acquisition
of datasets other than reflection and transmission spectra could be created
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quite easily, such as for ellipsometry measurements [43] or critical angle mea-
surements [64], which are useful tools to characterise samples. The necessary
calculations are already carried out in the core of PyLlama, which paves the
way to the implementation of a dedicated framework similar to our class
Spectrum.

The electromagnetic modelling of space-time-modulated media – a rapidly
growing topic in wave physics [65] – would be an exciting future development
of PyLlama. The transfer matrix method has recently been generalized to
consider time-varying systems [66] by writing the fields as a sum of har-
monics of the modulation frequency and setting up time-varying boundary
conditions. This results in matrices of larger sizes depending on the number
of harmonics considered. The implementation of this idea for anisotropic
materials may be of significant help to explore the multitude of exotic phe-
nomena in such systems.

It is our hope that the scientific community will adopt PyLlama and
contribute to its evolution.
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Appendix A. Analysis of the partial waves

The four partial waves in a layer can generally be separated into a forward
(+z) propagating pair and a backward (−z) propagating pair, where each
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pair consists in a partial wave rather polarised along the x-axis and a partial
wave rather polarised along the y-axis [31].

The main scope of the partial waves analysis is to identify the expo-
nentially decaying and growing waves and sort them accordingly, which is
important for the scattering matrix method. This can be done easily from
the imaginary component of the eigenvalues (or wavevector) qj ≡ Kj,z.

Here, we chose to rely instead on the Poynting vector along the propaga-
tion direction z, Sj,z (we discard here the layer label i), defined as

Sj =





Sj,x
Sj,y
Sj,z



 =





Ej,yHj,z − Ej,zHj,y

Ej,zHj,x − Ej,xHj,z

Ej,xHj,y − Ej,yHj,x



 (A.1)

with Ej,z and Hj,z expressed in function of Ej,x, Ej,y, Hj,x and Hj,y,

Ej,z = −
ǫzx
ǫzz

Ej,x −
ǫzy
ǫzz

Ej,y −
Kj,x

ǫzz
Hj,y

Hj,z = Kj,xEj,y

(A.2)

The direction of the partial wave is then given by the sign of the real part of
Sj,z, when real, and by the sign of the imaginary part of Sj,z, when complex.
For the sorting of the exponentially decaying and growing waves, we have
observed that this procedure was fully equivalent to that with Kj,z

5.
An inspection of the two waves within each pair can reveal the partial

wave polarisation. If the material is anisotropic (without the crystal axes
along the (x, y) axes), each partial wave pj is analysed by calculating the
ratio C(pj):

C(pj) =
|Sj,x|

2

|Sj,x|2 + |Sj,y|2
(A.3)

and comparing it to its pair. If C(p1) > C(p2), p1 describes a wave rather
polarised along the x axis and p2 describes a wave rather polarised along the
y axis. If the material is isotropic or anisotropic with the crystal axes aligned
with the laboratory axes, this corresponds to p- and s-polarised waves, re-
spectively. According to Ref. [41], in these cases, the two partial waves within

5The sorting with Kj,z is implemented and commented in the PyLlama code for the
interested user.
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Figure A.8: Schematic of the analysis of the partial waves (eigenvalues Kj,z and eigen-
vectors [Ej,x, Hj,y, Ej,y,−Hj,x]). a. An isotropic entry half-space. b. A uniaxial crystal
(anisotropic) whose principal axes are oriented along the laboratory axes x and y. c. A
uniaxial crystal whose principal axes are oriented at an arbitrary angle from the laboratory
axes; the rotation angle of the crystal is 30◦ here.

each pair can be analysed with their electric field Ej instead of their Poynting
vector Sj:

Ciso(pj) =
|Ej,x|

2

|Ej,x|2 + |Ej,y|2
(A.4)

Figure A.8 illustrates the analysis and sorting of the partial waves in three
particular cases (all encountered when dealing with a cholesteric structure):
an isotropic layer, a uniaxial crystal (anisotropic) whose principal axes are
oriented along the laboratory axes x and y, and a uniaxial crystal whose axes
are not aligned with the x and y axes. First, the analysis of the direction
of the Poynting vector Sj,z (left column) enables to sort between forward
(plotted in blue) and backward (plotted in orange) partial waves. Note that
this is equivalent to sorting according to the direction of the wavevector Kj,z

(fifth column). Second, the direction of the electric field (third column) or
of the Poynting vector (second column) along the x or y axes enables to
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Figure A.9: Illustration of the necessity to sort forward- and backward-propagating partial
waves according to the direction of the Poynting vector. a) Schematic of the situation. b)
Reflectance plots for p and s polarisations and associated critical angles of total reflection
according to Ref. [64] (vertical dashed lines). c, d) Below the critical angle for p-polarised
waves (gray shaded area), the Poynting vector (describing the direction of the energy flux)
and the wavevector (describing the direction of the wave front) have opposite signs.

identify the partial waves individually (plotted with different dashes). In
each plot, the positive direction of the z axis is displayed in the bottom-left
corner for clarity. Each segment has been normalised to the same length.
The elements that are effectively used to sort the partial waves have a thick
black border and the others are displayed to provide a more complete picture
of the situation.

The wavevector Kj,z and the Poynting vector Sj,z offer different informa-
tion on the partial waves, indicating respectively the directions of the wave
and of the energy flux. This is illustrated in Fig. A.9, where we consider a slab
of uniaxial crystal whose director lays in the (xz) plane (see Figure A.9a). In
such situations, p- and s-polarised incident waves can have different angles
of total reflection (see Figure A.9b). Rivière provides analytical formulas for
these critical angles [64], reported here as vertical dashed lines. In particular,
when the optical axis of the crystal lays at 45◦ in the (xz)-plane, the critical
angle of total reflection for p-polarisation is 49.9◦. Interestingly, at slightly
smaller angles (gray shaded area on Fig. A.9c-d), the partial wave j = 4
exhibits real wavevector and Poynting vector of opposite signs, Re[Kz] > 0
and Re[Sz] < 0. This has no effect on the predictions of the matrix methods
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Figure B.10: Schematic representation of a cholesteric structure in the (xz) plane. The
cholesteric structure repeats itself every half-pitch because the directors oriented towards
0◦ and 180◦ are equivalent; the red and green side of the elongated units and the tips
of the arrows are a guide for the eye. a) Refractive indices of a birefringent unit. b)
The materials periodic twisted structure. c) A physical model consists in planes whose
directors rotate around the helical axis m.

because the imaginary part of the corresponding eigenvalue is zero.

Appendix B. Discrete model for cholesterics

A cholesteric structure is an assembly of elongated birefringent units or-
ganised in a stack whose planes twist continuously around a helical axis at a
periodicity called the pitch. At a given depth s along the helical axis m, the
elongated units point on average towards a preferred direction n(s), which
corresponds to a rotation angle φ(s) around the helical axis [6, 10], even if
the direction of individual units may differ. Schematics of the birefringent
units is displayed on Figure B.10a (single unit) and b (assembly of units)
while Figure B.10c shows the directions of the rotating planes.

Optically, a cholesteric structure corresponds to a permittivity tensor
ǫ(φ(s)) rotating at an angle φ(s) around the helical axis [5, 7], where ǫ(0)
corresponds to a birefringent unit aligned with the plane of incidence (xz):
ǫ0 = diag(n2

e, n
2
o, n

2
o) where ne and no are the refractive indices of a birefrin-

gent unit. The optical response of the structure therefore directly relates to
the periodic modulation of directors around the helical axis.
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Under normal incidence of light, cholesterics reflect perfectly circularly
polarised light of the handedness that matches the rotation of the helicoid
(contrary to a mirror that swaps the polarisation) and in a narrow wavelength
region. The central wavelength λB of the reflection peak obeys Braggs law
and is proportional to the cholesterics pitch p and its average refractive in-
dex nav such that λB = navp [6]. Under oblique incidence of light θin, the
reflection peak shifts such that λBragg = navp cos(θin) and the structure is less
polarisation-selective than at normal incidence [6, 7].

Cholesteric structures that are distorted also reflect both polarisations [55,
10]. Recently, Frka-Petesic et al. developed a physical model to physically
represent cholesteric structures, as well as the perturbation it encounters
upon external constraints that affect the periodic directors and modify the
optical response [10].

The optics of cholesterics is not trivial and no analytical formula can be
found in the literature to predict the reflectance of a distorted cholesteric,
for instance.

For modelling purposes, these continuous non-homogeneous materials are
assimilated to discrete stacks of slices where each slice i (at depth si on
the helical axis) possesses a director ni and rotation angle φi, leading to a
permittivity tensor ǫ(φi), see Fig. B.10c.

Appendix C. Parameters for the figures

Appendix C.1. Figure 4 (validation against analytical methods)

For Fig. 4b, the parameters used to construct the Bragg stack (with
StackModel) are
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Parameter Variable Value

Permittivity of the 1st layer eps list[0]





2.22 0 0
0 2.22 0
0 0 2.22





Permittivity of the 2nd layer eps list[1]





1.0 0 0
0 1.0 0
0 0 1.0





Thickness of the 1st layer (nm) thickness nm list[0] 200
Thickness of the 2nd layer (nm) thickness nm list[1] 500
Number of periods N per 10
Index of entry medium n entry 1.0
Index of exit medium n exit 2.2
Angle of incidence (rad) theta in rad π/3
Wavelength (nm) wl nm 400 to 800

For Fig. 4d, the refractive indices and thicknesses used to construct the
Bragg stack (with StackModel) are calculated from Eq. (29) with the number
of periods indicated on Fig. 4c and n0 = 1 and ns = 4.

The partial waves shown on Fig. 4e and f are extracted from a cholesteric
structure. The parameters used to construct the cholesteric object (with
Cholesteric) are

Parameter Variable Value

Tilt (rad) tilt rad 0
Pitch (nm) pitch360 500
Handedness handedness 1 (right)
Slices per pitch resolution 360

The parameters used to construct the cholesteric model (with Cholester-

icModel) are
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Parameter Variable Value

Number of periods N per 1
Extraordinary index (along x) n e 1.4505
Ordinary index (along y and z) n o 1.4155
Index of entry medium n entry 1.433
Index of exit medium n exit 1.433
Angle of incidence (rad) theta in rad 0 (e) and π/3 (f)
Wavelength (nm) wl nm λBragg = e) 716.5 f) 358.25

The partial waves are extracted from the 15th anisotropic slice and b) the
30th anisotropic slice that have a rotation angle of 15◦ and 30◦ around the z
axis, respectively.

Appendix C.2. Figure 5 (various examples of cholesterics)

For Fig. 5a (right-handed), the parameters used to construct the cholesteric
object (with Cholesteric) are

Parameter Variable Value

Tilt (rad) tilt rad 0
Pitch (nm) pitch360 500
Handedness handedness right (1)
Slices per pitch resolution 40
Compression ratio alpha 1
Arbitrary distortion d none (1)

The parameters used to construct the cholesteric model (with Cholester-

icModel) are

Parameter Variable Value

Number of periods N per 10
Extraordinary index (along x) n e 1.533
Ordinary index (along y and z) n o 1.333
Index of entry medium n entry 1.433
Index of exit medium n exit 1.433
Angle of incidence (rad) theta in rad 0
Wavelength (nm) wl nm 400 to 800

For Fig. 5b (left-handed), the parameters used to construct the cholesteric
object (with Cholesteric) are the same as Fig. 5a except
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Parameter Variable Value

Handedness handedness left (-1)

The parameters used to construct the cholesteric model (with Cholester-

icModel) are the same as Figure 5a.
For Fig. 5c (tilted and normal incidence), the parameters used to con-

struct the cholesteric object (with Cholesteric) are the same as Fig. 5a
except:

Parameter Variable Value

Tilt (rad) tilt rad π/6

The parameters used to construct the cholesteric model (with Cholester-

icModel) are the same as Figure 5a.
For Fig. 5d (tilted and oblique incidence), the parameters used to con-

struct the cholesteric object (with Cholesteric) are the same as Fig. 5a
except

Parameter Variable Value

Tilt (rad) tilt rad π/6

The parameters used to construct the cholesteric model (with Cholester-

icModel) are the same as Fig. 5a except:

Parameter Variable Value

Angle of incidence (rad) theta in rad 70π/180

For Fig. 5e (compressed), the parameters used to construct the cholesteric
object (with Cholesteric) are the same as Fig. 5a except:

Parameter Variable Value

Compression ratio alpha 0.7

The parameters used to construct the cholesteric model (with Cholester-

icModel) are the same as Fig. 5a.
For Fig. 5f (distorted), the parameters used to construct the cholesteric

object (with Cholesteric) are the same as Fig. 5a except:

Parameter Variable Value

Arbitrary distortion d 3

The parameters used to construct the cholesteric model (with Cholester-

icModel) are the same as Figure 5a.
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Appendix C.3. Figure 6 (MixedModel example)

The parameters used to construct the cholesteric objects chole 1 and
chole 2 (with Cholesteric) are

Parameter Variable Value

Tilt (rad) tilt rad 0
Pitch (nm) pitch360 550
Handedness handedness right (1) and left (-1)
Slices per pitch resolution 40

The parameters used to construct the corresponding cholesteric models (with
CholestericModel) are

Parameter Variable Value

Number of periods N per 30
Extraordinary index (along x) n e 1.443
Ordinary index (along y and z) n o 1.423
Index of entry medium n entry 1.433
Index of exit medium n exit 1.433
Angle of incidence (rad) theta in rad 40π/180
Wavelength (nm) wl nm 400 to 800

Appendix C.4. Figure 7 (performances of the SM and TM methods)

The matrix elements shown on Fig. 7a are calculated from a cholesteric
structure. The spectra shown on Fig. 7c and d are calculated from a cholesteric
structure with similar parameters. The colormap shown on Fig. 7b is made by
further varying the birefringence and the number of periods of this cholesteric.

The parameters used to construct the cholesteric object (with Cholesteric)
are:

Parameter Variable Value

Tilt (rad) tilt rad 0
Pitch (nm) pitch360 500
Handedness handedness right (1)
Slices per pitch resolution a) 20, b), c), d) 40

The parameters used to construct the cholesteric model (with pyllama.CholestericModel)
are:
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Parameter Variable Value

Number of periods N per See figure
Extraordinary index (along x) n e See figure
Ordinary index (along y and z) n o See figure
Average index 1.433
Birefringence Variable
Index of entry medium n entry 1.433
Index of exit medium n exit 1.433
Angle of incidence (rad) theta in rad a) 0, b, c, d) π/4
Wavelength (nm) wl nm a) λBragg = 716.5

Appendix C.5. Figure A.8 (sorting of the partial waves, examples)

The partial waves are extracted from a cholesteric structure. The param-
eters used to construct the cholesteric object (with Cholesteric) are:

Parameter Variable Value

Tilt (rad) tilt rad 0
Pitch (nm) pitch360 1000
Handedness handedness right (1)
Slices per pitch resolution 360

The parameters used to construct the cholesteric model (with Cholester-

icModel) are:

Parameter Variable Value

Number of periods N per 1
Extraordinary index (along x) n e 3
Ordinary index (along y and z) n o 1.2
Index of entry medium n entry 2.1
Index of exit medium n exit 2.1
Angle of incidence (rad) theta in rad π/9
Wavelength (nm) wl nm λBragg ≈ 1346

The partial waves are extracted from a) the entry isotropic half-space, b)
the first anisotropic slice and c) the 30th anisotropic slice that has a rotation
angle of 30◦ around the z axis.
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Appendix C.6. Figure A.9 (sorting of the partial waves with the wavevector
or the Poynting vector)

The parameters used to construct the slab (with SlabModel) are:

Parameter Variable Value

Permittivity eps





1.6822 0 0
0 1.1832 0
0 0 1.1832





Thickness (nm) thickness nm 4000
Rotation angle (rad) rotangle rad π/8
Rotation axis rotaxis y
Index of entry medium n entry 1.9
Index of exit medium n exit 1.433
Angle of incidence (rad) theta in rad 0 to π/4
Wavelength (nm) wl nm 500

Figure A.9b represents the partial waves extracted for an incident angle of
49.9◦.
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