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ABSTRACT: The boundary layer theory for non-hydrostatic mountain waves presented in Part II is extended to include upward propagating
gravity waves and trapped lee waves. To do so, the background wind with constant shear used in Part II is smoothly curved and become
constant above a "boundary-layer" height � which is much larger than the inner layer scale X. As in Part II, the pressure drag stays well
predicted by a gravity wave drag when the surface Richardson number � > 1 and by a form drag when � < 1. As in Part II also, the
sign of the Reynolds stress is predominantly positive in the near neutral case (� < 1) and negative in the stable case (� > 1) but situations
characterized by positive and negative Reynolds stress now combine when � ∼ 1. In the latter case, and even when dissipation produces
positive stress in the lower part of the inner layer, a property we associated with form drag in Part II, negative stresses are quite systematically
found aloft. These negative stresses are due to upward propagating waves and trapped lee waves, the first being associated with negative
vertical flux of pseudo-momentum aloft the inner layer, the second to negative horizontal flux of pseudo-momentum downstream the
obstacle. These results suggest that the significance of mountain waves for the large scale flow is more substantial than expected and when
compared to the enhancement of the boundary layer form drag by the mountain.

Introduction

Low-level orographic drag which results from the in-
teraction between mountain waves and the atmospheric
boundary layer has a significant impact on the general cir-
culation of the atmosphere (Pithan et al. (2016), Elvidge
et al. (2019)). However, this interaction is still not well
understood and thus not well represented in climate mod-
els (see (Lott et al. 2020a,b); Part I and II henceforth). In
fact, the impact of mountains on the boundary layer and
the mountain gravity waves dynamics are actually handled
by two distinct parameterizations: one for neutral flows
(or small mountains), and one for stably stratified flow (or
big mountains) (Beljaars et al. 2004; Lott and Miller 1997,
Part I and II). In this three part study, we are trying to
unify the theory of flow-topography interaction in the dif-
ferent regimes. Parts I and II focused on the case where
the background wind vanishes at the surface, and where
the background wind shear D0I and stratification #2 are
constant. In this context, dissipation controls the dynam-
ics over an inner layer which thickness is about 5 times the
"inner" layer scale

X =

(
a!

D0I

) 1
3

, (1)

with ! the characteristic length of the obstacle, and a the
constant viscosity coefficient. We recall that we develop
our framework with constant viscosity. This hypothesis
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probably overstates dissipation but permits a comprehen-
sive description of the interaction.

In Part I, we analyzed the wave-boundary layer inter-
action in the hydrostatic case and showed that for small
mountains the wave stress is extracted from the inner layer
instead of the ground surface as in the inviscid case: the
large-scale flow is accelerated near the surface within the
inner layer to balance the gravity wave drag. We also
showed that the surface pressure drag and the Reynolds
stress amplitude are well predicted using linear inviscid
gravity wave theory as long as we take for the incident
wind its value around the inner layer scale.

In Part II we examined the non-hydrostatic case, in order
to study the transition from stratified conditions to neutral
conditions (small Richardson number). In the neutral case,
we found that surface drag is well predicted by a form drag
and that the Reynolds stress profile is maximum near the
top of the inner layer indicating that the mean flow is decel-
erated in the lower part of the inner layer and accelerated
in the upper part. For more stable flows (larger Richard-
son number), we recover the results from part I for which
internal waves control the dynamics: the surface pressure
drag is well predicted by a wave drag, and the Reynolds
stress accelerates the large-scale flow at the bottom of the
inner layer. A major difference with the hydrostatic case
though, is that all the upward gravity waves are reflected
back toward the surface. The deceleration they produce in
the far field in the hydrostatic case, generally referred to as
the gravity wave drag, is now occurring in the upper part
of the inner layer.
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We showed in Part II that the transition from form drag
to wave drag regimes occurs for values of the Richardson
number � ∼ 1. Indeed, the characteristic turning height
of the waves is around

√
�!, such that wave dynamics

can develop aloft and over the mountain when � is large,
whereas it is somehow inhibited when � is small. Hence,
we observed that when � ≈ 1, the waves are reflected at
altitudes about the length of the hill, and so, they are still
close to the mountain when they return to the surface. It
results destructive and constructive interactions between
the wave induced pressure fields and the orography which
produces low and high drag states, respectively.

However, a limitation of Part I and II is that we excluded
trapped lee waves from our analysis. Indeed, trapped lee
waves cannot develop in constant shear flow, in part be-
cause pure trapped modes are related to neutral modes
of Kelvin-Helmholtz (KH) instability (Lott 2016; Soufflet
et al. 2019), and so to emerge, such modes require that
the Richardson number � varies in the vertical according
to the Miles-Howard theorem (Miles 1961; Howard 1961).
Trapped lee waves are important because they can trans-
port momentum in the horizontal direction only (Brether-
ton 1969), and this horizontal transport can be as signifi-
cant as the one due to upward propagating mountain waves
(Teixeira et al. 2013). To reconcile such an horizontal
transport of momentum and the non-interaction Eliasen-
Palm non-interaction theorem (Eliassen and Palm 1961)
one simply have to translate this momentum transfer into
pseudo-momentum fluxes (Lott 1998; Georgelin and Lott
2001) (see also Broad (2002); Héreil and Stein (1999)).

Note that horizontal momentum transport by lee waves
is still not well parameterized in coarse resolution models,
even if Tsiringakis et al. (2017) showed that trapped lee
waves could contribute as much as the blocked-flow drag
(Lott and Miller 1997) or the turbulent orographic form
drag (Beljaars et al. 2004), a conclusion also shared with
observational studies (Steeneveld et al. 2009). Trapped
lee waves could thus be a good candidate to account for
the missing drag in the stable boundary layer (Sandu et al.
2019).

The purpose of the present paper (Part III) is to study
the impact of trapped lee waves when they coexist with
upward propagating waves by introducing a curvature in
the background wind. Because boundary layer winds are
generally small near the surface and present significant
curvature near the top of the boundary layer, we will use
this curvature to define a boundary layer height 3 (which
should not be confused with X, the inner layer scale over
which waves are affected by dissipation). We will only
consider boundary layers thicker than the inner layer (3 >
X). In this configuration, wewill analyze how the boundary
layer depth influences the transition between the form drag
regime and the wave drag regime, and also how it impacts
the Reynolds stress vertical profiles. We will also point out

the role of trapped lee waves in this transition, and quantify
their contribution to the wave drag.

The framework of this paper is close to the one used
in L16. However, it is important to underline two major
differences. First, in L16, the dynamics is inviscid and
does not take into account the viscous dissipation in the
boundary layer. Second, the influence of the boundary
layer height (3) and the stability of the flow (�) will be
here investigated independently which was not the case in
L16 where the static stability was kept constant and the
Richardson number was changed by varying the value of
3.
The remainder of this paper is organized as follows. In

section 1, we adapt the theoretical model from Part II to
include an incident wind profile with a variable shear. In
section 2 we study the impact of variable shear on the wave
field and drags induced by the mountain. In section 3 we
explain the onset of lee waves in the model and in section 4,
we explain how they contribute to the interaction between
the mountain and the large-scale flow. Last we analyze a
pseudo-momentum budgets in section 5.

1. Theoretical framework

a. Linear model

The theoretical framework used here is close to the one
used in Part I and II, so we only recall here the salient
features and emphasize the differences. For instance, the
background wind and density profiles are now given by,

D0 (I) = D0I3 tanh(I/3), d0 (I) = dA + d0II, (2)

where the surface wind shear D0I and stratification d0I are
both constant. We choose this particular profile to rep-
resent the mean wind in the boundary layer because it is
solution of the viscous equations near the surface but be-
comes constant above 3, allowing a fraction of the moun-
tain waves to propagate upward without being reflected.
In the remainder of this analysis, we will refer to 3 as the
boundary layer height. As we shall see, this wind profile
supports the existence of pure trapped lee waves, at least
when � < 0.25 and in the inviscid limit, a dynamic that
was completely absent in Part I and II. Topography is still
represented by a 2DGaussian ridge of characteristic length
!

ℎ(G) = �4−G2/(2!2) . (3)

We also use the non-dimensional scaling of Part II,

(G, I) = ! (G, I) ; (D′,F′) = D0I! (D,F) ;

?′ = dAD
2
0I!

2? ; 1′ = D2
0I!1, (4)

where the prime denotes eddy flow with respect to the
background profile, and the overbars are used for non di-
mensional variables, G and I are the horizontal and vertical
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dimensions and D, F, ?, and 1 are the horizontal and verti-
cal velocity, the pressure and buoyancy respectively. With
this scaling, the 2D Boussinesq linear equations, under the
Prandlt approximation, are

D0mGD +D0IF = −mG ? + am2
I
D, (5a)

D0mGF = −mI ? + 1 + am2
I
F, (5b)

D0mG1 + �F = %−1am2
I
1, (5c)

mGD + mIF = 0, (5d)

in which
D0 (I) = � tanh(I/�). (6)

In that context no slip boundary conditions are

ℎ(G) +D(G, ℎ) = 0, F(G, ℎ) = 0,

and �ℎ(G) + 1(G, ℎ) = 0 at ℎ = ( 4−G
2/2. (7)

In Eqs. (5)-(7),

� =− 6d0I

dAD
2
0I
, % =

a

^
, ( =

�

!
, � =

3

!
and a =

a

D>I!
2 (8)

are a Richardson number, a Prandtl number, a slope pa-
rameter, a non dimensional boundary layer depth, and an
inverse Reynolds number respectively. With this new back-
ground flow profile the action budget is of form

m

mG

©«
D0

(
Z1

�
− D0II1

2

2�2

)
︸             ︷︷             ︸

�

+ 1
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+ m
mI
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� I

=

a

�

(
1m2
I Z +%−1m2

I 1

(
Z − 1 D0II

�

))
︸                                    ︷︷                                    ︸

&

(9)

with Z = mID−mGF the vorticity, � the pseudo-momentum,
�G , �I , the horizontal and vertical fluxes of pseudo
momentum, and & the pseudo-momentum produc-
tion/destruction by dissipative processes.

As in Part I (Eqs. 10 and 11), we search inflow solutions
that are linear, and express them in Fourier space in the
horizontal direction. For instance Eq. (5a) here transforms
into

8:D0u+D0Iw = −8:p+ am2
I
u, (10a)

where the bold notation is used for variables in the Fourier
space.

For high Reynolds number a � 1, the dynamics is in-
viscid at leading order. Each harmonics satisfy Eqs. (10)
with a = 0, which results in w satisfying a Taylor Goldstein
equation of the form

wII +
[
�

D2
0
+ 2
�2

(
1−

D2
0
�2

)
− :2

]
w = 0. (11)

We find the solution of Eq. (11) using appropriate change
of variables (see appendix A1 and Lott et al. (1992)) and
we get

w� = 2−<A
1
4+8

`

2 (1− A)−<2 ,2(1) ≈
I→∞

4−<I/� , (12)

where A = tanh2 (I/�). In (12),

` =

√
|� − 1

4
|, and < =

√
|� −�2:2 |, (13)

where < is the vertical wave number. Note that ` and
< are changed in 8` and/or −8<, when � < 1/4 and/or
:2�2 − � < 0, respectively. Note also that the hydrostatic
approximation is simply derived by omitting the horizontal
wavenumber : in Eqs. (11) and (13).

In Eq. (12), ,2(1) can be expressed in terms of hyper-
geometric functions, and the solutions for : < 0 are con-
structed by using the complex conjugate of the solutions
with : > 0. Near the surface the inviscid solution has an
asymptotic behavior of the form,

w� (:, I) ≈
I→0

w" (:, I) = 01 (:)I1/2−8` + 02 (:)I1/2+8`,
(14)

where w" is a matching function and 01 (:), 02 (:) are
coefficients given in appendix A1 (they are independent of
: in the hydrostatic approximation).
The background wind profile near the surface being

close to the one used in Part II, the treatment of the viscous
solution in the boundary layer is done in a similar way: we
define a non-dimensional inner layer depth

X =

(
a

:

)1/3
(15)

which represents the scale over which waves are affected
by dissipation. In this region, a viscous solution w+ is de-
rived numerically that satisfy the lower boundary condition
Eqs. (7) and that matches w" when I/X→∞:

wE (:, I/X) ≈
I/X→∞

512 (:)w" (:, I/X). (16)

In (16) 512 (:) are proportionality coefficients imposed by
the lower boundary condition and that control the distur-
bance amplitude in the outer region. From these three
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solutions (w� , w" , w+ ) we construct a uniform approxi-
mation for w,

w(:, I) = 512 (:) [w� (:, I) −w" (:, I) (:, I)] +w+ (:, I),
(17)

with similar expressions for the horizontal wind, buoyancy
and pressure.

b. Non linear model

As in Part I and II, wewill compare the theoretical model
against nonlinear simulations using the MITgcm model
(Marshall et al. 1997). The configuration of the model
is almost the same as in Part II: the few differences are
as follow. The horizontal size of the domain is extended
to 100 km and the total height of the domain is set to
50 km. This is a bigger domain than in Part II to allow
lee waves to propagate downstream and avoid numerical
instability. We initialize the model with the background
flow and run it forward in time for 24h (until we reach a
steady state) with a time step of 0.2 s. We use a sponge
layer active above 15 km and at the lateral boundaries to
relax the dynamic variables to the prescribed upstream
profiles (Eq. 2). We use a stretched grid to have maximum
resolution near the topography. The finest grid point has
dimension of 205 m (horizontal) and 11 m (vertical) near
the topography whereas the resolution coarsen to 715 m
(horizontal) and 830 m (vertical) at the edge of the domain.

2. Upper level and trapped waves

We plot in Fig. 1 the vertical velocity field for different
values of the boundary layer depth � and of the surface
Richardson number �. In each simulations ( = 0.15, %A = 2
and the height of the inner layer for the dominant harmonic
: = 1 is X = 0.1. We also plot the hydrostatic results for
� = 1 to emphasize the significance of the reflected waves
and of the trapped lee waves.

The top four panels in Fig. 1 show the vertical velocities
in the stratified case (� = 4). We choose to present the � = 4
case first because it corresponds to the first figures shown in
Part I and II, e.g. the hydrostatic case with constant shear in
Part I (Fig. 1) and the non-hydrostatic case with constant
shear in Part II (Fig.1). For the smallest value � = 0.5,
Fig. 1a shows a train of upward propagating waves with
a small downstream signal at low level. At upper levels
the wave field extends downstream in comparison with the
hydrostatic case (Fig. 1d) indicating that non-hydrostatic
effects essentially make a difference at high altitudes. To
understandwhy the low level signal is small in this case, we
recall that the square of the vertical wavenumber is given
by (see Eq. (13)),

<2
= � −�2:

2
. (18)

Fig. 1. Vertical velocity field for all simulation, ( = 0.15. Each line
corresponds to a value of � . The 3 columns on the left stand for different
values of � and the column on the right is for the hydrostatic case with
� = 1. In all panels, the contour interval �� = 0.004 and the negative
values are dashed.

So the only modes that encounter a turning altitude are
those for which : >

√
�/�. In Fig. 1a the shape of the

mountain will force the dominant wavenumber to be : ≈ 1,
and for : >

√
�/� = 4, most modes will not be reflected.

As � increases nevertheless the amount of reflected waves
increases (Fig. 1b and 1c) and the wave signal near the
surface becomes more pronounced downstream. An inter-
esting aspect is that when these waves return to the surface
on the lee side, their phase lines tilt significantly in the
direction of the shear. This is consistent with the fact that
for large �, the mountain waves are absorbed at the surface
in the stable cases (Lott (2007)): the signal is dominated
by downward propagating waves being absorbed.

The following two rows in Fig. 1 correspond to the two
values of the surface Richardson number that characterized
the best the transition between the stratified and neutral
case in Part II (i.e. when � =∞). At � = 1.7 we found in
Part II that there is a resonant interaction between reflected
waves and the surface that yields a very strong wave signal
aloft and immediately downstream, whereas for � = 0.7,
we found that the interaction is destructive and the distur-
bance field is evanescent. The fact that waves can now
propagate upward to I = ∞ when � is finite profoundly
changes the response. The cases with � = 1.7 (second row
in Fig. 1) are close from the cases with � = 4 except that the
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Fig. 2. Horizontal profiles of vertical velocity at I =� for ( = 0.15.
Each panel corresponds to a value of � and each line to a value of � .
Profiles from the MITgcm model are represented in grey.

overall direction of propagation is more horizontal, consis-
tent with the fact that far aloft more modes are impacted
by non-hydrostatic effects. When � = 0.7 (third row in
Fig. 1), we still visualize a system of gravity waves, which
was not the case in Part II (Fig. 3c). Most gravity waves
are propagating up when � = 0.5 (Fig. 1i) but there is
now a system of downstream and horizontally propagating
waves near the surface. For these waves, the phase line are
more vertical, indicative of a smaller wave absorption at
the surface, the signature is verymuch like that of a trapped
lee wave. When � increases (Figs. 1j and 1k) these near
surface waves become more and more prominent, which
is again consistent with the fact that less modes can prop-
agate far aloft according to (18). Interestingly, when �
increases, the horizontal wavelength near the surface in-
creases as well. Finally, for � = 0.1 (Figs. 1m-p), there are
few upward waves: the near surface signal dominates but
remains overall small.

3. Lee waves

As shown in Figure 1, a significant difference between
Part I-II and this study is the presence of trapped lee waves
for small values of theRichardson number �. In this section
we analyze the impact of the boundary layer height � and
stability � on the onset of these trapped lee waves and
compare the results with the non-linear model (MITgcm).

We plot in Fig. 2 the horizontal profiles of vertical ve-
locity at I = � for ( = 0.15 in the theory (black) and in
the MITgcm (grey). Each panel corresponds to a different
value of �, and � is decreasing from top to bottom. In
Fig. 2, we see that weakly stratified flows (� < 1) favor the
onset of trapped lee waves regardless of the value of �,
due to weaker wave absorption at the ground. This result
extends the quasi-inviscid theoretical framework of L16
who showed that near-surface critical level absorption is
an active dissipation process. Hence, in the present study,
the same mechanism is still at play even when viscous dis-
sipation acts in the inner layer near the ground. Note also

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

J
0

5

10

15

20

25

30

35

N
o
n
 d
im

e
n
s
io
n
a
l 
w
a
v
e
le
n
g
th

D=2

D=1

D=0.5

J=0.25
Linear model

MITgcm

Theory

Fig. 3. Lee waves wavelength function of stability calculated from
Eq. (19) (dashed), linearmodel (solid) andMITgcmmodel (dash-dotted).
Each grey scale stand for a different value of �.

that, due to dissipation, the downstream extent of lee waves
is reduced compared to the quasi-inviscid results in L16
(even for � < 0.25).

We also observe that the trapped lee wave signal is small
when � is small (for instance when � = 0.01 and � = 0.1).
This is actually in agreement with L16 who showed that
the trapped lee waves are also near neutral modes of KH
instability. Hence for the vertical profile of horizontal wind
given in (6), these modes satisfy the dispersion relation:

:
2
) =

1−
√

1−4�
2�2 when � < 1/4. (19)

It follows that for near-neutral flow (� � 1), and for � & 1,
the trapped lee waves have predominant wavelength :) �
1. Such wavelength correspond to quite long disturbances
which are not efficiently excited when the orography has
a Gaussian shape. For such a shape the non-dimensional
wavenumbers excited by the mountains are predominantly
around : ≈ 1� :) .

To support this interpretation, we plot in Fig. 3 the lee
waves wavelength for different value of � and � as cal-
culated with the dispersion relation (19), the theoretical
model and the MITgcm. One sees a good agreement be-
tween the different sources (compare each line style of the
same color). We also see that the increase in boundary
layer height systematically increases the lee waves wave-
length whereas the increase in stability tends to reduce
it, which is entirely consistent with (19). The theoretical
model (solid line) slightly overestimates the wavelength
for small values of �. This difference might be because
as the value of � decreases, the domain of validity of the
inner and inviscid solution overlapped, then the validity of
the uniform approximation could be questioned. This also
explains why we limit our study to � ≥ 0.5. The above
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Fig. 4. Surface pressure drag (a) and minimum and maximum of
Reynolds stress (b) for different slope ( and � = 1 in variable shear
simulations. These two diagnostics are normalized by �A% (Eq. (21)).

results corroborate the observational study of Ralph et al.
(1997) where the increase of boundary layer height during
daytime induces an increase of lee waves wavelength.

If we now return to Fig. 2, another interesting point is
that low level oscillations can be found when � and � are
large (see for instance Figs. 2c for � = 6 and � = 9). This
can also be explained with Eq. (18), which tells that when
� and � are large some modes with : ≈ 1 can be reflected
back to the surface. However, since this reflection occurs at
high altitude (� is large), they return to the surface further
downstream (we already noticed that in Figs. 1b and 1c).
In this case the lee waves signal near the surface results
from waves reflected downward in the lee side (referred as
trapped waves or reflected waves in the remainder of this
analysis) and do not correspond to trapped lee waves in the
sense that they are not related to free modes of oscillation
that exist in the inviscid case.

4. Pressure drag and Reynolds stress

To evaluate the effects of the wave field on the mean
flow, we plot in Figs 4a and 4b the surface pressure drag
�A alongwith theminimumandmaximumof themountain

wave stress �I :

�A = −
∫ +∞

−∞
?(G, ℎ) mℎ

mG
3G, DF = �I =

∫ +∞

−∞
DF 3G.

(20)
These diagnostics are scaled using the drag predictor de-
rived in Part II

�A% =Max(1,
√
�)X(1)(2/2. (21)

We recall that the idea behind this formulation is to scale
mountain drag as a form drag in weakly stratified cases
(� < 1) due to dissipative loss of pressure when the air
passes over the obstacle, and as a wave drag, when the flow
is more stratified (� > 1), due to vertical propagation of
gravity waves.

In Fig. 4a, we see that the drag predictor gives a rather
good estimate of the surface pressure drag in a large range
of flow stability � and boundary layer depth �. The best
performance of the predictor is for � = 1, (black dashed
line). For smaller value (for instance � = 0.5) the form
drag predictor overestimates the drag when � < 0.1. This
is consistent with the fact that for small �, only few har-
monics are confined near the surface. So for small �,
these "long" harmonics contribute less to the near surface
dynamics responsible of the form drag than for larger �.
When � > 1, we recover the behavior found in Part II
where the transition zone around � = 1 present strong vari-
ations in pressure drag. For instance, for � = 4 in Fig. 4a
we recover the behavior found in Fig. 2 of Part II (� =∞),
with a pronounced low drag amplitude near � = 0.7 and a
large drag amplitude near � = 1.7.

Interestingly, the transition from neutral to stratified flow
when � is large occurs more smoothly when � ≈ 1 (less
amplitude between the lowest and highest value of the drag
during the transition). To understand this behavior, we
recall again that the mechanism which causes the strong
variations in drag when � is large is due to the fact that
most harmonics are reflected and return to the surface near
the mountain downstream when � ≈ 1. In the variable
shear case, the dominant wave numbers are no longer sys-
tematically trapped, for instance the dominant one : = 1 is
only trapped when �/�2 < 1. For instance, when � � 1
this only occurs when � is small, e.g. when gravity waves
no longer control the dynamics.

Figure 4b shows the minimum and maximum of hori-
zontally averaged Reynolds stress DF (normalized by the
predictor). These normalized extrema indicate how the
wave field interacts with the mean flow. When the vertical
profile of Reynolds stress presents a minimum at a given
height, the mean flow is accelerated below that height, and
decelerated above (the so-called gravity wave drag) and
this situation corresponds to a wave drag regime. On the
contrary, when the vertical profile of Reynolds stress is
maximum at a given height, the mean flow is decelerated
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Fig. 5. Stream function (a,d), total wind vector and contours of D F
(negative values are dashed) (b,e) and profiles of horizontally averaged
Reynolds stress D F , ( = 0.175, � = 4. Top panels correspond to � = 9,
bottom panels to � = 0.1.

below that height, this situation corresponds to a form drag
regime. Before discussing these regimes in detail, it is
worth recalling that these changes in sign of the Reynolds
stress have a profound dynamical origin. To illustrate it
qualitatively, we show in Fig. 5 two cases with � = 4 and
( = 0.175 (strong slope). In the first case, the flow is
strongly stratified (� = 9) and is characterized by upstream
blocking and downslope winds (Figs. 5a and 5b respec-
tively). In the downslope wind region where F < 0 the
disturbance in horizontal wind D > 0, yielding the product
DF < 0 predominantly (see contours in Fig. 5b). Averaged
horizontally, this gives a negative Reynolds stress (Fig. 5c).
In the second case shown in Fig. 5, the flow is near neu-
tral (� = 0.1) the dynamics is characterized by upslope
winds upstream and non separated sheltering downstream
as illustrated by the stream function and the wind fields in
Figs. 5d,e. But in the sheltered zone the horizontal wind
is smaller, so the disturbance wind D < 0 predominantly.
Because this zone is located on the lee of the mountain
the vertical velocity F < 0 predominantly, so the product
�I = DF > 0 as shown in a large sector behind the hill top
in Fig. 5b. Averaged horizontally, this yields a positive
Reynolds stress (see Fig. 5c).

If we now return to the extrema in �I in Fig. 4b, one
sees that positive and negative extrema can occur simul-
taneously in the near neutral cases (� < 1), at least when
� ≤ 1. This strongly contrast with what was found in
Part II (or for � = 4 here) where form drag and wave drag
do not occur simultaneously. For values of � < 4, one sees
that form drag and wave drag are no longer exclusive of
each other, clearly here the presence of trapped waves and
the fact that more waves can propagate aloft when � is
small extent the domain over which the gravity waves dy-
namics contribute to the interaction between the orography
and the large scale flow. In Fig. 4b we also see that posi-
tive extrema only occur for � < 0.4 when � = 0.5, which
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Fig. 6. Diagnostics from the MITgcm runs for ( = 0.15 and for
different values of the boundary layer depths �. In all panels, the
corresponding results from the theory are in thin solid. a) Normalized
extrema in momentum flux . b) Downslope sheltering versus upstream
blocking index defined as the ratio between the max downslope wind
amplitude and the max upslope wind amplitude (Eq. 28 from Part II):

Max︸︷︷︸
I< 2ℎ

3 ,0<G<2

√
(I +D)2 +F2

/
Max︸︷︷︸

I< 2ℎ
3 ,−2<G<0

√
(I +D)2 +F2 .

means that in the presence of a thinner boundary layer the
transition from neutral to stratified flow occurs for smaller
values of the surface Richardson number �.

To assess the validity of this result, we now compare the
linear model with the fully non-linear model (MITgcm).
For conciseness, we summarize this comparison in Fig. 6
using again the diagnostics of the extrema of the Reynolds
stress (Fig. 6a), and also the index constructed in Part II (see
Eq. 28 there): we recall that this index discriminates be-
tween the regime of downslope sheltering vs the regime of
upstream blocking. Since the results for � = 4 correspond
to � = ∞ in Part II, we only present the aforementioned
diagnostics for � = 0.5,1,2. For all these indicators, we
see that the non-linear model is in good agreement with
the linear theory. Last we also observe that the sheltering
versus blocking index introduced seem to not depend on
the value of �.



8

Fig. 7. Contours of vertical action component (� I ), negative values
are dashed, along with total action vector for ( = 0.15. For illustration
in a) are the limit of a characteristic box used to calculate the emitted
PM fluxes.

5. Pseudomomentum budget

We have shown that in the presence of an inner layer and
a boundary layer, form drag and wave drag coexist, which
then directly impact the structure of the vertical profile
of the Reynolds stress. We have also seen that the pres-
ence of a finite boundary layer depth enriches the inviscid
dynamics, with trapped waves developing downstream the
topography. We now providemore insight on the way these
waves redistribute momentum not only in the vertical but
also in the horizontal direction. To visualize this redistribu-
tion of momentum, we plot in Figure 7 contours of vertical
the flux of action component (�I defined in Eq (9)) along
with the total action flux vector for different value of the
Richardson number � and boundary layer depth �.

In all panels in Fig. 7 one sees near the ground a down-
ward flux on the upstream side of the ridge (dashed lines)
and an upward flux on the downstream side (solid lines).
This dipole structure in the lower part of the inner layer
is characteristic of the dynamics at work in our three
part paper and that we could refer to as linear dissipa-
tive, or weakly nonlinear dissipative. The key point is that
when the mountain is in the inner layer, waves pseudo-
momentum is extracted from the inner layer rather from
the surface as it occurs in the inviscid case. Near the top
of the inner layer (i.e. around I = 5X) and above, one
sees in Fig. 7a that for small � and � = 1.7 the pseudo-
momentum flux vector points downward, as in the hydro-
static case in Part I, such that the trapped waves (present
for instance in Figs. 1e and to less extent in Fig 2a) con-
tribute little to the action flux. For larger � in Fig. 7b the
reflected waves downstream produce an upward pseudo-
momentum flux, also slightly oriented upwind on the lee

side, as if the trapped waves where transferring momentum
laterally rather than vertically. This larger contribution of
the trapped waves to the pseudo-momentum budget is con-
sistent with the fact that for � = 1.7 and � = 2 in Fig. 1g
the low level wave signal is quite substantial. For smaller �
(Figs. 7c and 7d), the trapped lee waves seem to contribute
further in the far field, at least when � = 0.7, consistent
with the fact that for small �, the mountain waves are less
absorbed at the surface.

To provide a more quantitative estimate of the lateral
fluxes due to the reflected and/or the trapped lee waves we
next evaluate pseudo-momentum fluxes through horizon-
tal and vertical boundaries that encapsulate well the entire
ridge. More specifically, we calculate the pseudo momen-
tum fluxes outgoing from the top hat defined by the three
segments.

(−-,0) × (−-, /), (−-, /) × (+-, /), (+-, /) × (+-,0)
(22)

and always take / > ℎ and - > 3, the latter condition
guaranties that ℎ(±-) ≈ 0. The integral of the pseudo
momentum fluxes across the boundaries writes

%G (-, /) =
∫ /

0
�G (-, I)3I and %I (-, /) =

∫ -

−-
�I (G, /)3G.

(23)
%out (-, /) = %G (-, /) −%G (−-, /) +%I (-, /). (24)

As the in-going flux is always quite small, we will only
discuss the fluxes along the upper and downstream sides of
the box. The solid lines in Fig. 8 are the vertical profiles of
the total outgoing momentum fluxes, %G (-, /) +%I (-, /)
for 3 different downstream locations: one near the moun-
tain - = 3 one further downstream - = 5, and one very far
downstream - = 25. We selected the first two positions to
illustrate the large erosion of the emitted pseudo momen-
tum fluxes (%out) that occur just downstream the hill (i.e.
between - = 3 and - = 5). And we selected - = 25 to mea-
sure the total erosion occurring in the boundary layer (in
- = 25 we found that the lateral pseudo-momentum flux is
almost always null, see the thick grey dotted lines in Fig. 8).
The first thing to notice is that for all values of � and �, the
total flux of pseudomomentum %out (-, /) = 2>=BC. on the
vertical when / > 5X, i.e. when the upper bound / is in the
inviscid region. This can be viewed as a generalization of
the Eliassen-Palm theorem in the presence of trapped lee
waves. Also, and when � is small (� = 0.5 in Figs.8a,c),
almost all the pseudo-momentum flux is transmitted ver-
tically through the boundary layer: the lateral fluxes of
pseudo-momentum are always small, at least below / = �

(see the dotted lines). Above the boundary layer, the lateral
propagation of the gravity waves in the inviscid region pro-
duces substantial horizontal fluxes when the downstream
distance is not too large (- = 3 and - = 5, thick and thin
dotted black lines respectively, see also Fig. 1). When
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solid) for different downstream position: - = 3 (thick black); - = 5
(thin black); and - = 25 (thick grey).

� = 2 in Figs. 8b one sees that the total pseudo-momentum
fluxes diminishes in amplitude when - increases and in
the inviscid zone / > 5X = 0.5. This diminution is due to
the fact that for large values of �, there are more reflected
waves returning into the inner layer thanwhen� is smaller.
Moreover, these reflected waves are associated with pos-
itive vertical fluxes of pseudo-momentum �I . Therefore
when the horizontal extension of the upper bound of the
box increases, these reflected waves cancel the negative
contribution of the upward waves in the integral flux %I .
This mechanism combines with a substantial contribution
of the trapped lee waves propagating horizontally and at
lower level when � = 0.7 in Fig. 8d. In this case one sees
that the amplitude of the vertical flux first increase between
5X < / < � (above the inner layer but inside the boundary
layer) when - increases consistent with the fact that the
reflected waves are less absorbed when � decreases.

As seen in Part I and II, and repeated here, it is quite diffi-
cult to pin the location of extraction of pseudo-momentum.
It is not entirely extracted from the surface and equals to
the pressure drag as in the inviscid case (Durran 1995;
Lott 1998), and it is not extracted from the viscous fluid in
the inner layer as in the case with ( � X (Part I). Because
of these difficulties, we instead propose to diagnose the
largest amount of pseudo momentum that is produced by
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Fig. 9. Emitted pseudo momentum, minimum and emitted value of the
Reynolds stress. In all simulations ( = 0.15.

the association between the mountain and the inner layer.
We next call it the emitted pseudo-momentum, and eval-
uate it as the total pseudo-momentum flux going out of
the top hat defined by (22) with lateral boundary near the
downstream foot of the hill - = 3 and upper boundary at
the altitude /) that minimises the outgoing flux:

%Emit = %G (3, /) )+%I (3, /) ) = min
(</<∞

(
%G (3, /) +%I (3, /)

)
.

(25)
A typical box through which is measured the emitted PM
flux is shown in Fig. 7a for illustration. To measure how
much of this emitted flux goes in gravity wave drag far
aloft and to estimate what stays at low level, we compare
%Emit to the far field Reynolds stress, and to the minimum
in Reynolds stress,

�I (/ =∞), and min
(</<∞

�I , (26)
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respectively. As we defined the Reynolds stress using the
vertical component of action �I (see (Eq. 9)), and be-
cause its minimum is always found well inside the inner
layer, we can conservatively consider the difference be-
tween the emitted pseudo-momentum flux and the mini-
mum in Reynolds stress as the part due to horizontal prop-
agation yielding to wave large-scale flow interactions oc-
curring inside the inner layer and downstream exclusively.
Fig. 9 shows that when � increases the emitted pseudo-
momentum fluxes and the minimum in Reynolds stress are
quite different. More specifically, we find that for narrow
boundary layers (� = 0.5 in Fig. 9a) lateral fluxes are small.
We note also that the minimum in Reynolds stress is larger
than the far field Reynolds stress when � > 1, the upward
propagating waves are dissipated in the upper part of the
inner layer (see also Part I). This effect occurs for all bound-
ary layer depth � and is never pronounced for small �, as
indicates the fact that the far field and minimum Reynolds
stress always coincide for � < 1. As � increases up to
� = 1 and for moderate stability 0.1 < � < 1, the presence
of lee waves induces a lateral flux, the emitted fluw %Emit
substantially exceeding the Reynolds stresses Fig. 9b. This
lateral contribution decreases as � increases, the waves be-
ing absorbed at the surface. For larger � in Fig. 9c,d, the
contributions of the lateral fluxes become more and more
substantial, and for large � a good part of the lateral fluxes
are due to the fraction of the emitted waves which are
reflected downward (the surface absorption being large).

6. Conclusion

In this paper we have analyzed how a background wind
curvature, which mimics a boundary layer of depth �,
modulates the impact of small-scale mountains on the
large-scale flow while staying in the weakly nonlinear dis-
sipative regime used in Part I and II. The first noticeable
result we find is that trapped lee waves develop much more
than in the constant shear case, they resemble to Kelvin-
Helmholtz neutral modes of instability, at least when the
surface Richardson number � < 0.25. This corroborates
the results in Lott (2016); Soufflet et al. (2019) but us-
ing an other boundary layer parameterization and an other
fully nonlinear model (the MITgcm here versus WRF in
Soufflet et al. (2019)). We also found that for large � and
�, low level waves are related to modes that have been re-
flected at turning levels and that return to the surface down-
stream where they are absorbed. For small �, the trapped
lee waves may not be efficiently excited, simply because
the corresponding neutral modes of KH instability have
small horizontal wavenumber compared to the character-
istic scale of the mountain (a condition that writes : � 1
in dimensionless form).

As in the constant wind shear cases we recover the
transition from the form drag regime to the wave drag
regime when the flow stability near the surface increases.

The wave drag regime is associated with downslope winds
and upstream blocking and is characterized by a negative
Reynolds stress a good fraction of which radiates in the
far field (see Fig. 5a,b,c). The form drag regime is associ-
ated with upslope winds and downstream sheltering and is
always associated with positive Reynolds stress, confined
to the inner layer (see Fig. 5d)e,f). One key result of this
part is that there exists a transition zone for which these
two regimes coexist. For this intermediate situations, the
Reynolds stress is positive in the lower part of the inner
layer and negative in the upper part and aloft: the inter-
action between the boundary layer flow and the mountain
produces deceleration near the surface, acceleration in the
middle of the inner layer, and deceleration (gravity wave
drag) near the top of the inner layer and above. As a di-
rect consequence, we can measure the relative importance
of the form drag regime and of the wave drag regime by
comparing the minima and maxima of the Reynolds stress.

The nature of this transition is controlled by the amount
of reflected waves that return to the surface and by the
absorptive properties of the surface. In this paper, we con-
trolled the reflected waves with the boundary layer depth
�, while we controlled the absorption with the surface
Richardson number �. When � is small, most harmon-
ics are free to propagate in the far field, upward propa-
gating gravity waves control the dynamics for values of
� > 0.1. When � increases the background wind curva-
ture starts supporting horizontally propagating trapped lee
waves when � ≈ 1. For larger values of �, these trapped
lee waves do not develop well (the ground absorption is
too large) but, there can be vertically propagating waves
returning from the far field to the surface where they are ab-
sorbed. We showed that, when they exist, trapped leewaves
and reflected waves can produce significant lateral fluxes
of momentum downstream the mountain. Pseudo momen-
tum budget near the topography indicates that lateral and
vertical momentum flux are of the same order of magni-
tude for intermediate values of �. These downstreamfluxes
remain substantial up to five time the mountain width, the
associated lee wave drag being applied in the inner layer.

For future work, we wish to use our results to parame-
terize low-level drag in coarse resolution models. Indeed,
we have a predictor (Eq. 21) and indications of where
that the drag should be deposited. Compared to the results
of Part II, we now know that the fraction of the drag due
to trapped waves (those encountering turning levels in the
low troposphere) should entirely be deposited at low level,
where the waves are dissipated. We should also start dis-
cussing how form drag and wave drag should interact for
these waves, since we just showed that they can coexist.
Our results suggest that there exist a criteria to separate
the harmonics that contribute to form and wave drag. Of
course this criteria should be a function of the altitude of
the turning levels and presumably also be a function of the
boundary layer depth, not just the inner layer depth.
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APPENDIX

A1. Calculation of the Outer solution

If we change variables and take A = tanh2 (I/�) equation
Eq. (11) transforms into:

32w
3A2 +

(
1
2A
− 1

1− A

)
3w
3A
+(

�

4A2 (1− A)2
+ 1

2A (1− A) −
�2:

2

4A (1− A)2

)
w = 0. (A1)

This equation has three regular singular points in A =

0,1,∞, when :2�2 − � > 0 and � > 1/4 their exponent
pairs are:

A = 0 : U1 =
1
4 + 8

`

2 , U2 =
1
4
− 8 `

2
;

A = 1 : W1 = −<2 , W2 = +
<

2
(A2)

A =∞ V1 = 1, V2 = −
1
2
.

In (A2),

` =

√
|� − 1

4
|,and < =

√
|� −�2:2 |, (A3)

they are changed in 8` and/or −8<, when � < 1/4 and/or
:2�2− � < 0, respectively. Introducing the change of vari-
able,

w = AU1 (1− A)W1, (A4)

equation (A1) transforms into the hyper-geometric equa-
tion, and the inviscid solution

w� = 2−<A
1
4+8

`

2 (1− A)−<2 ,2(1) ≈︸︷︷︸
I→+∞

4−<I/� , (A5)

behaves like a pure exponential function in the far field, for
instance like a unit amplitude upward propagating gravity
wave when �2:

2
< �. In (A5), the solution

,2(1) = (1− A)<� (2− 1, 2− 0;2− 0− 1 +1;1− A), (A6)

is expressed using the hyper-geometric function �, and the
coefficients

0 = U1 + V1 +W1 =
5
4
+ 8 `

2
− <

2
,

1 = U1 + V2 +W1 = −
1
4
+ 8 `

2
− <

2
, (A7)

2 = 1+U1−U2 = 1+ 8`.

To evaluate F̂2 near the surface, the transformation
(15.3.6 in AS) is used to express (A5) in terms of the

solutions (15.5.3 in AS) and (15.5.4 in AS), e.g.

,1(0) = � (0, 1;2;A) , and,2(0) = A
1−2� (0−2+1, 1−2+1;2−2;A) :

(A8)
,1(0) = �1,1(1) + �3,2(1) , ,2(0) = �2,1(1) + �4,2(1)

(A9)
where

�1 =
Γ(2)Γ(2− 0− 1)
Γ(2− 0)Γ(2− 1) , �3 =

Γ(2)Γ(0 + 1− 2)
Γ(0)Γ(1) ,

�2 =
Γ(2− 2)Γ(2− 0− 1)
Γ(1− 0)Γ(1− 1) , �4 =

Γ(2− 2)Γ(0 + 1− 2)
Γ(0− 2+1)Γ(1− 2+1) .

This yields

w� = AU1 (1− A)W1
(
11,2(0) + 12,1(0)

)
,

where 1 9 = (−1) 9−1 2−<� 9
�1�4− �2�3

for 9 = 1,2. (A10)

When approaching the surface, this inviscid solutions be-
haves as the matching function,

w� (:, I) ≈
I→0

w" (:, I) = 01 (:)I1/2−8` + 02 (:)I1/2+8`,
(A11)

providing that

01 = �
− 1

2+8`11, and 02 = �
− 1

2−8`12. (A12)
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