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Gross–Oliveira–Kohn density functional theory (GOK-DFT) for ensembles is in principle very
attractive, but has been hard to use in practice. A novel, practical model based on GOK-DFT for
the calculation of electronic excitation energies is discussed. The new model relies on two mod-
ifications of GOK-DFT: use of range separation and use of the slope of the linearly-interpolated
ensemble energy, rather than orbital energies. The range-separated approach is appealing as it en-
ables the rigorous formulation of a multi-determinant state-averaged DFT method. In the exact
theory, the short-range density functional, that complements the long-range wavefunction-based en-
semble energy contribution, should vary with the ensemble weights even when the density is held
fixed. This weight dependence ensures that the range-separated ensemble energy varies linearly
with the ensemble weights. When the (weight-independent) ground-state short-range exchange-
correlation functional is used in this context, curvature appears thus leading to an approximate
weight-dependent excitation energy. In order to obtain unambiguous approximate excitation ener-
gies, we propose to interpolate linearly the ensemble energy between equiensembles. It is shown that
such a linear interpolation method (LIM) can be rationalized and that it effectively introduces weight
dependence effects. As proof of principle, LIM has been applied to He, Be, H2 in both equilibrium
and stretched geometries as well as the stretched HeH+ molecule. Very promising results have been
obtained for both single (including charge transfer) and double excitations with spin-independent
short-range local and semi-local functionals. Even at the Kohn–Sham ensemble DFT level, that is
recovered when the range-separation parameter is set to zero, LIM performs better than standard
time-dependent DFT.

I. INTRODUCTION

The standard approach for modeling excited states in
the framework of density-functional theory (DFT) is the
time-dependent (TD) linear response regime [1]. Despite
its success, due to its low computational cost and rela-
tively good accuracy, standard TD-DFT still suffers from
various deficiencies, one of them being the absence of
multiple excitations in the spectrum. This is directly
connected with the so-called adiabatic approximation
that consists in using a frequency-independent exchange-
correlation kernel in the linear response equations. In or-
der to overcome such limitations, the combination of TD-
DFT with density-matrix- [2] or wavefunction-based [3–5]
methods by means of range separation has been investi-
gated recently.
In this work, we propose to explore a time-independent
range-separated DFT approach for excited states that is
based on ensembles [6, 7]. One of the motivation is the
need for cheaper (in terms of computational cost) yet
still reliable (in terms of accuracy) alternatives to stan-
dard second-order complete active space (CASPT2) [8]

or N-electron valence state (NEVPT2) [9, 10] perturba-
tion theories for modeling, for example, photochemical
processes [11, 12]. Ensemble range-separated DFT was
initially formulated by Pastorczak et al. [13] The authors
considered the particular case of Boltzmann ensemble
weights. The latter were controlled by an effective tem-
perature that can be used as a tunable parameter, in ad-
dition to the range-separation one. As shown in Ref. [14],
an exact adiabatic connection formula can be derived for
the complementary short-range exchange-correlation en-
ergy of an ensemble. Exactly like in Kohn–Sham (KS)
ensemble DFT [7, 15, 16], that is also referred to as
Gross–Oliveira–Kohn DFT (GOK-DFT), the variation of
the short-range exchange-correlation density functional
with the ensemble weights plays a crucial role in the cal-
culation of excitation energies [14]. So far, short-range
density-functional approximations have been developed
only for the ground state, not for ensembles. Conse-
quently, an approximate (weight-independent) ground-
state functional was used in Ref. [13].
The weight dependence of the range-separated ensem-
ble energy and the ambiguity in the definition of an ap-
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proximate excitation energy, that may become weight-
dependent when approximate functionals are used, will
be analyzed analytically and numerically in this work.
By analogy with the fundamental gap problem [17], a
simple and general linear interpolation method is pro-
posed and interpreted for the purpose of defining un-
ambiguously approximate weight-independent excitation
energies. The method becomes exact if exact functionals
and wavefunctions are used. The paper is organized as
follows: After a brief introduction to ground-state range-
separated DFT in Sec. II A, GOK-DFT is presented in
Sec. II B and its exact range-separated extension is for-
mulated in Sec. II C. The weight-independent density-
functional approximation is then discussed in detail for a
two-state ensemble. The linear interpolation method is
introduced in Sec. II D and rationalized in Sec. II E. The
particular case of an approximate range-separated en-
semble energy that is quadratic in the ensemble weight
is then treated in Sec. II F. Comparison is made with
Ref. [13] and time-dependent adiabatic linear response
theory in Sec. II G. A generalization to higher excita-
tions is then given in Sec. II H. After the computational
details in Sec. III, results obtained for He, Be, H2 and
HeH+ are presented and discussed in Sec. IV. We con-
clude this work with a summary in Sec. V.

II. THEORY

A. Range-separated density-functional theory for
the ground state

According to the Hohenberg–Kohn (HK) theorem [18],
the exact ground-state energy of an electronic system can
be obtained variationally as follows,

E0 = min
n

{
F [n] +

∫
dr vne(r)n(r)

}
, (1)

where vne(r) is the nuclear potential and the minimiza-
tion is performed over electron densities n(r) that inte-
grate to a fixed number N of electrons. The universal
Levy–Lieb (LL) functional [19] equals

F [n] = min
Ψ→n
〈Ψ|T̂ + Ŵee|Ψ〉, (2)

where T̂ and Ŵee ≡
∑N
i<j 1/rij are the kinetic en-

ergy and regular two-electron repulsion operators, respec-
tively. Following Savin [20], we consider the decomposi-
tion of the latter into long- and short-range contributions,

1/r12 = wlr,µ
ee (r12) + wsr,µ

ee (r12),

wlr,µ
ee (r12) = erf(µr12)/r12, (3)

where erf is the error function and µ is a parameter in
[0,+∞[ that controls the range separation, thus leading
to the partitioning

F [n] = F lr,µ[n] + Esr,µ
Hxc [n], (4)

with

F lr,µ[n] = min
Ψ→n
〈Ψ|T̂ + Ŵ lr,µ

ee |Ψ〉, (5)

and Ŵ lr,µ
ee ≡ ∑N

i<j w
lr,µ
ee (rij). The complementary µ-

dependent short-range density-functional energy Esr,µ
Hxc [n]

can be decomposed into Hartree (H) and exchange-
correlation (xc) terms, in analogy with conventional KS-
DFT,

Esr,µ
Hxc [n] = Esr,µ

H [n] + Esr,µ
xc [n],

Esr,µ
H [n] =

1

2

∫ ∫
drdr′n(r)n(r′)wsr,µ

ee (|r− r′|) . (6)

Inserting Eq. (4) into Eq. (1) leads to the exact expression

E0 = min
Ψ

{
〈Ψ|T̂ + Ŵ lr,µ

ee + V̂ne|Ψ〉+ Esr,µ
Hxc [nΨ]

}
= 〈Ψµ

0 |T̂ + Ŵ lr,µ
ee + V̂ne|Ψµ

0 〉+ Esr,µ
Hxc [nΨµ0

], (7)

where V̂ne =
∫

dr vne(r) n̂(r) and n̂(r) is the density oper-
ator. The electron density obtained from the trial wave-
function Ψ is denoted nΨ. The exact minimizing wave-
function Ψµ

0 in Eq. (7) has the same density n0 as the
physical fully-interacting ground-state wavefunction Ψ0

and it fulfils the following self-consistent equation:

Ĥµ[nΨµ0
]|Ψµ

0 〉 = Eµ0 |Ψµ
0 〉, (8)

where

Ĥµ[n] = T̂ + Ŵ lr,µ
ee + V̂ne +

∫
dr
δEsr,µ

Hxc [n]

δn(r)
n̂(r). (9)

It is readily seen from Eqs. (3) and (8) that the KS and
Schrödinger equations are recovered in the limit of µ = 0
and µ → +∞, respectively. An exact combination of
wavefunction theory with KS-DFT is obtained in the
range of 0 < µ < +∞.
In order to perform practical range-separated DFT calcu-
lations, local and semi-local short-range density function-
als have been developed in recent years [21–24]. In ad-
dition, various wavefunction-theory-based methods have
been adapted to this context in order to describe the long-
range interaction: Hartree–Fock (HF) [25, 26], second-
order Møller-Plesset (MP2) [25, 27, 28], the random-
phase approximation (RPA) [29, 30], configuration in-
teraction (CI) [31, 32], coupled-cluster (CC) [23], the
multi-configurational self-consistent field (MCSCF) [26],
NEVPT2 [33], one-electron reduced density-matrix-
functional theory [34] (RDMFT) and the density ma-
trix renormalization group method [35] (DMRG). In this
work, CI will be used. The orbitals, referred to as HF
short-range DFT (HF-srDFT) orbitals in the following,
are generated by restricting the minimization on the first
line of Eq. (7) to single determinantal wavefunctions.
Note that, when µ = 0, the HF-srDFT orbitals reduce
to the conventional KS ones.
Finally, in connection with the description of excited
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states, let us mention that the exact auxiliary excited
states {Ψµ

i }i>0 that fulfil the eigenvalue equation,

Ĥµ[nΨµ0
]|Ψµ

i 〉 = Eµi |Ψµ
i 〉, (10)

can be used as starting points for reaching the physical
excitation energies by means of extrapolation tech-
niques [36–38], perturbation theory [39], time-dependent
linear response theory [4, 5] or ensemble range-separated
DFT [13, 14], as discussed further in the following.

B. Ensemble density-functional theory for excited
states

According to the GOK variational principle [6], that
generalizes the seminal work of Theophilou [40] on
equiensembles, the following inequality

Ew ≤ Tr
[
Γ̂wĤ

]
, (11)

where Ĥ = T̂ + Ŵee + V̂ne and Tr denotes the trace,
is fulfilled for any ensemble characterized by a set of
weights w ≡ (w0, w1, . . . , wM−1) with w0 ≥ w1 ≥ . . . ≥
wM−1 > 0 and a set of M orthonormal trial wavefunc-
tions {Ψk}0≤k≤M−1 from which a trial density matrix
can be constructed:

Γ̂w =

M−1∑
k=0

wk|Ψk〉〈Ψk|. (12)

The lower bound in Eq. (11) is the exact ensemble energy

Ew =

M−1∑
k=0

wk〈Ψk|Ĥ|Ψk〉 =

M−1∑
k=0

wkEk, (13)

where Ψk is the exact kth eigenfunction of Ĥ and E0 ≤
E1 ≤ . . . ≤ EM−1. In the following, the ensemble will al-
ways contain complete sets of degenerate states (referred
to as ”multiplets” in Ref. [7]). An important consequence
of the GOK principle is that the HK theorem can be ex-
tended to ensembles of ground and excited states [7], thus
leading to the exact variational expression for the ensem-
ble energy,

Ew = min
n

{
Fw[n] +

∫
dr vne(r)n(r)

}
, (14)

where the universal LL ensemble functional is defined as
follows,

Fw[n] = min
Γ̂w→n

{
Tr
[
Γ̂w(T̂ + Ŵee)

]}
. (15)

The minimization in Eq. (15) is restricted to ensemble
density matrices with the ensemble density n:

Tr
[
Γ̂wn̂(r)

]
= nΓ̂w(r) = n(r). (16)

Note that, in the following, we will use the convention∑M−1
k=0 wk = 1 so that the ensemble density integrates

to the number of electrons N . The minimizing density
in Eq. (14) is the exact ensemble density of the physical

system nw(r) =
∑M−1
k=0 wk nΨk(r).

In standard ensemble DFT [7], that is referred to as
GOK-DFT in the following, the KS partitioning of the
LL functional is used,

Fw[n] = Tw
s [n] + Ew

Hxc[n], (17)

where the non-interacting ensemble kinetic energy is de-
fined as

Tw
s [n] = min

Γ̂w→n

{
Tr
[
Γ̂wT̂

]}
, (18)

and Ew
Hxc[n] is the w-dependent Hxc functional for the

ensemble, thus leading to the exact ensemble energy ex-
pression, according to Eq. (14),

Ew = min
Γ̂w

{
Tr
[
Γ̂w(T̂ + V̂ne)

]
+ Ew

Hxc[nΓ̂w ]
}
. (19)

The minimizing GOK density matrix,

Γ̂w
s =

M−1∑
k=0

wk|Φw
k 〉〈Φw

k |, (20)

reproduces the exact ensemble density of the physical
system,

nΓ̂w
s

(r) = nw(r), (21)

and it fulfils the stationarity condition δLw[Γ̂w
s ] = 0

where

Lw[Γ̂w] = Tr
[
Γ̂w(T̂ + V̂ne)

]
+ Ew

Hxc[nΓ̂w ]

+

M−1∑
k=0

wkEwk
(

1− 〈Ψk|Ψk〉
)
. (22)

The coefficients Ewk are Lagrange multipliers associated

with the normalization of the trial wavefunctions Ψk from
which the density matrix is built. Considering variations
Ψk → Ψk + δΨk for each individual states separately
leads to the self-consistent GOK equations [7]:(

T̂ + V̂ne +

∫
dr
δEw

Hxc[nΓ̂w
s

]

δn(r)
n̂(r)

)
|Φw
k 〉

= Ewk |Φw
k 〉, 0 ≤ k ≤M − 1. (23)

C. Range-separated ensemble density-functional
theory

In analogy with ground-state range-separated DFT,
the LL ensemble functional in Eq. (15) can be range-
separated as follows [13, 14],

Fw[n] = F lr,µ,w[n] + Esr,µ,w
Hxc [n], (24)
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where

F lr,µ,w[n] = min
Γ̂w→n

{
Tr
[
Γ̂w(T̂ + Ŵ lr,µ

ee )
]}

. (25)

In the following, the short-range ensemble functional
will be partitioned into w-independent Hartree and w-
dependent exchange-correlation terms,

Esr,µ,w
Hxc [n] = Esr,µ

H [n] + Esr,µ,w
xc [n]. (26)

Note that the decomposition is arbitrary and can be
exact or not, depending on the short-range exchange-
correlation functional used. In practical calculations, lo-
cal and semi-local exchange-correlation functionals may
not remove the so-called ”ghost interactions” [41, 42]
that are included into the short-range Hartree term.
Such interactions are fictitious and unwanted. Their de-
tailed analysis, in the context of range-separated ensem-
ble DFT, is currently in progress and will be presented
in a separate work.
Combining Eq. (14) with Eq. (24) leads to the exact
range-separated ensemble energy expression

Ew = min
Γ̂w

{
Tr
[
Γ̂w(T̂ + Ŵ lr,µ

ee + V̂ne)
]

+Esr,µ,w
Hxc [nΓ̂w ]

}
. (27)

The minimizing long-range-interacting ensemble density

matrix Γ̂µ,w =
∑M−1
k=0 wk|Ψµ,w

k 〉〈Ψµ,w
k | reproduces the

physical ensemble density,

nΓ̂µ,w(r) = nw(r), (28)

and, by analogy with Eq. (22), we conclude that it should
fulfill the self-consistent equation(

T̂ + Ŵ lr,µ
ee + V̂ne +

∫
dr
δEsr,µ,w

Hxc [nΓ̂µ,w ]

δn(r)
n̂(r)

)
|Ψµ,w
k 〉

= Eµ,wk |Ψµ,w
k 〉, 0 ≤ k ≤M − 1. (29)

Note that the Schrödinger and GOK-DFT equations are
recovered for µ→ +∞ and µ = 0, respectively.

In the rest of this work we will mainly focus on ensem-
bles consisting of two non-degenerate states. In this case,
the ensemble weights are simply equal to

w1 = w, w0 = 1− w, (30)

where 0 ≤ w ≤ 1/2, and the exact ensemble energy is a
linear function of w,

Ew = (1− w)E0 + wE1. (31)

Consequently, the first excitation energy ω = E1 − E0

can be written either as a first-order derivative,

ω =
dEw

dw
, (32)

or as the slope of the linear interpolation between w = 0
and w = 1/2,

ω = 2(Ew=1/2 − E0). (33)

Let us stress that Eqs. (32) and (33) are equivalent in the
exact theory. By using the decomposition (see Eqs. (27)
and (28))

Ew = (1− w)〈Ψµ,w
0 |T̂ + Ŵ lr,µ

ee + V̂ne|Ψµ,w
0 〉

+w〈Ψµ,w
1 |T̂ + Ŵ lr,µ

ee + V̂ne|Ψµ,w
1 〉+ Esr,µ,w

Hxc [nw], (34)

that can be rewritten in terms of the auxiliary long-range
interacting energies as follows, according to Eq. (29),

Ew = (1− w)Eµ,w0 + wEµ,w1

−
∫

dr
δEsr,µ,w

Hxc [nw]

δn(r)
nw(r) + Esr,µ,w

Hxc [nw], (35)

where the physical ensemble density equals the auxiliary
one (see Eq. (28)),

nw(r) = (1− w)nΨµ,w0
(r) + wnΨµ,w1

(r), (36)

and by applying the Hellmann–Feynman theorem,

dEµ,wi

dw
=

∫
dr

∂

∂w

(
δEsr,µ,w

Hxc [nw]

δn(r)

)
nΨµ,wi

(r), (37)

we finally recover from Eq. (32) the following expression
for the first excitation energy [14],

ω = Eµ,w1 − Eµ,w0 +
∂Esr,µ,w

Hxc [n]

∂w

∣∣∣∣
n=nw

= ∆Eµ,w + ∆µ,w
xc . (38)

It is readily seen from Eq. (38) that the auxiliary ex-
citation energy ∆Eµ,w = Eµ,w1 − Eµ,w0 differs in princi-
ple from the physical one. They become equal when
µ → +∞. For finite µ values, the difference is simply
expressed in terms of a derivative with respect to the en-
semble weight ∆µ,w

xc = ∂Esr,µ,w
xc [n]/∂w|n=nw . Note that

the Hartree term does not contribute to the second term
on the right-hand side of Eq. (38) since it is, for a given
density n, w-independent (see Eq. (26)). Interestingly,
when w → 0, an exact expression for the physical excita-
tion energy is obtained in terms of the auxiliary one that
is associated with the ground-state density (see Eq. (10)),

ω = Eµ1 − Eµ0 +
∂Esr,µ,w

xc [n0]

∂w

∣∣∣∣
w=0

. (39)

Note also that, when µ = 0 and the first excitation is a
one-particle–one-hole excitation (single excitation), the
GOK expression [7] is recovered from Eq. (38),

ω = ∆εw + ∆w
xc, (40)

where ∆εw = εw1 − εw0 is the HOMO-LUMO gap for the
non-interacting ensemble and ∆w

xc = ∂Ewxc[n]/∂w|n=nw .
In the w → 0 limit, the exact excitation energy can be
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expressed in terms of the KS HOMO ε0 and LUMO ε1

energies as follows,

ω = εw→0
1 − ε0, (41)

where εw→0
1 = ε1 + ∆0

xc. As shown analytically by
Levy [43] and numerically by Yang et al. [15], ∆0

xc corre-
sponds to the jump in the exchange-correlation potential
when moving from w = 0 (ground state) to w > 0 (en-
semble of ground and excited states). This is known as
the derivative discontinuity (DD) and should not be con-
fused with the ground-state DD that is related to ion-
ization energies and electron affinities, although there
are distinct similarities at a formal level [44–46]. Con-
sequently, the quantity ∆µ,w

xc introduced in Eq. (38) will
be referred to in the following as short-range DD.

D. Weight-independent density-functional
approximation and the linear interpolation method

Even though an exact adiabatic-connection-based ex-
pression exists for the short-range ensemble exchange-
correlation functional (see Eq. (133) in Ref. [14]), it
has not been used yet for developing weight-dependent
density-functional approximations. Let us stress that
this is still a challenge also in the context of GOK-
DFT [15]. A crude approximation simply consists in us-
ing the ground-state functional [13],

Esr,µ,w
xc [n]→ Esr,µ

xc [n], (42)

thus leading to the approximate ensemble energy expres-
sion

Ẽµ,w = (1− w)〈Ψ̃µ,w
0 |T̂ + Ŵ lr,µ

ee + V̂ne|Ψ̃µ,w
0 〉

+w〈Ψ̃µ,w
1 |T̂ + Ŵ lr,µ

ee + V̂ne|Ψ̃µ,w
1 〉+ Esr,µ

Hxc [ñµ,w], (43)

that may depend on both µ and w, and where the ap-
proximate auxiliary ensemble density equals

ñµ,w(r) = (1− w)nΨ̃µ,w0
(r) + wnΨ̃µ,w1

(r), (44)

with

Ĥµ[ñµ,w]|Ψ̃µ,w
i 〉 = Ẽµ,wi |Ψ̃µ,w

i 〉, i = 0, 1. (45)

In the following we refer to this approximation as weight-
independent density-functional approximation (WIDFA).
Note that, at the WIDFA level, the ground-state density-
functional Hamiltonian Ĥµ[n] (see Eq. (9)) is used. The

auxiliary wavefunctions Ψ̃µ,w
i associated with the bi-

ensemble (0 < w ≤ 1/2) will therefore deviate from
their ”ground-state” limits Ψµ

i (w = 0) because of the
ensemble density ñµ,w that is inserted into the short-
range Hxc potential. Note that Eq. (45) should be
solved self-consistently. Let us also stress that the
ground-state short-range Hxc density-functional poten-
tial δEsr,µ

Hxc [n0]/δn(r) is recovered in the limit w → 0, as

readily seen from Eq. (45). In other words, the short-
range DD is not modeled at the WIDFA level of approxi-
mation. Finally, the exact (µ-independent) ground-state
energy will still be recovered when w → 0 if no ap-
proximation is introduced in the short-range exchange-
correlation functional,

Ẽµ,0 = E0. (46)

Obviously, the exact ensemble energy will in general not
be recovered for w > 0. By rewriting the WIDFA ensem-
ble energy as

Ẽµ,w = (1− w)Ẽµ,w0 + wẼµ,w1

−
∫

dr
δEsr,µ

Hxc [ñµ,w]

δn(r)
ñµ,w(r) + Esr,µ

Hxc [ñµ,w], (47)

and applying the Hellmann–Feynman theorem,

dẼµ,wi

dw
=

∫
dr

∂

∂w

(
δEsr,µ

Hxc [ñµ,w]

δn(r)

)
nΨ̃µ,wi

(r), (48)

we see that, within WIDFA, the first-order derivative of
the ensemble energy reduces to the auxiliary excitation
energy that is in principle w-dependent,

dẼµ,w

dw
= Ẽµ,w1 − Ẽµ,w0 = ∆Ẽµ,w. (49)

Therefore, in practical calculations, the WIDFA ensem-
ble energy may not be strictly linear in w, as illustrated
for He in Fig. 1. In the same spirit as Ref. [17], we pro-
pose to restore the linearity by means of a simple linear
interpolation between the ground state (w = 0) and the
equiensemble (w = 1/2),

E
µ,w

= E0 + 2w(Ẽµ,1/2 − E0). (50)

This approach, that will be rationalized in Sec. II E, is
referred to as linear interpolation method (LIM) in the
following. The approximate excitation energy is then un-
ambiguously defined as

ωµLIM =
dE

µ,w

dw
= 2(Ẽµ,1/2 − E0). (51)

Note that, according to Eq. (33), LIM becomes exact
when the exact weight-dependent short-range exchange-
correlation functional is used. By analogy with the grand
canonical ensemble [17], we can connect the linear inter-
polated and curved WIDFA ensemble energies as follows,

E
µ,w

= Ẽµ,w +

∫ w

0

dξ ∆µ,ξ
eff , (52)

so that, according to Eqs. (49) and (51),

ωµLIM = ∆Ẽµ,w + ∆µ,w
eff . (53)

As readily seen from Eqs. (38) and (53), ∆µ,w
eff plays the

role of an effective DD that corrects for the curvature of
the WIDFA ensemble energy, thus ensuring strict linear-
ity in w. A graphical representation of LIM is given in
Fig. 2.
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E. Rationale for LIM and the effective DD

The effective DD has been introduced in Eq. (52)
for the purpose of recovering an approximate range-
separated ensemble energy that is strictly linear in w.
This choice can be rationalized when using a range-
dependent generalized adiabatic connection formalism
for ensembles (GACE) [14], where the exact short-range
ensemble potential is adjusted so that the auxiliary en-
semble density equals the (weight-independent) density
n(r) for any weight ξ and range-separation parameter ν
values: (

T̂ + Ŵ lr,ν
ee +

∫
dr vν,ξ(r)n̂(r)

)
|Ψν,ξ
i 〉

= Eν,ξi |Ψν,ξ
i 〉, i = 0, 1, (54)

where

(1− ξ)nΨν,ξ0
(r) + ξnΨν,ξ1

(r) = n(r). (55)

It was shown [14] that the exact short-range ensem-
ble exchange-correlation density-functional energy can be
formally connected with its ground-state limit (w = 0)
as follows,

Esr,µ,w
xc [n] = Esr,µ

xc [n] +

∫ w

0

dξ∆sr,µ,ξ
xc [n], (56)

where the exact density-functional DD equals

∆sr,µ,ξ
xc [n] =

(
E+∞,ξ

1 − E+∞,ξ
0

)
−
(
Eµ,ξ1 − Eµ,ξ0

)
. (57)

When rewritting the WIDFA ensemble energy in Eq. (43)
as

Ẽµ,w = F lr,µ,w[ñµ,w] + Esr,µ
Hxc [ñµ,w]

+

∫
dr vne(r)ñµ,w(r), (58)

it becomes clear, from Eqs. (52) and (56), that LIM im-
plicitly defines an approximate weight-dependent short-
range exchange-correlation functional:

Esr,µ,w
xc [ñµ,w]→ Esr,µ

xc [ñµ,w] +

∫ w

0

dξ ∆µ,ξ
eff . (59)

In order to connect the exact DD with the effective one,
let us consider Eq. (57) in the particular case n = ñµ,w

and ξ = w, thus leading to

∆sr,µ,w
xc [ñµ,w] = ∆Ẽ+∞,w −∆Ẽµ,w, (60)

where ∆Ẽ+∞,w is the excitation energy of the fully-
interacting system with ensemble density ñµ,w. If the
latter is a good approximation to the true physical ensem-
ble density nw, which is the basic assumption in WIDFA,
then ∆Ẽ+∞,w becomes w-independent and equals the
true physical excitation energy. As discussed previously,
the latter has various approximate expressions that all
rely on various exact expressions. Choosing the slope of

the linearly-interpolated WIDFA ensemble energy ωµLIM
is, in principle, as relevant as other choices. Still, the ana-
lytical derivations and numerical results presented in the
following suggest that LIM has many advantages from a
practical point of view. By doing so, we finally recover
the expression in Eq. (53):

∆sr,µ,w
xc [ñµ,w]→ ωµLIM −∆Ẽµ,w. (61)

F. Effective DD and excitation energy for a
quadratic range-separated ensemble energy

For analysis purposes we will approximate the WIDFA
ensemble energy by its Taylor expansion through second
order in w (around w = 0) over the interval [0, 1/2],

Ẽµ,w → Ĕµ,w = E0 + wẼµ(1) +
w2

2
Ẽµ(2), (62)

where, according to Eqs. (10), (45), (48) and (49),

Ẽµ(1) =
dẼµ,w

dw

∣∣∣∣∣
w=0

= Eµ1 − Eµ0 , (63)

and

Ẽµ(2) =
d2Ẽµ,w

dw2

∣∣∣∣∣
w=0

=

∫ ∫
drdr′

δ2Esr,µ
Hxc [n0]

δn(r′)δn(r)

(
nΨµ1

(r)− n0(r)
)

×
(
nΨµ1

(r′)− n0(r′) +
∂nΨ̃µ,w0

(r′)

∂w

∣∣∣∣∣
w=0

)
. (64)

As shown in Sec. IV, this approximation is accurate when
µ ≥ 1.0a−1

0 . For smaller µ values, and especially in the
GOK-DFT limit (µ = 0), the WIDFA ensemble energy
is usually not quadratic in w. Nevertheless, making such
an approximation gives further insight into the LIM ap-
proach, as shown in the following. From the equiensemble
energy expression

Ĕµ,1/2 = E0 +
1

2
Ẽµ(1) +

1

8
Ẽµ(2), (65)

and Eq. (51), we obtain the LIM excitation energy within
the quadratic approximation, that we shall refer to as
LIM2,

ωµLIM2 = 2(Ĕµ,1/2 − E0)

= Ẽµ(1) +
1

4
Ẽµ(2), (66)

thus leading to

ωµLIM2 = Eµ1 − Eµ0
+

1

4

∫ ∫
drdr′

δ2Esr,µ
Hxc [n0]

δn(r′)δn(r)

(
nΨµ1

(r)− n0(r)
)

×
(
nΨµ1

(r′)− n0(r′) +
∂nΨ̃µ,w0

(r′)

∂w

∣∣∣∣∣
w=0

)
. (67)
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As shown in Appendix A, an explicit expression for
the linear response of the ground-state density nΨ̃µ,w0

to

variations in the ensemble weight w can be obtained from
self-consistent perturbation theory. Thus we obtain the
following expansion through second order in the short-
range kernel:

ωµLIM2 = Eµ1 − Eµ0
+

1

4

∫ ∫
drdr′

δ2Esr,µ
Hxc [n0]

δn(r′)δn(r)

(
nΨµ1

(r′)− n0(r′)
)

×
(
nΨµ1

(r)− n0(r)
)

+
1

2

∫ ∫ ∫ ∫
dr1dr′1drdr′

δ2Esr,µ
Hxc [n0]

δn(r′1)δn(r1)

× δ
2Esr,µ

Hxc [n0]

δn(r′)δn(r)

(
nΨµ1

(r)− n0(r)
)

×
(
nΨµ1

(r′1)− n0(r′1)
)∑
i≥1

nµ0i(r1)nµ0i(r
′)

Eµ0 − Eµi
+ . . . . (68)

The latter expression is convenient for comparing LIM
with time-dependent range-separated DFT, as discussed
further in the following. Returning to the quadratic en-
semble energy in Eq. (62), its first-order derivative equals

dĔµ,w

dw
= Ẽµ(1) + wẼµ(2), (69)

thus leading to the following expression for the effective
DD, according to Eq. (66),

∆̆µ,w
eff = ωµLIM2 −

dĔµ,w

dw

=

(
1

4
− w

)
Ẽµ(2). (70)

In conclusion, the effective DD is expected to vanish at
w = 1/4 when the WIDFA ensemble energy is strictly
quadratic, as illustrated in Fig. 2.

G. Comparison with existing methods

1. Excitation energies from individual densities

Pastorczak et al. [13] recently proposed to compute
excitation energies as differences of total energies,

∆E(w) = E1(w)− E0(w), (71)

where the energy associated with the state i (i = 0, 1) is
obtained from its (individual) density as follows:

Ei(w) = 〈Ψ̃µ,w
i |T̂ + Ŵ lr,µ

ee + V̂ne|Ψ̃µ,w
i 〉

+Esr,µ
Hxc [nΨ̃µ,wi

]. (72)

From the Taylor expansion

∆E(w) = ∆E(0) + w
d∆E(w)

dw

∣∣∣∣
w=0

+O(w2), (73)

where

∆E(0) = Eµ1 − Eµ0 + Esr,µ
Hxc [nΨµ1

]− Esr,µ
Hxc [n0]

+

∫
dr
δEsr,µ

Hxc [n0]

δn(r)

(
n0(r)− nΨµ1

(r)
)
, (74)

and, according to Eq. (48),

d∆E(w)

dw

∣∣∣∣
w=0

=

∫
dr

(
δEsr,µ

Hxc [nΨµ1
]

δn(r)
− δEsr,µ

Hxc [n0]

δn(r)

)

×
∂nΨ̃µ,w1

(r)

∂w

∣∣∣∣∣
w=0

, (75)

it is readily seen that the excitation energy will vary lin-
early with w in the vicinity of w = 0. Therefore, in
practical calculations, an optimal value for w must be
determined [13]. This scheme can be compared with
LIM2 by expanding the excitation energy in the density
difference nΨµ1

(r)− n0(r), thus leading to

∆E(w) = Eµ1 − Eµ0
+

1

2

∫ ∫
drdr′

δ2Esr,µ
Hxc [n0]

δn(r′)δn(r)

(
nΨµ1

(r′)− n0(r′)
)

×
(
nΨµ1

(r)− n0(r)
)

+w

∫ ∫
drdr′

δ2Esr,µ
Hxc [n0]

δn(r′)δn(r)

(
nΨµ1

(r′)− n0(r′)
)

×
∂nΨ̃µ,ξ1

(r)

∂ξ

∣∣∣∣∣
ξ=0

+ . . . (76)

or, equivalently,

∆E(w) = Eµ1 − Eµ0
+

1

4

∫ ∫
drdr′

δ2Esr,µ
Hxc [n0]

δn(r′)δn(r)

(
nΨµ1

(r′)− n0(r′)
)

×
(
nΨµ1

(r)− n0(r) +
∂ñµ,w,ξ(r)

∂ξ

∣∣∣∣
ξ=0

)
+ . . . (77)

where

ñµ,w,ξ(r) = (4w + ξ)nΨ̃µ,ξ1
(r)− ξnΨ̃µ,ξ0

(r). (78)

This expression is recovered from the LIM2 excitation
energy in Eq. (67) by applying the following substitution:

nΨ̃µ,ξ0
(r)→ ñµ,w,ξ(r). (79)

In other words, for a given ensemble weight w, the re-
sponse of ñµ,w,ξ is used rather than the ground-state den-
sity response in the calculation of the excitation energy
∆E(w). Note that integrating ñµ,w,ξ over space gives
4wN . Therefore, ñµ,w,ξ may be considered as a density
only when w = 1/4. In this case, it is simply expressed
as

ñµ,1/4,ξ(r) = (1 + ξ)nΨ̃µ,ξ1
(r)− ξnΨ̃µ,ξ0

(r), (80)
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and its response to changes in ξ equals

∂ñµ,1/4,ξ(r)

∂ξ

∣∣∣∣
ξ=0

= nΨµ1
(r)− n0(r) +

∂nΨ̃µ,ξ1
(r)

∂ξ

∣∣∣∣∣
ξ=0

.(81)

Consequently, the LIM2 excitation energy can be recov-
ered only if nΨ̃µ,ξ1

= nΨ̃µ,ξ0
around ξ = 0, that means when

the excitation energy reduces to the auxiliary one. Note
finally that the averaged density in Eq. (80) can be in-
terpreted as an ensemble density only if −1 ≤ ξ ≤ −1/2.
It is unclear if its derivative at ξ = 0 has any physical
meaning.

2. Time-dependent adiabatic linear response theory

An approximation ω̃ to the first excitation energy can
also be determined from range-separated DFT within the
adiabatic time-dependent linear response regime [4, 5].
The associated linear response vector X fulfils(

E
[2]µ
0 +Ksr,µ

Hxc − ω̃S[2]µ
)
X = 0, (82)

where the long-range interacting Hessian and the metric
equal

E
[2]µ
0 =

[
[R̂i, [Ĥ

µ
0 , R̂

†
j ]]0 [R̂i, [Ĥ

µ
0 , R̂j ]]0(

[R̂i, [Ĥ
µ
0 , R̂j ]]0

)∗ (
[R̂i, [Ĥ

µ
0 , R̂

†
j ]]0

)∗] ,(83)

and

S[2]µ =

[
[R̂i, R̂

†
j ]0 [R̂i, R̂j ]0

−
(

[R̂i, R̂j ]0

)∗
−
(

[R̂i, R̂
†
j ]0

)∗] , (84)

respectively. Short-hand notations [Â, B̂]0 =

〈Ψµ
0 |[Â, B̂]|Ψµ

0 〉, Ĥµ
0 = Ĥµ[n0], and R†i = |Ψµ

i 〉〈Ψµ
0 |

with i > 0 have been used. The short-range kernel
matrix in Eq. (82) is written as

Ksr,µ
Hxc =

∫ ∫
drdr′

δ2Esr,µ
Hxc [n0]

δn(r′)δn(r)
n[1]µ(r′)n[1]µ†(r),(85)

where the gradient density vector equals

n[1]µ(r) =

[
[R̂i, n̂(r)]0
[R̂†i , n̂(r)]0

]
. (86)

Since we use in this section a complete basis of orthonor-
mal N -electron eigenfunctions {Ψµ

k}k=0,1,... associated
with the unperturbed long-range interacting Hamiltonian
Ĥµ[n0] and the energies {Eµk }k=0,1,..., orbital rotations
do not need to be considered, in constrast to the ap-
proximate multi-determinant formulations presented in
Refs. [4, 5], such that matrices simply reduce to

E
[2]µ
0 =

[(
Eµi − Eµ0

)
δij 0

0
(
Eµi − Eµ0

)
δij

]
,

S[2]µ =

[
δij 0
0 −δij

]
, (87)

and the gradient density vector becomes

n[1]µ(r) =

[
nµ0i(r)
−nµ0i(r)

]
. (88)

The transition matrix elements associated with the
density operator nµ0i(r) have already been introduced in
Eq. (A8).

We propose to solve Eq. (82) by means of perturba-
tion theory in order to make a comparison with LIM2.
The perturbation will be the short-range kernel. Let us
consider the auxiliary linear response equation,(

E
[2]µ
0 + αKsr,µ

Hxc − ω(α)S[2]µ
)
X(α) = 0, (89)

that reduces to Eq. (82) in the α = 1 limit, and the
perturbation expansions

X(α) = X(0) + αX(1) +O(α2),

ω(α) = ω(0) + αω(1) + α2ω(2) +O(α3). (90)

Since we are here interested in the first excitation energy
only, we have

X(0) =


1
0
...
0

 , ω(0) = Eµ1 − Eµ0 . (91)

Inserting Eq. (90) into Eq. (89) leads to the following
excitation energy corrections through second order,

ω(1) = X(0)†Ksr,µ
HxcX

(0),

ω(2) = X(0)†Ksr,µ
HxcX

(1), (92)

where the intermediate normalization condition
X(α)†S[2]µX(0) = 1 has been used, and(

E
[2]µ
0 − ω(0)S[2]µ

)
X(1) = −Ksr,µ

HxcX
(0)

+ω(1)S[2]µX(0). (93)

According to Eqs. (85), (88) and (91), the first-order cor-
rections to the excitation energy and the linear response
vector become

ω(1) =

∫ ∫
drdr′

δ2Esr,µ
Hxc [n0]

δn(r′)δn(r)
nµ01(r′)nµ01(r), (94)

and

X(1) = −
∫ ∫

drdr′
δ2Esr,µ

Hxc [n0]

δn(r′)δn(r)
nµ01(r)

×
(
E

[2]µ
0 − ω(0)S[2]µ

)−1(
n[1]µ(r′)− nµ01(r′)X(0)

)
,(95)

respectively. Combining Eq. (85) with Eqs. (92) and (95)
leads to the following expression for the second-order cor-
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rection to the excitation energy:

ω(2) =

∫ ∫ ∫ ∫
dr1dr′1drdr′

δ2Esr,µ
Hxc [n0]

δn(r′1)δn(r1)

× δ
2Esr,µ

Hxc [n0]

δn(r′)δn(r)
nµ01(r)nµ01(r′1)

(∑
i>1

nµ0i(r1)nµ0i(r
′)

Eµ1 − Eµi

+
∑
i≥1

nµ0i(r1)nµ0i(r
′)

2Eµ0 − Eµi − Eµ1

)
. (96)

The second summation in Eq. (96) is related to de-
excitations. Within the Tamm–Dancoff approximation
the latter will be dropped, thus leading to the following
expansion through second order, according to Eqs. (91)
and (94),

ω̃ = Eµ1 − Eµ0 +

∫ ∫
drdr′

δ2Esr,µ
Hxc [n0]

δn(r′)δn(r)
nµ01(r′)nµ01(r)

+

∫ ∫ ∫ ∫
dr1dr′1drdr′

δ2Esr,µ
Hxc [n0]

δn(r′1)δn(r1)

× δ
2Esr,µ

Hxc [n0]

δn(r′)δn(r)
nµ01(r)nµ01(r′1)

∑
i>1

nµ0i(r1)nµ0i(r
′)

Eµ1 − Eµi
+ . . . (97)

A direct comparison can then be made with the LIM2
excitation energy in Eq. (68). Thus we conclude that
LIM2 can be recovered through first and second orders
in the short-range kernel from adiabatic time-dependent
range-separated DFT by applying, within the Tamm–
Dancoff approximation, the following substitutions,

nµ01(r)→ 1

2

(
nΨµ1

(r)− n0(r)
)
, (98)

and ∑
i>1

nµ0i(r1)nµ0i(r
′)

Eµ1 − Eµi
→ 2

∑
i≥1

nµ0i(r1)nµ0i(r
′)

Eµ0 − Eµi
, (99)

respectively.

H. Generalization to higher excitations

Following Gross et al. [7], we introduce the generalized
w-dependent ensemble energy

EwI =
1− wgI
MI−1

×
(

I−1∑
K=0

gKEK

)
+ wgIEI , (100)

that is associated with the following ensemble weights,

wk =


1− wgI
MI−1

0 ≤ k ≤MI−1 − 1,

w MI−1 ≤ k ≤MI − 1,

(101)

with

0 ≤ w ≤ 1

MI
,

MI =

I∑
L=0

gL, (102)

and E0 < E1 < . . . < EI are the I + 1 lowest energies
with degeneracies {gL}0≤L≤I . In the exact theory, the
ensemble energy is linear in w with slope

dEwI
dw

= gIEI −
gI

MI−1

(
I−1∑
K=0

gKEK

)
, (103)

thus leading to the following expression for the exact Ith
excitation energy

ωI = EI − E0

=
1

gI

dEwI
dw

+
1

MI−1

I−1∑
K=1

gKωK . (104)

The LIM excitation energy, that has been introduced
in Eq. (51) for non-degenerate ground and first-excited
states, can therefore be generalized by substituting the
approximate first-order derivative (that may be both µ-
and w-dependent) with its linear-interpolated value over
the segment [0, 1/MI ],

dẼµ,wI
dw

→MI

(
Ẽ
µ,1/MI

I − Ẽµ,0I

)
, (105)

so that the Ith LIM excitation energy can be defined as

ωµLIM,I =
MI

gI

(
Ẽ
µ,1/MI

I − Ẽµ,1/MI−1

I−1

)
+

1

MI−1

I−1∑
K=1

gKω
µ
LIM,K , (106)

where the equality Ẽ
µ,1/MI−1

I−1 = Ẽµ,0I has been used. In
other words, LIM simply consists in interpolating linearly
the ensemble energy between equiensembles that are de-
scribed at the WIDFA level of approximation.

III. COMPUTATIONAL DETAILS

Eqs. (45) and (51) as well as their generalizations
to any ensemble of ground- and excited states (see
Eq. (106)) have been implemented in a development ver-
sion of the DALTON program package [47, 48]. For sim-
plicity, we considered spin-projected (singlet) ensembles
only. In the latter case, the GOK variational principle is
simply formulated in the space of singlet states [15]. In
practice, both singlet and triplet states have been com-
puted but, for the latter (that can be identified easily in a
CI calculation), the ensemble weight has been set to zero.
Both spin-independent short-range local density [20, 21]
(srLDA) and Perdew-Burke-Ernzerhof-type [23] (srPBE)
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approximations have been used. Basis sets are aug-cc-
pVQZ [49, 50]. Orbitals relaxation and long-range corre-
lation effects have been treated self-consistently at the
full CI level (FCI) in the basis of the (ground-state)
HF-srDFT orbitals. For Be, the 1s orbitals were kept
inactive. Indeed, in the standard wavefunction limit
(µ → +∞), deviations from time-dependent CC with
singles and doubles (TD-CCSD) excitation energies are
0.4 and 2.0 mEh for the 2s → 3s and (2s)2 → (2p)2

excitations, respectively. Comparisons are made with
standard TD-DFT using LDA [51], PBE [52] and the
Coulomb attenuated Becke three-parameter Lee-Yang-
Parr [53](CAM-B3LYP) functionals. We investigated
the following ensembles consisting of two singlet states:
{11S, 21S} for He and Be, {11Σ+, 21Σ+} for the stretched
HeH+ molecule and {11Σ+

g , 2
1Σ+

g } for H2 at equilibrium
and stretched geometries. For Be, the four-state ensem-
ble {11S, 21S, 11D} in Ag symmetry (11D is doubly de-
generate) has also been considered in order to compute
the 11S → 11D excitation energy.

IV. RESULTS AND DISCUSSION

A. Effective derivative discontinuities

1. GOK-DFT results (µ = 0) for He

Let us first focus on the GOK-LDA results (µ = 0
limit) obtained for He. As shown in the top left-hand
panel of Fig. 3, the variation of the auxiliary excitation
energy with w is very similar to the one obtained at the
quasi-LDA (qLDA) level by Yang et al. (see Fig. 11
in Ref. [15]). An interesting feature, observed with
both methods, is the minimum around w = 0.01. The
derivation of the first-order derivative for the auxiliary
excitation energy is presented in Appendix B. As readily
seen from the expression in Eq. (B10), at w = 0, the
derivative contains two terms. The first one, that is
linear in the Hxc kernel, is expected to be positive
due to the Hartree contribution. The second one is
quadratic in the Hxc kernel and is negative (because of
the denominator), exactly like conventional second-order
contributions to the ground-state energy in many-body
perturbation theory. The latter term might be large
enough at w = 0 so that the auxiliary excitation energy
decreases with increasing w. The linearity in w (last
term on the right-hand side of Eq. (B10)) explains why
that derivative becomes zero and is then positive for
larger w values. As the excitation energy increases, the
denominator mentioned previously also increases. The
derivative will therefore increase, thus leading to the
positive curvature observed for the auxiliary excitation
energy. All these features are essentially driven by the
response of the auxiliary excited state to changes in
the ensemble weight (not shown). Returning to the top
panels in Fig. 3, we see that the minimum at w = 0.01
only appears when auxiliary energies are computed

self-consistently. This is consistent with Eq. (B10)
where the second (negative) term on the right-hand side
describes the response of the KS orbitals to changes in
the Hxc potential through the w-dependent ensemble
density. When the latter term is neglected, the auxiliary
excitation energy has positive slope already at w = 0.
For larger w values, self-consistency effects on the slope
are reduced. Indeed, the response of the GOK orbitals is
expected to be smaller as the auxiliary excitation energy
increases. The large deviation of the non-self-consistent
auxiliary excitation energy from the self-consistent one
is due to the fact that, for the former, the ensemble
density is constructed from the ground-state KS or-
bitals. Finally, we note that the self-consistent auxiliary
excitation energy equals the reference FCI one around
w = 0.4. A very similar result has been obtained at the
qLDA level by Yang et al. [15] We also find that both
LDA and PBE yield very similar results.

Let us now turn to the LIM excitation energy for
µ = 0. By construction, it is w-independent, like in the
exact theory. Note that the auxiliary excitation energy
equals the LIM one for a w value that is slightly larger
than 1/4, thus showing that the ensemble energy is not
strictly quadratic in w. Moreover, as expected from the
analysis in Appendix C, the effect of self-consistency is
much stronger on the auxiliary excitation energy than
on the LIM one. For the latter it is actually negligible.
Turning to the effective DDs in the top panels of Fig. 3,
these qualitatively vary with the ensemble weight similar
to the accurate DD shown in Fig. 7 of Ref. [15]. Still,
there are significant differences. For w = 0, the effective
DD equals 0.0736 and 0.0814 Eh at the LDA and PBE
levels, respectively. The accurate value obtained by Yang
et al. [15] is much smaller (0.0116 Eh). In addition, both
LDA and PBE effective DDs equal zero close to w = 1/4
that is much smaller than the accurate value of Ref. [15]
(w ≈ 0.425). Note finally that the substantial difference
between the LIM and FCI excitation energies prevents
the effective DD and shifted auxiliary excitation energy
curves to be symmetric with respect to the weight axis,
as it should be in the exact theory.

2. Range-separated results for He

As illustrated in the middle and bottom panels of
Fig. 3, the auxiliary excitation energy, shown for µ = 0.4
and 1.0a−1

0 , becomes linear in w as µ increases. This is
in agreement with the first-order derivative expression
in Eq. (B7). Indeed, when µ → +∞, the auxiliary
wavefunctions become the physical ones which are
w-independent. Consequently, the third term on the
right-hand side, that is responsible for the minimum
at w = 0.01 observed when µ = 0, vanishes for larger
µ values. Similarly, the auxiliary energies will become
w-independent and equal to the physical energies, thus
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leading to a w-independent first-order derivative. Inter-
estingly, the (negative) second term on the right-hand
side of Eq. (B7) is quadratic in the short-range kernel
and is taken into account only when calculations are
performed self-consistently. Since the short-range kernel
becomes small as µ increases, it is not large enough to
compensate the positive contribution from the first term
that is linear in the short-range kernel. As a result, the
slope of the auxiliary excitation energy is positive for all
w values. It also becomes clear that self-consistency will
decrease the slope.

Turning to the LIM excitation energies and the
effective DDs, the former become closer to the FCI value
as µ increases while the latter are reduced, as expected.
The fact that the auxiliary excitation energy equals the
LIM one for w = 0.25 confirms that the range-separated
ensemble energy is essentially quadratic in w when
µ ≥ 0.4a−1

0 . Even though no accurate values for the
short-range DD are available in the literature for any w,
Fig. 2 in Ref. [37] provides reference values for w = 0
that are about 0.008 and 0.005 Eh for µ = 0.4 and
1.0a−1

0 , respectively. These values are simply obtained
by subtracting the auxiliary excitation energies (denoted
∆Eµk in Ref. [37]) from the standard FCI value (µ→ +∞
limit). The effective DDs computed at the srLDA level
for µ = 0.4 and 1.0a−1

0 differ from these reference values
by about a factor of ten. Note that srLDA and srPBE
functionals give very similar results.

3. Be and the stretched HeH+ molecule

GOK-LDA and srLDA (µ = 0.4 and 1.0a−1
0 ) results

are presented for Be and the stretched HeH+ molecule
in Fig. 4. In both systems, the ensemble contains the
ground state and a first singly-excited state, exactly like
for He. Effective DD curves share similar patterns but
their interpretations differ substantially. Let us first
consider the Be atom. At the GOK-LDA level (top
left-hand panel in Fig. 4), self-consistency effects are
important. They are responsible for the negative slope of
the auxiliary excitation energy at w = 0. Interestingly,
the slope at w = 0 is larger in absolute value for He
than for Be. This is clearly shown in the bottom panel
of Fig. 5. As the auxiliary excitation energy decreases
on a broader interval than for He, the second term on
the right-hand side of Eq. (B10) might become larger in
absolute value as w increases. Its combination with the
third term (linear in w) may explain why the minimum
is reached at a larger ensemble weight value than for
He (w ≈ 0.045). One may also argue that this third
term, that is only described at the self-consistent level,
is smaller for Be than for He, thus leading to a less
pronounced curvature in w, as shown in the top panel
of Fig. 5. The auxiliary excitation energy becomes
linear in w when µ = 0.4 and 1.0a−1

0 (see middle and

bottom left-hand panels in Fig. 4). Note finally that
the effective DDs are about ten times smaller than in He.

Let us now focus on the stretched HeH+ molecule. As
shown in Fig. 5, patterns observed at the GOK-LDA level
for He and Be are strongly enhanced due to the charge
transfer. The interpretation is however quite different.
Indeed, as shown in the top right-hand panel of Fig. 4,
self-consistency is negligible for small w values and is
therefore not responsible for the large negative slope of
the auxiliary excitation energy at w = 0. This was ex-
pected since the self-consistent contribution to the slope
(second term on the right-hand side of Eq. (B10)) in-
volves the overlap between the HOMO (localized on He)
and the LUMO which is, in this particular case, strictly
zero. Consequently, as readily seen in Eq. (B12), the
(negative) LDA exchange and correlation kernels [3] are
responsible for the negative slope at w = 0. The lat-
ter is actually smaller in absolute value when the LDA
correlation density functional is set to zero in the cal-
culation (not shown), thus confirming the importance of
both exchange and correlation contributions to the ker-
nel. Note that, as w increases, self-consistency effects are
growing. This can be related with the third term on the
right-hand side of Eq. (B10) where the response of the ex-
cited state to changes in w contributes. Interestingly, for
µ = 0.4a−1

0 , the contribution to the slope, at w = 0, from
the short-range exchange-correlation kernel is significant
enough [3] so that the pattern observed at the GOK-
LDA level does not completely disappear (see the middle
right-hand panel in Fig. 4). On the other hand, for the
larger µ = 1.0a−1

0 value, the auxiliary excitation energy
becomes essentially linear in w with a positive slope (see
the bottom right-hand panel in Fig. 4). Note finally that
the stretched HeH+ molecule exhibits the largest effec-
tive DDs.

4. H2

Results obtained for H2 are shown in Figs. 5 and 6.
At equilibrium, they are quite similar to those obtained
for He. Still, at the GOK-LDA level, the negative
slope of the auxiliary excitation energy at w = 0 is not
related with self-consistency (see the top left-hand panel
in Fig. 6), in contrast to He. Self-consistency effects
become significant as w increases. Effective DDs at
w = 0 are equal to 40.9, 36.2 and 8.6 mEh for µ = 0, 0.4
and 1.0a−1

0 , respectively. They are significantly larger
than the accurate values deduced from Fig. 6 in Ref. [37]
(7.1, 5.7 and about zero mEh).

In the stretched geometry (right-hand panels in Fig. 6),
the nature of the first excited state completely changes.
It corresponds to the double excitation 1σ2

g → 1σ2
u. At

the GOK-LDA level, self-consistency effects are negligi-
ble. This was expected since, according to Eq. (B7), the
latter effects involve couplings between ground and ex-
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cited states through the density operator. Consequently,
a doubly-excited state will not contribute. Moreover,
the difference in densities between the ground-state and
first doubly-excited GOK determinants reduces along the
bond-breaking coordinate, simply because the overlap
between the 1s orbitals reduces. As a result, the first-
order derivative of the auxiliary excitation energy is very
small, as confirmed by Fig. 5. This analysis holds also
for larger µ values. The only difference is that, when
µ > 0, both ground- and excited-state wavefunctions are
multiconfigurational [54, 55]. In a minimal basis, they
are simply written as

|Ψµ
0 〉 =

1√
2

(
|σ2
g〉 − |σ2

u〉
)
,

|Ψµ
1 〉 =

1√
2

(
|σ2
g〉+ |σ2

u〉
)
. (107)

In this case, both ground and excited states have the
same density,

nΨµ0
(r) = nΨµ1

(r) =
1

2

(
nσ2

g
(r) + nσ2

u
(r)
)
, (108)

and their coupling through the density operator equals

〈Ψµ
0 |n̂(r)|Ψµ

1 〉 =
1

2

(
nσ2

g
(r)− nσ2

u
(r)
)
, (109)

which is zero as the overlap between the 1s orbitals is
neglected.

Since the ensemble energy is, for any µ value, almost
linear in w, the LIM and auxiliary excitation energies
are very close for any weight. Consequently, the effective
DD is very small (4.5 mEh for µ = 0a−1

0 and w = 0).
Since the deviation of the LIM excitation energy from
the FCI one is relatively large (about −0.12Eh for µ =
0a−1

0 ), symmetry of the plotted curves with respect to
the weight axis is completely broken, in contrast to the
other systems. In this particular situation, LIM brings
no improvement and the effective DD is expected to be
far from the true DD. For comparison, the latter equals
about 200 mEh for a slightly larger bond distance (4.2a0)
and µ = 0a−1

0 , according to Fig. 7 in Ref. [37]. For the
same distance, the KS-LDA auxiliary excitation energy
(not shown) deviates by 130mEh in absolute value from
the FCI value, which is in the same order of magnitude
as the true DD. Therefore, for R = 3.7a0, the true DD is
expected to be much larger than the effective one.

B. Excitation energies

1. Single excitations

LIM excitation energies have been computed when
varying µ for the various systems studied previously. Sin-
gle excitations are discussed in this section. Results are
shown in Fig. 7. It is quite remarkable that, already
for µ = 0, LIM performs better than standard TD-DFT

with the same functional (LDA or PBE). This is also true
for the 2Σ+ charge transfer state in the stretched HeH+

molecule. We even obtain slightly better results than
the popular TD-CAM-B3LYP method. As expected, the
error with respect to FCI reduces as µ increases. Note
that, for He, it becomes zero and then changes sign in
the vicinity of µ = 1.0a−1

0 . The latter value gives also
accurate results for the other systems, which is in agree-
ment with Ref. [13]. Note also that, for the typical value
µ = 0.4 − 0.5a−1

0 [25, 26], the slope in µ for the LIM
excitation energy is quite significant. It would there-
fore be relevant to adapt the extrapolation scheme of
Savin [36, 38] to range-separated ensemble DFT. This
is left for future work. Note that srLDA and srPBE
functionals give rather similar results. For comparison,
auxiliary excitation energies obtained from the ground-
state density (w = 0) are also shown. The former re-
duce to KS orbital energy differences for µ = 0. In this
case, TD-DFT gives slightly better results, except for the
charge transfer excitation in HeH+ where the difference
is very small, as expected [1]. Both srLDA and srPBE
auxiliary excitation energies reach a minimum at rela-
tively small µ values (0.125a−1

0 for He). This is due to
the approximate short-range (semi-)local potentials that
we used. Indeed, as shown in Ref. [37], variations in µ
are expected to be monotonic for He and H2 at equi-
librium if an accurate short-range potential were used.
Since the range-separated ensemble energy can be ex-
pressed in terms of the auxiliary energies (see Eq. (47)),
it is not surprising to recover such minima for some LIM
excitation energies. Let us finally note that the auxil-
iary excitation energy converges more rapidly than the
LIM one to the FCI value when µ increases from 1.0a−1

0 .
For Be, convergences are very similar. As already men-
tioned, the convergence can actually be further improved
by means of extrapolation techniques [36, 38]. In conclu-
sion, the LIM approach is promising at both GOK-DFT
and range-separated ensemble DFT levels. In the latter
case, µ should not be too large otherwise the use of an
ensemble is less relevant. Indeed, auxiliary excitation en-
ergies obtained from the ground-state density are in fact
better approximations to the FCI excitation energies, at
least for the systems and approximate short-range func-
tionals considered in this work. This should be tested on
more systems in the future.

2. Double excitations

One important feature of both GOK and range-
separated ensemble DFT is the possibility of modeling
multiple excitations, in contrast to standard TD-DFT.
Results obtained for the 21Σ+

g and 11D states in
the stretched H2 molecule and Be, respectively, are
shown in Fig. 8. We focus on H2 first. As discussed
previously, LIM and auxiliary excitation energies are
almost identical in this case. For µ = 0a−1

0 , they differ
by about -0.12 Eh from the FCI value. There are
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no significant differences between srLDA and srPBE
results. The error monotonically reduces with increasing
µ. Interestingly, for µ = 0.4a−1

0 , the LIM excitation
energy equals 0.237Eh, that is very similar to the
multi-configuration range-separated TD-DFT result
obtained with the same functionals (0.238Eh). [4] This
confirms that the short-range kernel does not contribute
significantly to the excitation energy, since the ground
and doubly-excited states are not coupled by the density
operator (see Eq. (109)). Note that, for R = 4.2a0

and µ = 0.4a−1
0 , the srLDA auxiliary excitation energy

(not shown) equals 0.194Eh, that is rather close to
the accurate value (0.181Eh) deduced from Fig. 7 in
Ref. [37]. As a result, the approximate (semi-)local
density-functional potentials are not responsible for the
large error on the excitation energy. One would blame
the adiabatic approximation if TD linear response theory
were used. In our case, it is related to the WIDFA
approach. In this respect, it seems essential to develop
weight-dependent exchange-correlation functionals for
ensembles. Applying the GACE formalism to model
systems would be instructive in that respect. Work is
currently in progress in this direction.

Turning to the doubly-excited 11D state in Be, LIM
is quite accurate already at the GOK-DFT level. In-
terestingly, the largest and relatively small errors in ab-
solute value (about 4.0 and 7.0 mEh for the srLDA
and srPBE functionals, respectively) are obtained around
µ = 1.0a−1

0 . In this case, the ensemble contains four
states (11S, 21S and two degenerate 11D states) whereas
in all previous cases first excitation energies were com-
puted with only two states. This indicates that µ values
that are optimal in terms of accuracy may depend on
the choice of the ensemble. This should be investigated
further in the future.

V. CONCLUSIONS

A rigorous combination of wavefunction theory with
ensemble DFT for excited states has been investigated
by means of range separation. As illustrated for simple
two- and four-electron systems, using local or semi-local
ground-state density-functional approximations for
modeling the short-range exchange-correlation energy
of a bi-ensemble with weight w usually leads to range-
separated ensemble energies that are not strictly linear
in w. Consequently, the approximate excitation energy,
that is defined as the derivative of the ensemble energy
with respect to w, becomes w-dependent, unlike the
exact derivative. Moreover, the variation in w can be
very sensitive to the self-consistency effects that are
induced by the short-range density-functional potential.

In order to define unambiguously approximate ex-
citation energies in this context, we proposed a linear
interpolation method (LIM) that simply interpolates

the ensemble energy between w = 0 (ground state) and
w = 1/2 (equiensemble consisting of the non-degenerate
ground and first excited states). A generalization to
higher excitations with degenerate ground and excited
states has been formulated and tested. It simply consists
in interpolating the ensemble energy linearly between
equiensembles. LIM is applicable to GOK-DFT that is
recovered when the range-separation parameter µ equals
zero. In the latter case, LIM performs systematically
better than standard TD-DFT with the same functional,
even for the 2Σ+ charge-transfer state in the stretched
HeH+ molecule. For typical values µ = 0.4 − 0.5a−1

0 ,
LIM gives a better approximation to the excitation
energy than the auxiliary long-range-interacting one
obtained from the ground-state density. However, for
larger µ values, the latter excitation energy usually
converges faster than the LIM one to the physical result.

One of the motivation for using ensembles is the
possibility, in contrast to standard TD-DFT, to model
double excitations. Results obtained with LIM for the
11D state in Be are relatively accurate, especially at the
GOK-DFT level. In the particular case of the stretched
H2 molecule, the range-separated ensemble energy is
almost linear in w, thus making the approximate 21Σ+

g

excitation energy almost weight-independent. LIM
brings no improvement in that case and the error on
the excitation energy is quite significant. This example
illustrates the need for weight-dependent exchange-
correlation functionals. Combining adiabatic connection
formalisms [14] with accurate reference data [15] will
hopefully enable the development of density-functional
approximations for ensembles in the near future.

Finally, in order to turn LIM into a useful mod-
elling tool, a state-averaged complete active space self-
consistent field (SA-CASSCF) should be used rather than
CI for the computation of long-range correlation effects.
Since the long-range interaction has no singularity at
r12 = 0, we expect a limited number of configurations
to be sufficient for recovering most of the long-range cor-
relation. This observation has already been made for the
ground state [33, 56]. Obviously, the active space should
be chosen carefully in order to preserve size consistency.
The implementation and calibration of such a method is
left for future work.
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Appendix A: SELF-CONSISTENT
RANGE-SEPARATED ENSEMBLE

DENSITY-FUNCTIONAL PERTURBATION
THEORY

The self-consistent Eq. (45) can be solved for small
w values within perturbation theory. For that purpose
we partition the long-range interacting density-functional
Hamiltonian as follows,

Ĥµ[ñµ,w] = Ĥµ[n0] + wŴµ,w, (A1)

where, according to Eq. (9), the perturbation equals

wŴµ,w =

∫
dr

(
δEsr,µ

Hxc [ñµ,w]

δn(r)
− δEsr,µ

Hxc [n0]

δn(r)

)
n̂(r),(A2)

and, according to Eq. (44),

ñµ,w(r) = n0(r) + w
∂ñµ,w(r)

∂w

∣∣∣∣
w=0

+O(w2)

= n0(r) + w
(
nΨµ1

(r)− n0(r)
)

+ w
∂nΨ̃µ,w0

(r)

∂w

∣∣∣∣∣
w=0

+O(w2). (A3)

Combining Eq. (A2) with Eq. (A3) leads to

Ŵµ,w = Ŵµ,0 +O(w)

=

∫ ∫
drdr′

δ2Esr,µ
Hxc [n0]

δn(r′)δn(r)

(
nΨµ1

(r′)− n0(r′)

+
∂nΨ̃µ,w0

(r′)

∂w

∣∣∣∣∣
w=0

)
n̂(r) +O(w). (A4)

From the usual first-order wavefunction correction ex-
pression∣∣∣∂Ψ̃µ,w

0

∂w

〉∣∣∣∣∣
w=0

=
∑
i≥1

|Ψµ
i 〉
〈Ψµ

i |Ŵµ,0|Ψµ
0 〉

Eµ0 − Eµi
, (A5)

and the expression for the derivative of the ground-state
density, that we simply denote ∂nµ,

∂nµ(r1) =
∂nΨ̃µ,w0

(r1)

∂w

∣∣∣∣∣
w=0

= 2
〈

Ψµ
0

∣∣∣n̂(r1)
∣∣∣∂Ψ̃µ,w

0

∂w

〉∣∣∣∣∣
w=0

, (A6)

we obtain the self-consistent equation

∂nµ = F̂∂nµ + F̂
(
nΨµ1
− n0

)
, (A7)

where F̂ is a linear operator that acts on any function
f(r) as follows,

F̂f(r1) = 2
∑
i≥1

∫ ∫
drdr′

δ2Esr,µ
Hxc [n0]

δn(r′)δn(r)

nµ0i(r1)nµ0i(r)

Eµ0 − Eµi
f(r′),

nµ0i(r) = 〈Ψµ
0 |n̂(r)|Ψµ

i 〉. (A8)

Consequently,

∂nµ =
(
1− F̂

)−1F̂
(
nΨµ1
− n0

)
=

+∞∑
k=0

F̂kF̂
(
nΨµ1
− n0

)
= F̂

(
nΨµ1
− n0

)
+ . . . (A9)

Appendix B: DERIVATIVE OF THE AUXILIARY
EXCITATION ENERGY

According to Eq. (48), the first-order derivative of the
individual auxiliary energies can be expressed as

dẼµ,wi

dw
=

∫ ∫
dr′dr

δ2Esr,µ
Hxc [ñµ,w]

δn(r′)δn(r)

×∂ñ
µ,w(r′)
∂w

nΨ̃µ,wi
(r), (B1)

where

∂ñµ,w(r′)
∂w

= δñµ,w(r′) +
∂nΨ̃µ,w0

(r′)

∂w

+w
∂δñµ,w(r′)

∂w
, (B2)

and

δñµ,w(r′) = nΨ̃µ,w1
(r′)− nΨ̃µ,w0

(r′), (B3)

so that the derivative of the auxiliary excitation energy
in Eq. (49) can be written as

d∆Ẽµ,w
dw

=

∫ ∫
dr′dr

δ2Esr,µ
Hxc [ñµ,w]

δn(r′)δn(r)

×
(
δñµ,w(r′)δñµ,w(r) +

∂nΨ̃µ,w0
(r′)

∂w
δñµ,w(r)

+w
∂δñµ,w(r′)

∂w
δñµ,w(r)

)
. (B4)

According to perturbation theory through first order (see
Appendix A), the response of the ground-state density to
variations in the ensemble weight equals

∂nΨ̃µ,w0
(r′)

∂w
= 2
〈

Ψ̃µ,w
0

∣∣∣n̂(r′)
∣∣∣∂Ψ̃µ,w

0

∂w

〉
= 2

∑
i≥1

∫ ∫
dr1dr2

δ2Esr,µ
Hxc [ñµ,w]

δn(r2)δn(r1)

×n
µ,w
0i (r′)nµ,w0i (r1)

Ẽµ,w0 − Ẽµ,wi

∂ñµ,w(r2)

∂w
, (B5)

where nµ,w0i (r′) = 〈Ψ̃µ,w
0 |n̂(r′)|Ψ̃µ,w

i 〉. Note that, as al-
ready pointed out for w = 0 (see Eq. (A7)), Eq. (B5)
should be solved self-consistently. By considering the
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first contribution to the response of the ensemble den-
sity in Eq. (B2) we obtain

∂nΨ̃µ,w0
(r′)

∂w
= 2

∑
i≥1

∫ ∫
dr1dr2

δ2Esr,µ
Hxc [ñµ,w]

δn(r2)δn(r1)

×n
µ,w
0i (r′)nµ,w0i (r1)

Ẽµ,w0 − Ẽµ,wi

δñµ,w(r2) + . . . (B6)

thus leading to the following expansion

d∆Ẽµ,w
dw

=

∫ ∫
dr′dr

δ2Esr,µ
Hxc [ñµ,w]

δn(r′)δn(r)
δñµ,w(r′)δñµ,w(r)

+2
∑
i≥1

1

Ẽµ,w0 − Ẽµ,wi

×
(∫ ∫

dr′dr
δ2Esr,µ

Hxc [ñµ,w]

δn(r′)δn(r)
δñµ,w(r)nµ,w0i (r′)

)2

+w

(∫ ∫
dr′dr

δ2Esr,µ
Hxc [ñµ,w]

δn(r′)δn(r)

∂δñµ,w(r′)
∂w

δñµ,w(r)

)
+ . . . (B7)

Note that, at the srLDA level of approximation, the
exchange-correlation contribution to the short-range ker-
nel is strictly local [3]. By using the decomposition

δ2EsrLDA,µ
Hxc [n]

δn(r′)δn(r)
= wsr,µ

ee (|r− r′|)

+
∂2esr,µ

xc (n(r))

∂n2
δ(r− r′), (B8)

the first term on the right-hand side of Eq. (B7) can be
simplified as follows,∫ ∫

dr′dr
δ2EsrLDA,µ

Hxc [ñµ,w]

δn(r′)δn(r)
δñµ,w(r′)δñµ,w(r)

=

∫ ∫
dr′drwsr,µ

ee (|r− r′|)δñµ,w(r′)δñµ,w(r)

+

∫
dr
∂2esr,µ

xc (ñµ,w(r))

∂n2

(
δñµ,w(r)

)2

. (B9)

In the GOK-DFT limit (µ = 0), if the first excitation
is a single excitation from the HOMO to the LUMO,
the auxiliary excitation energy reduces to an orbital en-
ergy difference ∆ε̃w whose derivative can formally be ex-
pressed as follows, according to Eq. (B7),

d∆ε̃w

dw
=

∫ ∫
dr′dr

δ2EHxc[ñw]

δn(r′)δn(r)
δñw(r′)δñw(r)

+4
∑

i≤N/2,a>N/2

1

ε̃wi − ε̃wa

×
(∫ ∫

dr′dr
δ2EHxc[ñw]

δn(r′)δn(r)
δñw(r)φ̃wi (r′)φ̃wa (r′)

)2

+w

(∫ ∫
dr′dr

δ2EHxc[ñw]

δn(r′)δn(r)

∂δñw(r′)
∂w

δñw(r)

)
+ . . . (B10)

where

ñw(r) = 2

N/2−1∑
k=1

φ̃wk (r)2

+(2− w)φ̃wN/2(r)2 + wφ̃wN/2+1(r)2,

δñw(r) = φ̃wN/2+1(r)2 − φ̃wN/2(r)2, (B11)

and {φ̃wk (r)}k are the GOK-DFT orbitals with the associ-
ated energies {ε̃wk }k that are obtained within the WIDFA
approximation. Note that, in practical calculations, par-
tially occupied GOK-DFT orbitals have not been com-
puted explicitly. Instead, we performed FCI calculations
in the basis of determinants constructed from the KS or-
bitals.
Let us finally note that if the HOMO and LUMO do not
overlap, the first term on the right-hand side of Eq. (B10)
can be further simplified at the LDA level, according to
Eq. (B9), thus leading to∫ ∫

dr′dr
δ2ELDA

Hxc [ñw]

δn(r′)δn(r)
δñw(r′)δñw(r)

→
∫ ∫

dr′dr
φ̃wN/2(r)2φ̃wN/2(r′)2

|r− r′|

+

∫ ∫
dr′dr

φ̃wN/2+1(r)2φ̃wN/2+1(r′)2

|r− r′|

+

∫
dr
∂2exc(ñw(r))

∂n2

×
(
φ̃wN/2(r)4 + φ̃wN/2+1(r)4

)
. (B12)

Appendix C: SELF-CONSISTENCY EFFECTS ON
THE ENSEMBLE AND AUXILIARY ENERGIES

Let n denote a trial ensemble density for which the
auxiliary wavefunctions can be determined:

Ĥµ[n]|Ψµ
i [n]〉 = Eµi [n]|Ψµ

i [n]〉, i = 0, 1. (C1)

The resulting auxiliary ensemble density,

nw[n](r) = (1− w)nΨµ0 [n](r) + wnΨµ1 [n](r), (C2)

is then a functional of n, like the ensemble energy that
can be expressed as

Eµ,w[n] = (1− w)Eµ0 [n] + wEµ1 [n]

−
∫

dr
δEsr,µ

Hxc [n]

δn(r)
nw[n](r) + Esr,µ

Hxc [nw[n]]. (C3)

The converged ensemble density ñµ,w fulfils the following
condition:

nw[ñµ,w] = ñµ,w. (C4)

If we now consider variations around the trial density,
n→ n+ δn, the ensemble energy will vary through first
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order in δn as follows,

δEµ,w[n] = (1− w)δEµ0 [n] + wδEµ1 [n]

−
∫

dr δ

(
δEsr,µ

Hxc [n]

δn(r)
nw[n](r)

)

+

∫
dr

δEsr,µ
Hxc [nw[n]]

δn(r)
δnw[n](r), (C5)

where, according to the Hellmann–Feynman theorem,

δEµi [n] =

∫
dr δ

(
δEsr,µ

Hxc [n]

δn(r)

)
nΨµi [n](r). (C6)

Combining Eqs. (C1) and (C5) with Eq. (C6) leads to

δEµ,w[n] =

∫
dr

(
δEsr,µ

Hxc [nw[n]]

δn(r)
− δEsr,µ

Hxc [n]

δn(r)

)
×δnw[n](r). (C7)

According to Eq. (C6), the auxiliary excitation energy
∆Eµ[n] = Eµ1 [n]− Eµ0 [n] will vary through first order as

δ∆Eµ[n] =

∫ ∫
drdr′

δ2Esr,µ
Hxc [n]

δn(r′)δn(r)
δn(r′)

×
(
nΨµ1 [n](r)− nΨµ0 [n](r)

)
. (C8)

We conclude from Eqs. (C4), (C7) and (C8) that vari-
ations δn around the converged ensemble density ñµ,w

will induce at least first and second order deviations in
δn for the auxiliary excitation and ensemble energies, re-
spectively.
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28 J. G. Ángyán, Phys. Rev. A 78, 022510 (2008).
29 J. Toulouse, I. C. Gerber, G. Jansen, A. Savin, and J. G.
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FIGURE CAPTIONS

Figure 1: (Color online) Range-separated ensemble en-
ergy obtained for He at the WIDFA level when
varying the ensemble weight w for µ = 0 and
1.0a−1

0 . Comparison is made with the linear in-
terpolation method (LIM) for µ = 0a−1

0 and FCI.
The ensemble contains both 11S and 21S states.
The srLDA functional has been used.

Figure 2: (Color online) Schematic representation of
the linear interpolation method. Ensemble ener-
gies and their first-order derivatives are shown in
the top and bottom panels, respectively. See text
for further details.

Figure 3: (Color online) Effective DD (∆µ,w
eff ), auxiliary

(∆Ẽµ,w) and LIM (ωµLIM) excitation energies asso-
ciated with the excitation 11S → 21S in He. Re-
sults are shown for µ = 0, 0.4 and 1.0 a−1

0 with
the srLDA (left-hand panels) and srPBE (right-
hand panels) functionals when varying the ensem-
ble weight w. Comparison is made with the FCI ex-
citation energy ωFCI = 0.7668 Eh. Empty squares
are used for showing non-self-consistent results.

Figure 4: (Color online) Effective DD (∆µ,w
eff ), auxiliary

(∆Ẽµ,w) and LIM (ωµLIM) excitation energies asso-
ciated with the excitations 11S → 21S in Be (left-
hand panels) and 11Σ+ → 21Σ+ in the stretched
HeH+ molecule (right-hand panels). Results are
shown for µ = 0, 0.4 and 1.0a−1

0 with the srLDA
functional when varying the ensemble weight w.
Comparison is made with the FCI excitation ener-
gies (ωFCI = 0.2487Eh for Be and ωFCI = 0.4024Eh
for HeH+). Empty squares are used for showing
non-self-consistent results.

Figure 5: (Color online) Auxiliary excitation energies
obtained with µ = 0a−1

0 and the srLDA functional
(that is equivalent to GOK-LDA) when varying the
ensemble weight w in the various systems consid-
ered in this work. See text for further details. Exci-
tation energies are shifted by their values at w = 0
for ease of comparison. A zoom is made on the
0 ≤ w ≤ 0.1 region in the bottom panel.

Figure 6: (Color online) Effective DD (∆µ,w
eff ), auxiliary

(∆Ẽµ,w) and LIM (ωµLIM) excitation energies asso-
ciated with the excitation 11Σ+

g → 21Σ+
g in H2 at

equilibrium (left-hand panels) and in the stretched
geometry (right-hand panels). Results are shown
for µ = 0, 0.4 and 1.0a−1

0 with the srLDA functional
when varying the ensemble weight w. Comparison
is made with the FCI excitation energies (ωFCI =
0.4828Eh at equilibrium and ωFCI = 0.3198Eh in
the stretched geometry). Empty squares are used
for showing non-self-consistent results.

Figure 7: (Color online) LIM excitation energies ob-
tained for the single excitations discussed in this
work with srLDA and srPBE functionals when
varying the range-separation parameter µ. Com-
parison is made with standard TD-DFT and FCI.
For analysis purposes, auxiliary excitation energies
obtained from the ground-state density (w = 0) are
shown (curves with empty circles).

Figure 8: (Color online) LIM excitation energies cal-
culated for the doubly-excited 21Σ+

g state in the

stretched H2 molecule (top panel) and 11D state
in Be (bottom panel) when varying the range-
separation parameter µ with srLDA and srPBE
functionals. Comparison is made with FCI. For
H2, auxiliary excitation energies obtained from the
ground-state density (w = 0) are shown (curves
with empty circles) for comparison.
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FIG. 1: Senjean et al, Phys. Rev. A
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FIG. 2: Senjean et al, Phys. Rev. A
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FIG. 3: Senjean et al, Phys. Rev. A
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