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Abstract 13 

Human-induced environmental changes have increased rapidly during the Holocene and have reached 14 

alarming levels today. Consequently, it is crucial to better understand the impact of humans and 15 

climate on the faunas and floras through time. Understanding the direct and underlying effect of past 16 

human activity not only contributes to improving our knowledge of human history but also provides 17 

insights for the future. We here investigate the effect of the human-induced environmental changes 18 

that took place during the modern era (14-19th century AD) on the mandible of a small mammal, Suncus 19 

etruscus, in Corsica. We detected rapid morphological changes in mandible shape over the relatively 20 

short period of time included in our study, suggesting a strong human impact on the island. The 21 

morphological changes observed had functional consequences as they are related to changes in the 22 

mechanical potential of the principal masticatory muscle, the temporalis that, in turn, reflects shifts in 23 

the animal’s diet over time. These results highlight the effect that the 600-year human agricultural 24 

activity shifts had on the island and its fauna. The integration of the body and the ramus of the 25 

mandible appears to be related to the mechanical potential of the temporalis muscle but does not 26 

constitute an indicator of human-induced environmental change. Whether these morphological 27 

changes are the result of natural selection (genetic processes) or of phenotypic plasticity (epigenetic 28 

processes) remains to be elucidated. 29 

Keywords: Mandible; Morphometrics; Shape; Bite force; Corsica; Shrew; Integration  30 
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1. Introduction 31 

We live in an era of rapid and global environmental change where man is the principal driver of changes 32 

in the environment, largely because of the expansion of industry and agriculture, as well as population 33 

growth (Vitousek et al., 1997). The impact of humans on natural ecosystems has dramatically increased 34 

from the Holocene to recent times and has gone hand in hand with climate change. This has had 35 

enormous repercussions on ecosystems worldwide (Barnosky et al., 2004) resulting in the so-called 36 

sixth mass extinction (Pimm & Brooks, 2000; Barnosky et al., 2011; MacPhee & Sues, 2013; Ceballos et 37 

al., 2015). It is therefore crucial to better understand past human activity in conjunction with its direct 38 

and indirect impacts on natural landscapes and the organisms that inhabit these. The study of past 39 

environmental changes and their impact on fauna and flora may provide us with valuable insights for 40 

the future (Blois & Hadly, 2009). Understanding the direct and indirect effects of past human activity on 41 

ecosystems provides valuable information that not only improves our understanding of human history 42 

but also provides insights on how human activity can impact future ecosystems. 43 

An important aspect is the phenotype of an organism as it typically reflects the environmental context it 44 

lives in as form (shape and size) is intimately linked to function (Anderson et al., 2008). For example, the 45 

form of the mandible is intimately linked to bite force generation and may thus provide insights into 46 

diet, anti-predator defense and/or competition in animals (Anderson et al., 2008). As such, mandible 47 

shape may be used as a marker of environmental change. This is true for all vertebrates, but especially 48 

so for small mammals that are likely constrained in their diet by their absolute bite force (Atchley, 1993; 49 

Aguirre et al., 2003; Renaud et al., 2009). As such, we hypothesize that bite force should be related to 50 

environmental changes. We also hypothesize that the environmental changes may impact mandibular 51 

integration and modularity. Integration is defined as the relation between anatomical structures often 52 

referred to as modules. Modules are defined when the different anatomical structures inside the 53 

module co-vary more strongly among themselves than with any anatomical structure outside the 54 

module (Olson & Miller, 1958; Klingenberg et al., 2004; Schlosser & Wagner, 2004; Callebaut & Rasskin-55 

Gutman, 2005; Mitteroecker & Bookstein, 2007; Klingenberg, 2008; Goswami & Polly, 2010). Hanot et 56 

al. (2018), for example, found that artificial selection had an impact on the patterns of integration of 57 

the appendicular skeleton of domestic horses. Moreover, Hanot et al. (2017) showed that integration is 58 

stronger in the cases where functional constraints are strong, suggesting that the degree of integration 59 

of the mandible might provide insights in the strength of selection on this structure.  60 

Islands are often considered “natural laboratories” allowing the study of ecosystems in relation to 61 

environmental changes as well as a better understanding of evolutionary mechanisms and extinction 62 

and speciation events as insular ecosystems are simple and sensitive to changes and moreover (Darwin, 63 

1845; Wallace, 1860; Losos et al., 1997; Whittaker & Fernández-Palacios, 2007). In this context, the 64 
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island of Corsica (Fig. 1a, b) appears a good model to study the relationship between humans and their 65 

environment through time and the subsequent impacts thereof on the fauna (Vigne et al., 1997; Vigne, 66 

1999). The first arrival of man on most Mediterranean islands took place in the last 12,000 years and 67 

this was more often than not, followed by the extinction of endemic species and their replacement with 68 

newly introduced taxa (e.g. Alcover et al., 1981; Davis, 1984; Vigne & Alcover, 1985; Kouvari & van der 69 

Geer, 2018). Corsica is a great example as the impact of humans on the endemic fauna and flora is 70 

exceptionally well documented (Vigne, 1990, 1992, 1996, 1999; Vigne & Valladas, 1996). While the 71 

megafauna extinction on Corsica took place soon after the first arrival of man, smaller endemic 72 

mammals went extinct much later (Vigne, 1988, 1990, 1992). Humans involuntarily introduced many 73 

small mammals that became established on the island (Vigne, 1988, 1990, 1992; Vigne & Valladas, 74 

1996). 75 



5 

 

 76 

Figure 1. (a) Map of the Mediterranean Sea showing Corsica in red, (b) Geomorphological map of Corsica, and (c) 77 

an illustration of the layers of the Monte di Tuda cave, their depth, the vegetation and anthropisation indices and 78 

information on the dating, anthropisation cycles and other important events. Modified after Vigne & Valladas 79 

(1996). Mediterranean map based on outlines from © d-maps.com. Corsica map from © IGN Planet Observer. 80 

The Monte di Tuda site is an archaeological site in the Nebbio Basin in the North of the island (Fig. 1a, 81 

b). The site consists of a cave that served as an owl nest (probably Tyto alba) for the last 2500 years and 82 

provides an exceptional accumulation of micromammal remains through time (Vigne & Valladas, 1996). 83 

Vigne & Valladas (1996) studied these remains and the changes therein through time. They 84 

distinguished biozones, and calculated an anthropisation and vegetation index for each layer. More 85 

specifically, they studied the cave sediment stratigraphy, distinguished the different layers present, and 86 

dated (14C) some of them. They studied the faunal assemblages by calculating the minimum number of 87 
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individuals (MNI) of each species in each layer. Based on the previous and in conjunction with the 88 

known ecological preference of the species, they ran a correspondence analysis (CA) between species 89 

and layers (their faunal compositions) in order to observe the potentially existing patterns of ecological 90 

significance. From this, the first axis distinguished between anthropophilic species while the second 91 

between species preferring “natural” medium maquis vegetation and those preferring low vegetation. 92 

They thus used the CA layer coordinates of the F1 axis as an anthropisation index and those on the F2 93 

as a vegetation index. Finally, based on those vegetations and anthropisation indices along with the 94 

information on the dated layers and the history of Corsica, the authors distinguished anthropisation 95 

cycles, characterized by important local events.  96 

This exceptional stratigraphic sequence in Monte di Tuda brought valuable evidence on the landscape, 97 

faunal and human evolution in Northern Corsica (Vigne & Valladas, 1996). Three sub-sequences were 98 

identified. The first and oldest one (864-409 BC to 322-283 AD) is characterized by the increase of 99 

human-induced impacts (often due to intense cereal cultivation) and habitats consisting of high-100 

medium maquis. The second one (taking place until 1224-1459 AD) is characterized by an acceleration 101 

of human impacts in the region coupled with clearing of vegetation. Finally, the third and last sub-102 

sequence includes a drastic intensification of deforestation resulting in a landscape not very different of 103 

that of today. The extinction of the endemic small mammals is also recorded in this sub-sequence at 104 

this last step and is hypothesized to have happened due human-induced habitat alteration in northern 105 

Corsica (Vigne & Valladas, 1996). This last sub-sequence is the focus of our study (Fig. 1c).  106 

Small mammals are often good markers of the environment they live in (Bar-Yosef & Tchernov, 1966; 107 

Brothwell & Jones, 1978; Chaline, 1979; Marquet, 1989; Rofes et al., 2014; Weissbrod, 2010; Stoetzel et 108 

al., 2011). We studied one of the smallest species, the white-toothed shrew Suncus etruscus (Savi, 109 

1822) (Soricidae) (Fig. 2a). This shrew is one of the smallest extant mammals by mass (only 1.8 g; 110 

Jürgens, 2002) and reached Corsica, as well as most other Mediterranean islands, through human-111 

mediated transport (Dobson, 1998; Chen & Koprowski, 2018). It is a synanthropic/anthropophilic 112 

species as it thrives in human-transformed habitats such as olive groves and vineyards (Dobson, 1998). 113 

It is an opportunistic species feeding principally on invertebrates but also occasionally on small 114 

vertebrates (Nowak & Paradiso, 1999; Kingdon et al., 2013). We here specifically focus on its mandible 115 

(Fig. 2a) as this structure is directly linked to diet (Badyaev & Foresman, 2004) and interspecific 116 

competition (Cornette et al., 2015c) through its impact on bite force generation. Shrew mandibles also 117 

show exceptional phenotypic plasticity (Young et al., 2010) i.e. non-heritable morphological variation as 118 

a response to environmental pressures (Price et al., 2003). Phenotypic plasticity has been investigated 119 

in laboratory-raised mice (Anderson et al., 2014; Garland & Kelly, 2006; Renaud et al., 2010) but has 120 

also been observed in shrews fed on different diets (Young & Badyaev, 2010). Bite force is an 121 
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ecologically relevant performance trait as it is directly related to prey capture and manipulation and as 122 

such determines the type and size of prey that can be consumed (Aguirre et al., 2003; Anderson et al., 123 

2008). We here estimated the mechanical advantage of the two primary masticatory muscles, the 124 

temporalis and the masseter. These two muscles are particularly relevant as they are optimized to 125 

generate force at different gape angles (masseter = low gape; temporalis = high gape; Cornette et al., 126 

2013). Consequently, if shifts in prey size occur through time this may be reflected in the relative 127 

contribution on these two muscles to biting.  128 

Human activity and its direct effects on islands, and in particular in Corsica, are well known. However, 129 

the full range of the underlying consequences of these impacts has not been extensively studied to 130 

date. In this paper, we investigated the effects of human-induced environmental changes in Corsica, 131 

taking as a case study the Etruscan shrew. We hypothesized that environmental changes will impact the 132 

integration of the mandible and tested whether phenotypic integration is a marker of environmental 133 

change in an archeological context. Integration (i.e. the link between different modules of the same 134 

anatomical structure) can change in two ways: via direct interactions (cell groupings or signaling 135 

pathways change) and via parallel variation due to selection on function (Klingenberg & Zaklan 2000; 136 

Klingenberg et al. 2003; Klingenberg 2005). The first type of integration is difficult to change as it 137 

requires developmental and genetic “rewiring”. The second type of integration mostly drives the 138 

evolution of population level variation (for example, Cheverud 1982, 1996; Wagner 1996; Wagner & 139 

Altenberg 1996). Zelditch et al. (2009) suggested that while the mandible can be a highly modular 140 

system from a developmental point of view, it is a functionally integrated system as the mandible as a 141 

whole takes part in all its functions like the capture of prey and mastication. Here, we test whether the 142 

integration between the body and ramus of the mandible (Fig. 2a) changes in response to the rapid 143 

environmental changes observed at our study site through time. In summary, we attempt to define 144 

morpho-functional markers of environmental change due to human activity. More specifically, we test 145 

if, even over a short period of time at the start of the modern era the impact of environmental changes 146 

is visible on the phenotype of the mandible of Suncus etruscus, in terms of its form and function.  147 

2. Material & Methods 148 

2.1 Material 149 

We here focus on the modern era (14th -19th century AD), a short period of about 600 years. During this 150 

time interval, Vigne & Valladas (1996) identified twelve layers at Monte di Tuda, each corresponding to 151 

a different depth in the sediment (Fig. 1c). They dated layer eleven at 1224-1459 AD (610 ± 120 years 152 

BP) and related the other layers with historical events, more specifically layer ten with the end of the 153 

war of Pisa (1556 AD), layer six with the agricultural development of the Genovese people (1637-1639 154 
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AD; Arrighi, 1990) and layer three to the last cultivation optimum of the 19th century in Corsica (Vigne 155 

& Valladas, 1996). This period is characterized by a good resolution of environmental changes and 156 

human activity through time and shows a gradual intensification of human activity, the predominance 157 

of human transformed environments, and a short period of colder and wetter climate called the “Little 158 

Ice Age” (~1300-1850 AD) with minimal temperatures occurring around 1645-1715 AD; (Le Roy Ladurie, 159 

1967; Lamb, 1969; Schneider & Mass, 1975; Fagan, 2002). 160 

We included 411 complete and fragmented mandibles (Appendix A.1) coming from the twelve different 161 

layers of the Monte di Tuda site (also included in the study of Vigne & Valladas, 1996). We also included 162 

26 present-day mandibles from different localities (Appendix A.2). 163 

2.2 Methods 164 

Specimens were sorted, numbered and the lingual sides were photographed using a NIKON D5500 165 

camera (with a NIKKOR 60mm lens). 166 

2.2.1 Fragment types 167 

We categorized our specimens by fragmentation pattern and defined fragment types in order to include 168 

a maximum number of specimens in our analysis. We defined different fragment types described in 169 

Table 1 and Fig. 2b. Fragment types were based on Cornette et al. (2015a, b) and divided in types SC, 170 

COMP, CMM, ABC, MM. For the present study we also added types A and B (Fig. 2b). For fragments 171 

COMP, CMM and B we also added sub-categories for the presence of the anterior part of the mandible 172 

(CMMi, Bi) and the angular process (COMPan) (Fig. 2b). 173 

Groups Anatomical localization 

C Complete mandibles 

SC Mandibles missing the angular process 

SCc SC missing the posteroventral curvature 

COMPan Mandibles missing the anterior part 

COMP COMPan missing the angular process 

CMMi Mandibles missing the angular and coronoid processes 

CMM CMMi missing the anterior part 

ABC Mandibles including the coronoid and angular processes 

Bi1 Mandibles missing the angular and coronoid processes as well as the articular 

condyle 

Bi Bi1 missing the posteroventral curvature 
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B Mandibles only containing the medial parts along with the anterior corner of the 

coronoid fossa 

A Mandibles only containing the anterior part 

MM Very fragmentary specimens containing a fragment of the middle of the 

mandible containing the m1 and m2 tooth insertions  

Table 1. Anatomical localisation and description of the different fragment types starting with complete specimens 174 

and finishing with the most fragmented types. 175 

2.2.2 Analysis of mandible shape 176 

The description of shape was performed using geometric morphometrics, and more specifically the use 177 

of anatomical landmarks and semi-landmarks on curves (Bookstein, 1997; Gunz et al., 2005; Cornette et 178 

al., 2013). Semi-landmarks were slid using a bending energy minimization procedure and can thus be 179 

considered spatially homologous (Bookstein, 1997; Slice, 2007; Mitteroecker & Gunz, 2009).  180 
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 181 

Figure 2. (a) Suncus etruscus (photographed by © Jose B. Ruiz) with a scale that corresponds to a 2-Euro coin and 182 

the anatomical parts of its mandible. (b) Types of fragments and their landmarks (red) and semi-landmarks (grey). 183 

The number in brackets corresponds to the number of specimens of each fragment type. 184 

 185 
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1 Maximum curve point of coronoid process 

2 
Dorsal most, posteroventral and ventral 

most aspect of the articular condyle 
3 

4 

5 Ventral point of condylar neck 

6 Most distal point of angular process 

7 
Inflexion point between angular process 

and body of mandible 

8 Most anterior point of mandible body 

9 Intersection point of mandible and m1 

10 Intersection point of mandible and m2 

11 Intersection point of mandible and m3 

12 Anterior corner of coronoid fossa 

13 
Anterior most point of mandibular 

foramen 

Table 2. Anatomical Landmarks and their description. 186 

More specifically, 13 landmarks (Table 2) and 76 semi-landmarks were defined on complete specimens. 187 

For fragmented mandibles we used the maximum number of landmarks present on the fragment (Fig. 188 

2b). A repeatability test was performed on three specimens. Landmarks were positioned 20 times on 189 

each specimen, followed by a General Procrustes Analysis (GPA) and a Principal Components Analysis 190 

(PCA). This showed that the intra-specimen variability was lower than that between specimens. 191 

Landmark digitization was done using the TPSDig2 software (Rohlf, 2010). The definition and sliding of 192 

semi-landmarks, Procrustes superimposition (by Bending energy) and PCA were done with the 193 

‘Geomorph’ package (Adams et al., 2017)  in R (R Development Core Team). 194 

2.2.3 Neighbour-Joining trees of mean shapes 195 

We performed a ‘Between group PCA’ (i.e. a PCA on the mean shapes of each layer; Boulesteix, 2005; 196 

Mitteroecker & Bookstein, 2011) for each fragment type (Appendix B.1) as this allows to minimize the 197 

shape variability within each layer and maximizes the variability between layers. This was done using 198 

the ‘GroupPCA’ function in the ‘Morpho’ R package (Schlager, 2017). In order to better visualize the 199 

morphological similarities between the layers and to take into consideration the total shape variability 200 

we created Neighbour-Joining trees (Saitou & Nei, 1987; Studier et al., 1988) based on the Euclidian 201 

distances between the mean shapes of each layer using the ‘nj’ function of the ‘ape’ R package (Paradis 202 

et al., 2004). We did this for all fragment types, each time including the most complete specimens. 203 

2.2.4 Mechanical Potential 204 

We calculated the mechanical potential (MP) of the temporalis and masseter muscles on the complete 205 

specimens as well as on the fragment types that allowed for these calculations (i.e. SC, SCc, COMP and 206 
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COMPan). We then calculated the mean for each layer. The MP of the temporalis was calculated 207 

following two methods. The first (MPtemp; figure 3a) is the method described by Carraway et al. (1996; 208 

see also Cornette et al., 2012, 2015c). Although this method has been widely used, it is not the best 209 

estimation of force transmission by the temporalis muscle as it does not present the line of action of 210 

the temporalis muscle realistically. As shown in figure 3a, in the original model, the temporalis bite 211 

force (arrow) originates from the tip of the coronoid process and extends dorso-posteriorly. However, 212 

in reality, the muscle attaches on the middle of the ramus and on the temporal bones of the skull that 213 

are situated posterior to the coronoid process. This is the reason why we introduce the second method 214 

referred to as MPtemp’ (Fig. 3b) which provides a better estimate of the functional advantage of the 215 

temporalis muscle by including the calculation of the muscle moment arm.  216 

 217 

Figure 3. The biomechanical model of (a) MPtemp (by Carraway et al. 1996); (b) the new model for MPtemp’ and 218 

(c) MPmas. For all models, B is the distance between landmark 3 and 9 (it is only represented in 3a because of lack 219 

of free space in the rest). Distance A is the distance between landmark 3 and the uppermost point of the coronoid 220 

process for (a), the perpendicular distance between landmark 3 and the muscle vector (orange) for (b) and (c). FA 221 

= 90
ο
 - θ

ο
. 222 
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The mechanical potential of the masseter is calculated for the complete specimens as well as the 223 

COMPan fragment using the method described below (Fig. 3c). For all analyses we used the log10 224 

transformed mechanical potential values. 225 

2.2.4.1 MPtemp 226 

Based on Carraway et al. (1996) the mechanical potential of the temporalis muscle is calculated with 227 

the following function (see also figure 3a). 228 

MPtemp = (A/B) cosine (FA) where FAo = 90 - θo 
229 

2.2.4.2 MPtemp’ 230 

We calculated the moment arm of the temporalis muscle by creating a vector that takes its origin at the 231 

mid-point between landmarks 1 and 12 and whose direction is defined by the intersection of the 232 

parallel passing through landmarks 2 and 3 (Fig. 3b). The perpendicular between the center of rotation 233 

and this vector provides the moment arm of the temporalis muscle. This assumes no variation in the 234 

origin of the muscle on the cranium. The moment arm is dependent on the inclination of the coronoid 235 

process relative to the axis of the mandible.  236 

MPtemp’ = A/B 237 

2.2.4.3 MPmas 238 

This is a model of the estimation of the masseter moment arm (Fig. 3c). We calculated the moment arm 239 

of the masseter by creating a vector which takes its origin at the mid-point between landmarks 6 and 7 240 

and who’s direction is defined by the position of landmark 12 (Fig. 3c). The perpendicular between the 241 

center of rotation and this vector provides the moment arm of the masseter muscle. The moment arm 242 

is dependent on the shape, length and position of the angular process relative to the axis of the 243 

mandible. 244 

MPmas = A/B 245 

2.2.5 Mandible Size 246 

We used the centroid size to study size differences between mandibles of different layers and used the 247 

log10 transformed centroid size in our analyses. Centroid size equals the square root of squared 248 

distances of all landmarks of a mandible from its centroid (center of mass, whose position is calculated 249 

by the mean of the x and y coordinates of all landmarks; Klingenberg, 2016). 250 
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2.2.6 Statistical Analysis 251 

To evaluate the effect of MPtemp, MPtemp’, size, and the layers on the shape of the complete 252 

specimens we performed a ‘Procrustes ANOVA’ (Goodall, 1991) using the ‘procD.lm’ of the R package 253 

‘Geomorph’ (Adams et al., 2017). To understand what shape variation corresponds to mechanical 254 

potential and size variation we visualized shapes corresponding to maximum and minimum MPtemp 255 

and MPmas and size using multivariate regressions (Monteiro, 1999). Next, we also visualized 256 

allometry. The presence of allometry indicates the existence of an effect of size on shape (Huxley, 1924; 257 

Huxley et al., 1932; Cock, 1966; Gould, 1966; Calder, 1984; Schmidt-Nielsen, 1984; Klingenberg, 2016). 258 

Visualizations were done with the ‘plotRefToTarget’ function of the R package ‘Geomorph’ (Adams et 259 

al., 2017). 260 

To evaluate the effect of size as well as vegetation and anthropisation indexes on MPs we performed 261 

simple regressions. To test the relation between MPtemp and MPtemp’ and MPtemp’ and MPtemp 262 

with MPmas we performed correlations (Pearson’s correlation) for each case. Regressions and 263 

correlations were done using the ‘lm’ et ‘cor’ functions in R. To study how MPs and size change through 264 

time, we calculated the mean of each layer and presented box-plots (Appendix B.3) in order to present 265 

variation between each layer. 266 

In order to study modularity and integration of the mandible, we first defined the body and ramus as 267 

the two modules of the mandible (Fig. 2a) based on previous studies (Cheverud et al., 1997; Mezey et 268 

al., 2000; Klingenberg et al., 2003). We performed a modularity test (‘Modularity.test’ function of the 269 

‘Geomorph’ package; Adams et al., 2017) to compare the degree of modularity between two modules 270 

defined using the covariance ratio or CR coefficient (Adams, 2016). If the CR coefficient obtained by our 271 

pre-defined structure is smaller than the CRs obtained by the random permutations, then our 272 

hypothesis is valid (Adams, 2016). The definition of the modules was performed using the 273 

‘define.modules’ function in ‘Geomorph’ (Adams et al., 2017). In order to test whether modules are 274 

integrated we performed an integration test using the ‘Integration.test’ function of ‘Geomorph’ (Adams 275 

et al., 2017). The two-block partial least squares (2b-PLS) test quantifies the degree of integration 276 

between the two modules (Adams & Collyer, 2016). In addition, we visualized the shape of each module 277 

corresponding to the maximum and minimum of each axis of covariation using the ‘shape.predictor’ 278 

function of ‘Geomorph’ (Adams et al., 2017). In order to test functional consequences of integration we 279 

plotted all variables (MPs, size, vegetation and anthropisation indexes) on the first PLS axis. P-values 280 

were considered significant if smaller than or equal to 0.05. For the analyses that include multiple 281 

tests/comparisons, we applied a Bonferroni correction according to which alpha (critical value) is used 282 

to judge the significance of the results and is equal to 0.05 divided by the number of tests performed 283 

for each analysis (Rice, 1989). 284 
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3. Results 285 

3.1 Global morphological patterns 286 

The Euclidian distance tree for complete specimens is represented in figure 4a and the rest are 287 

represented in Appendix B.1. The tree in figure 4a shows a separation of the layers that correspond to a 288 

recolonization of vegetation or high vegetation (nine and two) in contrast to layers characterized by a 289 

high degree of anthropisation (one, three, and ten). Layers five and six correspond to the “Little Ice 290 

Age” and are characterized by the presence of very low vegetation (Vigne & Valladas, 1996). The 291 

mandibles of the first group have a more posteriorly slanted coronoid process, a more anterior articular 292 

condyle and a more ventral angular process while those of the third group have a shorter body and a 293 

more anterior coronoid process. 294 
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 295 

 296 

Figure 4. (a) The Euclidian distance tree between mean shape by layer for complete specimens (mean shapes by 297 

layer are also presented (black outline) and compared to mean shape of all sample (blue shape)); (b) The 298 

theoretical shape that corresponds to the minimum (yellow) and maximum (red) of size, MPtemp, MPtemp’ and 299 

MPmas; (c) the theoretical shapes corresponding to the max (green) and minimum (yellow) of the first two PLS 300 

axis. Additional graphs in Appendix B.4. 301 

Similar patterns emerge from trees established and based on different fragment types (Appendix B.1) 302 

including the distinction of layers eleven and seven, the grouping of layers five and six (trees SC, SCc, 303 

CMMi, ABC, Bi), and the distinction of layers two and ten from layers five and six (COMP, COMPan, SC, 304 

CMMi). However, different fragments do also show some additional patterns. The COMP tree separates 305 
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all layers with low vegetation from layers two and eleven with high vegetation and trees (Vigne & 306 

Valladas, 1996). The SCc tree separates all layers from the layers nine and ten that correspond to cereal 307 

cultivation and its recolonization period (Vigne & Valladas, 1996). The CMM tree (including COMP) 308 

separates all layers from layers four, three and eleven, the first corresponding to maximum vegetation 309 

and the two others to minimum vegetation (Vigne & Valladas, 1996). Finally, the ABC tree (including 310 

COMP, COMPan, SC and C) separates all layers from layer seven (very humid climate and “Little Ice 311 

Age”) and eleven (vegetation minimum) (Vigne & Valladas, 1996). 312 

3.2 Morphological changes and functional consequences 313 

A summary of the statistical analyses performed as well as their results can be found in Appendix B.2. 314 

The results of the Procrustes ANOVA show a significant effect of layers (P < 0.001, R² = 0.13) and 315 

MPtemp (P < 0.001, R² = 0.06) on shape. MPmas impacted shape only before the application of the 316 

Bonferroni correction. To understand the nature of the effect of the mechanical potential and size on 317 

shape, we calculated the theoretical shapes corresponding to the maximum and minimum values of the 318 

variables (Fig. 4b). 319 

The shape corresponding to maximum size presents a shorter and finer ramus, a more anterior 320 

coronoid, a more ventral articular condyle and a more stretched angular process (Fig. 4b). The shape 321 

corresponding to the maximum MPtemp has a more curved anterior ramus, a more robust and 322 

elongated coronoid and a more ventral angular process (Fig. 4b). The shape corresponding to the 323 

maximum MPtemp’ is similar to the latter but with a more sharply dorsally and ventrally defined 324 

articular condyle and a posteriorly thinner, less ventrally positioned angular process. Finally, the shape 325 

corresponding to the maximum MPmas presents a narrower body, a more posterior coronoid, a more 326 

ventral articular condyle and a less robust and posterior and ventral angular (Fig. 4b). The changes in 327 

shape have consequences on the mechanical potential, something that was expected, as we found that 328 

6.5% of shape variability is explained by MPtemp and 4.2% by MPmas. 329 

Our results also show a significant effect of size on MPmas (P = 0.01, R² = 0.06), a negative correlation 330 

between MPtemp and MPmas (P = 0.03, r = -0.23), between MPtemp’ and MPmas (P = 0.023, r = -0.25) 331 

as well as a strong positive correlation between MPtemp’ and MPtemp (P < 0.001, r = 0.44). The 332 

regression results show an effect of the anthropisation index on MPtemp’ (P = 0.03, r = -0.04) and 333 

MPtemp (P = 0.001, r = -0.01), both decreasing with an increase in anthropisation. 334 

3.3 Mechanical potential and size through time 335 

The presentation of the mean MPtemp, MPtemp’, MPmas, and size of complete and SC specimens by 336 

layer is found in figure 5 (a box-plot version is found in Appendix B.3). The MPtemp of layers three, 337 
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seven and eleven seem to be different from other layers. There is a noticeable difference in MPtemp 338 

and MPtemp’ between layers eleven and ten, however, the sample size for layer eleven is low. Notably, 339 

the MPtemp’ for samples from layers six to four is significantly different to that for the next most recent 340 

layer. The MPtemp value for layer nine is significantly different than that of layer seven, and the latter is 341 

significantly different than the value of the next most recent layer. MPmas increases when MPtemp 342 

decreases (with the exception of layers five and six). However, there are missing values for several 343 

layers and the only significant difference between MPmas values is that between layer three and nine.344 

 345 

Figure 5. The mean values of MPtemp, MPtemp’, MPmas and size (C and SC) by layer and compared to 346 

anthropisation and vegetation indices and important historical events by layer (Vigne & Valladas, 1996). Error bars 347 

present the standard error of the mean (SE).   348 

Regarding size, there are changes through time especially for fragment C. All the layers where enough 349 

samples were present to allow an estimate of error show that they are distinct from their adjacent 350 
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samples. The SC fragments are recovered from most layers and as such provide a more complete image 351 

of changes over time. However, as the error bars overlap, no changes are present over time. 352 

3.4 Modularity and Integration 353 

A summary of the analyses as well as supplementary graphs are found in Appendix B.2 and B.4. There is 354 

a statistically significant independence between the two modules of the mandible (body and ramus) (P 355 

< 0.001, CR= 0.67) compared to random divisions of the mandible. The integration results on the 356 

totality of the samples show that the two modules are integrated (P < 0.001, r-PLS= 0.729). The 357 

integration tests on each layer find similar levels of integration in the layers tested (Appendix B.2). The 358 

first PLS axis that explains 50.6% of the total co-variation shows that when the coronoid process is more 359 

robust, the angular becomes more ventral and the body more stretched.  360 

In order to test whether morphological changes of the two modules have functional consequences, we 361 

visualized the values of MPtemp, MPtemp’, MPmas, size, layers as well as anthropisation and 362 

vegetation indices on the first PLS axis plot (Appendix B.4). No clear separation of groups appears on 363 

the PLS plot suggesting that the patterns of covariation are common to all groups. However, some 364 

grouping can be observed relative to the mechanical potential of the temporalis with animals with a 365 

higher MP segregating on the upper part of the PLS plot (Appendix B.4). Moreover, the maximum and 366 

minimum theoretical shapes of MPtemp (Fig. 4b) can be considered presenting similarities (mostly 367 

relative to the articular condyle) to the ones corresponding to the min and max of the first PLS axis (Fig. 368 

4c).  369 

4. Discussion 370 

Our results show that even over a short period of time environmental changes may result in rapid 371 

changes of mandible shape (i.e. in the phenotype) in a small insectivorous mammal (Suncus etruscus). 372 

As such, the shape of the mandible appears a good indicator of environmental change (Anderson et al., 373 

2008). Shape was linked with the mechanical potential of the temporalis muscle (MPtemp) and this 374 

(MPtemp and MPtemp’) was linked to changes in anthropisation. These results show that shape 375 

changes have functional consequences that most probably are linked to shifts in diet that, in turn, have 376 

taken place due to habitat alteration mostly because of the changes in human activity or anthropisation 377 

around the study area.  378 

The morphofunctional relations observed in the present study (Fig. 4b) agree with those observed for 379 

other shrews. For example, Cornette et al. (2015c) also found a shorter mandible and Cornette et al. 380 

(2012) found a less robust body and more elongate angular process corresponding to an increased size. 381 

Additionally, Cornette et al. (2015c) found a more elongate and robust coronoid process corresponding 382 
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to the maximum mechanical potential of the temporalis muscle, similarly to our results. However, these 383 

relations were not investigated in relation to anthropisation changes. Additionally, our results extend 384 

the knowledge on how the shape of the shrew mandible reacts to functional constraints imposed by 385 

the masseter. The mechanical potential for the masseter muscle was not linked to any of the 386 

environmental variables and only slightly impacted by variation in size. It is noteworthy to mention that 387 

the MPmas was calculated for a significantly fewer number of specimens (compared to that of the 388 

temporalis) because it requires the presence of the angular process – a mandible part that is easily 389 

broken off and thus rarely preserved. In this study, we used two biomechanical models to calculate the 390 

mechanical potential of the temporalis muscle, one previously established (Carraway et al. 1996) and 391 

one that we thought was more representative of the muscle insertion and orientation. The estimates 392 

are, as expected, highly correlated. However, the results of the Procrustes ANOVA did not detect a 393 

significant link between shape and MPtemp’. If it is true that MPtemp’ is a better representation of the 394 

function of the temporalis muscle than MPtemp, then this suggests that variation in MPtemp is not a 395 

direct consequence of changes in shape. As such it may represent a more general shape change in the 396 

coronoid rather than being linked specifically to the function of the temporalis muscle. 397 

4.1 Modularity and Integration 398 

Contrary to the mechanical potential, the integration of the two modules, body and ramus, does not 399 

appear to be a marker of environmental change (Fig. 4c, 5; Appendix B.2). Previous studies have shown 400 

that shifts in integration as a response to short-term environmental stress produced in the lab are 401 

possible in shrews (Badyaev & Foresman 2004; Badyaev et al. 2005). The absence of integration shifts 402 

through time in our data suggests that either the environmental changes and diet change were not 403 

extreme enough to also alter the integration of the mandible during those 600 years (Klingenberg & 404 

Zaklan 2000; Klingenberg et al. 2003; Klingenberg 2005) or that the mandible of Suncus etruscus is 405 

highly integrated functionally (as the mandible as a whole partakes in the capture and mastication of 406 

prey; Zelditch et al., 2009). It is also possible that integration change takes more time and would be 407 

visible only on a larger timescale (like for example Monteiro et al. 2005). 408 

4.2 On the relation of mandible shape and size with environmental change 409 

Our results suggest differences between layers as well as groupings of layers with similar environmental 410 

conditions. For example, layers three and ten or four and eleven correspond to the maximum and 411 

minimum of the vegetation index (Fig. 4a and Appendix B.1). In addition, we found that these changes 412 

are rapid as shape differences are detected even in successive layers (ANOVA results and Fig. 5). This is 413 

of interest in the light of suggestions by previous authors (Sans-Coma et al., 1981) stating that Suncus 414 

etruscus is a relatively homeomorphic species in the Mediterranean and Europe in general, with the 415 
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exception of Sardinia (Sans-Coma et al., 1985). Our results add the Corsican populations to that 416 

exception. Similarities between Sardinia and Corsica are not uncommon, because of their shared 417 

biogeographical past as well as their connection during periods of lower sea-level during the 418 

Pleistocene and the beginning of Holocene (Vigne, 1993; Oggiano et al., 2009). 419 

Our results show a significant albeit low allometry as size explains only 2.5% of the total shape 420 

variability. Regarding variation in size through time, complete specimens show distinct sizes compared 421 

to the adjacent layers while incomplete SC specimens are less distinct in size (Fig. 5). However, it is 422 

interesting to note that layer four, corresponding to a vegetation maximum, and layer seven, 423 

corresponding to one of the “cold” periods during the “Little Ice Age” (along with layer six) have the 424 

biggest and smallest mandibles respectively. The fourth layer is characterized by the highest vegetation 425 

level and by a reduction in agricultural activity (Vigne & Valladas, 1996). Large size could be an 426 

advantage to capture and eat larger prey, as is the case for bats (Santana & Cheung, 2016), however, 427 

this remains to be tested. Bergmann’s rule (see Bergmann, 1848; McNab, 1971) generally does not 428 

apply to shrews (Lomolino, 1985; Ochocinska & Taylor, 2003) and the results of this study also support 429 

this as the smallest mandibles are found in the coldest intervals of our study. Ochocinska & Taylor 430 

(2003) also observed smaller shrews in colder climates, especially for the smallest species of their study, 431 

Sorex minutus. They explained this observation by suggesting that a decrease in size may allow shrews 432 

to increase their ability to find better micro-habitats to survive (Randloph, 1973). Additionally, shrews 433 

lose a part of their mass during winter (Churchfield, 1990; Frafjord, 2008) and may change cranial shape 434 

seasonally and with age (Lázaro et al., 2017). As an exception, Zeveloff & Boyce (1988) documented 435 

bigger shrews in colder climates but their study was spatially restricted to mostly cold habitats in 436 

Canada. 437 

4.3 On the relation of mechanical potential and environmental change 438 

As previously mentioned, bite force is linked to diet in many animals (Aguirre et al., 2003; Anderson et 439 

al., 2008). Consequently, the study of the relative shifts of the mechanical potential of the temporalis 440 

and masseter muscles may provide information on the type of prey eaten. First, an increase in the 441 

mechanical potential of the muscles suggests an increase in bite force which may allow an expansion of 442 

the dietary spectrum of an animal (i.e. allowing the animal to consume bigger or harder prey; Young et 443 

al., 2007; Cornette et al., 2015c). A possible case where the reduction of the dietary spectrum could 444 

have taken place is during layers six to five where the MP of both muscles seems to decrease (Fig. 5). 445 

Second, an increase of masseter and decrease of temporalis mechanical potential, as in layers ten to 446 

nince, and three to two, suggests a shift in diet to one with more small/soft prey (Cornette et al., 2013). 447 

The strong negative correlation of the mechanical potential of the temporalis and masseter also 448 

supports this. MP shifts in shrews have also previously been linked with shifts in diet (Cornette et al., 449 
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2012). However, it is noteworthy that MP could also give an advantage in competition between 450 

individuals of the same or different species. Competition and aggression in shrews is common (mainly 451 

involving biting) as they are very territorial (Churchfield, 1990; Kirkland, 1991; Cornette et al., 2015b, 452 

2015c). As such, competition can also be expected to drive an increase in the mechanical potential of 453 

the temporalis muscle, more specifically as during aggressive interactions biting likely takes place at 454 

large gape. 455 

Climate and man are both important factors that cause drastic changes to the environment and may 456 

affect wildlife. Climate change involves fluctuations in the mean temperature and humidity of the area 457 

that affect vegetation and fauna. Changes in human activity, however, can be faster and can equally 458 

impact vegetation according to differences in land use. In both cases, changes in vegetation affect the 459 

availability of prey and the efficacy of predation which may lead to changes in diet (Geier & Best, 1980; 460 

Churchfield, 1990). Human-induced vegetation shifts have been found to affect the phenotype of 461 

shrews (example Badyaev et al. 2000). In our study it remains difficult to prove which (climate or man) 462 

was the primary driver of the observed changes in shape through time. However, during the period of 463 

our study only one important climatic change event took place, the “Little Ice Age”, restricted to the 464 

time that corresponds to layers seven to five. However, our results show continuous shifts in shape and 465 

mechanical potential from Medieval times to the late 19th century AD. Vigne & Valladas (1996) also 466 

found extensive shifts in small mammal abundances during that time. Knowing that that interval was 467 

characterized by the intense human activity on the northern part of Corsica (Vigne & Valladas, 1996) 468 

this suggests that humans were the primary drivers of habitat change which may have resulted in 469 

changes in diet leading to selection on mechanical potential and resulting in changes in shape. More 470 

specifically, our results show that anthropisation (the presence of human activity or not) and not 471 

vegetation (the presence of natural medium maquis versus low vegetation found in man-made 472 

cultivation habitats) affects the mechanical potential of the temporalis. For example, the highest value 473 

of temporalis MP is found in the oldest layer (but the sample size is small). The mean MPmas appears to 474 

increase through time as well (Fig. 5), possibly suggesting a shift to a diet containing smaller prey 475 

(Cornette et al. 2013).  476 

While human impacts on the Corsican habitats around Monte di Tuda were already present from the 477 

Roman period onwards (Vigne & Marinval-Vigne, 1989; Istria, 1994; Vigne & Valladas, 1996) they 478 

intensified/accelerated just before the 13th century with a drastic deforestation (corresponding to the 479 

oldest layers of this study). This is illustrated by the Monte di Tuda mammal assemblage but also by the 480 

construction of a small castrum on the same hill in 1289 AD, known to have been used for agricultural 481 

and pastoral purposes in Corsica (Istria, 1994). In northern Corsica, the establishment of this 482 

intensification is marked by cycle 3 – but similar patterns/events took place in southwestern Corsica as 483 
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well (Vella et al., 2019). This cycle coincides with the Pisa Peace and the subsequent human population 484 

increase in the whole of Corsica (Vigne & Valladas 1996; Perry, 1967). However, the drastic and 485 

intensified deforestation wave was not only visible in Corsica but in the whole western Europe (in 486 

eastern Spain (Planchais & Parra Vergara, 1984; Riera-Mora & Esteban-Amat, 1994), Southern France 487 

(Planchais, 1985; Durand & Vernet, 1987; Diot & Laborie, 1989; Chabal, 1991; Durand, 1991; Durand & 488 

Leveau, 2004), French Alps (Colardelle & Vedrel, 1993), Puglia (Martin, 1984) and Sicily (Bossard-Beck, 489 

1984)). It is interesting to note that this drastic intensification event is also coupled with the extinction 490 

of the small mammal endemics like Prolagus, Tyrrhenicola and Rhagomys (Vigne & Valladas, 1996). The 491 

endemic extinctions have been linked to this intensification of agricultural activities of Corsicans in the 492 

area of Monte di Tuda (Vigne, 1987; Vigne & Marinval-Vigne, 1991). At a larger spatial scale these 493 

extinctions are more likely to have taken place across a longer time period and to be linked to more 494 

than one factor (Vigne, 2014). It is also interesting to note that whereas the arrival of humans on 495 

Corsica eventually led to the extinction of endemic small mammals, it left other groups like reptiles 496 

almost unimpacted (Vigne & Alcover, 1985; Vigne et al., 1997).     497 

4.4 Final thoughts and perspectives 498 

The presence of humans has been an important factor shaping the environment of Corsica since their 499 

first arrival; however, the intensity of their impact fluctuated through time (Vigne et al., 1997). The 500 

results of this study show that human activity in northern Corsica was so intense that its impact is 501 

visible on the shape of the mandible of the smallest mammal. The shape and mechanical potential of 502 

the main masticatory muscle appear to be indicators of the fluctuations in human activity in the region. 503 

This study focused on a local scale, but it is expected that the human impact may be detectable in the 504 

micromammal fauna of the rest of the island. Corsica can also serve as an analogue for what happened 505 

to the rest of the Mediterranean islands in the sense that the first arrival of man happened early and 506 

with this, the introduction of new animals and plants and the anthropisation of the environment (Vigne, 507 

1992). However, each Mediterranean island also has its unique human-habitat evolution (Vigne, 1996). 508 

It would be interesting to explore whether human impacts can be detected on the fauna of other 509 

islands and whether other small mammals reacted to this impact in the similar ways to Suncus etruscus. 510 

5. Conclusion 511 

In a short period of only 600 years, human exploitation resulted in environmental changes on the island 512 

of Corsica that had important underlying effects on the fauna. Human-induced environmental change 513 

likely resulted in rapid changes in the morphology of the mandible in a small shrew, Suncus etruscus. 514 

The changes in shape had functional consequences as they are strongly related to changes in the 515 

mechanical potential of the primary masticatory muscle, the temporalis. Its negative correlation with 516 
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the second most important masticatory muscle, the masseter, as well as their link with the 517 

anthropisation index suggest a shift in the diet of this shrew species through time linked to human 518 

activity. Finally, the integration of the two modules of the mandible seems to be linked to the function 519 

of the temporalis muscle but is not a reliable marker of human-induced environmental change.  520 
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