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Abstract: Staphylococcus aureus is a commensal bacterium that causes severe infections in soft tissue
and the bloodstream. During infection, S. aureus manipulates host cell response to facilitate its
own replication and dissemination. Here, we show that S. aureus significantly decreases the level
of SUMOylation, an essential post-translational modification, in infected macrophages 24 h post-
phagocytosis. The reduced level of SUMOylation correlates with a decrease in the SUMO-conjugating
enzyme Ubc9. The over-expression of SUMO proteins in macrophages impaired bacterial intracellular
proliferation and the inhibition of SUMOylation with ML-792 increased it. Together, these findings
demonstrated for the first time the role of host SUMOylation response toward S. aureus infection.
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1. Introduction

Staphylococcus aureus is a highly adaptable human pathogen, leading to various noso-
comial and community-acquired infectious diseases [1,2]. S. aureus can invade a variety
of non-professional phagocytes and can survive within professional phagocytes during
several days [3–5]. During infection, pathogen bacteria exploit several eukaryotic signaling
pathways and manipulate their host cells to allow their own replication, propagation, and
escape from host immune responses [6]. Post-translational modifications (PTMs) play a key
role in the functional proteomic as they regulate the activity, localization, and interaction
with cellular molecules such as nucleic acids, lipids, cofactors, and other proteins. PTMs
include phosphorylation, acetylation, methylation, and also the addition of small polypep-
tides such as ubiquitin or ubiquitin-like proteins such as the Small Ubiquitin-like Modifier
(SUMO). Whereas several pathogens are known to use PTMs for their own benefit [7–11],
only few pathogenic bacteria have been reported to interfere with the SUMOylation pro-
cesses [12–16]. SUMOylation is a reversible eukaryotic PTM in which SUMO is covalently
linked to the lysine residues of target proteins. It is an essential mechanism regulating
cellular processes such as DNA replication, transcription, RNA processing, and cell signal-
ing [17,18]. In mammals, there are three SUMO proteins, SUMO1, SUMO2, and SUMO3,
with SUMO2 and SUMO3 being almost identical. The SUMOylation machinery consists
of a set of different enzymes: the SUMO-activating enzyme E1, which is a heterodimer of
the SAE1/SAE2 subunits, the E2 conjugating enzyme Ubc9, and several E3 ligases. The
SUMO regulatory pathway has been associated with many different diseases such as cancer,
neurological and metabolic disorders, as well as response to infection [19,20]. Although
S. aureus is able to induce DNA damage of its host cells [21], and modify the host global
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protein activity [22,23], the role of SUMOylation regarding intracellular S. aureus survival
was still unknown. In this study, we show for this first time that S. aureus infection leads
to a massive decrease in SUMOylation in infected macrophages, participating in S. aureus
intracellular survival and proliferation.

2. Results
2.1. S. aureus Infection Decreases Macrophages SUMOylated Proteins

The success of S. aureus as a pathogen is partly due to its ability to survive and
proliferate within different cell types, including macrophages. As expected, we confirmed
by counting intracellular bacteria using CFU numeration and fluorescence microscopy that
the S. aureus NSA739 clinical strain can survive in Raw264.7 macrophages up to 48 h post
phagocytosis (Figure 1a,b).
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using a 63-oil objective. Quantification was performed using intracellular bacteria at T0 pGt as 100% and is the result of 

independent counting of 100 cells from each of three independent experiments. n.i, non-infected control cells. 
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Figure 1. S. aureus strain NSA739 persists intracellularly in Raw264.7 macrophages up to 48 h post-gentamicin treatment
(pGt). (a) Macrophages were infected with S. aureus NSA739 strain expressing the GFP protein at an MOI of 10 for 1 h, and
the number of gentamicin-protected bacteria was determined at different time points by plating intracellular bacteria for
CFU enumeration. (b) Representative images of fluorescence microscopy of GFP-labeled S. aureus NSA739. Macrophages
seeded on coverslips were infected with GFP-labeled bacteria at a MOI of 10 and analyzed at 5, 24, and 48 h pGt using a
63-oil objective. Quantification was performed using intracellular bacteria at T0 pGt as 100% and is the result of independent
counting of 100 cells from each of three independent experiments. n.i, non-infected control cells.

We next thought to investigate if S. aureus alters the SUMOylation of cellular proteins
in macrophages as a strategy to survive intracellularly. Then, we compared the global
pattern of SUMO1- and SUMO2-/3-conjugated protein levels in Raw264.7 cells uninfected
or infected with S. aureus up to 5 h pGt (post-gentamicin treatment). Surprisingly, and
unlike intracellular bacteria such as Listeria and Salmonella [14,16], we observed that up
to 5 h pGt, the global pattern of SUMO-conjugated proteins was similar in infected and
non-infected cells (Figure 2a,b). Then, we decided to investigate whether S. aureus modify
the host cell SUMOylation profile after long-term infection. Since an identical number of
viable intracellular bacteria was recovered at 24 h and 48 h pGt, infections with either S.
aureus, heat-killed S. aureus, or the coagulase negative strain S. epidermidis were performed
at 24 h pGt. Quantification after 24 h pGt revealed a significant and specific decrease of
SUMO1 (Figure 2c) and SUMO2/3 (Figure 2d) modified proteins in macrophages infected
with S. aureus NSA739 strain compared to cells infected with heat-killed S. aureus or S.
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epidermidis bacteria that remained similar to the non-infected SUMO-profile. Moreover,
similar results were obtained when Raw264.7 cells were infected with the S. aureus Newman
strain (data not shown), indicating that the decrease of the SUMOylated proteins was
not restricted to the clinical NSA739 strain. On the other hand, we also explored the
SUMOylome in non-phagocytic cells. For this purpose, HEK293 cells (Human Embryonic
Kidney cells) were infected with the NSA739 strain over time and SUMO2-conjugated
proteins levels were compared with the non-infected cells. Similar to the results obtained in
the Raw264.7 cells, the SUMO2-conjugated proteins decreased in the infected HEK298 cells.
However, these cells were more sensitive to the infection with S. aureus after 24 h pGt
than the Raw264.7 cells, preventing us from following long-term infections in these cells.
All together, these findings suggest that this SUMOylome decrease is specific to live and
coagulase-positive S. aureus strains in phagocytic and non-phagocytic infected cells.
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Figure 2. S. aureus decreases SUMOylation after long-term macrophage infection. Immunoblot analysis of SUMO1 (a),
SUMO2/3 (b), and GAPDH levels in lysates of macrophages infected with S. aureus for different time points up to 5 h pGt.
SUMO1 and SUMO2/3 smears were quantified from four independent experiments using Image lab software (ChemiDoc)
and normalized to GAPDH (right panels). The fold change graph represents the percentage of SUMOylated proteins
by SUMO1 obtained in the infected cells compared to the amount of SUMOylated proteins in the non-infected control
macrophages. The data presented are the mean ± SD of three independent biological experiments. n.s, not significant
(Kruskal–Wallis test followed by Dunn’s post hoc test). (c,d) Immunoblot analysis of SUMO1 (c), SUMO2/3 (d) and GAPDH
levels in lysates of macrophages infected with S. aureus, heat-killed S. aureus and S. epidermidis for 24 h pGt. n.i., non-infected
control cells. SUMO1 and SUMO2/3 smears were quantified from four independent experiments using Image lab software
(ChemiDoc) and normalized to GAPDH (bottom panels). The fold change graph represents the percentage of SUMOylated
proteins by SUMO1 obtained in the infected cells compared to the quantity of SUMOylated proteins in the non-infected
control cells (right panels). *** p ≤ 0.001; ** p ≤ 0.01; * p ≤ 0.05 by one-way ANOVA with Bonferroni’s multiple-comparison
test.

2.2. Host SUMOylation Diminishes S. aureus Intramacrophagic Replication

To further characterize the role of the host SUMOylation response toward S. au-
reus infection, we artificially increased the level of SUMOylated proteins in Raw264.7
macrophages by over-expressing SUMO1 or SUMO3 using lentivirus vectors [24] as con-
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firmed by immunoblots (Figure 3a). Then, macrophages over-expressing SUMO1 or
SUMO3 were infected with S. aureus, and the number of viable intracellular bacteria was
determined 24 h pGt. The cellular viability of these cells was estimated to be over 95%
using two different methods, the trypan blue exclusion dye and the lactate dehydroge-
nase (LDH) release (data not shown). Our results show that the over-expression of either
SUMO1 or SUMO2 significantly reduced S. aureus intracellular replication at both 5 h and
24 h pGt compared to control macrophages expressing GFP (Figure 3b). Moreover, confocal
microscopic analysis 24 h pGt confirmed the decrease of intracellular S. aureus bacteria in
SUMO-overexpressing macrophages (Figure 3c). Taken together, these data reveal that
host cells SUMOylation increase is detrimental to S. aureus intramacrophagic survival.
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Figure 3. SUMOylation over-expression decreases the intracellular survival of S. aureus. (a) Immunoblot analysis of SUMO1
(left panel), or SUMO2/3 (right panel) over-expressing macrophages versus control macrophages (GFP vector). GAPDH
levels in lysates were used to standardize protein amounts. SUMO1 and SUMO2/3 smears were detected using Image
lab software (ChemiDoc) and normalized to GAPDH (bottom panels). (b) Intracellular S. aureus number recovered from
macrophages overexpressing SUMO was counted after cell lysis and is presented as the ratio of intracellular bacteria at
5 h and 24 h post-gentamicin compared to cells transfected with an empty GFP vector, considered as 100%. Cell mortality
was assessed using trypan blue exclusion dye 0.4% (w/v) to evaluate the number of blue (dead) cells. (c) Representative
confocal images of infected macrophages with S. aureus for 24 h pGt. Arrows show intracellular bacteria. The percentage
of intracellular bacteria in macrophages overexpressing SUMO1, SUMO3, or GFP vector is represented as the ratio of
intracellular bacteria at 24 h vs. T0 pGt and is the result of independent counting of 100 cells from each of three independent
experiments. DIC: differential interference contrast. *** p ≤ 0.001; ** p ≤ 0.01; * p ≤ 0.05 by one-way ANOVA with
Bonferroni’s multiple-comparison test.

In addition, the role of SUMOylation in the control of S. aureus intracellular replication
was investigated in macrophages pretreated with ML-792, an inhibitor of the SAE1/SAE2
enzyme [25]. As expected, macrophages treated with the ML-792 inhibitor showed a strong
diminution of SUMOylated proteins (Figure 4a). Interestingly, in such SUMOylation-
deficient macrophages, we observed a significant increase of S. aureus intracellular replica-
tion at 5 h and 24 h pGt (Figure 4b,c). Our results show that the SUMOylation-dependent
macrophage response represents an important host defense mechanism in order to reduce
S. aureus intracellular survival at late post-phagocytosis times.
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Figure 4. SUMOylation inhibition increases the intracellular survival of S. aureus. (a) Immunoblot analysis of
Raw264.7 macrophages were pretreated with ML-792 at 0.5 µM or DMSO as a control. SUMO1 and SUMO2/3 smears were
quantified and normalized to GAPDH (bottom panels). (b) Macrophages pretreated with ML-792 at 0.5 µM or DMSO were
infected with S. aureus. The number of intracellular bacteria recovered from macrophages after 5 h or 24 h post-gentamicin
was counted and is presented as the ratio of intracellular bacteria compared to cells pretreated with DMSO, which is
considered as 100%. Cell mortality was assessed using trypan blue exclusion dye 0.4% (w/v) to evaluate numbers of blue
(dead) cells. (c) Representative confocal images from cells infected with S. aureus NSA739 for 24 h pGt using a 63-oil objective.
Arrows show intracellular bacteria. The percentage of intracellular bacteria in pretreated cells with ML-792 is represented as
the ratio of intracellular bacteria from ML-792 pretreated cells over DMSO-pretreated cells at 24 h pGt. The quantification is
the result of independent counting of 100 cells from each of three independent experiments. DIC: differential interference
contrast. *** p ≤ 0.001; ** p ≤ 0.01; * p ≤ 0.05 by one-way ANOVA with Bonferroni’s multiple-comparison test.

2.3. The Level of the SUMOylation Enzyme Ubc9 Is Reduced upon S. aureus Infection

Having established that the inhibition of SUMOylation in macrophages is an essential
mechanism for S. aureus intracellular survival, we decided to investigate how S. aureus was
able to achieve this regulation. The SUMOylation reaction is dependent on several enzymes
such as SAE1/SAE2, Ubc9, and E3 ligases, allowing SUMOs activation and transfer to the
lysine residues of specific substrates [18]. Therefore, in order to identify how S. aureus could
impair the host SUMOylation machinery, we quantified the level of the Ubc9 enzyme in
macrophages infected, either with S. aureus or the coagulated negative strain S. epidermidis.
As shown in Figure 5a, no significant difference in Ubc9 protein level was observed at
5 h pGt between S. aureus and S. epidermidis infected macrophages. However, in accordance
with the SUMOlation profiles (Figure 2c,d), Ubc9 protein level in infected macrophages
with S. aureus showed a decrease around 50% at 24 h pGt as compared to uninfected cells,
while no significant decrease was observed in S. epidermidis infected cells. (Figure 5a,b).
Our results suggest that the level of the Ubc9 enzyme is involved in the survival of S.
aureus strains by lowering SUMOylation response of infected macrophages at late time of
infection compared to the S. epidermidis gender that is in general less virulent than S. aureus
as a result of lower capacity to survive after macrophages phagocytosis.
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3. Discussion 

Post-translational modifications are involved in transcriptional regulation, stress re-

sponses, and DNA damage, among several other cellular functions. Pathogen microor-

Figure 5. S. aureus decreases the Ubc9 protein level in a proteasome-independent pathway. Immunoblot analysis of Ubc9 and
GAPDH levels in lysates of macrophages infected with S. aureus and S. epidermidis for 5 h (a) and 24 h (b) post-gentamicin
treatment. n.i., non-infected control cells. h, hour post-gentamicin treatment. Ubc9 bands were quantified from three
independent experiments and normalized to GAPDH levels. The graph represents fold change compared to non-infected
cells at 5 h and 24 h post-gentamicin. n.s.: non-significant; * p ≤ 0.05 by one-way ANOVA with Bonferroni’s multiple-
comparison test. (c,d) Immunoblot analysis of Ubc9 (c), ubiquitin-conjugated proteins (d) in macrophages pretreated or not
with MG132 for 3 h prior to infection with S. aureus. Bands were quantified from three independent experiments using
Image lab software (ChemiDoc) and normalized to GAPDH. The fold change graph represents the percentage of Ubc9 and
ubiqutiin-conjugated proteins obtained in the infected cells compared to the quantity of proteins in the cells treated with
DMSO (right panels). *** p ≤ 0.001; ** p ≤ 0.01; * p ≤ 0.05 by one-way ANOVA with Bonferroni’s multiple-comparison test.

In order to investigate the role of the proteasome in the decrease of Ubc9 level, we
used the proteasome inhibitor MG132. Inhibition of proteasome activity by MG132 has
no effect on the level of Ubc9 (Figure 5c), which still decreased in infected macrophages
24 h pGt. As a control, we checked that the amount of ubiquitin-conjugated proteins should
significantly increase as expected in macrophages treated with MG-132 (Figure 5d), and
cellular integrity was checked by LDH quantification. These data suggest that the decrease
of Ubc9 level after infection is proteasome-independent.
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3. Discussion

Post-translational modifications are involved in transcriptional regulation, stress
responses, and DNA damage, among several other cellular functions. Pathogen microor-
ganisms possess the remarkable ability to exploit post-translational modification pathways
to promote their own survival and propagation. While viruses have been reported to mod-
ulate SUMOylation [26,27], there are only a few reports describing the role of SUMOylation
in bacterial intracellular survival. The impact of bacterial infection on this post-translational
modification remains poorly studied [12,15]. The mechanisms by which pathogenic bacte-
ria modulate host protein SUMOylation have only been recently investigated and remain
poorly understood. Some pathogens are able to target enzymes from the host SUMOylation
machinery to modify their activity. The enteropathogenic bacteria Salmonella typhimurium
reduces the SUMOylation host response through the upregulation of two microRNA that
post-transcriptionally repress Ubc9 [16]. Shigella flexneri modifies SUMO-conjugated pro-
teins involved in epithelial invasion and the control of mucosal inflammation [13,28]. More
recently, the adherent-invasive E. coli (AIEC) bacteria were shown to be able to inhibit
autophagy by modifying host SUMOylation allowing intracellular replication [12]. Kleb-
siella pneumoniae is able to decrease SUMOylation to promote infection by limiting the
activation of host inflammatory responses [15]. S. aureus is able to survive intracellularly
by hijacking host cell defenses [6], but the putative role of host SUMOylation after S. aureus
infection was unknown. In this study, we demonstrated that S. aureus induces a decrease of
macrophages SUMOylation response, thus promoting its intracellular survival. Moreover,
the clinical S. aureus NSA739 strain, but not the coagulase negative S. epidermidis strain,
reduces specifically and significantly SUMO1 and SUMO2/3-conjugates 24 h post-infection.

Our results are in accordance with previous studies reporting that some intracellular
pathogens survival involved the modification of the host SUMOylation response [12–14,16].
Interestingly, S. aureus impact on SUMOylation host response occurs at longer times post-
infection and then seems critical for bacterial long-term persistence.

Moreover, we showed (i) that the over-expression of SUMO1 or SUMO3 in
macrophages host cells reduces S. aureus survival, thus confirming the role of this SUMO-
dependent regulation, (ii) that when macrophages were treated with the SUMOylation
inhibitor, ML-792, known to inhibit the E1 enzyme SAE1/SAE2 [25], S. aureus was then able
to proliferate at a higher rate in such SUMO-inhibited macrophages, and (iii) that when
macrophages were infected with S. aureus, the level of Ubc9 was significantly reduced
in infected macrophages 24 h pGt. These results suggest that S. aureus induces a general
deSUMOylation in host cells at the late infection stage, at least through the decrease of the
Ubc9 protein, to favor its intracellular replication. Moreover, MG132 proteasome inhibitor
had no effect on Ubc9 protein level. Thus, the mechanism underlying Ubc9 degradation
such as cellular or lysosomal proteases remains to be determined.

However, the precise mechanism of action remains to be elucidated. It has been
reported that pathogens such as Xanthomonas euvesicatoria [29] or Yersinia pestis [30] secrete
effectors able to mimic host deSUMOylases, therefore inducing a global deSUMOylation.
Listeria monocytogenes alters host SUMOylation by degrading Ubc9 through the action of
the pore-forming toxin listeriolysin (LLO) [14]. Regarding S. aureus, we could hypothesize
that upon infection, secreted virulence effectors could interfere with the host SUMOylation
response to allow long-term intracellular survival. However, such S. aureus effectors remain
to be identified.

In conclusion, in the present study, we demonstrated for the first time that S. aureus
impairs protein SUMOylation via the decrease of Ubc9 conjugation enzyme in order to
promote its survival and persistence upon long-term infection.
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4. Materials and Methods
4.1. Bacterial Strains and Growth Conditions

The clinical S. aureus strain NSA739 [31] and the Staphylococcus epidermidis strain were
plated on Tryptic Soy Agar (TSA) or grown in Tryptic Soy Broth (TSB) medium at 37 ◦C
under agitation. S. aureus NSA739 bacteria were heat-killed at 80 ◦C for 20 min.

4.2. Macrophages Culture and Infection

The murine macrophage cell line Raw264.7 (mouse leukemic monocyte macrophage,
ATCC TIB-71) was maintained in Dulbecco’s modified Eagle’s medium (ThermoFisher Sci-
entific, Life Technologies Europe, Kwartsweg 2, Bleiswijk, The Netherland) supplemented
with 10% of fetal bovine serum at 37 ◦C in a humidified atmosphere at 5% CO2. Raw264.7
cells expressing 6His-tagged SUMO1 and SUMO3 proteins were generated using lentiviral
transduction, as previously described [24]. For macrophage infection, cells were seeded at
5 × 105 cells/mL 24 h before infection and infected at a multiplicity of infection (MOI) of
10:1 (bacteria:cells). Lysis of macrophages and enumeration of intracellular bacteria at time
points T0, T0.5 h, T5 h, T24 h, or T48 h post-gentamicin treatment (pGt) was performed as
described previously [22].

4.3. Fluorescent Microscopy

Cells seeded on coverslips (ThermoFisher Scientific, 1000 stück Deckgläser, Varren-
trappstraße 5, Braunschweig, Germany) were infected with the S. aureus-GFP strain at
an MOI of 10 for 1 h, washed with PBS, and the culture medium containing 100 µg/mL
was added for 30 min. Then, cells were incubated in lysostaphin-containing media for
different time points. Thereafter, cells were fixed with 4% paraformaldehyde followed
by washing in PBS. Then, coverslips were mounted with one drop of Vectashield DAPI
(diamidino-2-phenylindole, Vector Laboratories, Inc., Burlingame, CA 94010, USA) and
slides were analyzed with a fluorescent microscope (Leica Thunder, Montpellier Ressources
Imagerie platform, Montpellier, France) using a 63-oil objective.

4.4. Immunoblotting

Infected macrophages were lysed in 100 µL of 2.5X Laemmli buffer boiled for 10 min
at 95 ◦C, sonicated for 10 s at 50% amplitude (DIGITAL Sonifier, Model 450-D, BRANSON),
and centrifuged for 1 min at 12,000× g. Proteins were resolved on SDS-PAGEs, transferred
to PVDF membranes, and subjected to Western blot analyses using an anti-SUMO1 or
anti-SUMO2/3 antibody as primary antibody and an HRP-coupled donkey-anti-mouse
antibody as secondary antibody (Jackson ImmunoResearch, Interchim, Montluçon, France).
SUMO-1 (21C7) and SUMO-2 (8A2) hybridomas were from the Developmental Studies
Hybridoma Bank. The immunoblots were detected with the Enhanced Chemiluminescence
Detection kit (ChemiDocTM, BioRad Laboratories, Inc, Irvine, CA, USA) and quantified
using Image Lab software (BioRad Laboratories, Inc, Irvine, CA, USA).

4.5. Cell Viability

Two methods were performed to evaluate cell viability; (i) trypan blue exclusion
dye 0.4% (w/v) (#T6146, Sigma-Aldrich, Life Technologies Corporation, Grand Island,
NE, USA) in PBS was added in a ratio of 1:1 to the wells, incubated for 10 min, and
gently washed with PBS. Subsequently, the cells were observed under light microscopy
to evaluate numbers of blue (dead) cells. The graphs present the percentage of death
cells in infected and non-infected cells; (ii) the release of lactate deHydrogenase (LDH)
was measured using the Invitrogen CyQuant LDH Cytotoxicity Assay Kit (ThermoFisher
Scientific, RockFord, IL, USA) according to the manufacturer’s instructions. Measure of
absorbance was performed with the Tecan apparatus (Tecan, Model Spark, Grödig, Austria
GmbH).
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4.6. Statistical Analyses

The statistical significance of changes between groups was determined using the
GraphPad software package Prism 6.01. p values < 0.05 were considered statistically
significant.
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