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Introduction

Alkali have been deeply studied for several years mainly because of their one-electron structure in their valence shell. Spectroscopic data for these metals are well known [START_REF] Arimondo | Experimental determinations of the hyperfine structure in the alkali atoms[END_REF]. Due to their simple energy-level structure, alkali are widely used to study Bose-Einstein condensates [START_REF] Pethick | Bose-Einstein condensation in dilute gases[END_REF]. Moreover, alkali have transition frequencies ranging from near-infrared to mid-visible, thus is it possible to do experiments with cheap lasers. Alkali are also, for example, studied in magnetometry or information storage [START_REF] Legaie | Sub-kilohertz excitation lasers for quantum information processing with Rydberg atoms[END_REF][START_REF] Pappu | Information storage using alkali halide crystals[END_REF]. When placed under the influence of an external magnetic field B, energy levels split into hyperfine sublevels (Zeeman effect) [START_REF] Auzinsh | Optically Polarized Atoms: Understanding light-atom interactions[END_REF][START_REF] So | Zeeman-tunable Modulation Transfer Spectroscopy[END_REF][START_REF] Weller | Absolute absorption and dispersion of a rubidium vapour in the hyperfine Paschen-Back regime[END_REF]. The hyperfine manifold of 5S and 6P states of both rubidium isotopes is presented on figure 1. The theoretical model to study transitions between these hyperfine sublevels has been developed in the 1990s by Tremblay et al. [START_REF] Tremblay | Absorption profiles of alkali-metal D lines in the presence of a static magnetic field[END_REF]. It is well known that in intermediate magnetic fields, the splitting of atomic energy levels into Zeeman sublevels deviates from the linear behavior, and the atomic transition probabilities undergo significant changes [START_REF] Tremblay | Absorption profiles of alkali-metal D lines in the presence of a static magnetic field[END_REF][START_REF] Sargsyan | A novel approach to quantitative spectroscopy of atoms in a magnetic field and applications based on an atomic vapor cell with L=λ[END_REF]. To study such transitions, sub-Doppler methods have to be used because of Doppler broadening [START_REF] Khanbekyan | Sub-doppler spectroscopy of sodium vapor in an ultrathin cell[END_REF]. A lot of work has been performed concerning D 1 and D 2 lines and good results have been obtained using derivative selective reflection method [START_REF] Sargsyan | Selective reflection from Rb vapor in half-and quarterwave cells: Features and possible applications[END_REF][START_REF] Klinger | Magnetic field-induced modification of selection rules for Rb D 2 line monitored by selective reflection from a vapor nanocell[END_REF][START_REF] Klinger | Proof of the feasibility of a nanocell-based wide-range optical magnetometer[END_REF]. In this article, we study 5 2 S 1/2 → 6 2 P 1/2, 3/2 transitions. Very little information on these transitions is available in the literature [START_REF] Glaser | Absolute frequency measurement of rubidium 5S-6P transitions[END_REF]. The energy level manifold is presented in figure 1 and hyperfine splittings (along with references) are provided in table 1. We will compute all the possible transitions between Zeeman sublevels and present a full formalism for the most simple cases (5 2 S 1/2 → 6 2 P 1/2 transitions) to determine transition cancellations. For the case 5 2 S 1/2 → 6 2 P 3/2 , we present numerical results.
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Theoretical model

Hamiltonian of an atomic alkali vapor under the influence of an external magnetic field

The Hamiltonian H of an atomic alkali vapor placed under the influence of an external static magnetic field B can be computed using the formalism presented in [START_REF] Tremblay | Absorption profiles of alkali-metal D lines in the presence of a static magnetic field[END_REF]. In the basis of the unperturbated atomic state vectors |F, m F , matrix elements are given by

F, m F | H |F, m F = E 0 (F ) -µ B g F m F B (1) 
and

F -1, m F | H |F, m F = F, m F | H |F -1, m F = - µ B B 2 (g J -g I ) [(J + I + 1) 2 -F 2 ][F 2 -(J -I) 2 F 1/2 (2) 
× F 2 -m 2 F F (2F + 1)(2F -1) 1/2
where B is the projection of the magnetic field B on the quantization axis.

For the diagonal terms given by ( 1), E 0 (F ) is the zero-field energy of the |F, m F sub-level, g F is the associated Landé factor and m F is the magnetic quantum number. It is important to note that the Bohr magneton has been chosen with a negative sign [START_REF] Arimondo | Experimental determinations of the hyperfine structure in the alkali atoms[END_REF] so that the model remains consistent. The off-diagonal terms are given by ( 2), where g J and g I are respectively the total angular and nuclear Landé factors. These elements are non-zero only if they respect the selection rules ∆L = 0, ∆J = 0, ∆F = ±1 and ∆m F = 0. A consequence of the two previous formula is that the Hamiltonian H has a block diagonal structure where each block corresponds to a given value of m F . This structure is similar to the one observed for the D 1 and D 2 lines of Rubidium [START_REF] Hakhumyan | Study of optical and magneto-optical processes in Rb atomic vapor layer of nanometric thickness[END_REF]. In the case of 5 2 S 1/2 → 6 2 P 1/2 , blocks have a maximum size of 2 × 2.

Transitions between two Zeeman sublevels

After diagonalization of the Hamiltonian, one obtains eigenvectors that can be expressed as linear combinations of the unperturbated atomic states vectors

|Ψ(F g , m Fg ) = F g c FgF g |F g , m Fg (3) 
|Ψ(F e , m Fe ) = 

The calculation of the transition intensity A eg between a "ground" Zeeman sublevel |Ψ(F g , m Fg ) and an "excited" Zeeman sublevel |Ψ(F e , m Fe ) is equivalent to the calculation of the squared transfer coefficients modified by the presence of the magnetic field B. These coefficients are given by the following formula:

a[|Ψ(F e , m Fe ) ; |Ψ(F g , m Fg ) ; q] = F e ,F g
c FeF e a(F e , m Fe ; F g , m Fg ; q)c FgF g .

Equation ( 5) results in a sum of n g × n e terms (n g and n e being respectively the number of F g and F e levels) resulting in a combination of different magnetic quantum numbers. This combination can be cancelled as we will show later, which could be seen as quantum interferences.

The coefficients a(F e , m Fe ; F g , m Fg ; q) are the unperturbated transfer coefficients given by

a(F e , m Fe ; F g , m Fg ; q) = (-1) 1+I+Je+Fe+Fg-m Fe × 2J e + 1 2F e + 1 2F g + 1 F e 1 F g -m Fe q m Fg F e 1 F g J g I J e (6) 
where parenthesis represent a Wigner 3j-symbol and curly brackets represent a Wigner 6j-symbol. The index q depends on the polarization of the laser: q = 0 for π polarization and q = ±1 for σ ± polarization. F g = 2 Using numerical simulations of the theoretical model described before, we can compute all the modified transfer coefficients a[|Ψ(F e , m Fe ) ; |Ψ(F g , m Fg ) ; q] corresponding to these transitions. The results are shown on figures 4 and 5 for both isotopes. We will first focus on 87 Rb. On figure 4 we notice that only two transfer coefficients cross the x-axis, meaning they are the only ones to cancel for a specific value of the external magnetic field B. These transfer coefficients correspond to the transitions labelled 1 and 9 (respectively

F g = 1 F g = 2 F e = 1 F e = 2 -2 -1 0 +1 +2
F g = 3 F e = 2 F e = 3
|F g = 1, m Fg = -1 → |F e = 1, m Fe = -1 and |F g = 2, m Fg = -1 → |F e = 2, m Fe = -1 ).
It is important to keep in mind that this notation is not the best as |F, m F is not a good basis in intermediate magnetic fields, although since the hyperfine sublevels are smoothly connected to the zero-field states, this notation still keeps a relevant meaning. The transfer coefficients have been computed using the following numerical data: g s = 2.00231930436256(35) [START_REF] Steck | Rubidium 87 D line data[END_REF], µ B = -1.39962449361(42) MHz/G [START_REF] Tiesinga | The 2018 CODATA recommended values of the fundamental physical constants[END_REF], g I = -0.0009951414 [START_REF] Khanbekyan | Sub-doppler spectroscopy of sodium vapor in an ultrathin cell[END_REF] and g L = 0.99999369 [START_REF] Arimondo | Experimental determinations of the hyperfine structure in the alkali atoms[END_REF], and the splittings displayed in table 1. Note that, on figure 4, we can see constant lines corresponding to the transitions labelled 7

(|F g = 2, m Fg = -2 → |F e = 2, m Fe = -2 ) and 14 (|F g = 2, m Fg = +2 → |F e = 2, m Fe = +2
). This is simply due to the fact that they correspond to transitions to states that remain pure (non-mixed) and do not depend on the value of B. Since we are interested in transition cancellations, we will now focus on the states corresponding to m Fg = m Fe = -1 and derive analytical formulas. We do not need to compute the total Hamiltonian, it is sufficient to compute the two 2 × 2 blocks corresponding to the ground and excited states that we study. Using ( 1) and ( 2), we obtain

G = µ B B(2g I -g g ) √ 3µ B B(g I -g g ) √ 3µ B B(g I -g g ) µ B g g B + ζ (7) 
E = µ B B(2g I -g e ) √ 3µ B B(g I -g e ) √ 3µ B B(g I -g e ) µ B g e B + ζ (8) 
where we denoted g g = 3g I 4 + gs 4 and g e = 3g I 4 + g L 3 -gs 12 . The matrices G and E are written in the basis |F, m F . After diagonalization, we obtain the following eigenvalues:

λ g± = ζ + 2µ B Bg I ± [(ζ + 2µ B B(g g -g I )) 2 + 12µ B (g g -g I )B 2 ] 1 2 2 λ e± = ζ + 2µ B Bg I ± [(ζ + 2µ B B(g e -g I )) 2 + 12µ B (g e -g I )B 2 ] 1 2
2 where λ g± are the two eigenvalues of G and λ e± are the two eigenvalues of E. The eigenvectors can be decomposed on the basis of the unperturbated atomic state vectors according to (3) and (4). In this case, we obtain:

|Ψ(F g , m Fg )± = η g± 1 + η 2 g± |1, -1 + 1 1 + η 2 g± |2, -1 (9) 
|Ψ(F e , m Fe )± = η e± 1 + η 2 e± |1, -1 + 1 1 + η 2 e± |2, -1 (10) 
where we denoted

η g± = λ g± -ζ -µ B g g B √ 3µ B B(g I -g g ) η e± = λ e± -ζ -µ B g e B √ 3µ B B(g I -g e ) .
Making use of ( 5), we can write the modified transfer coefficients as

a[|Ψ(F e , m Fe )± ; |Ψ(F g , m Fg )± ; q = 0] = √ 3(η g± η e± -1) + 3(η g± + η e± ) 1 6 1 + η 2 g± 1 + η 2 e± .
These two transfer coefficients get cancelled for the same value of B as shown by the numerical simulation. We can determine that the B-value causing the transfer coefficients to be cancelled are given by:

B (±) (±) = 1 µ B 3ζζ 3g I ζ -4g L ζ + g s ζ + 3g I ζ -3g s ζ . ( 11 
)
This formula is analogous to the one determined by Aleksanyan et al. [START_REF] Aleksanyan | Transition cancellations of 87 Rb and 85 Rb atoms in a magnetic field setting new standards[END_REF] for the D 1 line of 87 Rb. In table 2 we present the B-value obtained for both transitions using relation [START_REF] Sargsyan | Selective reflection from Rb vapor in half-and quarterwave cells: Features and possible applications[END_REF], where B is the value with its uncertainty and B * is the value obtained when ignoring the uncertainty of the excited states' energy difference (ESED) ζ . We notice that the major loss of precision on B comes from the small number of digits of ζ . In this case, the numerical simulation provides a value of B = 254.423942950 G (all uncertainties ignored) which appears to be in perfect agreement with the formula we have derived [START_REF] Sargsyan | Selective reflection from Rb vapor in half-and quarterwave cells: Features and possible applications[END_REF]. When recording the reflection or absorption spectra of an atomic vapor confined in a nano-cell, it is possible to measure the intensity of a transition and thus determine precisely the value of the external magnetic field when this transition cancels. This method would be even more efficient if an experiment was done to refine the value of ζ . Consequently, such values can be implemented as a standard for precise magnetometers. Also on figures 4 and 5, one sees cancellations of transitions for B = 0, but in that case the Zeeman splitting does not exist and all the levels are degenerated. However, in order to null a magnetic field, it is preferable to use compensation measurement principle, as well explained in [START_REF] Papoyan | Magnetic-field-compensation optical vector magnetometer[END_REF][START_REF] Azizbekyan | High-speed optical three-axis vector magnetometry based on nonlinear Hanle effect in rubidium vapor[END_REF]. Analogously, on figure 5 we see that four transfer coefficients cross the xaxis. These coefficients correspond to the transitions labelled 1, 3, 13 and 15

Atom Transitions B(G) B * (G)
(respectively |F g = 2, m Fg = -2 → |F e = 2, m Fe = -2 , |F g = 2, m Fg = -1 → |F e = 2, m Fe = -1 , |F g = 3, m Fg = -2 → |F e = 3, m Fe = -2 and |F g = 3, m Fg = -1 → |F e = 3, m Fe = -1
). With the same type of calculations as before, focusing only on the blocks corresponding to m Fg = m Fe = ±1 and m Fg = m Fe = ±2, we obtain that the modified transfer coefficients mentioned before cancel for:

B (±) (±) = 1 µ B 2ξξ 3g I ξ -3g s ξ + 3g I ξ -4g L ξ + g s ξ for m = -1 (12) 
B (±) (±) = 1 µ B 4ξξ 3g I ξ -3g s ξ + 3g I ξ -4g L ξ + g s ξ for m = -2 . ( 13 
)
The results obtained are shown in As before, two different types of B-values are shown. B is the value taking into account all the uncertainties and B * is the value obtained when ignoring the uncertainty on the ESED ξ . Both B and B * are obtained using [START_REF] Klinger | Magnetic field-induced modification of selection rules for Rb D 2 line monitored by selective reflection from a vapor nanocell[END_REF] and [START_REF] Klinger | Proof of the feasibility of a nanocell-based wide-range optical magnetometer[END_REF]. Once again, we see that the numerical simulation and the theory are in perfect agreement (the values obtained numerically are B = 75.15869477 G for m = -1 and B = 150.31738954 G for m = -2). Consequently, we can use the numerical simulation to determine precisely the cancellations of transitions for which the calculations are heavier (when blocks are of size 3 × 3 or higher, as it happens for 6 2 P 3/2 states). Before looking at the case of 5 2 S 1/2 → 6 2 P 3/2 transitions, we will just present graphs of the σ ± transition intensities of both Rubidium isotopes.

σ ± transitions

On figures 7 and 8 are shown all the σ transition intensities between 5 2 S 1/2 and 6 2 P 1/2 states of 87 Rb and 85 Rb. Transitions that remain present in the spectra at high magnetic fields are represented in red and the ones that vanish are represented in green. For these transitions, we do not provide labelling since they are not interesting for our study. Indeed, none of these transition intensities are cancelled for specific values of B.

To sum up, 38 different transitions are possible for 87 Rb (resp. 62 for 85 Rb). Among all these transitions, only 2 (resp. 4) get cancelled for specific values of B, all these transitions corresponding to a π polarization of the laser. Knowing that the numerical simulation is in full agreement with the theory, we will now use it to determine precisely cancellation of 5 2 S 1/2 → 6 2 P 3/2 transitions for both isotopes.

4. 5 2 S 1/2 → 6 2 P 3/2 transitions of rubidium 87

In this section, we will compute all the transition intensities of the possible π and σ ± transitions between 5 2 S 1/2 and 6 2 P 3/2 . We will show graphs for the π and σ ± transitions of 87 Rb. Due to the complexity of the calculations, we will not derive analytical formulas since cancelled transitions involve 3 × 3 or 4 × 4 blocks.

π transitions

All the modified transfer coefficients corresponding to the transitions labelled on figure 9 are represented on figure 10. In this case, transitions 3, 7, 10 and 16 are forbidden in the general case but none of them cross the x-axis.

On this figure, all the curves vary according to the magnetic field since none of them correspond to transitions between two pure states. Among the 24 possible transitions, the transitions labelled 6, 9, 14, 17 and 20 have a cancellation. These transitions have a magnetic quantum number of either -1, 0 or 1, unlike for 5 2 S 1/2 → 6 2 P 1/2 transitions where we only had m = -1 for 87 Rb. Here, each transition is cancelled for a different value of B. However, experimental measurements could be more difficult in this case due to the proximity of certain values. 
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σ + transitions

All the modified transfer coefficients corresponding to the transitions labelled on figures 11 and 12 are represented on figure 13. F g = 2 where no cancellation could be observed for σ ± . We notice that the three B-values of transitions 1, 10 and 13 have much bigger uncertainties than the others.
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For transition 20, we were able to exhibit the following analytical formula (among all these transitions it is the only one where Hamiltonians are of maximum 2 × 2 dimension):

B = - 1 µ B 4γζ(3g I (γ -ζ) + 2ζg L + g S (ζ -3γ)) c 1 c 2 (14) 
where we denoted c 1 = 6γg We schematize the possible σ -transitions on figure 14 and 15. As for the σ + case, 22 transitions are possible in total. The modified transfer coefficients corresponding to all these transitions are represented on figure 16. Since cancelled transitions involve 3 × 3 or 4 × 4 blocks, we do not derive any analytical formula although it should be possible based on Ferrari and Cardano's formulas. Again, as on figure 13, we observe a constant horizontal line corresponding to transition 10 which is a transition between pure states (m Fg = -2 → m Fe = -3). Among the other curves, three get cancelled (transitions 4, 7 and 8, corresponding to respectively m Fg = 0, +1, +1) for precise values of B. Unlike before, no transition starting from F g = 2 is cancelled. We will now present numerical data obtained for the all 5 2 S 1/2 → 6 2 P 3/2 transition of 85 Rb. Hereafter we present all the 5 2 S 1/2 → 6 2 P 3/2 transitions of rubidium 85 which show a cancellation and their associated B-values. In this case, 116 transitions are possible in total, thus, for the sake of clarity, we will not include graphical representations. 

F g = 2 F e = 0 F e = 1 F e = 2 F e = 3 -3 -2 -1 0 +1 +2 +3
F g F e m Fg B(G) B * (G) 2 

Conclusion and perspectives

In this paper, we dressed an overall view of the theoretical behavior of 5S → 6P transition cancellations for both Rubidium isotopes. To sum up, all the constants involved are known to around 10 -10 which is not the case for the ESED. The experimental measurements is envisaged to be done soon at the Institute for Physical Research of Ashtarak, Armenia. To obtain precise results and avoid transition overlapping due to Doppler broadening, sub-Doppler methods have to be used here. This could be achieved using saturated absorption, in which sub-Doppler resolution is attained by forming atomic velocity-selective optical pumping (VSOP) resonances. These VSOPs are accompanied by strong crossover (CO) resonances which complicate the spectra [22]. Another way to obtain sub-Doppler resolution is to use a nanocell, since Doppler broadening is simply annihilated by the geometry of the cell. Considerably good results have been obtained using nanocells [START_REF] Sargsyan | Hyperfine Paschen-Back regime realized in Rb nanocell[END_REF][START_REF] Hakhumyan | Study of "forbidden" atomic transitions on D 2 line using Rb nanocell placed in external magnetic field[END_REF] in which the magnetic field can be considered to be uniform due to the cell's thinness. Experimental results will be highly influenced by the experimental technique that will be used (or developed) to measure the measure the magnetic field. In every table, we showed the B-values computed when taking into account the uncertainty of every parameter, and the B * -values computed when assuming the ESED to be exact. It is clearly seen that the precision on these values dramatically decreases when the uncertainties on the ESED are taken into account. The measured values could be used to refine uncertainties of all the parameters involved in the problems: ESED, Bohr magneton and even Landé factors. In a reverse way, making an experiment to refine the values of the ESED would also increase the precision of our computations. Moreover, the B-values are determined by analytical formulas meaning they could be used as standard to calibrate magnetometers.

Funding Information

A. Aleksanyan thanks the Graduate School EUR EIPHI for the funding CO.17049.PAC.AN.

F e = 3 F e = 0 F e = 1 F e = 2 F e = 3 F e = 1 F e = 2 F e = 3 F e = 4 5 2 S 1 / 2 6 2 P 1 / 2 6 2 P 3

 30123123421221223 

Figure 1 :

 1 Figure 1: Hyperfine manifold of the 5S and 6P states of a) 85 Rb and b) 87 Rb. Figure not to scale. See table 1 for the splittings.
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 3 Figure 3: Possible 5 2 S 1/2 → 6 2 P 1/2 π transitions of 85 Rb.
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 455 Figure 4: 5 2 S 1/2 → 6 2 P 1/2 π transition modified transfer coefficients of 87 Rb.
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 6 Figure 6: 85 Rb 5 2 S 1/2 → 6 2 P 1/2 π-transitions spectra in magnetic field. a) B = 175 G, b) B = 150.31739 G, c) B = 125 G. Atomic density = 10 13 cm -3 , laser power = 0.1 mW, λ laser = 780 nm, l = 380 nm, temperature = 130 • C.
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 78 Figure 7: 87 Rb 5 2 S 1/2 → 6 2 P 1/2 σ + (top) and σ -(bottom) transition intensities.
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 910 Figure 9: Possible 5 2 S 1/2 → 6 2 P 3/2 π transitions of 87 Rb.
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 11 Figure 11: Possible 5 2 S 1/2 → 6 2 P 3/2 σ + transitions of 87 Rb, F g = 1.
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 1213 Figure 12: Possible 5 2 S 1/2 → 6 2 P 3/2 + transitions of 87 Rb, F g = 2.
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 310123314 Figure 14: Possible 5 2 S 1/2 → 6 2 P 3/2 σ -transitions of 87 Rb, F g = 1.
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 15165 Figure 15: Possible 5 2 S 1/2 → 6 2 P 3/2 σ -transitions of 87 Rb, F g = 2.
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 5 S 1/2 → 6 2 P 3/2 transitions of rubidium 85

  

Table 1 :

 1 Numerical values of the 5S and 6P hyperfine splittings.

  In this article, we will denote the transitions as |F g , m Fg → |F e , m Fe . It is important to note that the notation |F g , m Fg → |F e , m Fe is an ambiguous notation since the application of a magnetic field causes a mixing of states, thus |F, m F is not a good basis in the meaning of eigenbases in intermediate magnetic fields, and neither is |m I , m J . On figures 2 and 3 are schematized all the possible 5 2 S 1/2 → 6 2 P 1/2 π transitions of 87 Rb and 85 Rb. In this case, there are no forbidden transitions.

	Such transitions are
	allowed (resp. so-called forbidden) if they obey (resp. disobey) the selection
	rule ∆F = 0, ±1. 3. 5 2 S 1/2 → 6 2 P 1/2 transitions
	3.1. π transitions

  Possible 5 2 S 1/2 → 6 2 P 1/2 π transitions of 87 Rb.

	7	8 9	10	12	14
			11	13	
		1 2	3 4	5 6	
	Figure 2:				

Table 2 :

 2 B-values cancelling 87 Rb 5 2 S 1/2 → 6 2 P 1/2 π transitions.

table 3

 3 

	Atom Transitions	B(G)	B * (G)
	85 Rb	1 13 3 15	150.31(76) 150.31738954(20) 75.15(38) 75.15869477(10)

Table 3 :

 3 B-values cancelling 85 Rb 5 2 S 1/2 → 6 2 P 1/2 π transitions

Table 4

 4 shows the B-values for each cancellation, determined numerically with (3rd column) and without (4th column) taking into account the uncertainty on the ESEDs.

	Atom Transitions	B(G)	B * (G)
		6	38.152(19) 38.152597093(12)
		9	36.224(15) 36.224262166(11)
	87 Rb	14	17.8789(60) 17.8789466978(55)
		17	24.724(13) 24.7247536874(76)
		20	24.289(11) 24.2896121953(75)

Table 4 :

 4 B-values cancelling 87 Rb 5 2 S 1/2 → 6 2 P 3/2 π transitions.

  I -3ζg I + 2ζg L -6γg S + ζg S and c 2 = 2γg I -3ζg I +2ζg L -2γg S +ζg S . This formula provides a B-value for the cancellation B = 64.164811472 G (all uncertainties ignored) showing the theory to be in perfect agreement with the simulation.

	Atom Transitions	B(G)	B * (G)
		1	528(8)	528.89107942(16)
		10	606(4)	606.26243494(19)
		13	581(4)	581.79032289(18)
	87 Rb	14 15	12.1773(77) 12.1773749366(36) 50.263(19) 50.263197219(15)
		17	11.2105(63) 11.2105200388(35)
		18	57.089(18) 57.089445775(18)
		20	64.164(18) 64.164811472(20)

Table 5 :

 5 B-values cancelling 87 Rb 5 2 S 1/2 → 6 2 P 3/2 σ + transitions.

Table 6 :

 6 B-values cancelling 87 Rb 5 2 S 1/2 → 6 2 P 3/2 σ -transitions.

Table 7 :

 7 B-values cancelling 85 Rb 5 2 S 1/2 → 6 2 P 3/2 σ -transitions.

	F g F e m Fg	B(G)	B * (G)
	3	2	1	4.7610(65) 4.7610264016(37)
	3	2	0	4.9572(70) 4.9572750343(38)
	3	2	-1	5.1947(76) 5.1947367200(40)
	3	2	-2	5.4915(84) 5.4915494036(42)
	3	3	-2	20.189(19) 20.189735198(15)
	3	3	-1	23.036(20) 23.036018017(18)
	3	3	0	26.064(20) 26.064610199(21)
	3	3	1	29.313(20) 29.313263093(24)
	3	3	2	32.813(20) 32.813410682(27)
	2	1	0	46.62(48)	46.624063888(36)
	2	1	-1	52.69(48)	52.687400374(41)
	2	1	-2	59.84(46)	59.841534398(47)
	3	1	0	69.65(42)	69.651160862(54)
	3	1	-1	76.78(44)	76.787359782(59)
	3	1	-2	84.76(46)	84.761785943(65)
	3	2	-3	93.67(48)	93.677445672(70)

Table 9 :

 9 B-values cancelling 85 Rb 5 2 S 1/2 → 6 2 P 3/2 σ + transitions.

In table 8, all the B-values obtained are either between 2 and 16 G ie. small values of B, either after 6000 G ie. huge values of B. For the last 4 transitions, the uncertainties are huge, similarly to transitions 1, 10 and 13 of figure 13.
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