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Abstract

Spermatozoa are polarized cells with a head and a flagellum joined together by the connecting piece. Flagellum integrity
is critical for normal sperm function, and flagellum defects consistently lead to male infertility. Multiple morphological
abnormalities of the flagella (MMAF) is a distinct sperm phenotype consistently leading to male infertility due to a reduced
or absent sperm motility associated with severe morphological and ultrastructural flagellum defects. Despite numerous genes
recently described to be recurrently associated with MMAF, more than half of the cases analyzed remain unresolved, sug-
gesting that many yet uncharacterized gene defects account for this phenotype. By performing a retrospective exome analysis
of the unsolved cases from our initial cohort of 167 infertile men with a MMAF phenotype, we identified one individual
carrying a homozygous frameshift variant in CFAP206, a gene encoding a microtubule-docking adapter for radial spoke and
inner dynein arm. Immunostaining experiments in the patient’s sperm cells demonstrated the absence of WDR66 and RSPH1
proteins suggesting severe radial spokes and calmodulin and spoke-associated complex defects. Using the CRISPR—Cas9
technique, we generated homozygous Cfap206 knockout (KO) mice which presented with male infertility due to functional,
structural and ultrastructural sperm flagellum defects associated with a very low rate of embryo development using ICSI.
Overall, we showed that CFAP206 is essential for normal sperm flagellum structure and function in human and mouse and
that bi-allelic mutations in CFAP206 cause male infertility in man and mouse by inducing morphological and functional
defects of the sperm flagellum that may also cause ICSI failures.

Introduction severe phenotypes of male infertility (Krausz and Riera-

Escamilla 2018). Besides the mere identification of the X2l

Male infertility is a major and contemporary public health ~ genetic cause, these findings also allowed to better under-
concern which regroups a wide range of sperm phenotypes  stand the physiopathological mechanisms associated with

often caused by severe gene defects. Recent approaches for  a specific sperm phenotype and to adapt the best clinical
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genetic investigation allowed to significantly increase our =~ management. This assumption is particularly true for the
knowledge about the genetic causes involved in the most ~ “MMAF phenotype”, for Multiple Morphological Anoma-
lies of the Flagella which is defined by a mosaic of sperm
cells with absent, short, irregular and coiled flagellum. This
condition is systematically associated with an extreme asthe-
nozoospermia with near zero progressive sperm motility
Yunxia Cao and Charles Coutton contributed equally to this work. leading to male infertility (Touré et al. 2021). The sperm
flagellum is a highly specialized organelle responsible for
sperm motility and its migration in the female reproductive
tract. The mammalian sperm has a central “9+4 2" confor-
mation of microtubule doublets associated with hundreds
of accessory proteins that together constitute an axoneme
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(Lindemann and Lesich 2016). The sperm flagellum axo-
neme shares key structural similarities with the axoneme of
other motile cilia (Brown and Witman 2014). However, the
sperm flagellum is unique by its specific functions and mode
of assembly (Inaba 2007) and differs from other cilia by the
presence of numerous and specific peri-axonemal structures
including the outer dense fibers (ODFs), and the fibrous and
mitochondrial sheaths. At least twenty genes, encoding dif-
ferent proteins located the sperm flagellum, have so far been
shown to be associated with the MMAF phenotype (Touré
et al. 2021). A large majority of these genes encodes for
axonemal protein highlighting the critical role of this struc-
ture in sperm flagellum integrity. Moreover, it seems that
many of these MMAF-related proteins are closely located
or related to the calmodulin- and spoke-associated complex
(CSC) suggesting a key and specific role of this structure
in the sperm flagellum assembly, stability and function
(Touré et al. 2021). A large part of the genetic causes of
MMAF remains to be identified and might further support
this hypothesis. Here, we report that bi-allelic truncating
mutations in CFAP206, a gene encoding an axonemal pro-
tein essential for the CSC stability, are associated with male
infertility in human and mouse.

Materials and methods
Patients

In our previously established cohort of 167 MMAF patients
(Coutton et al. 2019), we previously identified 77 patients
with harmful variants in known MMAF-related genes (Lores
et al. 2021). To identify some additional causes associated
with human asthenozoospermia due to MMAF, we retro-
spectively analyzed the exomes of the remaining 90 unsolved
cases. All patients of the cohort presented a typical MMAF
phenotype characterized by severe asthenozoospermia (total
sperm motility below 10%) with at least three of the follow-
ing flagellar abnormalities present in > 5% of the spermato-
zoa: short, absent, coiled, bent or irregular flagella (Coutton
et al. 2019). All patients had a normal somatic karyotype
(46, XY) with normal bilateral testicular size, normal hor-
mone levels (FSH, testosterone and prolactin) and secondary
sexual characteristics. All these patients presented only with
non-syndromic infertility without any other clinical features.
Sperm analysis was carried out in the source laboratories
during routine biological examination of the patients accord-
ing to World Health Organization (WHO) guidelines (Wang
et al. 2014). One patient (P1), who was identified to carry
a homozygous CFAP206 variant, is described in this study.
P1 sperm morphology assessed with Papanicolaou staining
and detailed semen parameters were performed. The patient
originated from the Middle East (Iran) and was recruited
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at the Royan Institute (Reproductive Biomedicine Research
Center) for primary infertility in 2016 and was born to first-
cousin parents. Informed consent was obtained from the
patient and controls participating in the study according
to local protocols and the principles of the Declaration of
Helsinki. The study was approved by local ethics commit-
tees, and samples were stored in the Fertitheque collection
declared to the French Ministry of health (DC-2015-2580)
and the French Data Protection Authority (DR-2016-392).

Exome sequencing and bioinformatic analysis

Data processing of the whole cohort of 167 MMAF patients
was performed according to our previously described proto-
col (Coutton et al. 2019). In brief, the enrichment of coding
regions together with intron/exon boundaries was performed
with the Exon V6 kit (Agilent Technologies, Wokingham,
UK). Sequencing was performed with Illumina HiSeq X by
a service provider (Novogene, Cambridge, UK). Exomes
data were analyzed using a bioinformatics pipeline devel-
oped in-house using two modules, both distributed under the
GNU General Public License v3.0 and available on GitHub:
https://github.com/ntm/grexome-TIMC-Primary and https://
github.com/ntm/grexome-TIMC-Secondary and as described
in part in Martinez et al. (2020). Variants with a minor allele
frequency greater than 1% in gnomAD v2.0, 3% in 1000
Genomes Project phase 3, or 5% in NHLBI ESP6500 were
filtered out and only variants predicted to have high-impact
(e.g., stop-gain or frameshift variants) by variant Effect Pre-
dictor v92 (McLaren et al. 2016) were scrutinized.

Sanger sequencing

The identified variant in CFAP206 was validated by Sanger
sequencing performed on ABI 3500XL (Applied Biosys-
tems). Data analyses were performed using SeqScape soft-
ware (Applied Biosystems). Sequences of primers used are
reported in Table S1. Unfortunately, no parental DNA was
available to perform the segregation analysis.

Quantitative real-time RT-PCR (RT-qPCR) analysis

RT-qPCR was performed with cDNAs from a panel of 6
different human tissues and one human cDNAs reference
(pooled tissues) purchased from Life Technologies®. Each
sample was assayed in triplicate for each gene on a StepO-
nePlus (LifeTechnologies®) with Power SYBR®Green PCR
Master Mix (Life Technologies®). The PCR cycle was as fol-
lows: 10 min at 95 °C, 1 cycle for enzyme activation; 15 s at
95 °C, 60 s at 58 °C with fluorescence acquisition, 40 cycles
for the PCR. Primer sequences and RT-qPCR conditions are
indicated in Table S2. The efficacy of primers was checked
using a standard curve. Melting curve analysis was used to
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confirm the presence of a single PCR product. RT-qPCR
data were normalized using the reference housekeeping
gene GAPDH for human with the — AAC, method (Livak
and Schmittgen 2001). The 2724 value was set at 0 in the
cDNAs pooled tissues, resulting in an arbitrary expression
of 1. Statistics were performed using a two-tailed 7-test on
Prism 4.0 software (GraphPad, San Diego, CA) to compare
the relative expression of CFAP206 transcripts in several
organs. Statistical tests with a two-tailed P value <0.05 were
considered significant.

Immunostaining in human sperm cells

Immunofluorescence (IF) experiments were performed
using sperm cells from control individuals and from the
individual carrying the CFAP206 variant. Sperm cells were
fixed in phosphate-buffered saline (PBS)/4% paraformal-
dehyde for 1 min at room temperature. After washing in
1 ml PBS, the sperm suspension was spotted onto 0.1%
poly L-lysine pre-coated slides (Thermo Scientific). After
attachment, sperm were permeabilized with 0.1% (v/v) Tri-
ton X-100-DPBS (Triton X-100; Sigma-Aldrich) for 5 min
at RT. Slides were then blocked in 5% normal serum—-DPBS
(normal goat or donkey serum; GIBCO, Invitrogen) and
incubated overnight at 4 °C with the following primary
antibodies: rabbit polyclonal anti-WDR66 (HPA040005,
Sigma-Aldrich, rabbit, 1:50, green), rabbit polyclonal anti-
RSPHI1 (HPA0O17382, Sigma-Aldrich, 1:100) and monoclo-
nal mouse anti-acetylated-a-tubulin (T7451, Sigma-Aldrich,
1:2000). Washes were performed with 0.1% (v/v) Tween-
20-DPBS, followed by 1-h incubation at room temperature
with secondary antibodies. Highly cross-adsorbed second-
ary antibodies (Dylight 488 and Dylight 549, 1:1000) were
from Jackson Immunoresearch®. Appropriate controls
were performed, omitting the primary antibodies. Samples
were counterstained with 5 mg/ml Hoechst 33,342 (Sigma-
Aldrich) and mounted with DAKO mounting media (Life
Technology). Fluorescence images were captured with a
confocal microscope (Zeiss LSM 710). Two hundred sperm
cells were manually analyzed by two different experienced
operators and the IF staining intensity and pattern were
compared with a fertile control. The specificity of the anti-
WDR66 and anti-RSPHI antibodies was previously vali-
dated (Kott et al. 2013; Auguste et al. 2018).

CRISPR/Cas9 KO mice

Cfap206 knockout mouse model

The Cfap206 knockout mouse model (C57BL/6) was cre-
ated by CRISPR/Cas-mediated genome engineering.

Briefly, the single-guide RNAs (sgRNAs) were designed
against Cfap206 exon 3—11 (Table S3). Cas9 mRNA and

sgRNA were prepared according to the reference (Yang et al.
2014). One-cell-stage embryos were collected and injected
with prepared Cas9 mRNA and sgRNA. Then the injected
embryos were further cultured in KSOM medium (Milli-
pore, Cat. #MR-106-D) at 37 °C under 5% CO, until blasto-
cyst stage and transferred into pseudopregnant female mice.

194
195
196
197
198
199

A frameshift variant in Cfap206 was detected by Sanger}Xekilio

sequencing in the founder mouse and its offspring, and the
primer sequences are available in Table S4. Male mice (aged
8—12 weeks) were used for subsequent experiments in this
study. All animal experiments were carried out in accord-
ance with the recommendation in the Guide for the Care
and Use of Laboratory Animals of the National Institutes of
health. The study was approved by the animal ethics com-
mittee at Anhui Medical University.

Immunoblotting of mouse testis

Mouse testis samples were homogenized in radioimmuno-
precipitation assay (RIPA) buffer (Beyotime) via an ultra-
sonic homogenizer and then heated at 100 °C for 10 min.
The lysates were separated on 10% polyacrylamide gel by
SDS-PAGE and transferred to PVDF (polyvinylidene fluo-
ride) membrane. Then, the membrane was sealed for 1 h at
25 °C with 5% milk diluted with TBST (TBS-0.1% Tween-
20, Sangon Biotech). Anti-CFAP206 antibody (HPA044891,
Atlas Antibodies) was diluted in TBST at 1:1,000 and incu-
bated with the membranes at 4 °C overnight. The mem-
branes were then washed in TBST three times and incubated
with HRP-conjugated anti-Rabbit IgG antibody (M21002,
Abmart,1:10,000) in blocking solution for 1 h at room tem-
perature. Enhanced chemiluminescence (ECL) (BL520A,
Biosharp) was used for visualization. f-tubulin was used as
a loading control.

Histological analysis of mouse tissues

Fresh mouse testes were gently fixed with modified David-
son’s solution (50% diluted water, 30% formaldehyde, 15%
ethanol, and 5% glacial acetic acid) for over 48 h. After fixa-
tion, the tissue was dehydrated in gradient ethanol (70% eth-
anol for 24 h, 80% ethanol for 2 h, 90% ethanol for 2 h, and
100% ethanol for 1 h). Then, tissues were placed in xylene
for 1 h and embedded in paraffin wax. Finally, sections were
cut at a 3 um thickness. For H&E staining, sections were
deparaffinated in xylene at 65 °C overnight. After depar-
affinating, slides were stained with H&E, dehydrated, and
mounted.

Mating test

Fertility was investigated in wild-type and Cfap206 knock-
out adult male mice. At least three male mice that were
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8—12 weeks of age were analyzed in each group. Each male
mouse and three wild-type C57BL/6 females (8—12 weeks
of age) were caged. Vaginal plugs were checked every morn-
ing. Once a vaginal plug was identified, the male mouse
was allowed to rest for 2 days before another two females
were placed in the cage. After mating, the female mice were
separated and fed in a single cage and the pregnancy results
and number of pups were recorded.

Mouse semen parameters and sperm morphological
analysis

For sperm morphology and parameters analyses of the
mouse, spermatozoa were extracted from the cauda
epididymis through dissection of adult male mice and
diluted in 1 mL human tubal fluid (HTF, 90,126, Millipore)
for 15 min at 37 °C. Sperm count, progressive sperm rate
and motile sperm rate were further analyzed by a computer-
assisted analysis system (IVOSII, Hamilton). At least three
CS57BL/6 male mice aged 8—10 weeks were analyzed in each
group. Sperm from cauda epididymis were fixed and stained
by H&E staining for the morphology analysis.

Electron microscopy evaluation

For scanning electron microscope (SEM) analysis of mouse
sperm cells, cauda epididymis samples were prepared as pre-
viously described (Liu et al. 2019b). In brief, mouse sperm
specimens were deposited on poly-L-lysine-coated cover-
slips, fixed in 2.5% glutaraldehyde, washed in 0.1 mol/L
phosphate buffer, and post-fixed in osmic acid. The speci-
mens were then progressively dehydrated with ethanol and
isoamyl acetate gradient, then dried with a CO, critical-point
dryer (Eiko HCP-2, Hitachi). Next, the specimens were
mounted on aluminum stubs, sputter-coated using of an ionic
sprayer meter (Eiko E-1020, Hitachi), and analyzed via SEM
(Stereoscan 260) under an accelerating voltage of 20 kV.
For transmission electron microscope (TEM) analysis of
mouse sperm cells, mouse semen samples were rinsed and
were progressively dehydrated with graded ethanol (50%,
70%,90%, and 100%) and 100% acetone, followed by infil-
tration with 1:1 acetone and SPI-Chem resin overnight at
37 °C. After being embedded in Epon 812, the specimens
were sliced with ultra-microtome, stained with uranyl acetate
and lead citrate, and observed and photographed via TEM
(Tecnai G2, FEI) with an accelerating voltage of 120 kV.

Intracytoplasmic sperm injection with the sperm
of wild-type and Cfap206 knockout mice

Mice intracytoplasmic sperm injection (ICSI) was conducted

as previously described (Liu et al. 2019a). Briefly, MII
oocytes were collected from the oviduct of superovulated

@ Springer

wild-type C57BL/6 female mice. Sperm were collected from
wild-type and Cfap206 knockout mice. Sperm heads only
were injected into mouse oocytes by a Piezo driven pipette
according to the previously reference (Ron-El et al. 1995).
Then, the injected oocytes were cultured in KSOM medium
at 37 °C under 5% CO,. Cleavage and blastocyst rates were
further recorded around 24 h and 96 h, respectively.

Results

Exome sequencing identified bi-allelic variants
in CFAP206 in an MMAF patient

In the whole cohort of 167 MMAF patients, we previ-
ously identified 77 patients (46%) with deleterious vari-
ants in known MMAF-related genes (Lores et al. 2021).
After reanalysis of the remaining exomes, we identi-
fied one additional subject with a homozygous variant in
CFAP206 (MIM *609910), a gene not previously associ-
ated with any pathology in human. Patient’s sperm mor-
phology and his detailed semen parameters are presented
in Fig. 1A-D and Table 1, respectively. The patient had
a frameshift variant ¢.1430dupA; p.Asn477LysfsTerl5
(NM_001031743.2) (Fig. 1E; Table 1). The variant
c.1430dupA is a single-nucleotide duplication predicted
to induce a translational frameshift and a premature stop
codon (p.Asn477LysfsTerl5) expected to lead to the com-
plete absence of the protein or the production of a truncated
protein. The variant is present in the Genome Aggregation
Database (gnomADv3.1) with a minor allele frequency
(MAF) of 6.63 x 107, The presence of this homozygous
variant in the patient was also consistent with the known
consanguinity of his parents (cousins). The variant identified
by exome sequencing was validated by Sanger sequencing as
illustrated in Fig. 1F. This CFAP206 variant is deposited in
ClinVar under reference SUB9294549. No other candidate
variants reported to be associated with cilia, flagella or male
fertility were otherwise detected.

CFAP206 (also known as c60rf165) is located on chro-
mosome 6 and contains 14 exons encoding cilia- and
flagella-associated protein 206 (CFAP206), a predicted
622-amino acid protein (Q8IYRO0). CFAP206 is predomi-
nantly expressed in the testis according to data from GTEx
(https://gtexportal.org) and described to be associated with
cilia and flagella (Vasudevan et al. 2015; Beckers et al.
2020). In addition, the encoded CFAP206 protein was
detected in human sperm proteome (Wang et al. 2013)
whereas it was found at a low level in human airway cilia
(Blackburn et al. 2017). RT-qPCR experiments performed
with a panel of six human tissues including other ciliated
tissues such as trachea confirmed these results, showing
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= InterPro Region IPR021897, 215-491 aa, Cilia- and flagella-associated protein 206

Fig. 1 Morphology of normal and CFAP206 mutant spermatozoa and
presentation of the patient’s variant. A—D Light microscopy analysis
of spermatozoa from fertile control individuals (A) and the CFAP206
patient (B-D). Most spermatozoa from the CFAP206 patient have fla-
gella that are short, absent, coiled or of irregular caliber. Scale bars:
10 um. E Structure of the canonical transcript of CFAP206 show-

that CFAP206 is largely overexpressed in the testis com-
pared to all the other tested tissues (Fig. S1).

To explore the ultrastructural defects induced by
the ¢.1430dupA CFAP206 variant in human sperm, we
subsequently studied the presence of different proteins
belonging to various axonemal substructures by immuno-
fluorescence (IF). Taking into account the expected role
of CFAP206 in RS and CSC stability (Vasudevan et al.
2015; Beckers et al. 2020), the presence of the follow-
ing proteins was first investigated: RSPH1 as a marker of
the radial spokes (RS) and WDR66, a protein localized
in the CSC at the base of radial spoke 3 in Tetrahymena
and Chlamydomonas (Urbanska et al. 2015). Due to the
limited amount of sperm cells, no further IF experiments
could be performed. In the patient’s sperm cells, RSPH1
staining was totally absent, dramatically reduced or dis-
played an abnormal dotted and irregular pattern (Fig. 2A).
In control sperm, WDR66 immunostaining decorated the
full-length flagella, but in the CFAP206 patient WDR66
staining was completely absent whereas tubulin staining
remained detectable (Fig. 2B). These results demonstrate
that RS and the CSC are strongly disorganized and support
that CFAP206 is a key axonemal component ensuring the
stability of the CSC and the anchoring of the RS. Unfortu-
nately, Transmission Electron Microscopy (TEM), which
might provide evidence of the resulting defect, could not
be performed due to the very low number of sperm cells
available.

CCAAAAAAAA-TACAGAGTT
GGCCAAAAAAAATACAGAGT

Sl L T

CCAAAAMAAMAAATACAGAGTT
CCl3AA3333ATACAGAGTT

= e

ing the position of the observed variant. The functional structure of
the encoded protein is shown in the lower panel. CFAP206-domain
(IPRO21897) is highlighted in green. F Electropherograms from
Sanger sequencing indicating the homozygous state of the identified
variant ¢.1430dupA; p.Asn477LysfsTerl5 (NM_001031743.2) in
CFAP206. Variants are annotated following HGVS recommendations

CRISPR/Cas 9 KO mice

Then, we assessed the impact of the absence of CFAP206 on
mouse by generating KO mice using the CRISPR-Cas9 tech-
nology. We obtained a strain with a deletion of nine exons
(exons 3—11) (Fig. S2A). RT-PCR and Western-blot analyses
performed on testes from KO mouse Cfap206~'"~ confirmed
the deleterious effect of the CRISPR/Cas9 induced deletion
with the production of abnormal transcripts leading to the
total absence of the protein (Fig. S2B, C). Reproductive phe-
notypes were then studied. KO females were fully fertile
and gave litters of normal size, contrary to KO males, which
exhibited complete infertility when mated with females
(Fig. 3A). The testis to body weight ratio was comparable
between Cfap206™*+ and Cfap206~'~ male mice (Fig. 3B,
C). As well, hematoxylin and eosin staining of testicular
tissues showed no significant inter-group difference in the
overall morphology of germ cells (Fig. S3). Total sperm
counts obtained from the epididymes of Cfap206~'~ male
mice were significantly lower than those from Cfap206+*
male mice (3.92X 10°+0.64 versus 22.63 x 10°+2.47,
respectively; ***P <0.001) (Fig. 3D; Table S5), and sperm
from Cfap206~'~ animals showed a significant decrease in
total and progressive motility (Fig. 3E, F; Table S5). Con-
sistently, these functional flagellum defects were associ-
ated with morphological defects (Figs. 3G and S4). Sperm
from Cfap206~'~ males mainly had a flagellum of normal
length (Table S5) but most of them showed abnormal forms,
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. _ ‘ sperm exhibiting bent and coiled flagella (Fig. 3G and S4; 391
:% E cE5 _°8 Table S5). We also observed a significant increase of sperm 392
R cells with absent or short flagella compared to the WT mice 393
& % & (Table S5). To visualize the impact of the absence of the 394
o N .
§ g w 97 CFAP206 protein on the flagellum ultrastructure, sperm 395
o from Cfap206~~ males were analyzed by TEM (Fig. S5). 396
éj 4 i Some longitudinal sections of Cfap206~'~ sperm showed 397
= 2 S a distorted axoneme (Fig. S5) which may be the cause or 398
o _ the consequence of the bent and coiled flagella. In addi- 399
g ;: 2 tion, observations of transversal sections often revealed a 400
=3 e - deep disorganization with several defects such as lack of 401
o peripheral doublets, absence of the central pair or abnormal 402
heral doublets, ab f th tral b 1
§ ;i @ distribution of the DMTs or/and of the ODFs (Fig. SSE and 403
=38 e = F). No extra-reproductive features (including hydrocephaly) 404
. d o were observed in Cfap206_/ ~ mice. 405
= o T 77 ICSI experiments performed with CFAP206 deficient 406
sperm cells showed a significant lower rate of 2-cell embryos 407
k=) P . .
- J (56.18% vs 91.11%, respectively) and a dramatic decrease 408
o <o .
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Fig.2 Radial spokes and the calmodulin- and spoke-associated com-
plex are affected in the CFAP206 patient. A Sperm cells from a fertile
control individual and the CFAP206 patient stained with anti-RSPH1
(HPAO017382, Sigma-Aldrich, rabbit, 1:100, green), a protein located
at the head of the radial spokes, and anti-acetylated tubulin (32-2500,
ThermoFisher, mouse, 1: 1000, red) antibodies. DNA was counter-
stained with DAPI II. RSPH1 immunostaining is present throughout
the flagellum in control sperm cells but is mainly absent or strongly
reduced in CFAP206 patients. In a few sperm cells the RSPH1 stain-

along the axoneme, lacked the RS2 and the dynein c, sug-
gesting that FAP206 is essential for docking the RS2 and
dynein c to the microtubule. Interestingly, it was also dem-
onstrated that the assembly of the CSC component FAP91/
CaM-IP2 into the axoneme was dependent on FAP206
which was shown to be indirectly associated with the CSC
through the RSP3 protein (Vasudevan et al. 2015). Consist-
ently, we previously demonstrated that deleterious variants
in MAATS1 encoding CFAP91, the human FAP91 ortholog,
led to a MMAF phenotype with similar axonemal defects
(lack of WDR66 and RSPH1) to what has been observed
here in the CFAP206 affected patient (Martinez et al.
2020). Altogether, these observations strongly reinforce the

TUBULIN

TUBULIN

ing is present but displays an abnormal pattern with an irregular sig-
nal. Scale bars: 10 um. B Sperm cells from a fertile control individual
and the CFAP206 patient stained with anti-WDR66 (HPA040005,
Sigma-Aldrich, rabbit, 1:50, green) and anti-acetylated tubulin (32—
2500, ThermoFisher, mouse, 1: 1000, red) antibodies. DNA was
counterstained with DAPI II. Contrary to the control, the WDR66
immunostaining is not detectable in the sperm flagellum from the
CFAP206 patient. Scale bars: 10 pm

assumption that CFAP206 is critical for sperm flagellum
axoneme assembly and stability through its essential role
within the CSC-RS complex and its interaction with other
axonemal partners such as CFAP251/WDR66 or CFAP91
(Vasudevan et al. 2015; Beckers et al. 2020).

These data further reinforce the hypothesis that the
RS3-CSC complex is critical for the assembly and stability
of the sperm flagellum axoneme and its alteration constantly
lead to the MMAF phenotype. In our cohort, variants in
CSC-related genes (CFAP251/WDR66, MAATS1 and now
CFAP206) are found in about 11% of the tested subjects
suggesting that the CSC is the main structure affected in
MMATF patients (Kherraf et al. 2018; Martinez et al. 2020).
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Fig.3 Cfap206 deficiency induces sperm flagellar abnormali-

ties and infertility in male mice. A The mean number of the pups
per litter was 6.83 +0.40 in Cfap206** male mice, whereas all the
four Cfap206~'~ male mice were completely infertile. ***P <0.001.
B-C The ratio of testes to body weight was comparable between
Cfap206™* and Cfap206~~ male mice. D Sperm counts (x10°)
of Cfap206™~ male mice was significantly lower compared to
Cfap206™* male mice (3.92+0.64 versus 22.63 +2.47, respectively;
##4P <0,001). E Sperm motility rate in Cfap206** male mice was

Cfap206*'*

Cap2067-

Progressive motility (%)

56.33+5.67%, whereas the motility decreased to 37.33+2.94% in
Cfap206™"~ male mice. *P<0.05. F The progressive motility was
significantly reduced in Cfap206~'~ male mice compared to the
wild-type (31.00+2.75% and 49.17 +5.17% respectively, *P <0.05).
G Sperm morphology using scanning electron microscopy of the
Cfap206™* (i) and Cfap206~'~ male mice (ii—v). Most spermatozoa
of Cfap206™'~ male mice presented with coiled and bent flagellum.
Scale bars: 10 pm. n.s. not significant

Fig.4 Representative two-cell embryos and blastocysts obtained following intracytoplasmic sperm injection (ICSI) carried out with spermato-

zoa from Cfap206™* and Cfap206~"~ male mice

Interestingly, although the axoneme is a common structure
shared between cilia and flagellum, we observed that MMAF
patients only present with an isolated infertility without
any other clinical features or ciliopathies suggesting that,

@ Springer

in other ciliated cells, these axonemal MMAF-related pro-
teins are dispensable for the structure and function of cilia
and that axonemal biogenesis/structure of sperm flagella
and cilia may require different proteins and mechanisms
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in particular regarding the RS3-CSC complex (Touré
et al. 2021). Interestingly, another team recently published
another mouse model inactivated for the Cfap206 gene and
evidenced a similar sperm phenotype. Electron tomogra-
phy on cryo-conserved sperm flagella revealed defects in
the repetitive pattern of radial spokes with only one RS per
96 nm repeat confirming that CFAP206 is needed for the
establishment of radial spokes in mammalian sperm flagella.
In addition, the authors reported that about 80% of KO mice
developed externally visible enlarged cranial vaults, suggest-
ing ventricular dilatation and hydrocephalus. In addition,
these mutant mice presented mucus accumulation in nasal
cavities and a significant increase in ciliary beat frequency
compared to wild-type (Beckers et al. 2020). These extra-
reproductive observations are in opposition with the clinical
features observed in our mouse model and in our patient car-
rying the bi-allelic truncating variations in CFAP206 who
presented only isolated infertility without any other clinical
features. We do not believe that this phenotypic discrep-
ancy can be caused by a residual CFAP206 activity in our
patient nor in our KO mice, as all carried a clear cut loss of
function variant similar to that induced in Beckers et al.’s
mice. Such phenotypic discrepancies between patients with
MMAF phenotype or two different mouse models inacti-
vated for the same gene have been described previously
(Ben Khelifa et al. 2014; Coutton et al. 2018; Morimoto
et al. 2019; Rachev et al. 2020; Touré et al. 2021). These
observations might be explained by different mouse genetic
background, various genome-editing method or unknown
off-target effect. Alternatively, we cannot exclude a slight
effect on ciliary beating in MMAF patients without patho-
logical consequences, or at least none that have been noticed
by the affected men themselves. Nasal brushings or curette
biopsies from affected MMAF individuals could be useful
to formally explore this possibility.

It was generally accepted that MMAF affected individu-
als have a good prognosis following ICSI, in particular for
patients carrying mutations in genes encoding axonemal pro-
teins (Wambergue et al. 2016; Touré et al. 2021). In contrast
to what was observed for most other MMAF patients, the
patient carrying the CFAP206 mutation did not achieve any
pregnancy when his sperm was used for ICSI. Furthermore,
ICSI experiments performed in Cfap206~~ mouse showed a
dramatic decrease in early division and blastocyst rate com-
pared to WT, suggesting that CFAP206 deficiency may also
affect early embryonic development (Fig. 4; Table S6). This
effect on early embryonic development following IVF was
also observed in the previously published Cfap206~~ mouse
line (Beckers et al. 2020). This very low rate of embryo
development is a clear additional factor compromising the
fertility of CFAP206-mutated patients as it was observed
in the Cfap206™~~ mouse. Beckers et al. (2020) previously
demonstrated that CFAP206 also localized to the basal body/

centrosome of motile cilia. Interestingly, unsuccessful ICSI
were already reported in MMAF patients with mutations
impacting centrosomal proteins (Touré et al. 2021). These
data provide further support to the assumption that a poor
ICSI prognosis is expected for MMAF patients with muta-
tion in genes encoding centrosomal proteins which persist
after fertilization and are required for embryo development
conversely to axonemal proteins. However, no basal body
defects could be evidenced in Cfap206~'~ sperm cells using
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IF and TEM (data not shown). These results should be con-[eZig7

firmed with further cases and experimentation but suggest
that CFAP206 mutations may constitute an adverse factor to
obtain pregnancies with ICSI and may modify the clinical
management of CFAP206-mutated MMAF patient.
Overall, these data demonstrate that CFAP206 is essential
for normal sperm flagellum structure and function in human
and mouse, and that variants in CFAP206 lead to severe fla-
gellum malformations and may also cause poor early embryo
development resulting in primary male infertility.
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