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1 Abstract

In the context of highly 0-inflated skewed data, a non linear approach is rec-
ommended. However a full disjunctive model is probably too demanding. An
intermediate approach consists in using indicators to code the data through a
set of disjunctive indicator variables (one by class of density including the class
of null densities). However, this gets the following two drawbacks. First, the
dimension of the model is increased (moving from mono-variate to multivariate
which notably wight up the kriging system). Second, the mathematical coher-
ence of the model is not guaranteed for indicators variables. These two draw-
backs were solved by using MAFs. This makes the variables orthogonal both
locally and for small distances. Assuming full orthogonality, the new variables
are factorized and handleable one by one with their corresponding appropriate
variograms. By the way, punctual uncorrelation as produced by standard PCA
is not sufficient to handle variables separately. While MAFs are linear combi-
nation of the input indicator variables, one can back-transform all the outputs
and produce relevant estimations with their estimation variance.

2 Method

2.1 Discretization of Z(x)

The random function is decomposed into N disjunctive classes of densities.

Y (x) = φ
(
Z(x)

)
=

N∑
1

mi1i(x)

N∑
1

1i(x) = 1

mi = E
(
Z(x)1i(x)

)
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pi = E
(
1i(x)

)
m̄ =

N∑
1

mipi

2.2 Closed form

Being a closed formalization,

1N (x) = 1−
N−1∑
i=1

1i(x)

the decomposition of Z(x) into N indicator variables should be reduced to
N − 1:

Y (x) =

N−1∑
1

mi1i(x) +mN

(
1−

N−1∑
1

1i(x)
)

=

N−1∑
1

(
mi −mN

)
1i(x) +mN

that is finally wrote as:

Y (x) = mN +

N−1∑
1

m̆i1i(x)

Given their disjunctive characteristic, the indicator variables are locally cor-
related:

cov
(
1j(x), 1k(x)

)
= −pjpk < 0

They are also not spatially uncorrelated:

cov
(
1j(x), 1k(x+ h)

)
6= 0

Given the above considerations, the modelization of the indicator variables
should be done jointly (multivariate geostatistics). However, rigorous multivari-
ate models for indicator variables do not have explicit mathematical characteri-
zation. Even if such a model would exist, the dimension of the coKriging system
would drastically slow down computations, especially when global kriging is con-
cerned. A factorization of the system permits, without lose of information and
generality, to reduce the N-dimensional question into N separate monovariate
systems much easily handleable.

2



2.3 MAFactorization

The factorization (see below) works on centered variables. Denoting:

Oi(x) = 1i(x)− pi
We have:

Y (x) = m̄+

N−1∑
1

m̆iOi(x)

There is N −1 spatially correlated variables that we would like to transform
into N−1 spatially uncorrelated variables. A sequence of two PCAs (also called
Min-max Autocorrelation Factors - MAFs [3]) allow computing factors that are
uncorrelated locally (h = 0) and at a short distance to be chosen (href ). As all
PCAs, the factors Fj(x), j = 1, ..., N − 1, are nothing but a linear combination
of the input variables. In turns, the input variables are also linear combination
of the factors:

Oi(x) =

N−1∑
j=1

aj,iFj(x)

Cautious with the order of the subscripts: aj,i corresponds to the jth line of
the ith column of matrix A. In matrix notation this amounts to:

O = F ·A


• · ·
...

...
...

...
...

...
...

...
...

 =


→ → →
...

...
...

...
...

...
...

...
...


 ↓ · ·↓ · ·
↓ · ·



Given the factors are Min-max Autocorrelation Factors (MAFs), we have by
construction that:

cov
(
Fj(x), Fk(x)

)
= 0

cov
(
Fj(x), Fk(x+ href )

)
= 0

The discrete version of Z(x) finally writes down:

Y (x) = m̄+

N−1∑
i=1

m̆i

N−1∑
j=1

aj,iFj(x)

which can be simplified into:
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Y (x) = m̄+

N−1∑
i=1

αiFi(x)

where (be care full with the order of the subscripts):

αi =

N−1∑
i=1

m̆i

N−1∑
j=1

ai,j

In matrix notations, this amounts to:

α = A · m̆

 •·
·

 =

 → → →
· · ·
· · ·

 ↓↓
↓


2.4 Hypothesis

We now assume that the factors are uncorrelated for all distances, i.e. not only
for h = 0 and for h = href :

cov
(
Fj(x), Fk(x+ h)

)
= 0 ∀h

2.5 Punctual Kriging: mapping

Being spatially uncorrelated, the cokriging of the factors reduced to their mono-
variate krigings [1], so that:

Ŷ (x0) = m̄+

N−1∑
1

αiF
K

i(x0)

One can also estimate the indicator variables, that is the probabilities to be
in a class of density:

Ôi(x) =

N−1∑
j=1

aj,iF
K

j(x)

so that

1̂i(x) = pi +

N−1∑
j=1

aj,iF
K

j(x), for i = 1, ..., N − 1

1̂N (x) = 1−
N−1∑
i=1

1̂i(x)
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2.6 Global Kriging: estimation of global sA

Thanks to the factorization, the global estimation can be readily deduced:

Ŷ (v) = m̄+

N−1∑
1

αiFi(v)

with

Ŷ (v) = m̄+

N−1∑
1

αiF
K

i(v)

and

σ2
E = var(Ŷ (v)− Y (v)) =

N−1∑
1

α2
iσ

2
E,i(v)

where

σ2
E,i(v) = var(F̂i(v)− Fi(v))

As in standard estimation, the coefficient of variation is :

CVE =
σE

Ŷ (v)

3 Discussion

3.1 Assumptions

The factorization is not complete strictly speaking. The MAF are uncorrelated
at 0 and, on average for distances falling in the interval used for their elab-
oration. While building recursive MAFs of larger and larger interval do not
solve the problem, the most appropriate way of doing is to enlarge the interval.
By doing so, we loose interpretability of the factors that are produced, but we
gain in terms of absence of correlation. It is thus possible to generate MAFs
whose spatial cross-correlation are on average null over a large distance interval.

As for any global approach, the model is considered relevant for all geo-
graphical distances at play. This means that order 2 stationarity is assumed.

We produced the estimation of Y (v) i.e. the discretized version of Z(v).
This is not the estimation of Z(v) which is not accessible with reasonable as-
sumptions. This is a change of paradigm that must be acknowledged strongly.
It brings the idea that we can estimate the of biomass
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3.2 Practical considerations

Some practical questions can be addressed in real cases:

• Should we truncate to 0 the negative estimation ? How ? When in the
process ?

• Should we use survey by survey thresholds or should we use fixed threshold
e.g. powers of 10 with possible empty class in some surveys ?
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