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ABSTRACT

5-Fluorouracil (5-FU) is a chemotherapeutic drug
widely used to treat patients with solid tumours, such
as colorectal and pancreatic cancers. Colorectal can-
cer (CRC) is the second leading cause of cancer-
related death and half of patients experience tumour
recurrence. Used for over 60 years, 5-FU was long
thought to exert its cytotoxic effects by altering DNA
metabolism. However, 5-FU mode of action is more
complex than previously anticipated since 5-FU is
an extrinsic source of RNA modifications through its
ability to be incorporated into most classes of RNA.
In particular, a recent report highlighted that, by its
integration into the most abundant RNA, namely ri-
bosomal RNA (rRNA), 5-FU creates fluorinated ac-
tive ribosomes and induces translational reprogram-
ming. Here, we review the historical knowledge of
5-FU mode of action and discuss progress in the
field of 5-FU-induced RNA modifications. The case
of rRNA, the essential component of ribosome and
translational activity, and the plasticity of which was
recently associated with cancer, is highlighted. We

propose that translational reprogramming, induced
by 5-FU integration in ribosomes, contributes to 5-
FU-driven cell plasticity and ultimately to relapse.

GRAPHICAL ABSTRACT

INTRODUCTION

Based on the observation that tumoral tissues used
the uracil more rapidly than normal tissues (1,2), 5-
Fluorouracil (5-FU) was identified as an antimetabolite
chemotherapy as early as 1957 and was approved by the
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FDA in 1962 for the treatment of colorectal cancer (CRC)
(3). Since its first approval, 5-FU has been widely used
either alone or in combination with other drugs to treat
many solid cancers of digestive origin (colorectal, anal, pan-
creatic, oesophageal, gastric and ampullary tumours) and
those arising in other organs (i.e. breast, cervix, and head
and neck cancers). Today, 5-FU is used to treat several of
the deadliest cancers, including CRC and pancreatic ductal
adenocarcinoma (PDAC) (Table 1). Even though treatment
modalities (dose, timing and administration) vary accord-
ing to the origin of the tumour, 5-FU remains one of the
essential drugs used for cancer management (4).

Inclusion of 5-FU into the regimen used to treat CRC,
the second most common cause of cancer-related deaths
in western countries, is mandatory. The annual incidence
and mortality rates of CRC exceed one and half a million
of cases worldwide, respectively (5,6). 5-FU is used as the
first-line treatment for CRC patients. However, the rate of
response to 5-FU does not exceed 40–60% when 5-FU is
used in combination with other molecules such as folinic
acid, irinotecan or oxaliplatin, or with targeted therapies
such as those based on anti-vascular endothelial growth fac-
tor (VEGF) (bevacizumab) or anti-epidermal growth fac-
tor (EGFR) (cetuximab) antibodies (7,8). Nevertheless, be-
tween 20% and 25% of patients with stage II or stage III
cancers do not respond to protocols containing 5-FU, and
in these cases, patient overall survival only reaches 50%
within 5 years following CRC diagnosis (9) (Table 1). Hence,
CRC represents an opportunity for biomedical programs
that aim at investigating the mode of action of 5-FU and
its secondary effects, as well as resistance mechanisms.

PDAC represents another major type of cancer in which
5-FU treatment has received considerable attention. In-
deed, not only 5-FU is administered to patients with re-
sectable pancreatic adenocarcinoma, but it also constitutes
the first-line treatment for most PDAC patients. 5-FU is
mainly given in association with other systemic agents
(e.g. folinic acid, oxaliplatin, irinotecan or gemcitabine), but
it can also be combined with radiotherapy or surgery (10).
PDAC has fatal outcome in most cases with a 5-year sur-
vival rate of only 9%, and an annual estimated death rate
of 430 000 worldwide. Moreover, its mortality-to-incidence
ratio is close to 1 (Table 1), meaning that the number of pa-
tients diagnosed and dying from PDAC each year is almost
the same (11,12). Because its incidence has increased by 55%
over the last 25 years, PDAC is expected to be the second
most frequent cause of cancer-related deaths over the next
10 years (13,14). Consequently, the number of patients suf-
fering from PDAC and exposed to 5-FU will continue to in-
crease in the future. Although several studies have addressed
the mechanisms of resistance to 5-FU in PDAC (15,16), fur-
ther investigation into this resistance is necessary to ensure
better patient management.

As described in Table 1, a variety of cancers, aside from
CRC and PDAC, are currently treated with 5-FU, generally
in combination with systemic and targeted chemotherapy,
radiotherapy and/or surgery. However, for such locations,
data on resistance mechanisms are even scarcer than for di-
gestive adenocarcinomas (17,18). It is, therefore, crucial to
improve the understanding of the mode of action of 5-FU
to identify the molecular mechanisms that may be involved

Figure 1. Overview of the uptake and efflux of 5-FU in human cells.
Uptake (blue) of 5-FU is controlled by the human equilibrative nucleo-
side transporters hENT1 and hENT2 and by the organic anionic trans-
porter hOAT2. Efflux (red) of 5-fluorodeoxyuridine monophosphate (5-
FdUMP), a 5-FU metabolite, is mediated by the multidrug resistance-
associated proteins MRP-5 and MRP-8.

in long-term 5-FU based treatment failure (recurrence and
metastasis) (19) and to optimize the use of 5-FU for the
management of patients with advanced digestive or extra-
digestive cancers.

To exert its cytotoxic effect, 5-FU has to reach the tumour
site, enter into cells, and be phosphorylated into its three ac-
tive metabolites that are 5-fluorodeoxyuridine monophos-
phate (5-FdUMP), 5-fluorodeoxyuridine triphosphate (5-
FdUTP) and 5-fluorouridine triphosphate (5-FUTP). Thus,
5-FU follows multistep pathways from transport into the
cell to complete metabolism.

5-FU enters into human cells using several types of trans-
membrane proteins known as human nucleoside trans-
porters (hNT). The hNT include three human concentra-
tive nucleoside transporters proteins (hCNT1, 2 and 3) and
four human equilibrative nucleoside transporters proteins
(hENT1, 2, 3 and 4) (20). While uridine uptake is per-
formed by all hNTs cited above except hENT4 (20,21), 5-
FU transport is achieved by hENT1 and hENT2 only (22–
24) (Figure 1). In addition, uptake of 5-FU by organic an-
ionic transporter 2 (hOAT2) has been reported. hOAT2 is
highly expressed in the liver and kidney proximal tubules
and may be responsible, at least in part, for the hepatic up-
take of 5-FU (25–27). Finally, passive transport of 5-FU has
also been demonstrated through paracellular and transcel-
lular routes (28). Multidrug resistance-associated protein-5
(MRP-5) and MRP-8, two organic anion transporters ubiq-
uitously expressed in tissues, mediate the efflux of 5-FU
through the efflux of 5-FdUMP (29–31).

After administration in patients, approximately 80% of
5-FU is catabolized in the liver into pharmacologically in-
active metabolites, 5–20% are excreted in the urine, and only
1–3% contribute to the anabolism pathway responsible for
clinical and cytotoxic effects (32). The effects of 5-FU are
strongly dependent on the balance between anabolism and
catabolism, and therefore, on the various factors involved
in these two phases, such as the substrate concentration,
the level of enzymes in the various tissues and their enzy-
matic activities. It is important to emphasize that the sub-
stitution of a hydrogen atom with a fluorine atom modi-
fies the conformation of 5-FU only slightly in comparison
to uracil and, therefore, the cellular enzymes can metabo-
lize the two substrates indistinctively (33). 5-FU catabolism
in the human body is particularly rapid, since the half-
life of 5-FU is <20 min (34). 5-FU is mainly degraded by
reductive pathways in three steps, leading to pharmaco-
logically inactive metabolites (35,36) (Figure 2). The three
enzymes dihydropyrimidine dehydrogenase (DPD), dihy-
dropyrimidinase (DHP) and �-ureidopropionase (BUP-1)
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Figure 2. Overview of the anabolism and catabolism of 5-FU in human cells. The balance between anabolism and catabolism is crucial for the effect of
5-FU on cells. Catabolism is the most rapid process through which 5-FU is degraded in three steps. Anabolism leads to the production of three active
metabolites (green): 5-fluorodeoxyuridine monophosphate (5-FdUMP), 5-fluorodeoxyuridine triphosphate (5-FdUTP) and 5-fluorouridine triphosphate
(5-FUTP); 5-FdUrd, 5-fluorodeoxyuridine; 5-FdUDP, 5-fluorodeoxyuridine diphosphate; 5-FUrd, 5-fluorouridine; 5-FUMP, 5-fluorouridine monophos-
phate; 5-FUDP, 5-fluorouridine diphosphate; 5-FUDP-HexNAc, 5-FUDP-N-acetylhexosamine; 5-FUDP-Hex, 5-FUDP-hexose; DHFU, dihydrofluo-
rouracil; FUPA, �-fluoro-�-ureidopropionic acid; FBAL, �-fluoro-�-alanine; TP, thymidine phosphorylase; TK, thymidine kinase; UMPK, UMP kinase;
UDPK, UDP kinase; dUH, dUTP hydrolase; UP, uridine phosphorylase; UK, uridine kinase; OPRT, orotate phosphoribosyltransferase; RNR, ribonu-
cleotide reductase; UDPNAP, UDP-N-acetylhexosamine-pyrophosphorylase; UDPGP, UDP-glucose-pyrophosphorylase; DPD, dihydropyrimidine dehy-
drogenase; DHP, dihydropyrimidinase; BUP-1, �-ureidopropionase. The structural formulas of 5-FU and its metabolites were drawn using the PubChem
database (https://pubchem.ncbi.nlm.nih.gov/edit3/index.html).

https://pubchem.ncbi.nlm.nih.gov/edit3/index.html
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Table 1. Most frequent cancers treated with 5-Fluorouracil (5-FU) worldwide in 2018. The top 2 of each column are presented in bold (5,6) – (https:
//seer.cancer.gov - https://gco.iarc.fr/today/home)

Most frequent cancer site treated
with 5-FU

Cancer subtype treated with
chemotherapy including 5-FU

5-year
survival

(%)
Ranking by
Mortality

Mortality/

Incidence
(%)

5-Year
Prevalence

Colorectal and anal carcinoma High risk stage II, stage III (locally
advanced) and stage IV (metastatic)

64 4 48 4,789,635

Pancreatic adenocarcinoma Every stage 9 9 94 282,574
Esophageal carcinoma Every stage except some stage IA 20 6 65 446,522
Gastric adenocarcinoma Every stage except some stage IA 32 3 51 1,175,507
Hepatocellular carcinoma Advanced multifocal hepatocellular

carcinoma
18 2 70 565,028

Cholangiocarcinoma Stage IV cholangiocarcinoma 19 17 44 175,086
Cervical carcinoma Stage IB3 to stage IVA 66 8 55 1,474,265
Breast carcinoma Stage II to stage IV and some aggressive

stage I triple negative carcinoma
91 5 30 6,875,099

Head and Neck carcinoma Stage II to IV 58 to 65 7 42 1,842,306

are also involved in the degradation of endogenous uracil
and thymine (35). Due to its central role in the catabolism
of 5-FU and the existence of a genetic polymorphism, DPD
has been extensively studied for its role in the efficacy as
well as in the toxicity of 5-FU (37). 5-FU anabolism com-
prises two pathways to produce three active metabolites:
5-FdUMP, 5-FdUTP and 5-FUTP (7,38) (Figure 2). The
main pathway converts 5-FU to 5-fluorouridine monophos-
phate (5-FUMP) either directly by orotate phosphoribo-
syltransferase (OPRT) or indirectly via 5-fluorouridine (5-
FUrd) using uridine phosphorylase (UP) and uridine kinase
(UK). An alternative pathway involves the conversion of
5-FU into 5-fluorodeoxyuridine (5-FdUrd) and then into
5-FdUMP.

From all this knowledge about the usage of 5-FU for can-
cer treatments and of its metabolism, in this review, we point
out how integration of 5-FU into RNA and particularly
into ribosomal RNA (rRNA) may provide novel mecha-
nistic features that need to be taken into account in order
to identify more precisely the limits of this drug that is still
widely used. First, after an historical review of data regard-
ing the integration of 5-FU into DNA, we expose the in-
trinsic ability of 5-FU to incorporate into RNA molecules
including rRNA. Second, we uncover how, from recent im-
provements of analytical technologies, the concept of the
F-ribosome emerged. Finally, we discuss how F-ribosomes
could constitute a breakthrough for understanding 5-FU
resistance and thus, how this innovative concept might help
in improving patient management in the future.

BACKGROUND AND NOVELTIES OF 5-FU INTEGRA-
TION INTO RNA, A REVISITED INTERPLAY

As described above, in cells, 5-FU is converted into ac-
tive metabolites, namely 5-FdUMP, 5-FdUTP and 5-FUTP.
While the first two metabolites have long been associated
with some of the cytotoxic effects caused by 5-FU, it is only
recently that it has been accepted that 5-FUTP, through its
integration into RNA, contributes intensely to 5-FU’s anti-
proliferative activity. In this section, after a brief overview of
the impact of 5-FU on DNA metabolism, we focus on find-
ings linking 5-FU and RNA. We present data demonstrat-
ing that 5-FU incorporation into RNA is associated with
anti-proliferative effects. Then, we discuss the alteration of

RNA features induced by 5-FU integration in RNA. Fi-
nally, we highlight the most abundant RNA species, namely
ribosomal RNA (rRNA), which provides promising future
avenues.

Cytotoxic effects of 5-FU due to modifications of DNA
metabolism

5-FU was first used in clinic due to the anti-proliferative
activity of two of its metabolites, 5-FdUMP and 5-FdUTP,
through their deleterious effects on DNA (reviewed in (39)).

One of the impacts of 5-FU on DNA relies on its capacity
to induce DNA damage. 5-FdUTP is a substrate for DNA
polymerases and is incorporated into DNA. Following 5-
FU treatment, the increased concentrations of dUTP and
5-FdUTP overwhelm dUTPase, which hydrolyses dUTP to
dUMP. As a consequence, dUTP and 5-FdUTP can be mis-
incorporated into DNA instead of dTTP, causing DNA
damage (7). While the incorporation of 5-FU into DNA
has largely been demonstrated in human tumour cells (40–
43), mouse models such as the murine mammary carcinoma
model (44), and CRC patients (45), its contribution to cy-
totoxicity is not compelling.

Another deleterious effect of 5-FU relies on its capacity
to arrest DNA replication, notably via 5-FdUMP, which in-
hibits thymidylate synthase (TS). TS is an enzyme that acts
as the de novo source of thymidine by reducing one carbon
to a methyl group of dUMP to produce dTMP, which is
further phosphorylated to form dTTP. Thymidine is neces-
sary for DNA replication and repair. By interacting with
the nucleotide-binding site of TS, 5-FdUMP inhibits bind-
ing of the normal substrate dUMP and, consequently, in-
hibits dTMP synthesis, resulting in abnormally low levels
of dTTP and a massive increase in the level of dUTP, which
is responsible for DNA replication arrest (7,19).

Finally, to correct 5-FU-induced errors that occur dur-
ing replication, DNA repair mechanisms take place and
contribute to 5-FU cytotoxicity. For example, thymidine
DNA glycosylase (TDG) can excise incorporated 5-FU
through the base excision repair (BER) mechanism, result-
ing in DNA strand break accumulation and cell death (46).
Another DNA repair mechanism, DNA mismatch repair
(MMR), has also been reported to influence 5-FU cytotox-
icity in CRC cells (47). A recent study on human colon and

https://seer.cancer.gov
https://gco.iarc.fr/today/home


NAR Cancer, 2021, Vol. 3, No. 3 5

ovarian cancer cells demonstrated that the initiation of the
BER mechanism by UNG enzymes is the main mechanism
of 5-FU-associated DNA repair that sensitizes cells to 5-FU
(48). Overall, the partial efficacy of the repair mechanism,
mainly because of 5-FU-induced depletion of the dTTP nu-
cleotide pools, contributes to 5-FU cytotoxicity. In addi-
tion, 5-FU excised from DNA might increase the intracel-
lular concentration of the drug and thus favour a cytotoxic
effect (47).

Altogether, these studies reveal that 5-FU dysregulates a
variety of DNA-based mechanisms, namely the inhibition
of TS activity, mis-incorporation into DNA and defective
DNA repair. While these types of dysregulation undoubt-
edly contribute to the cytotoxic effects of 5-FU (49), a grow-
ing body of evidence suggests that 5-FU cytotoxicity is also
a substantial consequence of defects in RNA metabolism.

Integration of 5-FU into RNA is implicated in 5-FU driven
cytotoxicity

By using approaches that rely on the quantification of ra-
dioactively labelled 5-FU metabolites and competition with
unlabelled metabolites, a number of studies provided evi-
dence of the incorporation of 5-FU into RNA and unveiled
its implication in the 5-FU-driven anti-proliferative effects.

In vivo quantification of labelled 5-FU metabolites con-
ducted in mice injected intraperitoneally with solutions of
[3H]-labelled fluorinated pyrimidines showed that incorpo-
ration of 5-FU into RNA accounts for gastrointestinal tox-
icity in mice (50). Experiments conducted in cell lines us-
ing exponentially growing mammary epithelial MCF7 cells
treated with [3H]5-FU confirmed, through total RNA ex-
traction and nucleoside analysis by high pressure liquid ion
exchange chromatography, that incorporation of 5-FU into
RNA induces toxicity. Indeed correlation was established
between the loss of clonogenic survival of mammary epithe-
lial MCF7 cells and the incorporation of 5-FU into RNA
(51).

Further evidence of 5-FU RNA integration driven toxi-
city has been unveiled using various models, such as mice,
yeast and human cell lines. In mice treated with 5-FU, mi-
croscopic observations of small intestinal and crypt epithe-
lial cells showed that 5-FU induces apoptosis. Interestingly,
administration of 5-FU with uridine to relieve the incor-
poration of 5-FU into RNA was shown to reduce 5-FU-
induced apoptosis in crypt epithelial cells. Moreover, uri-
dine, but not thymidine, was able to inhibit the cytotoxic-
ity of 5-FU observed in the intestinal cells of mice treated
with 5-FU regiments (52). In a model of yeast grown in
the presence of 5-FU, supplementation of the cultures with
UMP reversed the inhibitory effect of 5-FU on cell growth,
while the addition of dTMP only showed a slight effect, thus
demonstrating the prevalence of RNA-based over a DNA-
based toxicity (53). In cell lines, DNA and RNA were iso-
lated from cells treated with 5-FU and hydrolysed to nucleo-
sides. 5-FUrd and 5-FdUrd were quantified by liquid chro-
matography coupled to mass spectrometry. The incorpora-
tion of 5-FU into RNA was up to 15 000-fold higher than
that into DNA. Moreover, for a panel of human cell lines,
media complementation with uridine, which restored nor-
mal RNA metabolism through the reduction of 5-FU in-

corporation into RNA, was shown to compensate for most
of the 5-FU-induced cytotoxic effects (54).

Thus, despite the fact that 5-FU was initially described
for its deleterious action on the synthesis and integrity of
DNA, numerous studies have clearly established that 5-FU
cytotoxicity is mainly associated with its incorporation into
RNA. However, methodologies used at the time in which
these studies were performed assessed the 5-FU integration
into the bulk of cellular RNA, without delineating every
RNA species.

Integration of 5-FU into RNA may affect RNA structural and
functional features

Because RNA is central to 5-FU toxicity, several studies
have explored the consequences of 5-FU integration on the
molecular features of different RNA species including mes-
senger RNA (mRNA), transfer RNA (tRNA) and small nu-
clear RNA (snRNA).

It has been reported that 5-FU impacts mRNA splicing.
Indeed, an in vitro experiment using �-globin mRNA mini-
gene constructs showed that integration of 5-FU alters pre-
mRNA splicing (55). In yeast, transcriptome modifications
induced by 5-FU were analysed by high-density DNA mi-
croarray technology. Global disruption of pre-mRNA splic-
ing characterized by intron retention was found to affect nu-
merous mRNAs (56). However, these data were challenged
by Zhao et al (57). These authors revealed that the defect
in mRNA splicing does not originate from the incorpora-
tion of 5-FU into mRNA since fluorinated mRNA synthe-
sized in vitro and injected into Xenopus oocytes was not
found to be aberrantly spliced. Instead, the incorporation
of 5-FU into the spliceosomal U2 snRNA at pseudouridy-
lated sites was shown to inhibit U2 snRNA pseudouridy-
lation and subsequent pre-mRNA splicing (57). Integra-
tion of 5-FU not only affects snRNA pseudouridylation
but also affects its structure and turnover. Indeed, in sar-
coma murine cells, the comparison of electrophoretic mi-
gration of snRNA in non-denaturing and denaturing poly-
acrylamide gels showed that 5-FU alters the structure of U4
and U6 snRNAs, and a reduced turnover of the U1 snRNA
was observed in cells treated with 5-FU (58). The impact of
5-FU on mRNA translational efficiency has also been in-
vestigated. In vitro translation assays using total mRNA or
the purified dihydrofolate reductase mRNA isolated from
cells grown in presence of 5-FU revealed no major impact
of 5-FU (59,60). Moreover in vitro translation of the syn-
thetic mRNA encoding TS and containing substitution of
100% of the uracil bases with 5-FU, confirmed that the inte-
gration of 5-FU into mRNA does not affect its translation
(61).

Regarding tRNA, integration of 5-FU was also shown
to affect post-transcriptional RNA modifications, including
formation of pseudouridine (�) and methylation (62,63). In
vitro binding assays between in vitro synthesized 5-FU sub-
stituted tRNA (5-FU-tRNA) and yeast purified pseudouri-
dine synthase revealed that 5-FU-tRNA interacts with the
enzyme at its catalytic site. Using the release of radioactivity
from a tritium labeled pseudouridine synthase RNA sub-
strate as a measure of the enzyme activity, it was further
shown that 5-FU-tRNA limited tritium release, indicative
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of an inhibition of the enzyme activity (62,63). The inter-
action between 5-FU-tRNA and the catalytic site of the
pseudouridine synthase was later shown to be a covalent
complex (64). In vitro methylation assay of tRNA by tRNA
methyltransferases purified from mice liver and tumours
showed that 5-FU inhibits specifically the tRNA uracil-5-
methyltransferase (62,63).

More recently, the effect of exposure to 5-FU on the
expression of miRNAs and lncRNA was investigated.
miRNA microarray technology revealed that 5-FU pro-
motes profound transcriptional reprogramming, leading to
altered expression of miRNA in human breast and col-
orectal cancer cells (65–67). Lately, the role of miRNAs
and lncRNAs in 5-FU resistance of CRC was intensively
reviewed (68–70). Nevertheless, the depicted underlying
mechanism through which 5-FU may impact these non-
coding RNAs relies on the capability of 5-FU to alter their
expression, leaving the potential 5-FU incorporation into
miRNA and lncRNA still undocumented.

Thus, these results demonstrate that 5-FU is incorpo-
rated into several RNA species (Figure 3). Whether this
incorporation affects their features remains to be consoli-
dated and extended to all RNA species in the future. Never-
theless, how 5-FU-induced alteration of RNA metabolism
impacts cell responses and behaviours or toxicity remains
largely unknown.

5-FU is incorporated into rRNA and affects ribosome biogen-
esis (RiBi)

In cells, rRNA is the most abundant RNA species making it
the easiest RNA to be technologically apprehended. Thus,
for over 50 years, interest in the impact of 5-FU integration
into rRNA emerged, although findings remained limited
in terms of molecular and phenotypic consequences. Us-
ing bacterial models, numerous studies have reported that
5-FU affects ribosome synthesis. Although ribosome bio-
genesis (RiBi) in bacterial cells differs from that in mam-
malian cells (71), interest in the impact of 5-FU on mam-
malian ribosome production has been evaluated given the
use of 5-FU as a potent chemotherapy.

RiBi is one of the most energy-consuming processes in the
cell that requires hundreds of factors. Synthesis of the dif-
ferent ribosomal components also involves the three RNA
Polymerases (RNA Pol) in humans. RNA Pol I is responsi-
ble for the synthesis of three of the four rRNAs (28S, 18S
and 5.8S). RNA Pol III synthesizes 5S rRNA, and RNA
Pol II synthesizes mRNAs encoding for ribosomal proteins
(RP). The biogenesis of ribosomes is thus a multi-step pro-
cess, the limiting step of which is the transcription of rDNA
genes by RNA Pol I, which generates a precursor ribosomal
RNA (pre-rRNA): the 47S. This pre-rRNA contains the se-
quences of 18S, 5.8S and 28S rRNAs, separated by internal
transcribed spacer sequences (ITS) and surrounded by ex-
ternal transcribed spacer sequences (ETS). This pre-rRNA
is cleaved at both ends, generating a subsequent pre-rRNA:
45S. This pre-rRNA is then sequentially processed to pro-
duce mature 5.8S, 18S and 28S rRNAs (72).

By analysing the impact of several concentrations of 5-
FU on the incorporation of [3H]uracil into RNA of rat
hepatoma cells, Wilkinson et al. showed that 5-FU integra-

Figure 3. Overview of all RNA that potentially incorporate 5-FU, with
a focus on Ribosome Biogenesis (RiBi). RiBi requires the initial tran-
scription of rDNA genes to a single precursor of ribosomal RNA (pre-
rRNA), 47S, in the nucleolus, whereas 5S rRNA is transcribed in the nu-
cleoplasm. 47S is subsequently cleaved in several pre-rRNA to ultimately
provide 18S, 5.8S and 28S rRNAs. During this processing step, rRNAs
are post-transcriptionally modified by protein-processing complexes in-
cluding fibrillarin (FBL) complexed with C/D box snoRNAs and DKC1
complexed with H/AHA box snoRNAs, which are responsible for 2′-O-
methylation and pseudouridylation modifications, respectively. RiBi also
requires the transcription of mRNAs encoding ribosomal proteins (RP,
not shown here), which, after being translated in the cytoplasm and im-
ported into the nucleus, are assembled into small pre-40S (18S and 32 RPS)
and large pre-60S (5S+5.8S+28S and 47 RPL) ribosomal subunits. The
two mature subunits are then exported into the cytoplasm and assembled
into mature ribosomes (80S), ready to achieve translation with mRNA and
tRNA. The extrinsic RNA epitranscriptome created by 5-FU (red star) en-
forces the expansion of the DNA-based initial view of the deleterious effect
of 5-FU on phenotype.

tion does not inhibit the synthesis of 45S pre-rRNA, but
rather affected its maturation (73,74). Indeed, after the elec-
trophoresis of RNA on polyacrylamide-agarose gels, gels
were scanned at 260 nm and sliced for [3H] radioactivity
counting. The amount of [3H] labelled 45S pre-rRNA in-
creased compared with the amount of downstream [3H] la-
belled 38S intermediate. In addition, 18S and 28S rRNAs,
constitutive of the mature ribosome, were produced in lower
amounts, with 18S rRNA being more sensitive to 5-FU than
28S rRNA (73,74). In human CRC cells treated with [3H]5-
FU, the incorporation of labelled 5-FU into 45S pre-rRNA
and the production of labelled mature 18S and 28S rRNAs
were analysed by RNA fractionation by polyacrylamide-
agarose electrophoresis followed by [3H] fluorography to
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demonstrate that 5-FU is incorporated into rRNA. In hu-
man CRC cells treated with 5-FU, northern blotting, using a
set of [32P] labelled probes, confirmed that 5-FU affects 45S
pre-rRNA maturation (75). In a large-scale study aiming
at describing the impact of a panel of 36 chemotherapeutic
drugs on rDNA transcription and rRNA processing, hu-
man fibrosarcoma cells were cultured with drugs, phosphate
depleted and labelled with [32P] orthophosphate. The iso-
lated RNAs were separated by agarose gel electrophoresis
for quantification by phosphorimager analysis of all rRNA
species. This approach confirmed that 5-FU does not im-
pact rDNA transcription, but it does affect pre-rRNA pro-
cessing (76).

Since 5-FU affects RiBi, it cannot be excluded that 5-
FU may cause what is recognized in the literature as ribo-
somal stress (77). Ribosomal stress occurs when inhibition
of rRNA processing triggers a disequilibrium between the
quantity of rRNA and that of RPs. In this process, two key
RPs, namely RPL5 and RPL11, bind to MDM2, thus pre-
vent the interaction between MDM2 and P53, and conse-
quently stabilize and activate P53, leading to cell cycle arrest
and apoptosis (78). Nevertheless, providing that P53 needs
to be free of any mutations to be functional, this potential
5-FU induced cytotoxic effect, if occurring in some circum-
stances, cannot account for a generalized mode of action
of 5-FU since many cancers are characterized by p53 muta-
tions.

Hence, these studies demonstrated, using approaches
available at their time of publication, that 5-FU is incor-
porated into rRNA precursors and affects RiBi (Figure 3).
However, no demonstration of the presence of 5-FU into
ribosomes could be done.

5-FU INTEGRATION IN rRNA GENERATES THE FLU-
ORINATED RIBOSOME (F-RIBOSOME)

To improve our understanding of the consequences of 5-FU
incorporation into rRNA, the development of technolo-
gies aimed at detecting and quantifying the 5-FU molecules
incorporated into RNA turned out to be crucial. Here,
we discuss how progress in the detection of 5-FU an-
abolites in RNA allowed to identify and quantify the 5-
FU molecules integrated in the ribosomes, and propose
that, by creating an epitranscriptomic-like source of rRNA
modification, 5-FU creates a novel biological object called
F-ribosome.

Analytical detection of 5-FU anabolites in RNA from old to
new technologies

The study of the distribution of 5-FU metabolites in differ-
ent biological samples (cells, cellular compartments, DNA,
RNA, etc.) requires advanced analytical tools to reach
greater sensitivity and selectivity. Several technologies en-
abling such analyses have been described: radiolabelled as-
say, nuclear magnetic resonance (NMR), capillary elec-
trophoresis, gas chromatography coupled with mass spec-
trometry (GC-MS), and, more recently, liquid chromatog-
raphy coupled with mass spectrometry (LC-MS).

Radiolabelled assays were mostly used in the 1980s, par-
ticularly to study the incorporation of 5-FU into DNA

and RNA (79). For these assays, cells were incubated with
[3H]FU, RNA and DNA were separated by differential ex-
traction and then radioactivity was measured in each ex-
tract. This approach is highly sensitive; however, it is lim-
ited to laboratories authorised to conduct radiolabelling.
In addition, since the signal measured is identical, irrespec-
tive of the metabolite, this technology relies on pure DNA
and RNA extracts. Another drawback of this approach is
that the treatment of samples with radiolabelled [3H]5-FU
is necessary, preventing its use on patient samples. It thus
became obsolete and has been replaced by methods using
chromatographic separation.

19F nuclear magnetic resonance (19F NMR) is a non-
invasive spectroscopic method that is used to identify and
quantify all 5-FU anabolites in a single run (80,81). It was
applied to several biological samples such as intracellular
extracts from cultured cells (80), tumour tissues (82,83) and
RNA (82). To the best of our knowledge, it has not been
used to analyse DNA. 19F NMR is specific to fluorinated
compounds and has to be coupled with 31P NMR to study
endogenous nucleotides and nucleosides (81).

Two capillary electrophoresis methods coupled with UV
detection have been reported for the quantification of 5-
FU, 5-FUrd, 5-FdUrd, 5-FdUMP and 5-FUTP (84,85).
The most recently applied method to quantify 5-FU and 5-
FdUMP in cells and tissues failed to detect 5-FdUMP (85),
emphasizing the lack of sensitivity of the method.

GC-MS methods reported in the literature were used to
study the incorporation of the 5-FU metabolite into RNA
and DNA (45,83). While 5-FU can be analysed by GC, 5-
FUMP and 5-FdUMP cannot be determined as such for
physicochemical reasons. In these studies, both metabolites
had to undergo two enzymatic steps to be transformed into
5-FU. The procedure was time-consuming and presented
the following major drawback: since 5-FU was quantified
as a surrogate for 5-FUMP and 5-FdUMP, RNA had to
be free of any DNA contamination and vice versa during
sample preparation, due to the risk of overestimating the
concentrations of metabolites.

LC-MS represents the method of choice well described in
the literature for the analysis of anabolic metabolites of 5-
FU. Detection by MS provides both high sensitivity and se-
lectivity. LC-MS technology is able to quantify nucleosides
as well as nucleotide anabolites, although the quantification
of nucleotides, particularly tri-phosphates, remains chal-
lenging. Thus, few assays have described the analysis of both
types of compounds (86–89). Methods have been applied
on cultured cells (86,87,89), peripheral blood mononuclear
cells (88), and DNA and RNA (54,86).

Recently, our laboratory set up a highly sensitive technol-
ogy based on LC coupled with high resolution mass spec-
trometry (LC-HRMS) using Orbitrap technology for the si-
multaneous determination of the ten anabolic metabolites
(nucleosides, nucleotides and sugar nucleosides) of 5-FU
(86). The method was applied to measure the proportion
of each anabolic 5-FU metabolite in cellular contents and
to study their incorporation into RNA and DNA. After ex-
traction and digestion, a dephosphorylation step was added
in order to quantify 5-FUrd in RNA and 5-FdUrd in DNA
rather than 5-FUMP and 5-FdUMP since a better sensi-
tivity was achieved for nucleosides rather than nucleotides
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(86). This method also provided the measurement of en-
dogenous nucleosides and nucleotides, thus enabling mea-
suring the consequences of inhibition of enzymes, such as
TS or pseudouridine synthase, in the same analytical run.
More importantly, this method allowed us to report for
the first time the incorporation rate of 5-FUrd into rRNA,
namely 28S and 18S (86).

The F-ribosome, a novel ribosome species, created by 5-FU

While incorporation of 5-FU into RNA has been studied
since the early seventies using methodologies that roughly
assess the quantity of 5-FU integrated into RNA, these
methodologies were rather inadequate for distinguishing
rRNA from all species of RNA when measuring the incor-
poration of labelled 5-FU metabolites.

The recent technological developments from our labo-
ratory not only pushed the LC-HRMS technology up to
measuring the incorporation rate of 5-FUrd in 28S and 18S
rRNAs as detailed above, but further allowed the detection
and quantification of 5-FUrd present in the whole ribosome
(86). From cells treated with 5-FU, cytoplasmic ribosomes
were isolated and their rRNA subsequently purified as a
pool of 28S, 18S, 5.8S and 5S rRNA. Since the nucleotide
sequence, and thus the number of each endogenous nucle-
oside is known for human 28S, 18S, 5.8S and 5S rRNAs,
the quantification of the amount of 5-FUrd relative to that
of endogenous nucleosides provides the number of 5-FUrd
molecules per rRNA, and per ribosome accordingly.

Quantification of the amount of 5-FUrd from ribosomes
in several CRC cell lines treated for 24 h with 10 �M 5-FU
showed that 5-FU treatment results in the production of flu-
orinated ribosomes that we called F-ribosomes (i.e., ribo-
somes with 5-FU incorporated in their rRNA) (90). We thus
demonstrated that 5-FU-treated cells produce F-ribosomes
bearing extrinsic chemical rRNA modifications (Figure 3).
To support the notion that 5-FU creates novel ribosomes,
we recently investigated the activity of F-ribosomes using
an in vitro hybrid translational assay (91). We found that
5-FU incorporation in the ribosome modifies its intrinsic
translational activity (90).

Quite interestingly, recent findings showed that 5-FU
treatment is associated with a full translational reprogram-
ming. These data support the intriguing possibility that the
F-ribosome intrinsic translational activity could contribute
to such translational reprogramming. Two early large-scale
studies proposed that 5-FU modulates the translation of a
subset of mRNAs. However, the alteration of translational
efficiency was not directly investigated, and 5-FU treated
CRC cells underwent additional modifications, i.e. stable
modifications of TS expression (92) or Hsp70 immunopre-
cipitation (93). Recently, by coupling polysome profiling
with mRNA expression microarray, we showed that 5-FU
induces a global translational reprogramming in three CRC
cell lines (94). We identified 313 genes coding for mRNA,
the translational efficiency of which is selectively modulated
following 5-FU treatment. Enrichment analysis revealed
that translationally down-regulated mRNAs are mainly im-
plicated in DNA replication, as usually observed in re-
sponse to 5-FU reinforcing the notion that translational
control also contributes to this 5-FU induced effect. Inter-

estingly, while 5-FU decreases global translation slightly,
it promotes the translational efficiency of over 280 genes
(the full list is available in (94) Supplementary Table S2).
These translationally up-regulated genes are implicated in
transcription regulation and have roles in the translational
machinery including translation initiation and elongation
factors, tRNA maturation factors and ribosomal proteins
(the genes are indicated in (94) Supplementary Table S3).
Among the mRNAs whose translation is up-regulated in re-
sponse to 5-FU, some are involved in pathways controlling
cell proliferation and tumorigenesis such as Wnt and inte-
grin signalling pathways also known as pathways involved
in 5-FU resistance (49,95) (Table 2). Again, this suggests
that translational control could be part of the cell response
mechanisms that finally lead to reshape gene expression reg-
ulation favouring emergence of resistant cells. In parallel, we
unveiled that a miRNA-based mechanism was involved in
the 5-FU-dependent translation, reduced miR-155 expres-
sion increasing the translation of HIVEP2 mRNA trans-
lation in response to 5-FU. Whether this miRNA-based
mechanism works in concert with the rRNA-based mecha-
nism remains to be determined. Nevertheless, whatever the
molecular mechanisms engaged in this translational repro-
gramming, gaining access to the translatome deeply remod-
elled by 5-FU provides a reservoir of potentially actionable
protein targets, the modulation of which could increase the
sensitivity of cancer cells to 5-FU (Figure 4).

Still, whether translational reprogramming is a direct
consequence of 5-FU incorporation into ribosomes and
into the other RNA being part of the translational appara-
tus or involved in its fine tuning remains to be fully demon-
strated.

CONCLUSION AND PERSPECTIVES

Biological epitranscriptomic rRNA modifications (2′-O-
ribose-methylation, pseudouridylation, base modification)
are implicated in the control of ribosome translation and
cancer cell fate (96–98).

2′-O-ribose-methylation (2′-O-Me) is the most abundant
modification, with 106 sites mapped in human rRNA (99).
While ribosomes were usually considered to be constitu-
tively methylated at each 2′-O-Me site in healthy prolifer-
ating cells (100–102), our laboratory reported that rRNA
2′-O-Me can be altered at some specific sites during mam-
mary tumorigenesis (103–105), and that alteration of 2′-O-
Me rRNA directly affects the intrinsic translational activity
of ribosomes (106). These data support the importance of
ribosome epitranscriptomics in regulating translation and
contributing to the phenotypes of breast tumours.

Pseudouridylation, which involves the isomerisation of
uridine into �, accounts for 95 modified sites in human
RNA (107). Defects in � have been linked with X-linked
dyskeratosis congenita (X-DC) associated with an increased
risk of developing tumours (108), and rRNA � defects are
responsible for alterations of ribosomal translational activ-
ity (109,110) and cell fate (111–114).

Methylation and acetylation of bases that are respon-
sible for >12 additional epitranscriptomic rRNA modifi-
cations in humans (96,115) also contribute to the modu-
lation of ribosome activity and human cell fate. For ex-
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Table 2. Signalling pathways affected by translational reprogramming in response to 5-FU. Bioinformatic non-statistical analysis using the list of transla-
tionally up-regulated genes identified in (94) using PANTHER (http://pantherdb.org, Functional classification viewed in graphic charts’ using ‘pathways’
parameters) (124)

Pathway name (ID)

Number of genes
involved in the

pathway

Gene hit against total
number of gene in

pathway (%) Genes

Wnt signalling pathway (P00057) 6 5.0 FZD1, FZD5, DACT1, MYH6,
GNG7, GNG10

Inflammation mediated by chemokine and
cytokine signalling pathway (P00031)

6 5.0 MYH6, SOCS6, GNG7, GNG10,
RHOQ, SOCS7

Gonadotropin-releasing hormone receptor
pathway (P06664)

4 3.3 ACVR2B, NR3C1, MAP3K13,
MAP4K4

Integrin signalling pathway (P00034) 4 3.3 RAP2B, FRK, MEGF9, RHOQ
Angiogenesis (P00005) 4 3.3 FZD1, FZD5, PDGFC, PDGFA

Figure 4. Model showing that translational reprogramming, induced by 5-FU integration in ribosomes, contributes to 5-FU-driven cell plasticity and
relapse. 5-FU is generally recognized as a disruptor of DNA metabolism contributing to its cytotoxicity. However, 5-FU is mainly incorporated into RNA.
Through its integration in rRNA, the most abundant RNA, 5-FU produces active F-ribosomes which induce translational reprogramming accompanied
by an incomplete cytotoxicity. Instead, cell plasticity takes place and will ultimately contribute to relapse.

ample, deficiency of NSUN5 (28S rRNA (cytosine-C(5))-
methyltransferase) or ZCCHC4 (rRNA N6-adenosine-
methyltransferase), which introduces the m5C3782 or
m6A4220 modification on 28S rRNA respectively, induces
translational reprogramming and affects cell proliferation
(116,117).

Taken together, these studies highlight the ribosome, and
more particularly, epitranscriptomic rRNA modifications,
as key players in translational regulation and tumorigene-
sis. Any alteration in biological rRNA epitranscriptomics
leads to profound changes in the translational activity of
the ribosome and is associated with new phenotypes (103–
105,118,119). Through its stable integration into rRNA,
5-FU induces extrinsic post-transcriptomic modifications
of the ribosomes, thus creating a novel biological object,
which is an artificially modified ribosome, the F-ribosome.

Following this notion, it can be proposed that rRNA mod-
ification by 5-FU creates a source of epitranscriptomic-like
rRNA modification which may affect cell fate and notably
contribute to the emergence of 5-FU resistant cells (Fig-
ure 4).

The ribosome is a complex macromolecular machinery
that has a pivotal role in the growth and proliferation of
mammalian cells. However, the ribosome is rarely envisaged
when studying the mechanisms of resistance to anti-cancer
therapies, such as 5-FU-based treatments. Here, we placed
the ribosome as well as RNA-mediated translational regu-
lation at the heart of the action of 5-FU and propose that a
novel view of this old drug can contribute to managing the
impact of 5-FU in therapy by the medical community. In
this biological model, combination of 5-FU with RiBi in-
hibitors and/or drugs targeting proteins encoded by trans-

http://pantherdb.org
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lationally deregulated mRNAs could be evaluated to coun-
teract cell plasticity and relapse as a consequence (Figure 4).

At present one of the most extensively studied issues in
oncology is the drug resistance, as this accounts for the
vast majority of cancer-related deaths. Significant changes
in tumour cells occur upon treatment and the resulting re-
sistance process is currently modelled as a succession of
three phases, named sensitivity, tolerance and recurrence
(120,121). A wide majority of studies explore the molec-
ular mechanisms underlying the drug tolerance through
analysis of genetic as well as non-genetic mechanisms such
as epigenetic and transcriptomic reprograming (121–123).
However, it appears obvious that being the last step of
gene expression, translation arises as an inescapable layer of
gene expression regulation that, although underestimated
for a long time, should now be fully considered to eluci-
date the molecular mechanisms underlying drug-tolerance,
drug-resistance and recurrence following anti-cancer treat-
ments containing 5-FU.
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