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Abstract

We consider the dynamics of fluctuations in the quantum asymmetric simple exclusion
process (Q-ASEP) with periodic boundary conditions. The Q-ASEP describes a chain of
spinless fermions with random hoppings that are induced by a Markovian environment.
We show that fluctuations of the fermionic degrees of freedom obey evolution equations
of Lindblad type, and derive the corresponding Lindbladians. We identify the underlying
algebraic structure by mapping them to non-Hermitian spin chains and demonstrate that
the operator space fragments into exponentially many (in system size) sectors that are
invariant under time evolution. At the level of quadratic fluctuations we consider the
Lindbladian on the sectors that determine the late time dynamics for the particular case
of the quantum symmetric simple exclusion process (Q-SSEP). We show that the corre-
sponding blocks in some cases correspond to known Yang-Baxter integrable models and
investigate the level-spacing statistics in others. We carry out a detailed analysis of the
steady states and slow modes that govern the late time behaviour and show that the
dynamics of fluctuations of observables is described in terms of closed sets of coupled
linear differential-difference equations. The behaviour of the solutions to these equa-
tions is essentially diffusive but with relevant deviations, that at sufficiently late times
and large distances can be described in terms of a continuum scaling limit which we con-
struct. We numerically check the validity of this scaling limit over a significant range of
time and space scales. These results are then applied to the study of operator spreading
at large scales, focusing on out-of-time ordered correlators and operator entanglement.
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1 Introduction

Environmental effects on many-particle quantum dynamics continue to attract a great deal of
interest for experimental [1,2] as well as fundamental theoretical reasons [3,4]. In many cases
of interest the environment is approximately Markovian, which allows for a description of the
average system dynamics by means of the Lindblad formalism [5–7]. In the many-particle
context Lindblad equations are generally quite difficult to solve and a natural question that
arises is whether there exist paradigmatic models for which exact results can be obtained.
The simplest such class of Lindblad equations can be mapped to imaginary-time Schrödinger
equations with non-Hermitian “Hamiltonians” that are quadratic in creation/annihilation op-
erators [8–11]. More recently it has been shown that there exist Lindblad equations whose
evolution operators are related to interacting integrable quantum spin chains [12–24]. This
opens the door to obtaining exact results on the average dissipative dynamics of many-particle
Lindblad equations by employing methods from quantum integrability.

While historically the focus of attention has mainly been on the average system dynam-
ics, there are interesting questions pertaining to fluctuations of system degrees of freedom
induced by their coupling to the environment. While classical stochastic dynamics has been a
well studied domain for many decades, stochastic dynamical quantum extended systems re-
mained largely unexplored, to the best of our knowledge, until the very recent developments
in random quantum circuit models [25–29]. These advances proceeded in parallel, but inde-
pendently, to work on quantum exclusion processes and more generally stochastic dynamics
in quantum many-body systems such as spin chains coupled to Markovian "noise" [30]. These
model systems provide quantum extensions of discrete versions of the classical fluctuating
hydrodynamics whose impact on our understanding of transport in low dimensional systems
cannot be underestimated [31–33]. Moreover, the average late time dynamics in such models
typically reduces to classical stochastic processes, which have been intensively analyzed over
the last several decades [34–37]. A key motivation for studying fluctuating quantum dynam-
ics, as in [30], is the search for a quantum extension of the classical macroscopic fluctuation
theory (MFT) [38, 39], see [40]. The latter is a general setting, whose formulation relies on
stochastic hydrodynamic equations and gives rise to a precise description of the fluctuations
in classical, diffusive, out-of-equilibrium systems. Quantum simple exclusion processes are
paradigmatic models for fluctuating diffusive quantum dynamics. The closed quantum sym-
metric simple exclusion process (Q-SSEP), was introduced in [41] (under another name), its
open version in [42], and its asymmetric analogue, the quantum asymmetric simple exclusion
process (Q-ASEP) was proposed in [43]. The average dynamics of both the Q-ASEP and the
Q-SSEP was recently shown to be integrable [22] and it reduces to their classical analogues
(which have been studied in great detail, see e.g. [44–55]) at late times. However, fluctuations
in the Q-ASEP and Q-SSEP are not classical and reveal patterns which are possibly generic for
mesoscopic diffusive quantum systems. In a recent work, fluctuations in the steady state were
analysed in the framework of a continuum limit of the open Q-SSEP [56] by constructing the
associated invariant probability measure.

In this work we carry out a detailed analysis of the (finite time) dynamics of fluctuations
in Q-ASEP and Q-SSEP.

In section 2 we introduce the Q-ASEP and Q-SSEP and formulate the dynamics of fluc-
tuations in terms of Lindblad equations. The corresponding Lindbladians are shown to take
the form of non-Hermitian gl(2R) quantum spin chains. In section 3 we establish that the
Lindbladians fragment [22, 23] into an exponential (in system size) number of sectors char-
acterized by local conserved charges. The remaining part of the paper focuses on the case of
the Q-SSEP. In section 4 we focus on the five sectors that describe the late time dynamics of
quadratic fluctuations in the Q-SSEP and show that two of them are Yang-Baxter integrable
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and two others are trivial. We then investigate the level-spacing statistics of the Lindbladian
eigenvalues in the remaining sector (as well as the two integrable ones) in order to ascertain
whether it may be integrable as well. In section 5 we identify the algebraic structure of all
steady states and low-lying "magnon" excitations in terms of the underlying gl(2R) algebra. In
section 6 we turn to a detailed analysis of the dynamics of correlation functions on the lattice,
and show that there is a scaling regime in which correlators are described by hierarchies of
partial differential equations that take the form of diffusion equations with source terms that
couple the different levels of the hierarchy. We then apply these findings to the large scale
dynamics of operator spreading in section 7. Section 8 contains our conclusions. A number of
technical details are discussed in six appendices.

2 Q-ASEP & Q-SSEP dynamics as spin chain dynamics

2.1 Dynamics of fluctuations in the Q-ASEP & Q-SSEP

The quantum asymmetric (Q-ASEP) or symmetric (Q-SSEP) simple exclusion processes [41,
42] are models of quantum many-body stochastic dynamics describing fermions hopping sto-
chastically along a one dimensional chain. The chain can be open, with injection/extraction
of fermions at the two ends of the chain, or closed, without any external injection/extraction
processes. We shall deal with the latter case, in which the state converges to a steady state
dressed by sub-leading fluctuations at late time [42,56]. The purpose of the following analysis
is to provide the description for the dynamics of those fluctuations in terms of Lindbladian time
evolution.

In the closed setup, the Q-SSEP & Q-ASEP dynamics is unitary but noisy. This means that
the system density matrix ρt evolves unitarily, ρt+d t = e−idHt ρt eidHt , with the Hamiltonian
increment between times t and t + d t dHt , which depends on the external noise1. For Q-
SSEP & Q-ASEP, on the chain of length L and periodic boundary conditions, the Hamiltonian
increment reads [41–43]

dHt :=
L
∑

j=1

(c†
j+1c j dW j

t + c†
j c j+1 dW

j
t) , (1)

where c j and c†
j are canonical fermion operators at site j of the chain,

{c j , c†
k}= δ j;k , (2)

while W j
t and W

j
t are classical complex Brownian motions in the Q-SSEP case and complex

quantum Brownian motions in the case of the Q-ASEP. Specifically, they correspond to Gaussian

processes with zero mean E[dW j
t ] = 0, E[dW

j
t] = 0 and covariances

E[dW j
t dW

k
t ] = pJ δ j;k d t , E[dW

j
t dW k

t ] = qJ δ j;k d t , (3)

and independent increments. Here p, q are real positive dimensionless parameters, J is a di-
mensionfull rate parameter, and E denotes the average over the Brownian motions. In the

1A better notation would be to label the noise by a variable, say ω, taking values in some adapted probability
space, and in denoting the Hamiltonian increments as dHt(ω) to indicate its noise dependence. As a consequence,
the density matrix, which also noise dependent, should be denoted as ρt(ω). We lighten the notation making the
ω-dependence implicit.
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symmetric case (Q-SSEP), p = q = 1, the processes W j
t and W

k
t commute, while in the asym-

metric case p 6= q (Q-ASEP) the commutator is nontrivial,

[dW j
t , dW

k
t ] = (p− q)J δ j;k d t . (4)

Periodic boundary conditions are assumed throughout.
The mean density matrix ρ̄t := E[ρt], which is obtained by averaging over all possible

realizations of the Brownian motion, satisfies a dissipative Lindblad dynamics [30]

∂t ρ̄t = L(ρ̄t) , (5)

where the Lindbladian L=
∑L

j=1 L j; j+1 is the sum of local terms L j; j+1, which can be decom-
posed as

L j; j+1 = J (p
−→
L j; j+1 + q

←−
L j; j+1) , (6)

where
−→
L j; j+1 corresponds to the hopping from site j to site j + 1 and

←−
L j; j+1 the other way

around:

−→
L j; j+1(ρ) := `−j ρ `

+
j −

1
2
(`+j `

−
j ρ +ρ `

+
j `
−
j ) , (7a)

←−
L j; j+1(ρ) := `+j ρ `

−
j −

1
2
(`−j `

+
j ρ +ρ `

−
j `
+
j ) . (7b)

Here the jump operators are given by `+j := c†
j+1c j and `−j := c†

j c j+1. As a consequence, the
total Lindbladian can be decomposed as

L= J (p
−→
L + q

←−
L ) , (8)

where the Lindbladian
−→
L (resp.

←−
L ) generates fermionic hopping to the right (resp. left). The

cases where p = 0 or q = 0 correspond to the totally asymmetric processes (Q-TASEP).
Let O be an operator acting on the system degrees of freedom only. We denote the asso-

ciated Heisenberg picture operator acting on the full Hilbert space, comprised of the system
and noise, by Ot , and its average over the noise by Ōt := E[Ot]. The dynamics of Ōt follows
from duality Tr(ρ̄t O) = Tr(ρ0 Ōt), and is of the Lindblad type as well,

∂tŌt = L∗(O)t , (9)

where the dual Lindbladian L∗ = J (p
−→
L
∗
+ q
←−
L
∗
), is also the sum of local contributions,

−→
L
∗
=
∑

j
−→
L
∗

j; j+1 and
←−
L
∗
=
∑

j
←−
L
∗

j; j+1. We have

−→
L
∗

j; j+1(O) := `+j O `−j −
1
2
(`+j `

−
j O+O `+j `

−
j ) , (10a)

←−
L
∗

j; j+1(O) := `−j O `+j −
1
2
(`−j `

+
j O+O `−j `

+
j ) . (10b)

Although
−→
L
∗

j; j+1 (resp.
←−
L
∗

j; j+1) is by construction the dual of
−→
L j; j+1 (resp.

←−
L j; j+1), it is

different from
←−
L j; j+1 (resp.

−→
L j; j+1) since we have

−→
L
∗

j; j+1(O)−
←−
L j; j+1(O) =

1
2{O, n j − n j+1}.

However, summing over all sites of the chain, with periodic boundary conditions, implies that

−→
L
∗
=
←−
L ,

←−
L
∗
=
−→
L . (11)

In particular, exchanging p and q, by reversing the orientation of the chain, amounts to ex-
change the total Linbladian with its dual.
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The above Lindbladians describe the time evolution of averages E[Tr(ρtO)] of opera-
tors O acting on the system degrees of freedom but not of their fluctuations. Quadratic
fluctuations associated with two operators O1 and O2 are given by E[Tr(ρtO1)Tr(ρtO2)],
and higher moments are defined analogously. The dynamics of the quadratic fluctuations
Tr(ρtO1)Tr(ρtO2) = Tr [(ρt ⊗ρt)(O1 ⊗O2)] can be obtained from a replicated system with
density matrix ρ(2)t := E[ρt⊗ρt]. Here the two replicas of the system are coupled to the same
realisation of the noise, which is then averaged over. Physically this is equivalent to a three-leg
ladder, where the outer legs corresponding to the fermion degrees of freedom are coupled in
an identical fashion to the central leg, which describes the noise degrees of freedom.

As a consequence, the dynamics of the quadratic fluctuations is still of Lindblad type,

∂tρ
(2)
t = L(ρ(2)t ) , (12)

where L = J (p
−→
L + q

←−
L ) and

−→
L =

∑

j
−→
L j; j+1 and

←−
L =

∑

j
←−
L j; j+1 as in eqn (7), but with

altered jump operators2

`±j → `
±
j ⊗ I+ I⊗ `

±
j = `

±
1; j + `

±
2; j , (13)

which correspond to the sum of jumps on both replicas. Here the indices 1,2 refer to the
labelling of the replicas. A similar structure applies for higher moments, and hence higher
number of replicas

`±j =
R
∑

a=1

`±a; j , (14)

where the index a labels the different replicas.
By duality, the dynamics of replicated observables is also of Lindblad type. Quadratic

fluctuations are encoded in E[O1 ⊗ O2], where as before the averaging is over the different
realizations of the Brownian motions. Then we have

∂tE[O1 ⊗O2]t = L∗(E[O1 ⊗O2])t , (15)

where the dual Lindbladian L∗ has the same structure as in eqn (10) but with the replacements
`±j → `

±
j ⊗ I+ I⊗ `

±
j = `

±
1; j + `

±
2; j . Similar remarks apply to higher moments.

2.2 Q-ASEP & Q-SSEP as non-hermitian gl(2R) spin chains

The aim of this section is to represent the Q-SSEP & Q-ASEP replicated dynamics as non-
Hermitian quantum spin chains. Viewing the replicas as different internal "color" degrees of
freedom, the dynamics will include intra- and inter- replica interactions. As a consequence,
the Q-SSEP & Q-ASEP dual Lindbladian for two replicas, i.e. for quadratic fluctuations, can
be decomposed as

−→
L
∗
=
−→
L
∗

1 +
−→
L
∗

2 +
−→
L
∗

12 ,
←−
L
∗
=
←−
L
∗

1 +
←−
L
∗

2 +
←−
L
∗

12 ,

where
−→
L
∗

a (
←−
L
∗

a), a = 1,2 and
−→
L
∗

12 (
←−
L
∗

12) represent respectively intra and inter-replica Lind-
bladians. Each of them is the sum of local Lindbladians acting on edges connecting two sites,

say
−→
L
∗

1 =
∑

j
−→
L
∗

1; j, j+1 and similarly for the other terms. For a higher number R of replicas,
the dual Lindbladians can be decomposed as

−→
L
∗
=
∑

a

−→
L
∗

a +
∑

a<b

−→
L
∗

ab ,
←−
L
∗
=
∑

a

←−
L
∗

a +
∑

a<b

←−
L
∗

ab , (16)

2To be precise, we should have added to the Lindbladians a label referring to the number of replicas, say L(2).
We made it implicit to lighten the writing.
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where
−→
L
∗

ab (
←−
L
∗

ab) are the inter-replica Lindbladians and
−→
L
∗

a (
←−
L
∗

a), a = 1,2, the intra-replica
ones. In the following we will focus on the two replica case but mention in passing what are
the appropriate generalisations to an arbitrary number of replicas.

As we will now describe, these Linbladians can be written in terms of super-operators,
i.e. linear maps acting on operators defined over the system Hilbert space, which fulfil the
commutation relations of the gl(4) algebra, or the gl(2R) algebra in case of R replicas.

• First, there are local generators Ca; j , j = 1, · · · , L and a = 1, · · · , R of u(1) charges count-
ing the fermionic degrees of the operators at site j. Their action on an arbitrary operator
X is defined by

Ca; j X := [na; j , X ] , (17)

where na; j are the local number operators in the a-th replica.

• Second, on each replica there are generators J z
a; j , J±a; j , j = 1, · · · , L, and a = 1, · · · , R

forming an sl(2) algebra of super-operators

[J z
a; j , J±a;k] = ±2δ j;k J±a; j , [J+a; j , J−a;k] = δ j;k J z

a;k , (18)

and commuting with the u(1) charges defined above, [Ca; j , J?a;k] = 0 . These super-
operators are defined below in eqn (31).
The intra-replica Lindbladians are expressed in terms of these super-operators as :

−→
L
∗

a; j, j+1 =
�

J+a; j+1J−a; j +
1
4
(J z

a; j+1 + 1)(J z
a; j − 1) +

1
4

Ca; j+1Ca; j

�

,

←−
L
∗

a; j, j+1 =
�

J−a; j+1J+a; j +
1
4
(J z

a; j+1 − 1)(J z
a; j + 1) +

1
4

Ca; j+1Ca; j

�

. (19)

In particular, in the symmetric case the sum

−→
L
∗

a +
←−
L
∗

a =
L
∑

j=1

(J+a; j+1J−a; j + J−a; j+1J+a; j +
1
2

J z
a; j+1J z

a; j +
1
2
(Ca; j+1Ca; j − 1))

is the isotropic Heisenberg Hamiltonian. This formula was also observed in [57] in the
one replica case.

• Finally, we define in eqn (30) a set of super-operators GAB
j , A, B = (1r), (1l), (2r), (2l),

satisfying the gl(4) commutation relations,

[GAB
j , GC D

k ] = δ j,k(δ
BC GAD

j −δ
DAGCB

j ) , (20)

such that (for two replicas)

−→
L
∗

12; j, j+1 =
�

G1l;2r
j+1 G2r;1l

j + G2l;1r
j+1 G1r;2l

j (21a)

+
1
2
(G1l;2l

j+1 G2l;1l
j + G2l;1l

j+1 G1l;2l
j + G1r;2r

j+1 G2r;1r
j + G2r;1r

j+1 G1r;2r
j )

�

,

←−
L
∗

12; j, j+1 =
�

G2r;1l
j+1 G1l;2r

j + G1r;2l
j+1 G2l;1r

j (21b)

+
1
2
(G1l;2l

j+1 G2l;1l
j + G2l;1l

j+1 G1l;2l
j + G1r;2r

j+1 G2r;1r
j + G2r;1r

j+1 G1r;2r
j )

�

.

The relation between the above gl(2) generators and the gl(4) generators reads
J z

a; j = Gal;al
j − Gar;ar

j , J+a; j = (−)
R0

a Gal;ar
j , J−a; j = Gar;al

j (−)R
0
a , with (−)R

0
a some Wigner-

Klein factors to be defined below, and Ca; j = Gal;al
j + Gar;ar

j − 1.
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The above remarks extend to the case of an arbitrary number R of replicas. In that case, the
generators GAB

j form a representation of gl(2R) with index A, B running over the pairs (ar)
and (al) with a = 1, · · · , R referring to the replica index and r/l to right/left action. The

dual Lindbladians
−→
L
∗

a (
←−
L
∗

a) and
−→
L
∗

ab (
←−
L
∗

ab) are simply given by the previous expressions but
replacing the replica indices 1, 2 by a, b.

In the symmetric Q-SSEP case, with R replicas, the total Lindbladian Lssep = J (
−→
L
∗
+
−→
L
∗
)

can written as (for Q-SSEP L∗ssep = Lssep)

Lssep = J
∑

j

�∑

A,B

GAB
j+1GBA

j −
1
2
(C j+1 + C j)− R

�

, (22)

with

C j :=
∑

a

Ca; j =
∑

A

GAA
j − R , (23)

the total u(1) charge over the different replicas at site j. This expression makes the gl(2R) sym-
metry explicit. Alternatively, one can decompose the gl(2R) algebra as the sum of a sl(2R) al-
gebra plus a u(1) and introduce the sl(2R) generators JAB

j := GAB
j −

δAB

2R (C j+R)with
∑

A JAA
j = 0.

Then

Lssep = J
∑

j

�∑

A,B

JAB
j+1JBA

j +
1

2R
C j+1C j −

R
2

�

. (24)

We shall present the derivation of these results using two complementary approaches: one
defining the appropriate super-operators by their actions on operators via specific left/right
multiplications, the other one introducing explicit basis on the space of operators and defining
the super-operators via their actions on this basis. They have different advantages depending
on the question raised.

Since starting from Section 4 this manuscript deals with Q-SSEP only we shall then drop
the label “ssep” attached to the Lindbladian.

2.2.1 Super-operator formalism

When dealing with many replicas, we have as many fermion species as there are replicas. We
denote them by ca, j , c†

a; j , with a the replica index and j the site index. They satisfy:

{c†
a; j , ca;k}= δ j;k , {ca; j , ca;k}= 0 , {c†

a; j , c†
a;k}= 0 ,

[c†
a; j , cb;k] = 0 , [ca; j , cb;k] = 0 , [c†

a; j , c†
b;k] = 0 , b 6= a , (25)

i.e. fermion operators anti-commute when in the same replica but commute when in different
replicas.

We then define super-operators by left/right multiplications with ca, j or c†
a; j . That is, for

any operator O on the physical system Hilbert space, we set:

R+a; j O := O c†
a; j , R−a; j O := O ca; j , (26a)

L+a; j O := c†
a; j O , L−a; j O := ca; j O . (26b)

For instance, the local u(1) charge Ca; j , whose action is specified by Ca; j O := [na; j , O], can be
represented as

Ca; j = L+a; j L
−
a; j − R−a; jR

+
a; j = L+a; j L

−
a; j + R+a; jR

−
a; j − 1 . (27)
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We recall that the total charge is defined as C j =
∑

a Ca; j . The operators defined in this way
satisfy mixed commutation/anti-commutation relations (for instance left/right multiplication
commute). It is convenient to transform them into a set of fermionic super-operators, anti-
commuting for all replica indices and all sites by introducing Klein factors, which we implement
through a Wigner like transformation on the replica space (it is not intrinsic, we could have
made different choices). We set (for two replicas, but the generalisation to any number of
replicas is straightforward)

R̂±1; j := R±1; j , L̂±1; j := (−)R
0
1 L±1; j ,

R̂±2; j := (−)R
0
1+L0

1 R±2; j , L̂±2; j := (−)R
0
1+L0

1+R0
2 L±2; j ,

where R0
a :=

∑

j R+a; jR
−
a; j and L0

a :=
∑

j L+a; j L
−
a; j are the (total) number R/L operators. By

construction we then have the anti-commutation relations

{R̂s
a; j , R̂s′

b;k} = δ j,kδa,bδ
s+s′;0 ,

{R̂s
a; j , L̂s′

b;k} = 0 , (28)

{ L̂s
a; j , L̂s′

b;k} = δ j,kδa,bδ
s+s′;0 .

We denote these fermions by f A†
j , f A

j with A = (1r), (1l), (2r), (2l), where the labelling
r/l refers to right/left multiplication (the generalization to R replicas is A= (ar) or A= (al)
with a = 1, · · · , R), with

{ f A†
j , f B †

k }= 0 , { f A†
j , f B

k }= δ j,kδ
AB , { f A

j , f B
k }= 0 . (29)

There are 2R such effective fermions (or super-fermions as they are linear maps acting on
operators).

The gl(2R) generators are then defined by

GAB
j := f A†

j f B
j . (30)

By construction, they satisfy the gl(2R) commutation relations. In particular, they include as
many sl(2) sub-algebras as the number of replicas which are generated by the super-operators
J±a; j and J z

a; j defined by

J+a; jO = c†
a; jOca, j , J−a; jO = ca; jOc†

a, j , J z
a; jO = naO+Ona −O , (31)

for any operator O. We have J z
a; j = Gal;al

j − Gar;ar
j , J+a; j = (−)

R0
a Gal;ar

j , J−a; j = Gar;al
j (−)R

0
a .

The proof of eqns (19) and (21) is then just a matter of expanding the expressions (10)
of the dual Lindbladian in terms of the jump operators `±j and expressing them in terms of

the effective fermions f A†
j and f A

j . We shall not reproduce all computations here, as they
are slightly lengthy, but only reproduce two examples. Let us first look at one intra-replica
contribution to L∗(O) for some operator O. One such contribution is `+a; jO`

−
a; j , for instance.

We have:

`+a; jO`
−
a; j = c†

a; j+1ca, jOc†
a; jca, j+1

= L+a; j+1R−a; j+1 L−a; jR
+
a; j O = Gal;ar

j+1 Gar;al
j O .

An inter-replica contribution is for instance `+a; j`
−
b; jO. We have:

`+a; j`
−
b; jO = c†

a; j+1ca, jc
†
b; jcb, j+1O

= L+a; j+1 L−b; j+1 L+b; j L
−
a; j O = Gal;bl

j+1 Gbl;al
j O .

It is clear that all terms contributing to the (dual) Lindbladians are quadratic in the gl(2R)
generators. Gathering all terms proves eqns (19) and (21).
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2.2.2 Hilbert space doubling formalism

A basis of quantum states over site j of our one-dimensional lattice is

|0〉 j , |1〉 j = c†
j |0〉 j . (32)

A basis of the Hilbert space of states H is thus

|σ〉= ⊗L
j=1|σ j〉 j , σ j ∈ {0,1} . (33)

In the one-replica case the noise-averaged density matrix can be expanded in this basis as

ρ̄ =
∑

α,β

ρα,β |α〉〈β | . (34)

In the Hilbert-space doubling formalism this is considered as a vector on the linear vector space
of operators on H

||ρ̄〉=
∑

α,β

ρα,β |α〉 ⊗ |β〉〉 . (35)

A basis of the 4-dimensional space of states associated with site j is given by

||1〉 j = |1〉 j ⊗ |1〉〉 j , ||2〉 j = |0〉 j ⊗ |1〉〉 j ,

||3〉 j = |1〉 j ⊗ |0〉〉 j , ||4〉 j = |0〉 j ⊗ |0〉〉 j . (36)

Introducing notations such that

O =O⊗1 , Õ = 1⊗O , (37)

and using that the jump operators `+j := c†
j+1c j fulfil (`±j )

T = `∓j , the Lindblad equation (5),
(7) is then recast in the form

d
d t
||ρ̄t〉= L||ρ̄t〉 , (38)

where

L= J
∑

j

p
�

`−j
˜̀−

j −
1
2

�

`+j `
−
j + ˜̀+

j
˜̀−

j

�

�

+ q
�

`+j
˜̀+

j −
1
2

�

`−j `
+
j + ˜̀−

j
˜̀+

j

�

�

. (39)

In order to represent L in the basis (36) we define Hubbard operators in the usual way by

Eab
j ≡ ||a〉 j j〈b|| . (40)

Keeping track of minus signs arising from fermionic anticommutation relations we have

`−j = (E
12
j + E34

j )(E
21
j+1 + E43

j+1) ,

˜̀−
j = (E

13
j − E24

j )(E
31
j+1 − E42

j+1) . (41)

This results in

L= J
∑

j

p
�

J+j J−j+1 +
1
4
(J z

j J z
j+1 − 1)

�

+ q
�

J−j J+j+1 +
1
4
(J z

j J z
j+1 − 1)

�

+
p+ q

4
C jC j+1 , (42)

where we have defined

J+j = E14
j , J−j = E41

j , J z
j = E11

j − E44
j , C j = E22

j − E33
j . (43)
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Quantities of physical interest are expressed in this formalism as follows

Tr [ρ̄tO] = 〈1||O||ρ̄t〉 , (44)

where
〈1||= ⊗L

j=1

�

j〈1||+ j〈4||
�

. (45)

In the two-replica case we proceed analogously. Our starting point are two sets of fermion
creation and annihilation operators corresponding to the two replicas that commute with one
another, cf. (25). To proceed we define new fermions that fulfil pure anticommutation relations

c̄1; j = c1; j , c̄2; j = c2; j(−1)N1 , N1 =
L
∑

j=1

c1; j . (46)

In the Hilbert space doubling formalism the Lindblad equation (12) for ρ(2)t then takes the
form

d
d t
||ρ(2)t 〉= L̂2||ρ

(2)
t 〉 . (47)

Now the space associated with site j is 16-dimensional and a convenient basis is given by the
graded tensor product of the states (36)

|α〉 j ⊗ |β〉 j , α,β ∈ {1,2, 3,4} . (48)

The jump operators (13) in the Lindblad equation (12) for ρ(2)t are

`−a; j = (`
+
a; j)

† = c̄†
a; j c̄a; j+1 , a = 1,2 . (49)

The Lindbladian is given by

L̂2 = J
L
∑

j=1

2
∑

a=1

�

La, j +Lint
a, j

�

, (50)

with

La, j =p
�

`a, j
˜̀

a, j −
1
2

�

`†
a, j`a, j + ˜̀†

a, j
˜̀

a, j

�

�

+ q
�

`†
a, j

˜̀†
a, j −

1
2

�

`a, j`
†
a, j + ˜̀

a, j
˜̀†

a, j

�

�

,

Lint
a, j =p

�

`a, j
˜̀

ā, j −
1
2

�

`†
a, j`ā, j + ˜̀

a, j
˜̀†

ā, j

�

�

+ q
�

`†
a, j

˜̀†
ā, j −

1
2

�

`a, j`
†
ā, j + ˜̀†

a, j
˜̀

ā, j

�

�

, (51)

where we defined 1̄ = 2, 2̄ = 1. We now construct explicit matrix representations of L̂2. We
start by decomposing the 16 basis states on site j according to

||0〉 j = |3〉 j ⊗ |2〉 j , ||1〉 j = |1〉 j ⊗ |1〉 j , ||2〉 j = |1〉 j ⊗ |4〉 j , (52)

||3〉 j = |4〉 j ⊗ |1〉 j , ||4〉 j = |4〉 j ⊗ |4〉 j , ||5〉 j = |2〉 j ⊗ |3〉 j ,

||6〉 j = |1〉 j ⊗ |2〉 j , ||7〉 j = |2〉 j ⊗ |1〉 j , ||8〉 j = |4〉 j ⊗ |2〉 j , ||9〉 j = |2〉 j ⊗ |4〉 j ,

||10〉 j = |1〉 j ⊗ |3〉 j , ||11〉 j = |3〉 j ⊗ |1〉 j , ||12〉 j = |4〉 j ⊗ |3〉 j , ||13〉 j = |3〉 j ⊗ |4〉 j ,

||14〉 j = |2〉 j ⊗ |2〉 j , ||15〉 j = |3〉 j ⊗ |3〉 j . (53)

We then define Hubbard operators by

Ea,b
j = ||a〉 j j〈b|| , (54)
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and operators (Gab
j )

† = Gba
j

G12
j = E1,3

j + E2,4
j + E6,8

j + E10,12
j ,

G13
j = E0,4

j + E1,5
j − E6,9

j − E11,12
j ,

G14
j = E0,3

j − E2,5
j − E6,7

j + E13,12
j ,

G23
j = −E

0,2
j + E3,5

j − E8,9
j + E11,10

j ,

G24
j = −E

0,1
j − E4,5

j − E8,7
j − E13,10

j ,

G34
j = E2,1

j + E4,3
j + E9,7

j + E13,11
j ,

G11
j = E0,0

j + E1,1
j + E2,2

j + E6,6
j + E10,10

j + E11,11
j + E13,13

j + E15,15
j ,

G22
j = E0,0

j + E3,3
j + E4,4

j + E8,8
j + E11,11

j + E12,12
j + E13,13

j + E15,15
j ,

G33
j = E2,2

j + E4,4
j + E5,5

j + E7,7
j + E10,10

j + E11,11
j + E12,12

j + E15,15
j ,

G44
j = E1,1

j + E3,3
j + E5,5

j + E9,9
j + E10,10

j + E12,12
j + E13,13

j + E15,15
j . (55)

The operators Gab
j fulfil the gl(4) commutation relations

[Gab
j , Gcd

j ] = δb,cG
ad
j −δa,d Gca

j . (56)

In terms of (55) the two-replica Lindbladian becomes

L̂2 = J
L
∑

j=1

p
←−
L j, j+1 + q

−→
L j, j+1 ≡ J p

←−
L 2 + Jq

−→
L 2 , (57)

where
←−
L 2 = (

−→
L 2)

† and

←−
L j, j+1 =G12

j G21
j+1 + G43

j G34
j+1 + G13

j G31
j+1 + G42

j G24
j+1 +

1
2

�

G41
j G14

j+1 + G32
j G23

j+1 + h.c.
�

+
1
2

4
∑

a=1

Gaa
j Gaa

j+1 −
1
4
(C j + C j+1 + 4) . (58)

Here we have defined C j =
∑4

a=1 Gaa
j − 2, as above. This is in complete agreement with (21)

once we account for the relation between the Lindbladian and its dual (11).
We note that the states (53) transform under gl(4) as follows:

• {||a〉 j|a = 0, . . . , 5} form the six-dimensional representation [6] of gl(4) and have C j = 0;

• {||a〉 j|a = 6, . . . , 9} form the fundamental representation [4] of gl(4) and have C j = 1;

• {||a〉 j|a = 10, . . . , 13} form the fundamental representation [4̄] of gl(4) and have C j = −1;

• {||14〉 j} and {||15〉 j} form one-dimensional representations of gl(4) and have C j = ∓2.

The quantities of physical interest are expressed as follows

Tr
�

ρ̄
(2)
t O1 ⊗O2

�

= 〈12||O1 ⊗O2||ρ̄
(2)
t 〉 , (59)

where
〈12||= ⊗L

j=1

�

j〈1||+ j〈2||+ j〈3||+ j〈4||
�

. (60)
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3 U(1) symmetries, sectors and fragmentation

3.1 Symmetries

The Q-ASEP & Q-SSEP models possess u(1) symmetries, one for each site, which echo the

fact that two pairs of complex Brownian motions (Wt , W t) and (W̃t , W̃ t) differing by a phase,
W̃t = eiθ Wt , have identical distributions.

For any realization of the Brownian motions W j
t , let us consider the representation of

U(1)L on the physical Hilbert space generated by the local particle numbers n j . That is: ele-

ments of U(1)L are represented by ei
∑

j θ j n j with arbitrary parameter θ j . The two Hamiltonian
increments, dHt from eqn (1), and dH̃t , obtained by conjugation with these U(1)’s, with

dH̃t := e−i
∑

j θ j n j dHt ei
∑

j θ j n j ,

have identical distributions. This holds because dH̃t coincides with eqn (1) but with Brownian
increments dW̃ j

t = ei(θ j−θ j+1) dW j
t whose distribution is identical to that of dW j

t . As a conse-
quence, the two density matrices ρt and ρ̃t = e−i

∑

j θ j n j ρt ei
∑

j θ j n j , time evolved with the
Hamiltonian increments dHt and dH̃t , respectively, have identical distributions. This property
holds for Q-ASEP and Q-SSEP as well.

This implies that, for any R replicas, acting with the Lindbladian or conjugating with the
total local particle numbers are commuting operations:

[L , C j] = 0 , [L∗ , C j] = 0 , (61)

for all j = 1, · · · , L with C j =
∑

a Ca; j . Recall that the Ca; j ’s act on any operators as
Ca; j O = [na; j , O] with na; j = c†

a; jca; j the local number operator in the a-th replica. They count
the number of fermion insertions in the operators O. Since the latter are made of product of
the local fermionic operators, the spectrum of C j runs from −R to R:

C j = −R,−R+ 1, · · · , 0, · · · , R− 1, R .

For instance, the operator
∏

a c†
a; j (resp.

∏

a ca; j) is only the operator with C j-charge +R (resp.
−R).

3.2 Sectors and fragmentation

Since the C j ’s commute with the Lindbladian, their eigenvalues are good quantum numbers
preserved by the dynamics. Phrased differently, the Q-ASEP & Q-SSEP dynamics only involves
mixing between operators with identical C-charges. Note that one C-charge is assigned per
site. We denote the set of C-charges by {c j| j = 1, . . . , L} by c.

We call the subspace of the operators of given C-charges a sector. Each sector is labelled
by the corresponding set c. The Q-ASEP & Q-SSEP dynamics takes place a within given sector
and does not induce transitions between different sectors. In particular, since the extremal
C-charges ±R are non-degenerate, the dynamics inside those sectors is trivial in the sense
that operators with extremal C charge do not move. The splitting of the Q-ASEP & Q-SSEP
dynamics into sectors has be been termed “fragmentation” in Ref. [22].

Let us analyze the operator content of the different sectors depending on the number of
replicas. For a single replica, the different values of the C-charge are ±1 and 0 with the
following content, at each given site j (with n j = c†

j c j):

C [R=1]
j = 0 : I j , n j , [2] ,

C [R=1]
j = ±1 : c†

j (c j), [1], ([1̄]) .
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In order to describe time evolution in a given sector it is useful to define projection opera-
tors onto the different subspaces at a given site

P[α]j , α= 0,±1 . (62)

In terms of the explicit representation (36) these read

P[0]j = |1〉〈1|+|4〉〈4| , P[1]j = |2〉〈2| , P[−1]
j = |3〉〈3| . (63)

The Lindbladian in a given sector c is then given by

Lc =
�

L
∏

j=1

P
[c j]
j

�

L
�

L
∏

k=1

P[ck]
j

�

. (64)

The time evolution of the single-particle Green’s function Tr
�

ρ(t)c†
j ck

�

, with k > j+1, occurs
in sector

c1 = (0, . . . , 0, 1
︸︷︷︸

j

, 0, . . . , 0, −1
︸︷︷︸

k

, 0, . . . , 0) . (65)

The corresponding Lindbladian is (with periodic boundary conditions)

Lc1
= P[1]j +L[ j+1,k−1] + P[−1]

k +L[k+1, j−1] , (66)

where [22]

L[1,`] =
`−1
∑

j=1

p
�

E14
j E41

j+1 − E44
j E11

j+1

�

+ q
�

E41
j E14

j+1 − E11
j E44

j+1

�

−
q
2

E11
` −

p
2

E44
`
−

p
2

E11
1 −

q
2

E44
1 . (67)

The dynamics described by (66) is that of two stationary “defects” at sites j and k, which affect
the dynamics in the spatial regions between them through the boundary terms in (67). The
dynamics is integrable [22], but so far has only been solved for the case of the SSEP.

For two replicas, the possible C-charges are ±2, ±1 and 0 with contents (with the conven-
tion, c+ ≡ c†, c− ≡ c, n= c†c):

C [R=2]
j = 0 : I j ⊗ I j , I j ⊗ n j , n j ⊗ I j , n j ⊗ n j , c+j ⊗ c−j , c−j ⊗ c+j  [6]

C [R=2]
j = ±1 : I j ⊗ c±j , c±j ⊗ n j , n j ⊗ c±j , c±j ⊗ I j , [4], ([4̄])

C [R=2]
j = ±2 : c±j ⊗ c±j , [1], ([1̄]) .

The operators in the c0 = (0, . . . , 0) sector form an algebra (because the product of two such
operators still has C charge zero). There is an action of this algebra on the other sectors, or
more precisely the other sectors form modules of the c0 algebra under multiplication, because
the C-charge is additive under products.

The above numbers [·] refer to the multiplicity of the corresponding sectors. They have a
group theoretical interpretation. The space of local operators at site j is isomorphic to that of
the Fock space of the 2R effective fermions f A†

j . Its dimension 22R = 2R · 2R indeed coincides
with that of the space of endomorphisms on the local physical Hilbert space (generated by
the R physical fermions c†

a; j at site j). As explained above, there is an action of gl(2R) on the

operators localised at site j whose generators are the super-operators GAB
j = f A†

j f B
j , see eqn

(30). The algebra gl(2R) has a central u(1), generated by the C-charge C j =
∑

A f A†
j f A

j − R,
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and gl(2R) = sl(2R)⊕ u(1). In particular, the C j charge commutes with the sl(2R) action and
hence each sector of given C-charge form a sl(2R) representation. Since the space Vec[Oj] of
operators localised at site j is the Fock space of 2R fermions, it decomposes as the sum of all
fundamental representations of sl(2R):

Vec[Oj]≡ [µ0]⊕ [µ1]⊕ · · · ⊕ [µ2R−1]⊕ [µ2R] ,

where [µk] denotes the representation of sl(2R) made of antisymmetric rank k tensors. Their
dimensions are (2R)!

k!(2R−k)! and their C-charges are k − R. In particular, the C = 0 sector corre-
sponds to the representation µR with dimension (2R)!/(R! )2.

For one replica, R= 1, the operator content is [1]⊕ [2]⊕ [1̄] with respect to sl(2).
For two replicas, R= 2, the operator content is

[1]⊕ [4]⊕ [6]⊕ [4̄]⊕ [1̄]≡ •⊕ ⊕ ⊕ ⊕ • ,

where we made explicit the description of the sl(2R) representations in terms of Young table-
aux. The representation [4] is the vector representation of sl(4), and [4̄] its complex conju-
gated, the representation [6] is that of rank 2 antisymmetric tensor. Since sl(4) ≡ so(6), as
Lie algebras, the representation [6] is also the vector representation of so(6), and [4] and [4̄]
the two chiral/anti-chiral spin representations of so(6).

The effect of the fragmentation on the two-replica dynamics is quite different from the
single-replica case. We again introduce projection operators

P[2,0]
j =

5
∑

a=0

Ea,a
j , P[2,1]

j =
9
∑

a=6

Ea,a
j , P[2,−1]

j =
13
∑

a=10

Ea,a
j ,

P[2,−2]
j = E14,14

j , P[2,2]
j = E15,15

j . (68)

The Lindbladian in a given sector c then takes the form

L̂2,c =

 

L
∏

j=1

P[2,c j] j

!

L̂2

 

L
∏

j=1

P[2,c j] j

!

. (69)

In contrast to the one-replica case the sites j and k now generally retain non-trivial dynamics
and can be viewed as positions of “impurities” with internal structure that changes under time
evolution. In the following we will focus on the particular sectors

c0 ≡ (0, . . . , 0) , c±1 ≡ (±1, . . . ,±1) , c±2 ≡ (±2, . . . ,±2) . (70)

As we shall point out below, these three sectors are the only gapless ones. In all other non-
homogeneous sectors, the Lindbladian exhibits a finite spectral gap. Hence the operators be-
longing to these sectors decay exponentially fast in time, even in the large system size limit.

Thus, the two replica Q-ASEP & Q-SSEP dynamics in the sector c0 is equivalent to a sl(4)
spin chain in the anti-symmetric rank two representation. It can alternatively be viewed as
so(6) vector spin chain. The dynamics on the c±1 sector is that of sl(4) vector spin chain. As
we shall discuss below, the latter is integrable but, to our knowledge, the former cannot be
mapped to known integrable model although it might be integrable. Recall that, while the
U(1)’s are symmetries of both the Q-ASEP and Q-SSEP dynamics, the sl(2R) is a dynamical
symmetry only for Q-SSEP.
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4 Integrability and non-integrability

4.1 Spin chain identification

Thanks to eqn (22) or eqn (24), L∝
∑

j

�

∑

A,B JAB
j+1JBA

j +
1

2R C j+1C j−
R
2

�

, the Q-SSEP Lindblad
dynamics has been re-written as a spin chain dynamics. In the one replicas case R = 1, the
spin chain is equivalent to the isotropic XXX Heisenberg model and thus integrable [58]. The
purpose of this section is to determine whether the R = 2 replica dynamics is integrable.
The structure of the Lindbladian density (69) is different from that of integrable spin chains
obtained by varying the representations of the symmetry algebra acting on a given site, see.
e.g. [59–62] in that the latter constructions generically lead to three-"spin" interactions, while
in our case the Lindbladian density only involves two sites. This suggests that the dynamics in
a general sector c is not integrable in a standard Yang-Baxter fashion. We therefore focus on
the c±1 and c0 sectors.
• Integrability in the c±1 sector.
The quantity

∑

A,B JAB
j+1JBA

j is the tensor Casimir acting on the tensor product of the sl(2R)
representations located at site j and j + 1. By sl(2R) invariance, its diagonalisation is ob-
tained by decomposing this tensor product into irreducible sl(2R) sub-representations. As a
consequence,

∑

A,B JAB
j+1JBA

j can be written as a linear combination of the projectors on these
irreducible sub-representations.

In the c±1 sector, for two replicas, the representation on each site is the sl(4) vector rep-
resentation � = [4]. Its tensor product with itself, � ⊗�, decomposes into two irreducible
sub-representations, the symmetric and anti-symmetric tensors. The associated projectors are
1
2(1± Pj; j+1) with Pj; j+1 the permutation operator. As a consequence, the Q-SSEP Lindbladian
in the c0 sector reads

L[C=±1, R=2]∝
∑

j

Pj; j+1 + const. .

It is the sl(2R) version of the isotropic Heisenberg spin chain, and it is known to be integrable
[63]. In other words, the dynamics of Q-SSEP quadratic fluctuations in the c±1 sector is
integrable.
• Integrability in the c0 sector?
The formula eqn (24) also holds in the c0 sector. In this sector and for two replicas, the

on-site representation is the [6] representation of sl(4) or so(6), that of rank 4 anti-symmetric
tensors of sl(4) or that of 6-dimensional vectors of so(6). We have the decomposition rule,
[6]⊗ [6] = [1]+ [15]+ [20] as sl(4) or so(6) modules, with [15] the rank two antisymmetric
so(6) tensors and [20] the rank two traceless symmetric so(6) tensors. The projectors on these
representations are (with d = 6)

PA =
1
2
(1− P), PS =

1
2
(1+ P)−

1
d

Q, P• =
1
d

Q ,

with P the permutation operator and Q the so-called trace operator. Thus P, Q and the identity
are the only sl(4) ≡ so(6) intertwiners in [6]⊗ [6]. As a consequence, in the c0 sector or for
two replicas,

∑

A,B JAB
j+1JBA

j is a linear combination of Pj; j+1, Q j; j+1, up to an additive constant.
Computing explicitly the tensor Casimir, see the end of Appendix B, we find

L[C=0, R=2]∝
∑

j

(Pj; j+1 −Q j; j+1) + const. .

The Hamiltonian of the known sl(4)≡ so(6) integrable model [64] is H =
∑

j(2Pj; j+1−Q j; j+1).
Note the differences in the coefficients.
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Surprisingly, and despite this absence of direct connection to a known integrable mod-
els, we found numerical evidences that the dynamics in the c0 sector could be integrable. It
therefore remains a challenge to analytically prove that the c0 dynamics is integrable and to
decipher the underlying structures responsible for this property.

A similar analysis applies to higher number of replicas. In particular, because they asso-
ciated to the sl(2R) vector representations, the dynamics in the sectors with all C equal to
±(R− 1) are always integrable in the usual sense (they are mapped to the sl(2R) analogues
of the isotropic Heisenberg spin chain). Whether the other sectors are integrable is an open
question.
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adjacent eigenvalues
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(c) Ratio rn = sn/sn−1 of adjacent
spacings

Figure 1: Histograms for the spacings and ratios of the N = 1077 eigenvalues
of the c1 Lindbladian on L = 11 sites after the degeneracies have been removed.
The chosen symmetry sector is defined by k = 2π/11 (eik is the eigenvalue un-
der translation by one site) and (n1, n2, n3, n4) = (1,2, 3,5) where ni is the num-
ber of times the local state i = 1, 2,3,4 appears in the tensor-product-state (the
c1 sector has local dimension 4 on each site). This corresponds to the Cartan
charges (J z

1 , J z
2 , C1−C2

2 ) = (−2,−3, 3
2). The average ratio of consecutive spacings is

〈r̃〉= 0.3826.

4.2 Numerics

Here we investigate the integrability of the two-replica Lindbladian numerically in sectors c0
and c1 by considering the level-spacing statistics of its eigenvalues. Most studies that have been
conducted on the level-spacing statistics of integrable spin chains deal with the case where the
global symmetry algebra is u(1) or sl(2). In contrast to this, the symmetry algebra of our spin
chain model is of higher rank, namely sl(4). This leads to a new source of degeneracies of
eigenvalues, which makes the level statistics differ from the usual sl(2) case at first sight. To
our knowledge, this is the first time this problem has been addressed in the literature.

Our analysis of the level-spacing statistics suggests that the c±1 sectors are indeed inte-
grable, while for the c0 sector it provides weak signs of integrability breaking, which some-
times lack an overall consistency. A key problem in the analysis is that the effects of integrabil-
ity breaking perturbations become visible only for sufficiently large system sizes [65,66]. We
suspect that the maximal system size we could achieve in practice is simply too small to get a
completely consistent picture. Moreover, the presence of a higher rank symmetry algebra may
further obscure signs of integrability breaking in the level-spacing statistics.

Let us start by recalling some known results on the level-spacing statistics of integrable
and non-integrable models. Integrable Hamiltonians possess the very particular property that
their eigenvalues are i.i.d. random variables, as if the Hamiltonian was just a random diag-
onal matrix. This was first conjectured by Berry and Tabor [67] and has been confirmed in
many explicit examples such as the XXX Heisenberg chain [68, 69]. Importantly, the spacing
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(a) Integrable case (g = 1/2),
N = 1205, 〈r̃〉= 0.3817
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(b) Q-SSEP case (g = 1),
N = 1335, 〈r̃〉= 0.3980
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(c) A stronger perturbation with
g = 2, N = 1336, 〈r̃〉= 0.3950

Figure 2: Histograms of the spacings between consecutive raw eigenvalues (first row)
and unfolded eigenvalues (second row) for a deformation of the Q-SSEP Linbladian
for quadratic fluctuations on L = 10 sites in the c0 sector. The deformations are
parametrised by g and defined as L(g)∝

∑

j(Pj; j+1 − gQ j; j+1 − 1) such that g = 1
corresponds to the original Q-SSEP case. The chosen symmetry sector is defined by
k = 2π/10 and Cartan charges (J z

1 , J z
2 , C1−C2

2 ) = (5,3, 3). The value for N provides
the number of eigenvalues left after removing the degeneracies.

sn = en − en−1 between adjacent eigenvalues follows an exponential distribution

p(s) = e−s . (71)

To be precise, this holds only for the so-called "unfolded spectrum" of the Hamiltonian, where
one performs a local change of variable on the eigenvalues en such that the density of the new
variables ên is uniform (see Appendix D). Instead, as showed in [70], one can also consider
the ratio of consecutive spacings rn = sn/sn−1 whose distribution is independent of the local
density of eigenvalues and is given by

p(r) =
1

1+ r2
. (72)

In contrast to integrable Hamiltonians the eigenvalues of a generic Hamiltonian - a random
Matrix - tend to repel each other. The spacing between eigenvalues of a 2× 2 random matrix
in the GOE (Gaussian Orthogonal Ensemble) – which would be the appropriate ensemble to
deal with since the Q-SSEP Linbladian is symmetric and real – has a probability distribution
know as Wigners surmise

p(s) =
πs
2

e−πs2/4 . (73)

This turns out to be good approximation also for the level-spacing of large GOE random ma-
trices. In particular, there is a zero probability to find consecutive eigenvalues with spacing
zero. The same is true if instead of the spacing one again considers the ratio of adjacent spac-
ings r, which behaves as p(r) ∼ rβ for small r, where β is the Dyson index of the matrix
ensemble [70].

The ratio of adjacent spacings has the nice property, that the average of

r̃ =min(r, 1/r) ∈ [0,1] (74)
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over the given ensemble takes is a constant, and can therefore be used to classify the en-
semble to which some numerical distribution might belongs. For Poisson random variables3,
〈r̃〉= 2 ln 2− 1≈ 0.3863, while for the eigenvalues of a matrix in the GOE, 〈r̃〉 ≈ 0.5359.

Before discussing the results, let us also comment on the reduction of the Lindbladian
to its remaining symmetry sectors. The eigenvalues in each symmetry sector are statistically
independent and therefore one should treat each sector independently. In practice, we bring
the Lindbladian to block diagonal form with respect to all its mutually commuting symmetries
Ii , [L, Ii] = 0, [Ii , I j] = 0. After fixing to c±1 or c0, the maximally set of commuting symmetries

are translation T , the three Cartan elements (J z
1 =

∑

j J z
1, j , J z

2 , C1−C2
2 ) of gl(4) (which are the

analogues of the magnetization for sl(2)) and depending on the choice of the three Cartan
elements, a permutation F of the states (which is the generalization of a spin flip in the m= 0
sector for sl(2)). However, once all these charges have been fixed, there is still a degeneracy
in the eigenvalues of the Lindbladian left, which would lead to an artificial large peak at zero
in the level-spacing statistic. This is because the Cartan subalgebra for gl(4) consists of more
than one element, hence there are more than one "lowering-operator" and therefore weight-
spaces in an irreducible gl(4) representation can be more than one-dimensional. But the gl(4)
symmetry of the Lindbladian ensures that all states in an irreducible gl(4) representation have
the same eigenvalue and hence, selecting a weight-space (i.e. fixing the Cartan charges) will
not lift all degeneracies (as it would do for the sl(2) spin chain). We therefore manually
deleted all the degenerate copies of eigenvalues from the complete set of eigenvalues in a
given symmetry sector and analysed the level-spacing and ratio statistics for the remaining
eigenvalues. The procedure is not entirely correct, because there can also be degeneracies in
the spectrum solely due to integrability, which would be neglected in our procedure. But it
turns out that for the overall statistics this only plays a minor role.

Fig. 1 shows the results for the c1 sector and both the shape of distribution and the value
for 〈r̃〉 suggest that this model is integrable. The results for the c0 sectors are less clear. In some
of the sectors with fixed Cartan elements there is no sign of integrability breaking. In others,
such as in Fig. 2 there are weak signs. Increasing the perturbation of the known integrable
model with the trace operator Q, parametrised by the coupling strength g, one observes a
gradual deviation from the exponential distribution, which is correctly reproduced for the
integrable case (g = 1/2). However, a real Wigner-like distribution is not visible, even for
higher values of g, and we suspect this to be due to the small system size we are able to
achieve in practice. Also note, that the value for 〈r̃〉 seems to suggest integrability breaking
for the Q-SSEP case. However, in our example, it does not consistently increase with g as one
would expect: Value for g = 2 is lower than that for g = 1. Again we think this is due to the
limited system size. Finally, it might be interesting to look at the value of N , which describes
the number of eigenvalues left after removing the degeneracies. For the known integrable
case (a), N = 1205 is lower than for the other two cases (b) and (c) where the number almost
coincides, N = 1335 and N = 1336, respectively4 This hints, that in the integrable case (a),
there were more degenerate eigenvalues than the gl(4) symmetry with its higher dimensional
weight spaces could explain. We think that these additional degeneracies are probably a result
of integrability - or reversely, their absence (as in (b) and (c)) is a sign of integrability breaking.
To sum up, all these observations suggest that the quadratic fluctuations for Q-SSEP are not
integrable in the c0 sector.

3A short derivation of this fact: Since the probability of consecutive spacings s1 followed by s2 is equivalent
the inverse order, i.e. P(s1, s2) = P(s2, s1), it follows that r = s1/s2 and 1/r = s2/s1 have the same distributions.
Therefore R(r̃) = 2p(r)Θ(1− r), from which the average value 〈r̃〉= 2 ln 2− 1 can be computed.

4The slight difference could arise due to the numerical imprecision.

19

https://scipost.org
https://scipost.org/SciPostPhys.12.1.042


SciPost Phys. 12, 042 (2022)

5 Steady states and slow modes

We now look at the steady states of the Q-SSEP. The Q-SSEP invariant measure has been
described in [41] using a mapping to random matrix theory. We here adopt an alternative
approach which yields a better access to their structure in terms of the underlying gl(2R)
symmetry. The case of the Q-ASEP steady states will be discussed elsewhere [71].

5.1 Q-SSEP steady states

The steady states of the Q-SSEP dynamics are the zero modes of the Q-SSEP Lindbladian L.
Since L commutes the gl(2R) action, these modes form gl(2R) multiplets. Recall that the
Q-SSEP Lindbladian is self-dual, L= L∗.

We first study the zero modes in the c0 sector (i.e. with all charges C j along the chain set
to zero). The identity belongs to this sector and is an eigenstate with eigenvalue zero since
L∗ I = 0 by definition and L = L∗. The identity is a factorised operator I = I1I2 · · · IL with I j
the identity on the j-th site. As a consequence of the sl(2R) symmetry, all factorised operators
x1 x2 · · · xL with x j localised on site j and with x in the sl(2R) orbit of the identity are also zero
modes. This orbit is isomorphic to the middle sl(2R) fundamental representation [µR] and the
sl(2R) action on this representation is faithful. As a consequence, all factorised operators of
the form

||Ω0
x〉 := x1 x2 · · · xL , x ∈ [µR] , (75)

are zero eigenstates of the Q-SSEP Lindbladian in the c0 sector: L||Ωx〉 = 0. Of course, linear
combinations of such states are also steady states. They form an irreducible representation
of sl(2R) with highest weight LµR (with a slight abuse of notation consisting in denoting by
µk the highest weight of the representation [µk]). Indeed, the representation formed by the
above operators ||Ω0

x〉, x ∈ [µR], is irreducible with the highest weight vector ||Ω0
µR
〉 equal to the

tensor product of L identical highest weight vectors, each of weight µR. The Young tableau of
the representation of highest weight LµR is a rectangular tableau with R lines and L columns.
Its dimension can be computed using the so-called hook rule (see below for examples).

As detailed in the Appendix B, this remark holds true in any sector. If |µR+k〉 is the highest
weight vector of the representation [µR+k] corresponding to local operator with C charge
equals to k, then |µR+k〉 ⊗ · · · ⊗ |µR+k〉 is a zero mode of the Q-SSEP Lindbladian. By sl(2R)
invariance, this implies that all states,

||Ωk
x〉 := x1 x2 · · · xL , x ∈ [µR+k] , (76)

are zero eigenstates of the Q-SSEP Lindbladian in the ck sector. Linear combinations of such
states are also zero modes. They form the sl(2R) representation whose Young tableau is rect-
angular with R+ k lines and L columns.

Let us give examples for one or two replicas. For R = 1 replica, the structure of the zero
modes as gl(2) modules is : c0 [L + 1] (spin L/2) and c±1 [1] (spin 0).

For R= 2 replicas, the structure of the zero modes as gl(4)modules is : c0 [Lµ2] (Young
tableau with 2 lines of length L), c±1  [Lµ1] (Young tableau with 1 line of length L) and
c±2 [Lµ0] = [1] the trivial representation. The number of zero modes are:

c0 
(L + 1)(L + 2)2(L + 3)

12
, c±1 

(L + 1)(L + 2)(L + 3)
6

, c±2 1 .

We have checked that these zero modes form all possible Q-SSEP steady states for L = 1
and L = 2, and we conjecture that this is true for all L. It is known from [41] that the Q-SSEP
steady distribution is SL(L) invariant, so that there is a peculiar (nice) interplay between the
SL(L) and GL(2R) perspectives on the zero modes. See Appendix C for details.
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All Q-SSEP steady operators have homogeneous C-charge along the chain. In contrast, a
domain wall operator connecting sectors with different C charges c1 and c2, say of the form
|µR+c1

〉⊗
M
⊗ |µR+c2

〉⊗
(L−M)

and their gl(2R) orbits, are eigenstates of the Q-SSEP Lindbladian
with eigenvalues − J

2 |c1 − c2|. Hence, domain walls decay exponentially fast in time, cf. [22].
More generally, for an inhomogeneous sector with domain walls at a series of edges w1, · · · , wd
connecting sectors with charges c−α , c+α (c−α 6= c+α ), α= 1, · · · , d, the gap is the sum of the gaps
associated to each of these domain walls, i.e. − J

2

∑

α|c
−
α − c+α |. A proof of this statement is

given in Appendix B.

5.2 Q-SSEP low lying magnon states

Let us first consider the one replica case (R = 1). In the c0 sector the zero modes form a spin
L/2 representation of sl(2R). The other zero modes are sl(2R) singlets. With respect to the
sl(2R) basis, J± =

∑

j J±j , J z =
∑

j J z
j , the highest weight vector of this spin L/2 representa-

tion is the operator ||Ω1
n〉 := n1n2 · · ·nL with n j the number operator at site j. Since the one

replica Linbladian has been identified with the XXX Heisenberg spin chain Hamiltonian, one
may construct magnon excitations by reversing the polarization of this fully polarized state
in a coherent way. Algebraically, this is done by acting with the super-operator

∑

j eip jJ−j
depending on a momentum p. It yields the eigenstates

∑

j

eip j n1n2 · · · (J−j n j) · · ·nL , (77)

with J−j n j = I j − n j . Their eigenvalues are ωp := J (cos p− 1). At small momenta, the disper-

sion relation is diffusive, ωp ' −J p2, as expected.
This observation generalizes to any number of replicas. Since the zero modes

||Ωk
x〉 = x1 x2 · · · xL with x ∈ [µR+k], given in eqn (76) with R the number of replicas and

k the C charge, are also ferromagnetic like states, one can construct one-magnon eigenstates.
The latter are obtained by considering the fully polarized state ||ΩµR+k

〉 with x chosen to be the
highest weight vector µR+k of the sl(2R) representation [µR+k] and by acting on it with the
appropriate gl(2R) generator. Namely, one considers the operators

||p;γ;µR+k〉 :=
∑

j

eip j G−γj ||ΩµR+k
〉 , (78)

with γ a positive root of sl(2R) and G−γ the associated root generator. As shown in Appendix
B, these states are eigenstates of the R replica Lindbladian iff γ is one of the simple roots of
sl(2R). There are 2R − 1 such simple roots but only one of them (dual to the weight µR+k)
yields a non vanishing state so that the labelling γ is actually redundant since it is linked to
µR+k. The dispersion relation is also diffusive:

ωp = 2J (cos p− 1)' −J p2 . (79)

By sl(2R) invariance, any state obtained by acting with SL(2R) on ||p;γ;µR+k〉 is an eigenstate.
That is: all states ⊗ j g j||p;α;µR+k〉, with g ∈ SL(2R) and α a simple root, are eigenstates.
We have ⊗ j g j||p;α;µn〉 = ||p; gαg−1; x〉 with x = g µR+k, they form an irreducible sl(2R)
representation isomorphic to [µR+k].

5.3 Cat state preparation in the non trivial integrable sector

In order to demystify the meaning of different sectors and demonstrate how integrability could
be used for addressing interesting physical questions, we discuss the dynamics of the cat states,
which partially belong to the integrable c±1 subsectors for two replicas.
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Imagine initially preparing the system in the pure state |ψ〉. Its initial R = 2 replicated
density matrix is ρ(2)0 = ρ0 ⊗ ρ0, with ρ0 = |ψ〉 〈ψ|. In order for ρ(2) to have a non zero
component on the c±1 sectors, one has to consider |ψ〉 to be a cat state, i.e. a particular linear
combination of states with macroscopically different numbers of particles. The simplest state
|ψ〉 to consider would be the sum |ψ0〉+ |ψM 〉 with |ψ0〉 (resp. |ψM 〉) a state with 0 (resp.
M) particles. However, this is actually not enough for producing quadratic fluctuations in the
c±1 sector. One has to consider three position cat states |ψ〉 which are the sum of three states
with different particle numbers of the form

|ψ〉= |ψ0〉+ |ψM 〉+ |ψL−M 〉 (80)

with |ψ0〉, |ψM 〉 and |ψL−M 〉 having 0, M and L − M particles respectively. We assume
0 < M < L/2. (We could also consider more general cat states but this is the simplest with
the required properties).

When considering quadratic fluctuations, we have to consider the initial tensor product
|ψ〉 ⊗ |ψ〉. To ensure that the quadratic fluctuation dynamics survives the large time limit, we
have to decipher on which SU(L) representations this product is decomposed onto in order to
verify that it has a non trivial component on c±1 steady states. See Appendix C for details.

The state |ψ0〉 belongs to the trivial SU(L) representation Λ0, while the states |ψM 〉 (resp.
|ψL−M 〉) belong the fundamental representation ΛM (resp. ΛL−M ), with Young tableau with
one column and M (resp. L−M) boxes. The tensor product |ψ〉⊗|ψ〉 thus contains |ψ0〉⊗|ψ0〉
which belongs to the scalar representation Λ0 ⊗ Λ0 ≡ Λ0. It also contains the products
|ψM 〉⊗ |ψL−M 〉 (resp. |ψL−M 〉⊗ |ψM 〉) which are elements of ΛM ⊗ΛL−M (resp. ΛL−M ⊗ΛM ).
The decomposition of the latter tensor product of SU(L) representations contains the fully
antisymmetric representation Λ+0 which, as SU(L) module, is isomorphic to Λ0. However, Λ+0
and Λ0 are isomorphic as SU(L) modules but not as U(L) modules since they differ by their C
charges.

As a consequence, the initial quadratic density matrix ρ(2) := |ψ〉 〈ψ| ⊗ |ψ〉 〈ψ| contains
blocks intertwining Λ0→ Λ+0 and Λ+0 → Λ0. These blocks are in the c±1 sectors. They are sub-
blocks in the matrices |ψ0〉 〈ψM |⊗|ψ0〉 〈ψL−M | or |ψ0〉 〈ψL−M |⊗|ψ0〉 〈ψM | and their Hermitian
conjugates.

To check that they have a non trivial projection on the c±1 steady states, let us compute their
overlaps with the c±1 steady operator (that is: operators in the kernel of the dual Lindbladian
in the sector c±1). These operators, say with c−1, have exactly one fermionic annihilation
operator per site in either of the two replicas. The simplest such operator is of the form

C :=
∏

m∈M
c1;m ·

∏

n∈Mc

c2;n ,

with M a sub-set of {1, · · · , L} and Mc its complement. Any other operator in the c±1 sector
is obtained by acting on the latter with c0 operators (which amounts to multiply C by the
number operators na; j at different sites or replicas). Let us choose CardM = M and hence
CardM= L −M . Then,

Tr(ρ(2) C) = 〈ψ0|
∏

m∈M
cm |ψM 〉 〈ψ0|

∏

n∈Mc

cn |ψL−M 〉 6= 0 .

This is non zero if the state |ψM 〉 (resp. |ψL−M 〉) has particles inserted at the site selected by
M (resp. Mc). The same holds true if we multiply C by an operator in the c0 sector.

Hence, the three position cat states, |ψ〉 = |ψ0〉 + |ψM 〉 + |ψL−M 〉, provide examples of
physical states such that the dynamics of their quadratic fluctuations has a non trivial compo-
nent on the integrable sector c±1. Of course, part of the dynamics of those fluctuations is also
in the non integable sector c0.
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6 Q-SSEP dynamics on the lattice and in the scaling limit

In this section we consider the dynamics of (quadratic) fluctuations in the Q-SSEP in some
detail. We show that the dynamics is essentially diffusive, but at sufficiently late time and
large distances the deviations from diffusive behaviour are captured by a continuum descrip-
tion. More precisely, we show that there is a scaling regime in which correlation functions
are described by hierarchies of partial differential equations that take the form of diffusion
equations with source terms that couple the different levels of the hierarchy. By numerically
solving the equations of motion for some examples we show that the scaling limit gives an
accurate description of an intermediate time regime of the lattice dynamics.

6.1 Two point functions for two replicas

In this section we investigate the equations of motion for averages involving two replicas, i.e.
quantities of the form E[O1 ⊗O2]t . We first show that in the Q-SSEP the mean expectations
evolve diffusively, cf. eqn (84), while the quadratic fluctuations satisfy a set of linear equations
encoding diffusion plus interactions, cf. eqn (87).

Averaging the Heisenberg equations of motion for system plus noise over the latter gives

E [O1 ⊗O2]t+∆t = E [O1 ⊗O2]t −
1
2
E
�

[dH(2)t , [dH(2)t ,O1 ⊗O2]]
�

t
+ . . . , (81)

where the two-replica Hamiltonian increment reads

dH(2)t =
L
∑

j=1

2
∑

a=1

c†
a, j+1ca, jdW j

t + c†
a, jca, j+1dW

j
t . (82)

Here dW j
t , dW

j
t are complex Brownian noises, cf. eqn (3), and ca, j and c†

a, j are the canonical
fermion annihilation and creation operators defined in (25) (we recall that the fermion oper-
ators of different species commute). As we will see, for the Q-SSEP the operators of interest
are

na, j = c†
a, jca, j , S+j = c†

1, jc2, j = S−†
j , S−j = c1, jc

†
2, j = (S

+
j )

† . (83)

Working out the relevant commutators and noise-averages in (81) we obtain

d
d t
E[na, j]t = J∆ j,kE[na,k]t ,

d
d t
E[S±j ]t = J∆ j,kE[S±k ]t , (84)

where ∆ j,k = δ j,k+1 +δ j,k−1 − 2δ j,k is the lattice Laplacian and repeated indices are summed
over. This establishes that one-point functions exhibit purely diffusive dynamics. Assuming
that the initial density matrix is invariant under the exchange of the two replicas, the average
fermion density must be independent of the replica index a. For later convenience we define
it as

ρ j(t) = Tr
�

ρ(2)(0)E[na, j]t
�

. (85)

The fermion density fulfils a simple diffusion equation on the lattice

d
d t
ρ j(t) = J∆ j,kρk(t) . (86)
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The analogous calculation for operators involving two operators na, j , S±j gives

d
d t
E[n1, jn2,k]t =J(∆ j,n +∆k,m)E[n1,nn2,m]t − Jδ j,k(E[S+j+1S−j ]t +E[S

+
j−1S−j ]t + h.c.)

+ J(δ j,k−1 +δ j,k+1)(E[S−j S+k ]t +E[S
+
j S−k ]t) , (87)

d
d t
E[S−j S+k ]t =J(∆ j,n +∆k,m)E[S−n S+m]t

+ Jδ j,k−1 E[n̄1, jn2, j+1 + n2, j n̄1, j+1]t + Jδ j,k+1 E[n̄1, jn2, j−1 + n2, j n̄1, j−1]t
− Jδ j,k E[n̄1, j(n2, j−1 + n2, j+1) + n2, j(n̄1, j−1 + n̄1, j+1)]t , (88)

where we have defined n̄a, j = na, j − 1.
We now take the trace with an initial density matrix that is invariant under exchange of

the replicas and define the following averages of the (replicated) system degrees of freedom

g+( j, k; t) := Tr
�

ρ(2)(0)E[n1, jn2,k]t
�

,

g−( j, k; t) :=

¨

−Tr
�

ρ(2)(0)E[S−j S+k ]t
�

if j 6= k ,

Tr
�

ρ(2)(0)E[n1, jn2, j]t
�

if j = k .
(89)

Alternatively, we can express these as

g+( j, k; t) = E[G j jGkk] , g−( j, k; t) = E[G jkGk j] , Gi j = Tr(ρt c
†
i c j) . (90)

This shows that g+( j, k; t) and g−( j, k; t)) encode respectively density and coherence correla-
tion fluctuations.

Treating the case j = k carefully, we obtain

d
d t

gσ( j, k; t) = J(∆ j,n gσ(n, k; t) +∆k,m gσ( j, m; t)) . (91)

In the following we will also consider the connected correlation functions,

g+,c( j, k; t)≡ g+( j, k; t)−ρ j(t)ρk(t) ,

g−,c( j, k; t)≡ g−( j, k; t)−δ j,k(ρ j(t))
2 , (92)

where ρ j(t) is the average fermion density in replica a defined above in eqn (85) (it is inde-
pendent of a as a result of our choice of initial conditions).

It is easy to see that (91) have time-independent sum rules

Aσ =
L
∑

j,k=1

gσ( j, k; t) ,
dAσ
d t
= 0 . (93)

These conservation laws are consequences of the fact that the dynamics is unitary for any given
realization of the noise, and hence it preserves the spectrum of the system density matrix. For
the initial states we consider here the constants Aσ have regular expansions in inverse powers
of the system size

Aσ = a(0)σ +
a(1)σ
L
+

a(2)σ
L2
+ . . . . (94)

The calculation of correlation functions can of course also be formulated in the Hilbert
space doubling approach. For example, we have

g+( j, k; t) = 〈12||n1, jn2,k||ρ(2)(t)〉 , (95)
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where 〈12| has been defined in (60). The equation of motion thus reads

d
d t

g+( j, k; t) = 〈12||n1, jn2,kL̂2||ρ(2)(t)〉 . (96)

This, and the analogous equation for g−( j, k; t), can be cast in the form of an imaginary time
two-particle Schrödinger equation for a non-Hermitian "Hamiltonian" obtained from L̂2 by
exploiting the existence of the two gl(2) sub-algebras. This is sketched in Appendix E, and a
discussion of the spectrum of the Lindbladian in the two-particle sector is given in Appendix
F.

6.2 Numerical solution

The coupled equations (91) can be straightforwardly solved numerically. We take the initial
two-replica density matrix to encode no correlatons between the replicas

E[ρ(2)(t = 0)] = ρ(1) ⊗ρ(1) . (97)

6.2.1 CDW initial state

As our first example we choose an initial product state that is invariant under translations by
three lattice sites

ρ(1) = |CDW〉〈CDW| , |CDW〉=
L/3
∏

j=1

c†
3 j−2|0〉 . (98)

Here L is taken to be a multiple of 3 so that the charge-density order is commensurate with
the system size. This gives the initial conditions

g+( j, k, 0) = Dj Dk , Dj =
L/3
∑

i=1

δ j,3i−2 ,

g−( j, k, 0) = D2
j δ j,k . (99)

The fermion density in the steady state is ρ j(∞) = 1/3 ≡ ρ and connected density and
coherence fluctuations behave as

g+,c( j, k;∞) =
ρ(1−ρ)

L

�

δ j,k −
1
L

�

+O(L−3) ,

g−,c( j, k;∞) =
ρ(1−ρ)

L

�

1−
δ j,k

L

�

+O(L−3) . (100)

The results of numerical integration of the equations of motion is shown in Figs 3 and 4. The
fermion density is seen to relax quite quickly to its steady state value 1/3 as shown in Fig. 3.
The qualitative behaviour of the connected two-point functions is as follows:

• The connected correlations initially vanish, then build up over a time scale J t ∼ 1, and
subsequently decay towards their steady state values (100);

• The decay of g+( j, j; t) towards its steady-state values is well-characterised by a power
law t−1/2 on times scales J t � L;

• The region in which connected correlations are non-negligible spreads diffusively, i.e.
there is a parabolic “envelope”.

25

https://scipost.org
https://scipost.org/SciPostPhys.12.1.042


SciPost Phys. 12, 042 (2022)

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

��
ρ
�
(�
)

Figure 3: Density ρn(t) for the CDW initial state on the sublattice n= 3k− 2 (blue)
and the other two sublattices n = 3k − 1, n = 3k (yellow) as functions of time. We
observe that the density relaxes quickly to its steady state value 1/3.
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Figure 4: Connected correlators gσ,c(1, n) as functions of time for n= 1 (solid blue),
n = 2 (dashed yellow), n = 3 (dotted green) on a ring of L = 36 sites. The correla-
tions are very short-ranged.

6.2.2 Domain wall initial state

The next example we consider is that of an uncorrelated domain wall state at half-filling, where
all fermions are initially located on sites [1, L

2 ], i.e.

ρ(1) = |DW〉〈DW| , |DW〉=
L/2
∏

j=1

c†
j |0〉 . (101)

The initial conditions are thus

g+( j, k, 0) =

¨

1 if 1≤ j, k ≤ L
2 ,

0 else.

g−( j, k, 0) =

¨

1 if 1≤ j = k ≤ L
2 .

0 else.
(102)

In Fig. 5 we show the ensuing time evolution of the density and connected two-point function
g−,c(

L
2 + 1, n, t). The initial state is unentangled, but connected correlations are seen to build

up in time and are negligible outside a causal region that spreads diffusively in time, i.e. there
is a parabolic "envelope".
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(a) (b)

Figure 5: (a) Density ρ j(t) for the uncorrelated domain-wall initial state (101)
as a function of j and time on a ring of L = 96 sites. (b) Connected correlator
g−,c(

L
2 + 1, n, t) for the same parameters.

6.2.3 Correlated domain wall initial state

In the two previous examples the initial states were unentangled. We now consider the half-
filled ground state of a tight-binding model on half the system, i.e. sites 1 ≤ j ≤ L/2 (we
assume L to be even). Defining

c̃(kn) =

√

√ 2
L/2+ 1

L/2
∑

j=1

c j sin(kn j) , kn =
πn

L
2 + 1

, n= 1, . . . ,
L
2

, (103)

our initial state is

|Ψ(0)〉=
L/4
∏

n=1

c̃†(kn)|0〉 . (104)

The initial two-point functions are then easily calculated using

c j =

√

√ 2
L/2+ 1

∑

kn

c̃(kn) sin(kn j) . (105)

Defining 2kF =
π
2 we have for j, k ∈ [1, L/2]

g j,k = 〈Ψ(0)|c
†
j ck|Ψ(0)〉= f ( j − k)− f ( j + k) , j 6= k ,

f (n) =







sin
�

2kF n
�

(L+2) sin
�

πn
L+2

� if n 6= L + 2 ,

1
2 if n= L + 2 .

(106)

The corresponding initial values for our one and two-point functions are then

ρ j(0) =

¨

1
2 if 1≤ j ≤ L

2

0 if L
2 ≤ j ≤ L

, g+( j, k, 0) = ρ j(0)ρk(0) ,

g−( j, k, 0) =











g j,k gk, j if 1≤ j 6= k ≤ L
2 ,

1
4 if 1≤ j = k ≤ L

2 .

0 else.

(107)
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The stationary behaviour at late times can again be determined explicitly

lim
t→∞

g+( j, k, t) =
1
16

�

1−
3
L2
+

3
L
δ j,k

�

,

lim
t→∞

g−( j, k, t) =
1
16

�

3
L
+δ j,k(1−

3
L2
)
�

. (108)

In Fig. 6 we show the dynamics of the average density ρ j(t) as a function of time.

(a) (b)

Figure 6: (a) Density ρ j(t) for the correlated domain-wall initial state (104) as
a function of j and time on a ring of L = 96 sites. (b) Connected correlator
g−,c(

L
2 + 1, n, t) for the same parameters.

The domain wall is seen to spread diffusively in a way that is qualitatively quite similar
to the case of an uncorrelated domain wall initial state considered above. The connected
correlations are non-vanishing in the initial state and as a result the region in which they are
sizeable spreads in an asymmetric way.

6.3 Scaling limit

The aim of this section is to show that there exists a scaling limit in which a continuum de-
scription applies and to derive a set of partial differential equations describing the dynamics
of quadratic fluctuations in this limit. We then establish the regime of applicability of results
obtained in the scaling limit for the domain wall initial conditions considered above by com-
paring numerical result for the continuum and lattice descriptions. The scaling limit is defined
as

a0→ 0 , J →∞ , D= Ja2
0 fixed , (109)

where a0 is the lattice spacing. The limit (109) has proved to provide very useful insights into
the stationary behaviour [56], and we now show that this extends to the full dynamics. By
introducing co-ordinates

x = ja0 , y = ka0 , (110)

we can turn difference equations into differential equations for the functions
Gσ(x , y, t) = gσ( j, k; t) and ρ(x , t) = ρ j(t). The scaling limit of (86) is simply

�

d
d t
−D

d2

d x2

�

ρ(x , t) = 0 . (111)
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To work out the scaling limits of (91) it is useful to rewrite the lattice equations in the form

d
d t

gσ( j, k; t) =J
∑

n

∆ j,n gσ(n, k; t) +∆k,n gσ( j, n; t)

+ Jδ j,k

∑

n

∆ j,n g−σ(n, k; t) +∆k,n g−σ( j, n; t)− 2J Dj,k g−σ( j, k; t) , (112)

where Dj,k = δ j+1,k + δ j−1,k − 2δ j,k. Taking h(n) to be a discretization of a test function we
have

∑

k

δ j,kh(k) = h( j)⇒ δ j,k −→ a0δ(x − y) ,

∑

k

Dj,kh(k) = ∆ j,nh(n)⇒ Dj,k −→ a3
0δ
′′(x − y) . (113)

This then gives the following result for the scaling limit

d
d t

Gσ(x , y; t) =D∇2Gσ(x , y; t) +Da0

�

δ(x − y)∇2 − 2δ′′(x − y)
�

G−σ(x , y; t)

+O(Ja4
0) . (114)

We observe that in the limit a0→ 0 we obtain a simple diffusion equation. This indicates that
for large separations we do not have connected correlations, in agreement with the numerical
solution of the lattice model. The sub-leading term in (114) should be understood in the sense
that we keep the overall physical length L = La0 of our system fixed while taking the lattice
spacing a0 to zero and the number of sites L to infinity. Hence we have

L= a0 L . (115)

The corrections to the diffusion equations are indeed proportional to 1/L as expected, say
from the known properties of the steady state [41, 42]. Eqns (114) are linear and therefore
can be solved by expanding

Gσ(x , y; t) = G(0)σ (x , y; t) +
a0

L
G(1)σ (x , y; t) + . . . . (116)

The functions G(n)σ (x , y; t) then fulfil a hierarchy of partial differential equations

∂t G
(0)
σ (x , y; t) =D∇2G(0)σ (x , y; t) ,

∂t G
(1)
σ (x , y; t) =D∇2G(1)σ (x , y; t) + hσ(x , y; t) , (117)

where the inhomogeneities are given by

hσ(x , y; t) =DL
�

δ(x − y)∇2 − 2δ′′(x − y)
�

G(0)−σ(x , y; t). (118)

Importantly, for generic initial conditions (assuming the absence of long-range order) the con-
nected Green’s functions on the lattice will decay to zero with distance, which implies that

G(0)+ (x , y; 0) = ρ(x , 0)ρ(y, 0) , G(0)− (x , y; 0) = 0 . (119)

This results in
G(0)+ (x , y; t) = ρ(x , t) ρ(y, t) , G(0)− (x , y; t) = 0 . (120)

The sub-leading contributions fulfil (driven) diffusion equations
�

d
d t
−D∇2

�

G(1)σ (x , y; t) = hσ(x , y; t) . (121)

These are heat equations with a time-dependent external source acting along the line x = y .
Let us recapitulate the main results obtained in this section.
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• The average fermion density ρ(x , t) evolves diffusively

∂tρ(x , t) =D∇2
xρ(x , t) . (122)

• The density correlations G+(x , y, t) and the coherence fluctuations G−(x , y; t) admit
expansions in powers of a0/L, cf. eqn (116).

• As a consequence of the absence of long range order in the initial state, the off-diagonal
coherences vanish at leading order, i.e.

G(0)− (x , y; t) = 0 . (123)

• Since the initial density correlations are factorized G(0)+ (x , y, 0) = ρ(x , 0)ρ(y, 0) and
then evolve diffusively, the density correlations remain uncorrelated at leading order in
the expansion for all times t, i.e.

G(0)+ (x , y; t) = ρ(x , t)ρ(y, t) . (124)

• As a consequence of the triangular structure of the equations of motion, the coherence
fluctuations, which are of order O(L−1), evolve diffusively but are subject to a source
term depending on the spatial variation of the fermion density

∂t G
(1)
− (x , y; t) =D(∇2

x +∇
2
y)G

(1)
− (x , y; t) + h−(x , y; t) , (125)

where h−(x , y, t) is given by (118) or equivalenty by

h−(x , y, t) = 2DL∇x∇y(δ(x − y)ρ(x , t)ρ(y, t)) .

• As the densities in the two replicas are by construction initially uncorrelated they remain
uncorrelated at order a0/L at any time

G(1)+ (x , y; t) = 0 , (126)

where h+(x , y, t) is given by (118) or equivalenty by

h+(x , y, t) = 2DL∇x∇y(δ(x − y)ρ(x , t)ρ(y, t)) .

• As the densities in the two replicas are by construction initially uncorrelated they remain
uncorrelated at order a0/L at any time

G(1)+ (x , y, t) = 0 . (127)

This means that the connected density correlations are of order O((a0/L)2), in agree-
ment with known properties of the steady state [56].

6.3.1 Late time regime Dt/L2� 1

In this regime we have

ρ(x , t) = ρ(x ,∞) +O(e−γt) , γ≥
4π2D

L2
. (128)

Here we have used the fact that there are low-lying magnon excitations with dispersion (79)
and the smallest non-zero momentum is 2π/L. At asymptotically late times the relaxation to
the steady state is exponential in time, and only the lowest “excited” mode contributes to the
dynamics.
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6.3.2 Intermediate time regime Dt/L2� 1�Dt/a2
0

In this regime the continuum approximation applies as Dt � a2
0, but correlations have not yet

spread throughout the entire volume and all low-lying excited modes (with momenta close to
zero) contribute to the dynamics. In order to work out the solution of our system of equations
in this regime we require the Green’s function

�

d
d t
−D∇2

�

G2(x , t; y , t ′) = δ(2)(
x − y
L
)δ(t − t ′) . (129)

With kn,m =
2π
L (n, m)T , we have

G2(x , t; y , t ′) = θ (t − t ′)
∑

n,m∈Z
e−ikn,m·(x−y)−D(t−t ′)k2

n,m

=
θ (τ)e−

ξ2

4τ

4πτ
ϑ3(i

ξ1

4τ
, e−

1
4τ )ϑ3(i

ξ2

4τ
, e−

1
4τ ) , (130)

where ϑ3 is an elliptic Theta function whose arguments were transformed by a modular trans-
formation and we have defined

ξ=
x − y
L

, τ=
D(t − t ′)

L2
. (131)

The correlation functions of interest can be decomposed as e.g.

G(1)− (x , y; t) = G(x , y; t) +H(x , y; t), (132)

where G(x , y, t) is the solution of the homogeneous equation with the appropriate initial con-
ditions and H(x , y, t) is the solution of the inhomogeneous equation with vanishing initial
conditions. With x = (x , y), the latter can be written as

H(x , y, t) =

∫ ∞

0

d t ′
∫ L

0

∫ L

0

d2z
L2

G2(x , t; z, t ′) h−(z1, z2, t ′)

=

∫ t

0

d t ′
∫ 1

0

dz K(ζ1 − z,ζ2 − z,τ)ρ2(zL, t ′) , (133)

where

K(ζ1,ζ2,τ) =
2D

πL2(4τ)3
e−

ζ2
1+ζ

2
2

4τ g1(ζ1,τ)g1(ζ2,τ) ,

g1(ζ,τ) = 2ζϑ3(i
ζ

4τ
, e−

1
4τ )− iϑ′3(i

ζ

4τ
, e−

1
4τ ) . (134)

Here we have defined

τ(t ′) =
D(t − t ′)

L2
, ζ1 =

x
L

, ζ2 =
y
L

. (135)

The two equivalent expressions in eqn (133) are related by integration by parts.

6.3.3 Numerical test of the scaling limit

We now test the accuracy of the continuum approximation for the domain-wall initial state
(6.2.2). In the continuum we replace the initial conditions (102) by

G(0)+ (x , y; 0) = θ (
L

2
− x)θ (

L

2
− y) ,

G(1)− (x , y; 0) = δ(
x − y
L
)θ (

L

2
− x) . (136)
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Importantly these correctly reproduce the sum rules (93). Strictly speaking we should smear
out the delta-function over some microscopic length scale associated with the high-energy
cutoff of the continuum theory. We have verified that this essentially only modifies the short
time behaviour. Using the initial conditions (136) we find

ρ(x , t) =
1
2
+

2
π

∞
∑

n=0

sin(k2n+1 x)
2n+ 1

e−Dtk2
2n+1 , (137)

G(x , y; t) =
ρ( x+y

2 , t/2)e
−(ξ1−ξ2)

2

8τ

p
8πτ

ϑ3(−
π

2
− i
ξ1 − ξ2

8τ
e−

1
8τ )

+
e
−(ξ1−ξ2)

2

8τ

4
p

2πτ
ϑ3(i

ξ1 − ξ2

8τ
e−

1
8τ )−

e
(ξ1−ξ2)

2

8τ

4
p

2πτ
ϑ3(−

π

2
− i
ξ1 − ξ2

8τ
e−

1
8τ ) . (138)

The contribution H(x , y; t) is then obtained by numerically integrating (133) with the density
(137). The result can then be directly compared to the full lattice model. Recalling that
x = ja0, y = ka0 and the lattice spacing is a0 = L/L we expact that for sufficiently large L we
have

g−(L
x
L

, L
y
L

; t)≈
1
L

G(1)− (x , y; t) +O(L−2) . (139)

In Fig. 7 we show a comparison of the lattice and continuum results for (x/L, y/L) = (1
2 , 3

8)
and L = 48,96, 192.
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Figure 7: Comparison between g−(L/2,3L/8; t) as a function of J t/L2 on a ring
of L = 48 (blue dashed), L = 96 (yellow dotted), L = 192 (gree dot-dashed) sites
with domain wall initial conditions and G(1)− (x , y; t) (red solid). The continuum limit
result is approached throughout the depicted time range as L increases.

We observe that as L is increased, the lattice result approaches the continuum one,
as expected. The agreement between lattice and continuum is excellent throughout the
intermediate time range considered. In Fig. 8 we show the analogous comparison for
(x/L, y/L) = (1

2 , 23
48) and L = 96. The lattice and continuum results match perfectly, and

the L-dependence is negligible in the sense that the results for L = 48,192 are indistinguish-
able on the scale of the plot. We also show the result for G(x , y; t) only, which is clearly
different. This shows that the “interaction term” h−(x , y; t) in the continuum equations (117)
is important.
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Figure 8: Comparison between g−(L/2, 23L/48; t) as a function of J t/L2 on a ring
of L = 96 (blue dashed) sites with domain wall initial conditions and G(1)− (x , y; t)
(red solid). The dotted drown line is the result for G(x , y; t) only.

6.3.4 "Diagonal" correlations in the scaling limit

So far we have considered the two-point functions Gσ(x , y; t) for non-vanishing separations
x 6= y . As we will see later on, the "diagonal" correlations Gσ(ξ

p
t,ξ
p

t; t) are of interest in
the study of operator spreading. We therefore turn to their analysis next.

In the following we present a numerical check that as a function ξ = xp
t

the diagonal

correlations Gσ(ξ
p

t,ξ
p

t; t) factorize in the leading order in 1
L

E[Gσ(ξ
p

t,ξ
p

t; t)α] = E[Gσ(ξ
p

t,ξ
p

t; t)]α , (140)

in the limit L → ∞, t → ∞. In order to avoid finite size effects, in the study of operator
spreading, we also take the limit L→∞. In Fig. 9 we plot E[G(ξ)2] = G(0)+ (ξ×

p
t,ξ×

p
t, t)

at different times and compare it to the asymptotic distribution, which is approached as 1p
t
,

as presented in Fig.10.
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Figure 9: On the left we plot the comparison of E[G(ξ)2] at time t = 150 (the blue
line), and the square of expression (173) (the black dashed line). On the right we
plot the difference between the asymptotic profile, and finite time results. The system
size is fixed to L = 120.
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Figure 10: In this plot we show the scaling of the maximal difference, with respect
to the coordinate ξ, between the average of square of E[G(ξ)2] for times between
50 and 150 and the square of expression (173) (blue dots). We can see that the
difference decays as 1p

t
. Indeed, the linear extrapolation (black line) yields the value

at the origin 8× 10−4.

6.4 Evolution of higher point correlation functions

We now turn to multi-point correlation functions in the Q-SSEP. To ease notations we set
L = 1 = D (which implies J = L2) in the remainder of this section. It is straightforward
to reintroduce L,D in the various equations by dimensional analysis. The main point we
make here is to show that higher point correlation functions satisfy equations of motion with
a triangular structure similar to eqn (114) in the scaling limit.

We consider n-point correlation functions of the form

gn(l1, ..., ln) = E[Gl1 l2 Gl2 l3 ...Gln l1] =:





n

ln
l1

...



=:

�

n

�

, (141)

which we call n-point bubbles due to its the diagrammatic representation. The discrete indices
l1, ..., ln take values in {1, ..., L}, L is the number of sites of the system, Gi j = Tr(ρc†

j ci) and
E[•] is the expectation value w.r.t. the noise. In the diagrammatic representation each index
la is a node and Gla lb

is a directed edge from node la to lb.
In the scaling limit (J = L2 → ∞) the n-bubbles become functions of the continuous

variables xa := la/L ∈ [0,1] and they have an expansion in inverse powers of L,

gn = g(0)n + L−1 g(1)n + L−2 g(2)n + . . . . (142)

As shown in Appendix G, the first n − 1 terms in this expansion are actually zero and the
leading order of an n-bubble scales with L−(n−1). We furthermore show that any expectation
value of products of bubbles will factorize at leading order into products of expectation value.
Therefore, if interested in the leading order of any correlation function it is enough to study
bubbles 5.

5Open diagrams such as E[Gx y Gyz] decay exponentially in time and are of no interest. Pinched diagrams such
as E[Gx y Gy x Gx x] can be obtained by continuity from the three-bubble E[Gx y Gyz Gzx] as the limit where z → x
(to be precise, this is true for the connected part only). Therefore, the leading order of any correlation function is
encoded into bubbles.
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Denoting the leading contribution of any term by the superscript #, we find the time evo-
lution of n-point bubbles to be

d
d t

�

n

�#

=
L
∑

a=1

∆xa

�

n

�#

+
L
∑

a,b=1
a<b

∂xa
∂xb









b− a

lb−1

la

la+1





#



n− b+ a

la−1

lb

lb+1





#

+ (la↔ lb)



 .

(143)

The equations suggests that the leading contribution of a n-point bubble diffuses and is sourced
by the product of the leading contribution of smaller bubbles - hence the "triangular" struc-
ture. The source term arises if to indices xa and xb are in contact and its construction can be
visualized as follows: The original n-bubbles is squeezed together such that the nodes xa and
xb touch each other and the diagram forms an eight. Then the eight is split apart into two
disconnected bubbles and we sum over the two possible ways how one can attribute xa and
xb to the two nodes at the splitting junction. To illustrate this equation, we give its explicit
form in the case of 3-point bubbles.

d
d t

�

x

yz
�#

=(∆x +∆y +∆z)
�

x

yz
�#

+ ∂x∂y

�

δ(x − y)
�

x

�# �

zy

�#
+ (x ↔ y)

�

+ ∂y∂z

�

δ(y − z)
h

y

i#
�

xz

�#
+ (y↔ z)

�

+ ∂z∂x

�

δ(z − x)
h

z

i# �

yx

�#
+ (z↔ x)

�

.

(144)

6.5 Dictionary for 2-replica operators

Since initially the aim was to find equations for the evolution of any correlation function on
two replicas, we will show here how Wick’s theorem can be used to find a correspondence
between any connected 2-replica correlation function and the leading diagrams contributing
to these correlation functions - which are bubbles by the argument in the last section.

Any 2-replica operator can be written in terms of na,i = c†
a,ica,i (where a = 1,2) and pairs

of S+j = c†
1, jc2, j and S−k = c1,kc†

2,k (fermions on different replica commute in our convention).
Note that we need the same number of S+ and S−, otherwise the quantum expectation number
is zero for a Gaussian state. Wick’s theorem applies if the state of the system is described by
a Gaussian density matrix ρ = ec†Mc/Tr(ec†Mc), which contains all possible quadratic terms in
fermionic creation and annihilation operators.

As an example, the four-point correlation function E[〈S+x S−y n1,an2,b〉], where 〈·〉 is the
quantum expectation value, decomposes into

−
h

a b xy

i

+
�

a x

by
�

+
�

b x

ya
�

+
�

x b

ya
�

. (145)

We learned in the last section that products of bubbles factorize at leading order. Therefore, the
correspondence two-replica correlation functions and bubbles (which we will in the following
denote by ∼) is on the level of the connected part. To leading order in L we have

E[〈S+x S−y n1,an2,b〉]c ∼
�

x b

ya
�

. (146)
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This correspondence can be carried further to any combination of operators. First consider,

E
�

〈S+x1
S−y1

...S+xn
S−yn
〉
�c
∼ −

∑

σ∈Sn,τ∈Sn−1





2n
yσ(n)

xn

yσ(1)

xτ(1)



 , (147)

where Sn is the permutation group of n elements.
Next, any correlation function of the form E

�

〈n1,a1
· · ·n1,al

n2,b1
· · ·n2,bk

〉
�c

is in fact a cor-
relation function of the product of 1-replica operators, E

�

〈na1
· · ·nal

〉〈nb1
· · ·nbk

〉
�c

. Therefore,
the leading contribution of its connected part is not given by a single l + k bubble, but rather
by the connected part of the product of two bubbles with l and k nodes. These diagrams
scale with even higher (negative) power of L than a k + l-bubble, and their time evolution
has not been considered in the last section. Still we can give the correspondence for 1-replica
correlation functions of the form

E
�

〈na1
...nal

〉
�c ∼ (−1)l+1

∑

σ∈Sl−1





l
aσ(l−1)

al

aσ(1)

aσ(2)



 . (148)

Finally, the most general correlation function E
�

〈S+x1
S−y1

...S+xn
S−yn

n1,a1
...n1,al

n2,b1
...n2,bk

〉
�c

has
as its leading contribution bubbles with 2n + l + k nodes that must be arranged on a circle
according to the following rules:

• every x is followed by either b or y;

• every y is followed by either a or x;

• every a is followed by either a or x;

• ever b is followed by either b or y .

One can convince oneself of these rules by looking at the example given above.

7 Application: Operator spreading

In this section, we will consider the large scale dynamics of operator spreading, which attracted
a significant amount of attention in recent years as an indicator of quantum chaos [72, 73].
Research, thus far, has mostly focused on operator spreading in isolated quantum systems, or in
random unitary circuits [28,29,74,75,75,76,76–78]. It is, however, important to understand
operator spreading in continuous (in time) systems, which are coupled to an environment.
The Q-SSEP represents a perfect test-bed to address these questions.

We will focus on two aspects of operator spreading, the first one being the out-of-time
ordered correlators (OTOC), which can in some cases be related to Lyapunov exponents [72,
73], and secondly on the hydrodynamics of the operator entanglement spreading [79–94],
which has been conjectured to be able to distinguish between integrable and non-integrable
isolated systems [95, 96], even in cases when OTOCs fail to distinguish between different
types of dynamics [96]. Operator entanglement is also interesting due to its relation to the
computational complexity in the matrix product ansatz based algorithms.

In what follows we will consider the spreading of the single site fermion creation and
annihilation operators ci , c†

i . Without loss of generality, we will focus on the time evolution
of operator c0. For every realization of the noise, the time evolution of these operators is free,
meaning that

c0(t) =
∑

i

Ai(t)ci . (149)
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Nevertheless, we have to keep in mind that coefficients

Ai(t) = Tr(c†
i c0(t)) (150)

are fluctuating objects.

7.1 Out-of-time ordered correlation functions

In general, the weight of an operator O(t) that has spread to site x at time t can be quantified
by summing up the contributions of the commutators between the operator O(t) and the basis
elements of the local operator algebra e(r)x ∈ {c

†
x , cx , nx , I− nx}

C(x , t) =
∑

r

1
Tr(1)

Tr
�

[O(t), e(r)x ]
†[O(t), e(r)x ]

�

. (151)

For the operator O(0) = c0, the OTOC C(x , t) can be related to the amplitudes Ax(t) defined
in (150)

C(x , t) = 4− |Ax(t)|2 . (152)

Note the constant 4, which arises due to the non-commutativity of the basis elements associ-
ated with different sites of the chain.

The OTOC amplitude (152) can also be accessed by considering the dynamics of the two
point function, if the system is initially prepared in the state with a single fermion at position
x . Namely, the two point function

G[x]0,0 (t) = Tr(c†
0c0ρ

[x](t)) = Tr(c†
0(t)c0(t)ρ

[x]) = A†
i (t)A j(t)Tr(c†

i c jρ
[x]) (153)

gives us
C(x , t) = 4− G[x]0,0 (t) , (154)

if we choose ρ[x] such that Tr(c†
i′ ciρ

[x]) = δi,xδi′,x .
It is clear that at the level of averages the spreading of OTOCs is purely diffusive due to

translation invariance
E[C(x , t)] = 4−E[G[0]−x ,−x(t)] . (155)

In the scaling limit L→∞ and for large times t, we have

E[C(x , t)] = 4−
1
p

4πt
exp(−x2/4t) + o(t−1/2) . (156)

7.2 Operator entanglement

A complete operator basis of the system can be obtained by multiplying the basis operators
associated with the local algebra e(r)x . Considering a bi-partition into the subsystem A and the
subsystem B any operator can be represented as

O/
Æ

Tr(O†O) =
∑

i, j

Mi, jOA,iOB, j , (157)

where OA,i and OB,i are orthonormalized basis elements of the operator spaces associated with
the subspaces A and B respectively

TrA/B(O
†
A/B,iOA/B, j) = δi j . (158)
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Operator entanglement of the local operator O can then be obtained by performing the singular
value decomposition of the matrix [M]i, j = Mi, j , which provides the Schmidt decomposition
of the operator O

O/
Æ

Tr(O†O) =
∑

i

Æ

λiOA,iOB,i . (159)

Schmidt coefficients λi are normalized,
∑

i λi = 1, and α-th Rényi operator entanglement
entropy reads

Sα =
1

1−α
log

�

∑

i

λαi

�

. (160)

We will focus on the operator entanglement Sα(x , t) of the operator (149), for two con-
nected bipartitions A= [1, x] and B = (x , L], which can be deduced from the decomposition

O/
Æ

Tr(O†O) =
∑

i, j

M(r1,r2,...,rx ),(rx+1,...,rL)

� x
∏

k=1

e(rk)
k

�� L
∏

h=x+1

e(rh)
h

�

. (161)

Note that Sα(x , t) is defined for a fixed realization of the noise, and in the following we will
be concerned with the averaged quantity. The terms comprising the operator can be grouped
in two parts

c0(t) =
∑

i∈A

Ai(t)ci +
∑

i∈B

Ai(t)ci (162)

=

�

∑

i∈A

Ai(t)ci

��

∏

i∈B

1i

�

+

�

∏

i∈A

1i

��

∑

i∈B

Ai(t)ci

�

.

Clearly the two parts satisfy the orthogonality condition, and the Schmidt coefficients can be
obtained simply by computing the norms of associated operators:

λ1(x , t) =
x
∑

i=−L/2+1

|Ai(t)|2; λ2(x , t) =
L/2
∑

i=x+1

|Ai(t)|2 . (163)

Operator entanglement is upper bounded by the logarithm of the number of non-zero Schmidt
coefficients Sα(x , t) ≤ log(2), which can be understood as a direct consequence of the free
dynamics of fermions for any realization of the noise. Similar upper bounds can be obtained
for any composite operator [85].

Also in this case it proves useful to relate the dynamics of operator entanglement to the
two point function G[x

−]
i, j (t) = Tr(c†

i c jρ
−
x (t)) for the domain wall initial conditions

Tr(c†
l ′ ck′ρ

−
x (0)) = δl ′k′ θ (x + 1/2− l ′) , x , l ′, k′ ∈ [1, L] , (164)

as
λ1(x , t) = G[x

−]
L/2,L/2(t) . (165)

The second Schmidt coefficients can be related to the quench with a complementary domain
wall initial conditions

Tr(c†
l ′ ck′ρ

+
x (0)) = δl ′k′ ϑ(l

′ − x − 1/2) x , l ′, k′ ∈ [1, L] . (166)

as
λ2(x , t) = G[x

+]
L/2,L/2(t) . (167)
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The operator entanglement therefore takes the following suggestive form

Sα(x , t) =
1

1−α
log (G[x

−]
L/2,L/2(t)

α + G[x
+]

L/2,L/2(t)
α) . (168)

In what follows, we will be concerned with the large system size limit L→∞, while, for
the moment, keeping x and t finite. Firstly, this allows us to relate operator entanglement to
the spatio-temporal profile of two point functions, starting from the single initial domain wall
condition, with the cusp at the origin

Sα(x , t) =
1

1−α
log (G−x ,−x(t)

α + Gx+1,x+1(t)
α) . (169)

Here we used a simplified notation Gx ,x(t)≡ G[ρ]x ,x (t), for the domain wall at the origin

Tr(c†
l ′ ck′ρ0(0)) = δl ′k′ θ (1/2+ l ′) . (170)

The intuition of the large L limit, which we built in the preceding section, lies at the heart of
our conjecture that in the scaling limit t, x →∞, while ξ= xp

t
is kept fixed, the identification

(140) holds.
Equation (140), which asserts that products of Green functions are self-averaging at lead-

ing order in 1/L, implies that the averaged operator entanglement

Sα(ξ) := lim
t→∞

Sα(ξ
p

t, t) (171)

can be, in the infinite size limit limit6, reduced to the entanglement of the averaged behaviour

E[Sα(ξ)] =
1

1−α
log(E[G(ξ)]α +E[G(−ξ)]α) . (172)

In the continuum limit E[G(ξ)] satisfies the diffusion equation, which implies that

E[G(ξ)] = 1
2(Erf (ξ/2) + 1) . (173)

The hydrodynamics of the operator entanglement is therefore described by

E[Sα(ξ)] =
1

1−α
log

��

Erf (ξ/2) + 1
2

�α

+
�

Erf (−ξ/2) + 1
2

�α�

. (174)

Clearly the operator entanglement at the origin is maximal, E[Sα(0)] = log(2), for any
value of α. There are two particularly interesting limits, which we might wish to consider.
The first one is the Von Neumann entanglement entropy, which is obtained in the limit α→ 1,
and the∞ entanglement entropy α→∞, which corresponds to the logarithm of the largest
Schmidt coefficient

E[S1(ξ)] = erfc
�

ξ
p

2

�

tanh−1
�

erf
�

ξ
p

2

��

− log
�

erf
�

ξ
p

2

�

+ 1
�

+ log2 , (175)

E[S∞(ξ)] = log(2)− log(1+ erf(|ξ|/
p

2)) . (176)

In Fig. 11 we plot the entanglement entropy for different Rényi indexes α.
In this section we have demonstrated that spreading of operators in Q-SSEP model falls

in a different "dynamical universality class" from isolated quantum systems or random unitary
circuits. While in the latter two cases operators spread ballistically with diffusive corrections,

6To leading order in the system size.
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Figure 11: Asymptotic profile of operator entanglement for different values of Rényi
indexes α. The dashed curves correspond to the extremal values of parameters.

we observed that in Q-SSEP operator spreading is purely diffusive. This observation is im-
portant as it begs the question whether in open quantum systems, where the bath degrees
of freedom are much faster than the dynamics in the quantum system under consideration,
interactions with bath can in general reduce operator spreading. While this is a fundamental
question in its own right, it is also related to the possibility of using weak dissipation in order to
facilitate classical simulations of quantum dynamics. Similar behaviour was already exploited
in a number of numerical studies of quantum transport employing the dissipative boundary
driving, e.g. [97–99].

8 Summary and conclusions

In this work we have conducted a detailed analysis of the dynamics of fluctuations in the
quantum asymmetric simple exclusion process (Q-ASEP) with periodic boundary conditions.
We have demonstrated that fluctuations of the fermionic degrees of freedom obey evolution
equations of Lindblad type, and shown that that the corresponding Lindbladians can be repre-
sented as non-Hermitian quantum spin chains that can be expressed in terms of the generators
of a gl(2R) algebra. In case of the Q-SSEP this algebra is a symmetry of the Lindbladian. The
operator space in our model fragments into exponentially many (in system size) sectors that
are invariant under time evolution. This extends recent findings for the average time evolu-
tion to fluctuations. Focusing on the five sectors that describe the late time dynamics of the
Q-SSEP we showed that two of them (c±1) correspond to a Yang-Baxter integrable model.
Numerical checks of the c0 block revealed signatures consistent with integrability or weak in-
tegrability breaking in the level-spacing statistics. However, they are not conclusive given the
limitations on the system sizes we were able to simulate. In the particular case of Q-SSEP we
determined the algebraic structure underlying the steady states and slow modes that govern
the late time behaviour. We showed that the former can be understood in terms of "ferromag-
netic" gl(2R) multiplets, while the latter can be viewed as diffusive magnon-like excitations.
We then showed that the dynamics of fluctuations of observables in the Q-SSEP is described by
a closed sets of coupled linear differential-difference equations. The behaviour of the solutions
to these equations is essentially diffusive but with relevant deviations, that at sufficiently late
times and large distances can be described in terms of a continuum scaling limit which we
constructed. We established the applicability of this scaling limit over a significant range of
time and space scales by comparing it to numerical solutions of the corresponding equations
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of motion for the lattice model. We finally applied this continuum description to the study of
operator spreading at large scales, focusing on out-of-time ordered correlators and operator
entanglement. In contrast to operator spreading in random unitary circuits and isolated many-
particle Hamiltonian systems, where operators spread ballistically with diffusive corrections,
we observe purely diffusive spreading in the Q-SSEP.

Our work raises a number of interesting questions that warrant further enquiry. First, it
would be interesting to extend the results reported here for the Q-SSEP to the Q-ASEP. The
determination of the steady state manifold will be addressed in a forthcoming publication,
but the nature of excited states, dynamics of correlations and dynamics of operator spreading
are significantly harder to address. Second, there should be a field theory that gives rise
to the continuum description of the equations of motion for correlation functions and it is
an open problem to construct it. Third, it would be interesting to extend our analysis to
the case of open boundaries with particle injection and extraction. Fourth, one ought to go
beyond purely dissipative dynamics and investigate the effects of a Hamiltonian part of the
Lindbladian, at least in some limiting cases. Finally, in order to analyze the level-spacing
statistics we introduced a conjecture of how to treat additional degeneracies arising from the
presence of a higher-rank symmetry. It would be interesting to further test the validity of this
conjecture by considering larger system sizes.
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A Dictionary: Super-operator versus Hilbert space doubling ap-
proach

A.1 One replica

The basis of states (36) in the Hilbert space doubling approach correspond to physical opera-
tors as follows

||1〉 j = n j , ||2〉 j = c j , ||3〉 j = c†
j , ||4〉 j = 1− n j , (177)

where n j = c†
j c j . In terms of the Hubbard operators (40) we have

c†
j = c†

j ⊗1= E12
j + E34

j ,

c̃†
j = 1⊗ c†

j = −E13
j + E24

j . (178)

Here the "doubled" operator c̃†
j describes the right action of the annihilation operator c j , so that

the correspondence with the fermions f l/r
j defined in eqn (29) in the super-operator formalism

is
c†

j ↔ ( f l
j )

† , c̃†
j ↔ f r

j . (179)

The two states ||1〉 j and ||4〉 j form an su(2) doublet with generators J+j = E14, J z
j = E41 and

J z
j = E11 − E44. The identity operator ||1〉 j + ||4〉 j on this subspace is not an eigenstate of J z

j

but of J x
j = J+j + J−j = E14 + E41.
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A.2 Two replicas

In the two-replica case the correspondence between the sixteen basis states (53) and physical
operators is as follows

||0〉 ||1〉 ||2〉 ||3〉 ||4〉 ||5〉 ||6〉 ||7〉
c†
1c2 n1n2 n1(1− n2) (1− n1)n2 (1− n1)(1− n2) c1c†

2 n1c2 c1n2

||8〉 ||9〉 ||10〉 ||11〉 ||12〉 ||13〉 ||14〉 ||15〉
(1− n1)c2 c1(1− n2) n1c†

2 c†
1n2 (1− n1)c

†
2 c†

1(1− n2) c1c2 c†
1c†

2

In terms of the Hubbard operators (54) we have

c†
1, j = E0,8

j + E1,7
j + E2,9

j + E6,14
j + E10,5

j + E11,3
j + E13,4

j + E15,12
j ,

c†
2, j = E2,6

j + E3,8
j − E5,9

j − E7,14
j + E10,2

j − E11,0
j + E12,4

j − E15,13
j ,

c̃†
1, j = −E

1,11
j − E2,13

j + E5,12
j − E6,0

j + E7,3
j + E9,4

j − E10,15
j + E14,8

j ,

c̃†
2, j = −E

0,13
j − E1,10

j − E3,12
j + E6,2

j + E7,5
j + E8,4

j + E11,15
j − E14,9

j . (180)

The correspondence with the fermions f a;l/r
j defined in eqn (29) in the super-operator formal-

ism is
c†

a, j ↔ ( f a;l
j )

† , c̃†
a, j ↔ f a;r

j . (181)

B Steady states, low-lying states and gaps

To simplify notation we set J = 1 in this Appendix.
Via eqn (22) or eqn (24), the (local) Q-SSEP Lindbladian is expressed in terms of the so-

called tensor Casimir C for the gl(2R) or sl(2R) algebras, up to simple terms depending on
the C charges. Namely, eqn (22) can be written as (we set D0 = 1 to simplify the notation)

L∗j+1; j = C j; j+1 −
1
2
(C j+1 + C j)− R , (182)

with C j; j+1 :=
∑

AB GAB
j+1GBA

j the gl(2R) tensor Casimir.
Imagine considering the tensor product of two representations W1⊗W2 with highest weights

µ1 and µ2 of some Lie algebra (and in particular gl(2R) or sl(2R)). The tensor Casimir C12 is
defined by

C12 :=
1
2
(CW1⊗W2

− CW1
⊗ I− I⊗ CW2

) , (183)

with CW the Casimir in the representation W . Now, if |µ1,2〉 are the highest weight vectors
in W1,2 then |µ1〉 ⊗ |µ2〉 is a highest weight vector in W1 ⊗W2 with highest weights µ1 + µ2.
Thus, it is also an eigenvector of the tensor Casimir C12 |µ1〉 ⊗ |µ2〉 = κµ1;µ2

|µ1〉 ⊗ |µ2〉, with
κµ1;µ2

= 1
2(Casµ1+µ2

−Casµ1
−Casµ2

), with Casµ the value of the Casimir in the representation
of weight µ. Up to a normalisation factor (to be determined according the chosen convention),
Casµ = (µ,µ+2ρ) with ρ half of the sum over the positive roots. Here (·, ·) denotes the scalar
product on the weight space induced by the Killing form. Hence, κµ1;µ2

= (µ1,µ2) and

C12 |µ1〉 ⊗ |µ2〉= (µ1,µ2) |µ1〉 ⊗ |µ2〉 . (184)

To apply this to our problem, we have to check the normalisation of the Casimir in the
fermionic representation of gl(2R) we are using. We have GAB := f A† f B with Ĉ :=

∑

A GAA
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the total number of f fermions. Recall that Ĉ is related the C charge via Ĉ = C +R. Using the
fermionic anti-commutation rules, we compute:

∑

A,B

GABGBA =
∑

A,B

f A† f B f B † f A = Ĉ(2R+ 1− Ĉ) .

This coincides with (µp,µp +2ρ) for µp = ε1+ · · ·+εp, with εi ortho-normalized, the highest
weight of the p antisymmetric tensor and Ĉ = p or equivalently C = p − R. In particular
(µp,µq) =min(p, q) and this yields the eigien-value of the tensor Casimir in the corresponding
tensor product of gl(2R) representations.

Consider now the fully polarized state in the sector with C charge p− R with 0 ≤ p ≤ 2R.
This state is an eigenstate of the Q-SSEP Lindbladian. Since L∗j+1; j = C j; j+1−

1
2(C j+1+C j)−R,

its eigenvalue is p − (p − R) − R = 0. Thus, as claimed in the main text, the state
||Ωµp

〉 := |µp〉 ⊗ · · · ⊗ |µp〉 are zero modes of the Lindbladian L∗ ||Ωµp
〉 = 0. By action of

GL(2R) this generates ||Ωx〉= x1 x2 · · · xL with x ∈ [µp] and L∗ ||Ωx〉= 0.
Furthermore, for the tensor product states |µp〉 ⊗ |µq〉, with p 6= q, the eigen-value of

the tensor Casimir is min(p, q). As a consequence of domain wall states |µp〉
⊗M ⊗ |µq〉

⊗(L−M)

between sectors with C charges p−R and q−R are eigenstates of the Q-SSEP Lindbladian with
eigenvalues −1

2 |p−q| (because the eigenvalue is (µp,µq)−
1
2(p+q) and (µp,µq) =min(p, q)).

We can use this observation to prove that the spectrum of the Lindbladian is gapped in any
"non-homogeneous" sector (i.e. any c such that ∃ j, k s.t. c j 6= ck). Any such sector is made of
a series of homogeneous portions separated by ‘domain wall edges’ with different C-charges
on its two ends. Let us denote these domain wall edges by wα, α = 1, · · · , d, where d is the
number of homogeneous segments, and denote by c±α the two distinct C-charges on either
side of the corresponding edge. Since the total Q-SSEP Lindbladian is the sum of Lindbladian
attached to each of the edges, and since any Lindbladian is a non-positive operator, we have
the operator inequality

L∗ssep ≤
∑

α

L∗jα, jα+1 , (185)

where ( jα, jα + 1) are the two vertices connected by the edge wα. The two representations
[µR+c+α

] and [µR+c−α
] are attached to these vertices, so thatL∗jα, jα+1 is acting on their tensor prod-

uct [µR+c+α
]⊗ [µR+c−α

], as in eqn (182). As a consequence, its maximum eigenvalue is that of
the tensor Casimir on [µR+c+α

]⊗ [µR+c−α
]. The latter is diagonalized by decomposing the tensor

product [µR+c+α
]⊗[µR+c−α

] into gl(2R) irreducible representations, [µR+c+α
]⊗[µR+c−α

] = ⊕λ[µλ].
From eqn (183), its maximal eigenvalue is given by the representation µλ maximising its
Casimir. Since Casµ = (µ,µ + 2ρ) = |µ + ρ|2−|ρ|2 the maximum of the Casimir among the
representation [µλ] occurring in the decomposition of the tensor product [µR+c+α

]⊗ [µR+c−α
] is

for µλ = µR+c+α
+ µR+c−α

. All other weights µλ + ρ in this decomposition have smaller norm.
Hence, from the computation of the previous paragraph, we have

L∗jα, jα+1 ≤ −
1
2
|c+α − c−α | . (186)

This proves that all inhomogeneous sectors are gapped with a gap given by the sum of the
gaps associated with each domain wall edge.

Let us present here the proof that the one-magnons states ||p;γ,µn〉 defined in eqn (78)
are indeed eigenstates of the Q-SSEP Lindbladian L = L∗. Since the local charges G−γj is one
of the conserved currents, commuting it with the Lindbladian yields,

[L∗, G−γj ] = V−γj − V−γj−1 , (187)

with

V−γj := −(~γ · ~H j+1)G
−γ
j + G−γj+1(~γ · ~H j) + 2

∑

α :α−γ∈roots

G−αj+1Gα−γj .
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For ||p;γ,µn〉 to be an eigenstate of L∗, the last sum in the above expression has to annihilate
it. This amounts to say that either α− γ or −α have to be a positive root for all α such that
α−γ is a root. We now show that this is indeed true iff γ is a simple root. For a specific choice
of the Weyl chamber, the positive (resp. negative) roots of sl(2R) can be written as εk − εl
with k < l (resp. k > l) with εk orthonormal basis. Choose γ = εi − ε j , i < j. Then, either
α= εk − ε j (and α− γ= εk − εi) or α= εi − εl (and α− γ= ε j − εl). It is then easy to check
(by analysing each four cases) that we fulfil the condition that either α− γ or −α is positive,
for all α, if and only if j = i+1, i.e. iff γ= εi −εi+1 is a simple root. Thus, for γ= αi a simple
root, we have

V−αi
j ||Ωµ〉= (αi ,µ) (G

−αi
j+1 − G−αi

j )||Ωµ〉 ,

for any highest weight vector µ. Finally, for µ one of the fundamental weight of sl(2R), the
scalar product (αi ,µ) is equal either to 0 or to 1.

Finally, we describe here the computations needed to compare the two-replica Lindbla-
dian with the so(6) integrable spin chain Hamiltonian in the vector representation. The so(6)
generators in the vector representation can be written as

Ji j = Ei j − E j′ i′ ,

with E j = |i〉 〈 j| and i, j = 1, · · · , 6. The permutation P and trace Q operators are

P =
∑

i j

Ei j ⊗ E ji , Q =
∑

i j

Ei j ⊗ Ei′ j′ .

The tensor Casimir is C=
∑

i j Ji j ⊗ J ji . Computing, we get

C =
∑

i j

(Ei j − E j′ i′)⊗ (E ji − Ei′ j′)

= Ei j ⊗ E ji − Ei j ⊗ Ei′ j′ − E j′ i′ ⊗ E ji + E j′ i′ ⊗ Ei′ j′

= 2(P −Q) .

Hence the Lindbladian is proportional to
∑

j(Pj; j+1 −Q j; j+1), up to a constant, which differs
from the known Yang-Baxter so(6) integrable Hamiltonian H∝

∑

j(2Pj; j+1 −Q j; j+1).

C GL(2R) and U(L) interplay on steady states

The analysis of the R replica Q-SSEP zero modes presented in the main text tells us how they
decompose into representations of gl(2R): steady states in the sector with C charge equals
to p − R form an irreducible gl(2R) isomorphic to that associated with a rectangular Young
tableau with p boxes vertically and L boxes horizontally. The purpose of this Appendix is to
understand the nature of these steady states in terms of the physical degrees of freedom.

The system Hilbert space, generated by the physical fermions c†
j , decomposes into the

direct sum of sub-spaces with fixed particle numbers:

Hsys = Λ1 ⊕Λ2 ⊕ · · · ⊕ΛL ,

where L is the number of sites. Each such subspace Λm, with m particles, forms an irreducible
SU(L) representation isomorphic to arank m antisymmetric tensor in dimension L. The two
representations with m= 0 and m= L are isomorphic, and isomorphic to the scalar represen-
tation, i.e. Λ0

∼= ΛL
∼= C. The others are not isomorphic. Thus, as a SU(L)module, the system

Hilbert space decomposes as

Hsys ≡ Λ0 ⊗C2 ⊕Λ1 ⊕Λ2 · · · ⊕ΛL−1,
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where the first factor encodes for the multiplicity of the trivial representation, i.e.
Λ0 ⊗ C2 ≡ Λ0 ⊕ ΛL . We shall denote by Pm the projector on the subspace Λm with m par-
ticles.

Let us first recall a few properties of the Q-SSEP dynamics and invariant measure:

1. For each realisation of the noise, the dynamics preserves the total number of particles
M̂ =

∑

j c†
j c j and the spectrum of the density matrix (in particular it preserves pure

states).

2. The Q-SSEP invariant measure is SU(L) invariant. On each sector with fixed number of
particle, it is that induced by the SU(L) Haar measure on that orbit, see Ref. [41].

As a consequence the R replica steady states have to be covariant under the SU(L) action and
this is the route that we shall follow to understand them. We shall only discuss in details the
cases of R= 1 or R= 2 replicas.
• For one replica (R= 1).
Here the symmetry algebra is gl(2). In the c0 sector, the zero modes form a multiplet of

dimension L + 1 (spin L/2). The c±1 sectors have each a single zero mode, scalar under the
gl(2) symmetry. The SU(L) invariance of the steady measure implies that the steady mean
density matrix ρ̄ := Einv[ρ] is invariant under the SU(L) adjoint action. As a consequence, by
Schur’s lemma, it has to read:

ρ̄ := Einv[ρ] = q0P0 ⊗ σ̄2×2 + q1P1 + · · ·+ qL−1PL−1 ,

with σ̄2×2 a 2×2 matrix acting on theC2 factor of the componentΛ0⊗C2. The diagonal entries
corresponding to the L+1 projectors Pm, m= 0, · · · , L (with P0 and PL the two diagonal entries
in σ̄2×2) are zero modes belonging to the c0 sector. The off-diagonal ones in σ̄2×2 belong in
the c±1 sector and couple the empty (m = 0) and full (m = L) states. These off-diagonal
terms are non-zero if and only if there were already present in the initial mean density matrix
(because these terms are frozen under the Q-SSEP dynamics, cf. eqn (69)).

The gl(2) symmetry acts on the diagonal parts (the off-diagonal terms are scalar under
gl(2)), i.e. it acts on the projectors Pm, m= 0, · · · , L. It is easy to verify that,

J+ · Pm = (m+ 1)Pm+1 , J− · Pm = (L + 1−m)Pm−1 , J z · Pm = (2m− L)Pm ,

for m= 0, · · · , L. Thus, these projectors form a spin L/2 representation of gl(2) as they should.
Phrased differently, the gl(2) action on one replica steady state induces moves between steady
states with different particle numbers.
• For two replicas (R= 2).
By SU(L) invariance, the second moment ρ̄(2) := Einv[ρ⊗ρ] is also SU(L) invariant under

the diagonal adjoint action. Hence, by Schur’s lemma, it is block diagonal on irreducible sl(2R)
sub-representations of Hsys ⊗Hsys. That is: it decomposes as the sum over the projectors of
the irreducible SU(L) components in Hsys ⊗Hsys.

To decompose Hsys⊗Hsys as a sum of SU(L) irreducible representations is a (nice) exercise
in group theory 7. The output is the following decomposition:

Hsys ⊗Hsys ≡ (L + 3)Λ0 +
L−1
⊕

k=1

(L + 2)Λk +
L−1
⊕

p=1

L−p−1
⊕

q=0

(q+ 1)Λp+q;p , (188)

where Λr is the r-th fundamental representation of SU(L), with Young tableau made of one
column with r boxes, andΛr;s;··· the representation with Young tableau with r boxes on the first

7We thank Jean-Bernard Zuber for his help in clarifying this problem.
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column, s boxes on the second column, etc. The proof of the above formula (188) follows from
using rules for decomposing of the tensor product of two fundamental SU(L) representations:
for r ≥ s, Λr ⊗Λs = ⊕

min(s,L−r)
k=0 Λr+k;s−k.

Let us give a few examples (at least to check the general formula):
– For L = 2, Hsys = Λ0 ⊕Λ1 ⊕Λ2, with Λ2 ≡ Λ0, and

Hsys ⊗Hsys = 5Λ0 ⊕ 4Λ1 ⊕Λ1;1 .

– For L = 3, Hsys = Λ0 ⊕Λ1 ⊕Λ2 ⊕Λ3, with Λ3 ≡ Λ0, and

Hsys ⊗Hsys = 6Λ0 ⊕ 5Λ1 ⊕ 5Λ2 ⊕Λ1;1 ⊕ 2Λ2;1 ⊕Λ2;2 .

– For L = 4, Hsys = Λ0 ⊕Λ1 ⊕Λ2 ⊕Λ3 ⊕Λ4, with Λ4 ≡ Λ0, and

Hsys ⊗Hsys = 7Λ0 ⊕ 6Λ1 ⊕ 6Λ2 ⊕ 6Λ3

⊕Λ1;1 ⊕ 2Λ2;1 ⊕ 3Λ3;1

⊕Λ2;2 ⊕ 2Λ3;2

⊕Λ3;3 .

We see a simple (triangular) pattern emerging. Formula (188) is a compact way to encode it.
As a consequence, the quadratic fluctuations Einv[ρ⊗ρ] in the steady measure decompose

as:

Einv[ρ⊗ρ] = P0⊗σ̄
(0)
(L+3)×(L+3)+

L−1
∑

m=1

Pm⊗σ̄
(m)
(L+2)×(L+2)+

L−1
∑

p=1

L−p−1
∑

q=0

Pp+q;q⊗σ̄
(p+q;q)
(q+1)×(q+1) , (189)

where Pr;s;··· are the projectors on Λr;s;···. The square matrices σ̄(∗)n×n are n×n matrices paramet-
rizing the two replica steady states. The total number of parameters (without taking the trace
normalization into account) is

# parameters = (L + 3)2 + (L + 2)2(L − 1) +
L−1
∑

k=1

k2(L − k)

=
(L + 1)(L + 2)2(L + 3)

12
+ 2
(L + 1)(L + 2)(L + 3)

6
+ 2 .

It matches the total dimension of the zero mode spaces that we identify in the main text using
gl(4) arguments. This shows that we didn’t miss any zero modes using these arguments and
that, given their C charge, these zero modes form irreducible gl(4) multiplets.

The above construction and counting do not distinguish between the different C charge
sectors. To do that we have to refine the decomposition (188) of Hsys ⊗Hsys by taking into
account the u(1) charges in U(L) and not only the SU(L) content. Indeed, some of the Young
tableaux appearing in the decomposition of Hsys⊗Hsys are of the form ΛL;s with a first column
full with L boxes. As SU(L) representation ΛL;s and Λs are isomorphic but not as U(L) repre-
sentations. Going from Λs to ΛL;s amounts to add +1 to all occupation numbers n j (recall that
the U(L) Cartan generators are the occupation numbers, H j = n j , whereas those of SU(L) are
h j = H j −H j−1). We denote Λ+s := ΛL;s (for instance Λ+0 = ΛL) and Λ++s := ΛL;L;s.

Using Λr ⊗Λs = ⊕
min(s,L−r)
k=0 Λr+k;s−k, for r ≥ s, the detailed analysis of the decomposition

of Hsys ⊗Hsys is:
– Λ0 comes either (a) from the tensor products Λ0 ⊗Λ0 Λ0, Λ0 ⊗ΛL  Λ+0 , ΛL ⊗Λ0 Λ+0
and ΛL ⊗ΛL  Λ++0 , or (b) from Λk ⊗ΛL−k Λ+0 , with k = 1, · · · , L − 1;
– Λk, for any k = 1, · · · , L−1, comes either (a) from the tensor products Λr⊗Λs Λr+s=k with
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r = 0, · · · , [ k
2], s = [ k+1

2 ], · · · , k or with the role of r and s exchanged, and there are (k + 1)
such possibilities, or (b) from Λr⊗Λs Λr+s=L+k with r, s = k, · · · , L, and there are (L+1−k)
such possibilities.
– Λp+q;q comes from Λr ⊗Λs Λp+q;q, with r + s = 2p+ q and r, s = p, · · · , p+ q. They are all
of the form Λp+q;q and not Λ+p+q;q because their Young tableaux have two columns (so that a
full column could not have been produced from the tensor product Hsys ⊗Hsys).

Thus, the U(L) decomposition of Hsys ⊗Hsys is

Hsys ⊗Hsys ≡ (Λ0 + (L + 1)Λ+0 +Λ
++
0 ) +

L−1
⊕

m=1

((m+ 1)Λm + (L + 1−m)Λ+m)

+
L−1
⊕

p=1

L−p−1
⊕

q=0

(q+ 1)Λp+q;p . (190)

In particular, Λ0 is the empty state and Λ++0 the totally (on both replicas) full state.
The zero modes in the c+1 sector are the intertwiners from Λr to Λ+r , or from Λ+r to Λ++r

(i.e. they are operators intertwining representations whose Young tableaux differ by a full
column). Explicitly, in the c+1 sector, we have the intertwiners:

Λ0→ Λ+0 [(L + 1)−times] , Λ+0 → Λ
++
0 [(L + 1)−times]

Λm→ Λ+m [(m+ 1)(L + 1−m)−times] , m= 1, · · · , L − 1 .

The total number of C = 1 intertwiners is:

# off.diag= 2(L + 1) +
L−1
∑

m=1

(m+ 1)(L + 1−m) =
(L + 1)(L + 2)(L + 3)

6
.

It matches the dimension of the c+1 (or c−1) zero modes, as it should. The c−1 intertwiners
are the transposed. The c±2 intertwiners are the empty-to-full interwiners Λ++0 → Λ0 and
Λ0→ Λ++0 , respectively.

As a consequence, the decomposition (189) of Einv[ρ ⊗ ρ] can be refined. The matrices
σ̄
(0)
(L+3)×(L+3) can be decomposed into blocks of sizes 1, L+1, 1, according to the decomposition

Λ0+(L+1)Λ+0 +Λ
++
0 in eqn (190). The matrices σ̄(m)(L+1)×(L+1) can be decomposed into blocks

of sizes m+ 1, L + 1−m, according to the decomposition (m+ 1)Λm + (L + 1−m)Λ+m in eqn
(190). The off-diagonal blocks correspond to the c±1 sector (and c±2). The gl(4) algebra act
(faithfully on each sector of given charge C = 0,±1,±2) on these intertwiners.

D Unfolding and level-spacing for a Poisson process.

Given N i.i.d random variables X i (the eigenvalues of an integrable Hamiltonian) taking values
in R with density pX (x), we perform a local change of variables such that the new variable
x̂(x) describes the average number of old variables below x ,

x → x̂(x) = N

∫ x

−∞
pX (x

′)d x ′ . (191)

This procedure is called "unfolding the spectrum" and it ensures that the density of the new
variables p̂X ( x̂)d x̂ = pX (x)d x is indeed uniform, p̂X ( x̂) = 1/N .

The probability to find Ns = k of the new random variables in the interval [0, s] is now is
given by the Poisson distribution

P[Ns = k] =
(λs)k

k!
e−λs , (192)
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with average "even rate" λ = 1. We can define the probability pS(s) to observe a spacing s
between adjacent eigenvalues by

P[Ns = 0] =

∫ ∞

s
pS(s

′)ds′ . (193)

Deriving w.r.t s provides us with the exponential distribution pS(s) = e−s.

E Two point functions in the Lindbladian formulation

As the state ||12〉 belongs to the sector c0 we can project the equations of motion (96) to this
sector. This means that at each site we need to consider only the states ||0〉 j , ||1〉 j , ||2〉 j , ||3〉 j ,
||4〉 j , ||5〉 j , which form a six dimensional gl(4) multiplet with C charge zero. A representation
of the gl(4) generators on the corresponding subspace is obtained by retaining only the Hub-
bard operators Ek,l

j , with k, l = 1, · · · , 6 in eqn (55). The two gl(2) sub-algebras associated
with each of the replicas are spanned by generators leaving operators on the opposite replica
invariant. The action of Jα1 (resp. Jα2 ) is as in the 1-replica case, i.e.

J+1, j = E14
j ⊗1= G12

j , J+2, j = 1⊗ E14
j = G43

j ,

J z
1, j = (E

11
j − E44

j )⊗1= G11
j − G22

j ,

J z
2, j = 1⊗ (E

11
j − E44

j ) = G44
j − G33

j . (194)

On this subspace we have 2na, j − 1= J z
a, j , which allows us to rewrite (96) as

d
d t
〈12||(J z

1, j + 1)(J z
2,k + 1)||ρ(2)(t)〉= 〈12||(J z

1, j + 1)(J z
2,k + 1)L̂2,c0

||ρ(2)(t)〉 . (195)

We now observe that while the identity ‖12〉 is not an eigenstate of J z
a, j , it is in fact a simulta-

neous eigenstate of J x
a, j = J+a, j+J−a, j , a = 1,2. To proceed we therefore "rotate the quantization

axis" and work in a basis of eigenstates of J x
a, j rather than J z

a, j . This basis is given by

||1〉 j =
1
2

, ||2〉 j = n1, j −
1
2

, ||3〉 j = n2, j −
1
2

, ||4〉 j = 2(n1, j −
1
2
)(n2, j −

1
2
) ,

||0〉 j = c†
1, jc2, j , ||5〉 j = c1, jc

†
2, j .

The eigenvalues of J x
1, j , J x

2, j on these states are (1,1), (−1,1), (1,−1), (−1,−1), (0, 0) and (0, 0)
respectively. We note that ‖1〉= 2L⊗L

j=1 |1〉 j . It is now apparent that J z
a, j as well as S±j defined

in (83) create single-particle excitations over the state ‖1〉. As the Linbladian L̂2,c0
commutes

with J x
1,2 the corresponding particle numbers are good quantum numbers and (195) as well as

its analog for g−( j, k; t) can therefore be viewed as Schrödinger equations in the two-particle
sector.

F Spectrum of the two-replica Lindbladian in the two-particle sec-
tor

As a consequence of the free dynamics governing the behaviour of Q-SSEP model for every
realization of the noise, the equations for the n-point functions wrt the noise close, as discussed
in the main text. In this appendix we will focus on the spectral properties in the case of two
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point functions. Furthermore, we will specialize our discussion to the closed loop diagrams, on
which, once again, the dynamics closes. Correlation functions associated with disconnected
diagrams decay exponentially fast and are, as such, of lesser importance when considering the
hydrodynamics of the model.

On the level of two-point functions it proves advantageous to define two sets of observables,
comprised of diagonal and off-diagonal correlations

A±jk := E[G j jGkk ± Gk jG jk] . (196)

Interestingly, the dynamics for correlations (196) decouples and is governed by equations

d
d t

A±i j = (∆i +∆ j)A
±
i j ± 2δi, j(A

±
i,i+1 + A±i−1,i)∓ 2(δ j,i+1 +δi, j+1)A

±
i, j . (197)

We can consider equations (197) as a two particle problem, where the positions of two
particles is associated with indices i and j, which can be solved through the scattering wave
ansatz

A±j,k(t) = (e
i(p j+qk) + S±(p, q) ei(q j+pk)) eωt , for j < k ,

A±j, j(t) = C±(p, q) ei(p+q) j+ωt ,

A±j,k(t) = (e
i(pk+q j) + S(p, q) ei(qk+p j)) eωt , for j > k .

The decay rate ω is governed by the non-interacting, i.e. purely diffusive, part of equations
(197) (∆i +∆ j), which yields

ω(p, q) = 2(cos p+ cos q− 2) . (198)

Coefficients C±(p, q) and S±(p, q) can be obtained by considering the equations for A±i,i+1(p, q)
and A±i,i(p, q), yielding

S+(p, q) = −ei(q−p) (cos p+ cos q)(eip + e−iq + 2)− 4(1+ cos(p+ q))
(cos p+ cos q)(e−ip + eiq + 2)− 4(1+ cos(p+ q))

, (199)

C+(p, q) =
4

(ω+ 4)
(e−ip + eiq + S+(p, q)(e−iq + eip)) , (200)

and

S−(p, q) = −
ei(p+q) − 2eiq + 1
ei(p+q) − 2eip + 1

, (201)

C−(p, q) = 0 . (202)

Note that the coefficients S− and C−, as well as the equations for A−i j(t) match perfectly the
Bethe ansatz coefficients and equations for the two particle sector of the Heisenberg X X X
chain. Finally, periodicity implies the quantization conditions

S±(p, q) eipL = S±(p, q) e−iqL = 1 . (203)

Due to the translational invariance the total momentum takes the values k = p+q = 2πn
L , n ∈ Z,

which means that we can reduce the eigenvalue problem at the fixed total momentum k to a
single transcendental equation. The quantization condition can be represented in terms of a
new variable ξ

z := eiu/2, ξ := z + z−1 = 2 cos(u/2) , (204)
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which parametrizes the difference of particle momenta u= p−q, and gives a compact expres-
sion for the eigenvalue

ωn(z) = 2(z + z−1)cn − 4= 2(cn ξ− 2) , (205)

where we introduced cn = cos(2πn
L ), and eigenfunctions8

Ai j(t) = eik(i+ j)/2 [z i− j+N + (−)nz−(i− j+N)] eωt , for i < j ,

A j j(t) = eik j 4[
zN−1 + (−)nz1−N

z−1 + z
] eωt .

For k = 2πn
L 6= π (i.e. for cos(k/2) 6= 0), the S-matrix, for a total moment k = 2πn

L , reads9

S+n (z) = −
z−1Rn(z)
zRn(z−1)

; R+n (z) := 4cn − (z + z−1)(1+ zcn) , (206)

S−n (z) = −
cn − 1/z
cn − z

(207)

and since eikL/2 = (−1)n, the quantization condition reduces to

S±n (z) z
L = (−1)n . (208)

The condition can be neatly represented in terms of Chebyshev-like polynomials

P+p (ξ) := z2p + z−2p , Q+p (ξ)ξ := z2p−1 + z1−2p (209)

Q−p (ξ)(z − z−1)ξ := z2p − z−2p , P−p (ξ) (z − z−1) := z2p+1 − z−1−2p . (210)

Namely, for chains of even length L = 2N , we have to consider the following cases for A+:

• N = 2M even, n even
(4cn − ξ)ξQ+M (ξ) = cn ξ P+M (ξ) , (211)

• N = 2M + 1 odd, n even

(4cn − ξ) P+M (ξ) = cn ξ
2 Q+M+1(ξ) , (212)

• N = 2M + 2 even, n odd

(4cn − ξ) P−M (ξ) = cn ξ
2 Q−M+1(ξ) , (213)

• N = 2M + 1 odd, n odd

(4cn − ξ)ξQ−M (ξ) = cn ξ P−M (ξ) . (214)

And similarly for A−:

• N = 2M even
cnP+M (ξ) =Q+M (ξ) , (215)

• N = 2M + 1 odd
cnQ+M−1(ξ) = P+M (ξ) . (216)

A numerical analysis of these equations reveals that solutions z always lie on the unit circle
|z|= 1, except for two reciprocal values, see Fig. 12.

8up to the multiplicative constant
9Note that for A+ the special case with k = π has to be analysed separately.
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-2 0 2

-1

0

1

Figure 12: Solutions of the equation (211) for N = 12 and n = 4,6, 8. All of the
solutions lie on the unit circle (red dashed line) except for two solutions at any n, if
n 6= N/2.

G Derivation of the time evolution of n-point bubbles

Here we show how to arrive at (143) in the main text that describes time evolution of the
n-point bubble gn(l1, ..., ln) = [Gl1 l2 Gl2 l3 ...Gln l1], where [. . . ] is shorthand for E[. . . ]. The time

evolution of the two-point functions Gi j = Tr(ρc†
j ci) is given by the stochastic differential

equation [41]

dGi j = (δi j(Gi+1,i+1 + Gi−1,i−1)− 2Gi, j)Jd t (217)

+i
�

Gi, j−1dW̄ j−1 + Gi, j+1dW j − Gi−1 jdW i−1 − Gi+1, jdW̄ i
�

,

where we used the convention for the Brownian motion dW from (3) with p = q (Q-SSEP),
which makes dW dimensionless by introducing the rate parameter J . Using Ito convention we
have

[dGi jdGkl]

Jd t
= δ jk[Gi, j±1Gk±1,l] +δil[Gi±1, jGk,l±1]− (δi,k±1 +δ j,l±1)[Gil Gk j] , (218)

where we introduced the shorthand notation Gi, j±1Gk±1,l := Gi, j+1Gk+1,l + Gi, j−1Gk−1,l and
similarly δi,k±1 := δi,k+1 +δi,k−1.

G.1 Three-point bubble

To illustrate the derivation, we will first explicitly derive the evolution of the three-point bub-
ble,

d g3(i, j, k) =[dGi jG jkGki] + [Gi jdG jkGki] + [Gi jdG jkGki] (219)

+ [dGi jdG jkGki] + [Gi jdG jkdGki] + [dGi jG jkdGki] .

In particular we need

[dGi j]

Jd t
= δi j[Gi±1,i±1]− 2[Gi j] , (220)

[dGi jdG jkGki]

Jd t
= [Gi, j±1G j±1,kGki] +δik[Gi±1, jG j,i±1Gii]− (δi, j±1 +δ j,k±1)[GikGkkGki] .

(221)
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The terms in (219) without Kronecker deltas yield discrete Laplacians (∆i+∆ j+∆k)g3(i, j, k).
The contact terms (terms with Kronecker delta) are built by products of two bubbles which
appear in a symmetric manner. We therefore introduce the notation

g3(i| j, k) := [GiiG jkGk j] =
h

i kj

i

, (222)

f3(i| j) := g3(i| j, k) + g3( j|i, k) =
h

i kj

i

+
h

j ki

i

. (223)

The idea behind this notation is that the vertical bar separates bubbles into disconnected pieces.
In writing fn(var.) we mean the symmetrization of gn(var.+ other var.) in the displayed vari-
ables. Of course, fn(var.) also depends on the other variables (in total there must be n vari-
ables), but for simplicity they are suppressed in this notation. Denoting Di j the operator that
produces the contact terms between i and j, we find

Di j g3(i, j, k) = δi j ( f3(i + 1| j) + f3(i − 1| j))− (δi+1, j +δi−1, j) f3(i| j)
= δi j(∆i f3(i| j))− (∆iδi j) f3(i| j).

(224)

To summarize the discrete evolution, we have found that

d g3(i, j, k)
Jd t

=







∑

a∈{i, j,k}

∆a +
∑

a,b∈{i, j,k}
unorderd pairs

Da,b






g3(i, j, k) . (225)

This sum over nodes and unordered pairs of nodes can be easily generalized to n-point bub-
bles with an appropriate generalization of f3(i| j), see (233) to understand the spirit of this
equation.

The scaling limit of (225) is taken by introducing continuous variables

x = i/L, y = j/L, z = k/L,

while sending J = L2 to infinity (note that we set L = D = 1 for simplicity). For simplicity,
will denote the 3-point bubbles in the scaling limit by the same name 10. Expanding in inverse
powers of L, the Laplacian becomes (the factor L2 on the rhs. is there to cancel with 1/J)

L2∆i g3(i, j, k)→∆x g3(x , y, z) +O(L−2 g3) , (226)

while a Kronecker delta scales as

δi j → L−1δ(x − y) +O(L−2) . (227)

Therefore the contact term becomes

L2Di j g3(i, j, k)→L−1
�

δ(x − y)∆x f3(x |y)−δ′′(x − y) f3(x |y)
�

+O(L−2 g3)

= L−1∂x∂y(δ(x − y) f3(x |y)) +O(L−2 g3) .
(228)

10There is a small subtlety in taking the scaling limit. Formally we should contract the discrete equation with
a test function (here done for a one-point function), (h, g1) =

∑L
i=1 h(i)g1(i), and then approximate the sum as

an integral, (h, g1)→
∫ 1

0
d xh̃(x) g̃1(x) (we denote the continuous function by a tilde in this footnote). However,

the approximation leads to an error that also scales with some power of L. It can be quantified to scale as O(L−2)
using the "mid-point rule",

�

�

�

�

�

L
∑

i=1

1
L

f (x i)−
∫ 1

0

f (x)d x

�

�

�

�

�

≤
1

24L2
max

x∈[0,1]
f ′′(x) ,

where x i = (i − 1/2)/L. To have an error of at most O(L−2 g̃3) in (226) and (228), one should therefore define
the continuous 3-point function as g̃3((i − 1/2)/L, ...) = g3(i, ...). When L →∞ this becomes the same as the
definition in the main text.
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The last step is obtained by partial integration w.r.t x , which is allowed, since all of these
equations should be thought of evaluated against a test function, i.e.

∫

d xd yϕ(x , y)∂x∂y(δ(x − y) f3(x |y)) . (229)

Then, we can summarize the continuous evolution equation as

d g3(x , y, z)
d t

=
∑

a∈{x ,y,z}

∆a g3(x , y, z) + L−1
∑

a,b∈{x ,y,z}
unordered pairs

∂x∂y(δ(a− b) f3(a|b)) . (230)

We now discuss the scaling of the 3-point bubble in inverse powers of L that, a priori, could
have an expansion according to

g3(x , y, z) = g(0)3 + L−1 g(1)3 + L−2 g(2)3 + . . . .

If we assume that the initial density matrix ρ0 does not involve long range correlations, then
all n-point bubbles are originally zero, except for the average fermion density g1(x). At a later
time, g3(x , y, z) can only be non-zero if the source term L−1 f3(x |y) is non-zero. But f3(x |y)
also satisfies a diffusion equation with new source terms11 of which one is L−1 g3(x |y|z). At
0th order in 1/L, g3(x |y|z) satisfies a pure diffusion equation with non-zero initial condition,
because at time zero (and therefore at all times) it factorizes, g3(x |y|z) = g1(x)g1(y)g1(z),
and g1(x) is non-zero as argued above. In the original equation for g3(x , y, z), this gives rise
to a non-zero source term only at order L−2 (consecutively "descending" the source terms we
encountered two factors of L−1) and the lower orders are actually zero, g(0)3 = g(1)3 = 0. More
general, the leading order of an n-bubble is n−1 and we denote it by the superscript # in the
following. This argument also shows that at leading order the expectation value of products of
bubbles factorizes. Rewriting (230) at leading order in terms of diagrams gives rise to (144)
in the main text.

G.2 n-point bubbles

We denote the discrete indices by l1, ..., ln ∈ {1, ..., L} and the continuous variables by
x1, ..., xn ∈ [0, 1]. The generalization of (225) is

d gn(l1, ..., ln)
Jd t

=







L
∑

a=1

∆la +
L
∑

a,b=1
a<b

Da,b






gn(l1, ..., ln) , (231)

where

Da,b = δla ,lb
(∆la fn(la|lb))− (∆laδla ,lb

) fn(la|lb) , (232)

11Explicitly, one finds

d
d t

g3(x |y, z) = (∆x +∆y +∆z)g3(x |y, z) + L−12∂y∂z(δ(y − z)g3(x |y|z))

+ L−1
�

∂x∂y(δ(x − y) •) + ∂x∂z(δ(x − z) •)
�

( f3(x , y, z)).

Here we made full use of the notation introduced in (222): g3(x |y|z) is a product of three one-bubbles and
f3(x , y, z) = g3(x , y, z) + g3(x , z, y) is the symmetrization of a a single three-bubble in all variables.
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and for a < b we generalize

fn(la|lb) = gn(la, la+1, ..., lb−1|lb, lb+1, ..., la−1) + gn(lb, la+1, ..., lb−1|la, lb+1, ..., la−1) (233)

=





b− a

lb−1

la

la+1

n− b+ a

la−1

lb

lb+1



+





b− a

lb−1

lb

la+1

n− b+ a

la−1

la

lb+1



 . (234)

In terms of diagrams the contact term fn(la|lb) has an easy visualisation: The original n-
bubbles is squeezed together such that the nodes la and lb touch each other and the diagram
forms an eight. Then the eight is split apart into two disconnected bubbles and we sum over
the two possible ways how one can attribute la and lb to the two nodes at the splitting junction.

Then it is easy to see, that the generalization of (230) is just

d gn(x1, ..., xn)
d t

=
L
∑

a=1

∆xa
gn(x1, ..., xn) + L−1

L
∑

a,b=1
a<b

∂xa
∂xb
(δ(xa − xb) fn(xa|xb)) . (235)

In particular, at leading order in inverse powers of L, we recover (143) in the main text.
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