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LOCALLY MOVING GROUPS AND LAMINAR ACTIONS ON
THE LINE

Joaquín Brum, Nicolás Matte Bon, Cristóbal Rivas, Michele Triestino

Abstract. — We prove various results that, given a sufficiently rich subgroup G of the group of
homeomorphisms on the real line, describe the structure of the other possible actions of G on
the line, and address under which conditions such actions must be semi-conjugate to the natural
defining action of G. The main assumption is that G should be locally moving, meaning that for
every open interval the subgroup of elements fixing pointwise its complement, acts on it without
fixed points. One example (among many others) is given by Thompson’s group F .

In Part I, we show that when G is a locally moving group, every C1 action of G on the real
line without fixed points is semi-conjugate to its standard action or to a non-faithful action. It
turns out that the situation is much wilder when considering actions by homeomorphisms: for a
large class of groups, including Thompson’s group F , we describe uncountably many conjugacy
classes of faithful minimal actions by homeomorphisms on the real line.

In Part II, we prove structure theorems describing the dynamics of exotic C0 actions, based
on the study of laminar actions, which are actions on the line preserving a lamination. When G
is a group of homeomorphisms of the line acting minimally, and with a non-trivial compactly
supported element, then any faithful minimal action of G on the line is either laminar or conjugate
to its standard action. Moreover, when G is a locally moving group satisfying a suitable finite
generation condition, we prove that for any faithful minimal laminar action on the line, there is a
map from the lamination to the line, called a horograding, which is equivariant with respect to
the action on the lamination and the standard action, and satisfies some extra suitable conditions.
This establishes a tight relation between all minimal actions on the line of such groups, and their
standard actions.

Among the various applications of this result, we show in Part III that for a large class of
locally moving groups, the standard action is locally rigid, in the sense that every sufficiently
small perturbation in the compact-open topology gives a semi-conjugate action. This is based on
an analysis of the space of harmonic actions on the line for such groups.

Along the way we introduce and study several concrete examples.



iv

Résumé (Groupes localement mobiles et actions laminaires sur la droite réelle)
Nous prouvons plusieurs résultats qui, étant donné un sous-groupe G suffisamment riche du

groupe des homéomorphismes de la droite réelle, décrivent la structure des autres actions possibles
de G sur la droite, et indiquent sous quelles conditions ces actions doivent être semi-conjuguées
à l’action naturelle de G. L’hypothèse principale est que G doit être localement mobile, ce qui
signifie que pour chaque intervalle ouvert, le sous-groupe des éléments qui fixent le complémentaire
point par point, y agit sans points fixes. Un exemple (parmi beaucoup d’autres) est donné par le
groupe F de Thompson.

Dans la partie I, nous montrons que si G est un groupe localement mobile, toute action C1 de
G sur la droite sans points fixes est soit semi-conjuguée à son action standard soit à une action
non-fidèle. Il s’avère que la situation est beaucoup plus sauvage lorsqu’on considère les actions
par homéomorphismes : pour une grande classe de groupes, y compris le groupe de Thompson
F , nous décrivons une quantité non-dénombrable de classes de conjugaison d’actions minimales
fidèles par homéomorphismes sur la droite réelle.

Dans la partie II, nous obtenons des théorèmes de structure qui décrivent la dynamique des
actions C0 exotiques, par l’étude des actions laminaires, qui sont des actions sur la droite qui
préservent une lamination. Lorsque G est un groupe d’homéomorphismes de la droite dont l’action
est minimale et possédant un élément non trivial à support compact, alors toute action minimale
fidèle de G sur la droite est soit laminaire, soit conjuguée à son action standard. De plus, lorsque
G est un groupe localement mobile satisfaisant une condition de génération finie convenable, nous
prouvons que pour toute action laminaire minimale fidèle sur la droite, il existe une application
de la lamination vers la droite, appelée une horograduation, qui est équivariante par rapport à
l’action sur la lamination et l’action standard, et satisfait d’autres conditions convenables. Ceci
établit une relation étroite entre toutes les actions minimales sur la droite de tels groupes, et leurs
actions standard. Parmi les diverses applications de ce résultat, nous montrons dans la partie III
que pour une grande classe de groupes localement mobiles, l’action standard est localement rigide,
dans le sens où toute perturbation suffisamment petite dans la topologie compacte-ouverte donne
une action semi-conjuguée. Ceci est basé sur une analyse de l’espace des actions harmoniques sur
la ligne pour de tels groupes.

En cours de route, nous introduisons et étudions plusieurs exemples concrets.
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CHAPTER 1

INTRODUCTION

In this work we prove structure and rigidity results in the setting of groups acting by homeo-
morphisms, or diffeomorphisms, on the real line. The study of group actions on one-manifolds is
a classical topic at the interface of dynamical systems, topology, and group theory, which is still
under intense development. An account of the theory can be found in several recent monographs,
such as Ghys [Ghy01], Navas [Nav11], Clay and Rolfsen [CR16], Deroin, Navas, and the third
named author [DNR], Kim, Koberda, and Mj [KKM19]; see also the surveys by Mann [Man18]
and Navas [Nav18]. A central problem in this theory is to describe all possible actions of a given
group G on a connected one-manifold M (that is, either the line or the circle), or more precisely
its homomorphisms to the group Homeo0(M) of orientation-preserving homeomorphisms, or to
the groups Diffr0(M) of orientation-preserving diffeomorphisms of class Cr. There is essentially no
loss of generality in restricting to actions that have no (global) fixed points in the interior of M ,
that will be called irreducible. It is customary to consider actions up to (topological) conjugacy,
but in the one-dimensional setting, it is also convenient to consider actions on the line up to a
weaker equivalence relation, called semi-conjugacy, which captures their behavior on minimal
closed invariant subsets. The definition of semi-conjugacy is recalled in Chapter 2; here let us
simply remind that every action φ : G → Homeo0(R) of a finitely generated group on the real line
either is semi-conjugate to a minimal action (i.e. an action all whose orbits are dense) or φ(G)
has a discrete orbit, in which case φ is semi-conjugate to a cyclic action (i.e. an action by integer
translations); moreover this minimal or cyclic action is unique up to conjugacy (see e.g. Navas
[Nav11]). Hence, studying actions of finitely generated groups up to semi-conjugacy is essentially
the same as to study their minimal actions up to conjugacy.

The point of view that we take in this work is the following. Let G ⊆ Homeo0(R) be a subgroup
of the group of orientation-preserving homeomorphisms of the real line (which will typically be
countable or finitely generated, although not always). By definition, such a G has a preferred
action on R, that we shall refer to as its standard action. We are interested in the following
general question: what can be said about other actions φ : G → Homeo0(R) on the real line? In
particular, are there natural conditions on G and φ, which imply that φ must be reminiscent (for
instance, semi-conjugate) to the standard action of G?

To expect some rigidity, it is quite natural to focus on groups G ⊆ Homeo0(R) whose defining
action is sufficiently rich, so as to be reflected in the intrinsic structure of G. A natural condition
in this direction is the requirement that G should admit non-trivial elements supported in any
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non-empty open interval I ⊂ R; a subgroup of Homeo0(R) with this property will be called
micro-supported. An important strengthening of this property is the condition that G be locally
moving. Given an open interval I ⊂ R, we denote by GI ⊂ G the subgroup consisting of elements
that fix R∖ I pointwise.

Definition 1.0.1. — We say that a subgroup G ⊆ Homeo0(R) is locally moving if for every
open interval I ⊂ R, the subgroup GI acts on I without fixed points.

There are many finitely generated (and even finitely presented) locally moving subgroups of
Homeo0(R). A well-known example is Thompson’s group F , customarily defined by an action on
the interval (0, 1) by piecewise linear (PL) homeomorphisms, which is locally moving and plays
the role of its standard action (modulo identifying (0, 1) with R by a homeomorphism). The
group F is among the most studied examples of subgroups of Homeo0(R), yet little was known on
the problem of describing its actions on the line; the reader can keep it in mind as a motivating
special case of our main results.

This paper is divided into three parts and has four main results (Theorems A, B, C and D
below), complemented by various applications, examples, and additional related results. Together,
these results provide a satisfactory picture of actions on the line of micro-supported and locally
moving subgroups of Homeo0(R). The remaining part of this introduction provides an outline of
the main results of each part.

1.1. Part I. Rigidity results for locally moving groups: C1 actions

The main result of Part I is a rigidity result for actions of locally moving subgroups of
Homeo0(R) by C1 diffeomorphisms on the line. For G ⊆ Homeo0(R), we denote by Gc the
subgroup consisting of elements with relatively compact support. If G is locally moving, a
standard simplicity argument (Proposition 3.2.1) shows that the commutator subgroup [Gc, Gc]
of Gc is simple and contained in every non-trivial normal subgroup of G. In particular, a locally
moving subgroup G ⊆ Homeo0(R) admits a largest proper quotient G/[Gc, Gc]. The following is
our first main result.

Theorem A (Rigidity of C1 actions of locally moving groups)
Any irreducible action φ : G → Diff1

0(R) of a locally moving subgroup G ⊆ Homeo0(R) is
semi-conjugate either to
(i) the standard action of G on R, or

(ii) to a non-faithful action (which factors through the largest quotient G/[Gc, Gc]).

Note that in the setting of Theorem A, the standard action of G may, or may not, be semi-
conjugate to some differentiable action (when it is not, case (i) never occurs). For example, the
standard PL action of Thompson’s group F is well known to be conjugate to an action by C∞

diffeomorphisms, by a construction of Ghys and Sergiescu [GS87] (a C1 realization was previously
known to Thurston; see the discussion by Cannon, Floyd, and Parry [CFP96, §7]). In §7.3, we
describe some results in the opposite direction for some relatives of Thompson’s group F , inspired
by the work of Bonatti, Lodha, and the last author [BLT19].

On the other hand, locally moving subgroups of Homeo0(R) often admit non-faithful actions
on the line. In fact, such actions exist whenever G is finitely generated, as in this case the groups
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of germs of G at ±∞ are non-trivial proper quotients of G, which can be faithfully represented
inside Homeo0(R) (see Mann [Man15a], where this result is attributed to Navas). Actions of
the largest quotient G/[Gc, Gc] have to be studied separately, and can be understood in some
relevant cases. For example, the largest quotient of Thompson’s group F coincides with its
abelianization F = F/[F, F ] ∼= Z2, and its actions on the real line are all semi-conjugate to an
action by translations (i.e. a homomorphism to (R,+)).

It should also be noted that case (ii) can arise even if the original action φ is faithful, but
there is a closed invariant subset on which φ is not faithful (see Theorem 5.3.2 for a more precise
conclusion in this case). However, we will show in Corollary 5.3.3 that, under the additional
assumption that G is fragmentable (Definition 1.2.3), this behavior can be ruled out for C1 actions
on compact intervals. This implies, for example, that every faithful irreducible C1 action of F
on [0, 1] is semi-conjugate (on the interior) to its standard action. This conclusion cannot be
improved to obtain a topological conjugacy, as showed by the construction of smooth actions
with an exceptional minimal set from [GS87].

Theorem A can be compared to some previously known results, which are true even in C0

regularity. It has long been known that any two locally moving subgroups of Homeo0(R) are
abstractly isomorphic if and only if their standard actions are topologically conjugate. This is
customarily deduced from much more general reconstruction theorems of Rubin, holding true
for groups of homeomorphisms of locally compact spaces [Rub89, Rub96]. Thus, for a locally
moving subgroup G ⊆ Homeo0(R), its standard action is characterized as the unique faithful
locally moving action, up to conjugacy. However, this does not allow to draw many conclusions
on the problem of understanding the possible actions of G on the line in general (this can be seen
as a special case of a problem raised in [Rub89, p. 493]). A result announced by Ghys [Ghy01]
shows that for Thompson’s group T acting on the circle, every non-trivial C0 action on the circle
is semi-conjugate to its standard action. Ghys’ proof was based on bounded cohomology, a tool
that is not available for actions on the line; some different proofs are available (see e.g. the work
of Le Boudec and the second name author [LBMB18, Theorem 4.17], or §7.2 here), and rely
essentially on compactness of the circle. On the line, some results describing the structure of all
actions (also in C0 regularity) where known for some much larger (uncountable) subgroups of
Homeo0(R). In particular the group Homeoc(R) of compactly supported homeomorphisms admits
a unique C0 action on the real line up to conjugacy, by a result of Militon [Mil16] (relying on
results of Matsumoto [Mat14]). Recently, Chen and Mann [CM23] obtained the same result for
the groups Diffrc(R) of compactly supported diffeomorphisms (with r ̸= 2).

The methods behind these results cannot be applied to countable locally moving subgroups of
Homeo0(R) to prove Theorem A. One fundamental reason is that Theorem A is merely not true
for C0 actions. For example, we have the following.

Proposition 1.1.1 (Abundance of exotic C0 actions). — Thompson’s group F admits
uncountably many semi-conjugacy classes of faithful minimal actions φ : F → Homeo0(R).

Note that a faithful minimal action of a group G cannot be semi-conjugate to a non-faithful
action of G. In what follows, given a locally moving subgroup G ⊂ Homeo0(R), we call an action
φ : G → Homeo0(R) exotic if it is not semi-conjugate neither to the standard action of G, nor to
any non-faithful action. Many different constructions of exotic actions will be provided throughout
the paper, both for Thompson’s group F and for more general classes of locally moving subgroups
of Homeo0(R). The existence of such exotic actions is a difficulty that needs to be solved to
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prove Theorem A: we need to show that they cannot be semi-conjugate to any C1 action. This
task naturally splits in two problems: the first is to understand the topological dynamics of
exotic actions, and the second is to identify an appropriate obstruction to their C1 smoothability.
The first (topological) problem is in some sense the central object of this work: in Part I we
include only the results needed to prove Theorem A (more precise structure theorems in the
purely topological setting are the object of Parts II and III). With these results in hand, the
solution to the second (differentiable) problem would be substantially easier for actions of class
Cr with r > 1, for which many general restrictions are known; actions by C1 diffeomorphisms
are notoriously much more flexible, making the argument more delicate. Among the ingredients
of the differentiable part of our proof, it is worth mentioning a result of Deroin, Kleptsyn, and
Navas [DKN07] (implicit in the work by Katok and Mezhirov [KM98]), which guarantees the
existence of hyperbolic fixed points in C1 actions without invariant Radon measures, and the fact
that every locally moving subgroup of Homeo0(R) contains many copies of Thompson’s group
F (Proposition 3.3.1), which follows from the “2-chain lemma” of Kim, Koberda, and Lodha
[KKL19] (whose argument, based on a presentation of F , goes back to Brin [Bri99]).

Further results in Part I. — As an offspring of the topological part of the proof of Theorem
A, we also provide various more elementary rigidity results of similar flavor, which generalize
with a unified approach some results already present in the literature. For example, we show
that Theorem A also holds true for actions by piecewise analytic homeomorphisms (Remark
4.2.6). In §7.1, we provide “soft” sufficient conditions on a huge (necessarily uncountable) locally
moving subgroup G ⊆ Homeoc(R), that imply uniqueness of the standard action up to conjugacy
(recovering the previously mentioned results by Militon [Mil16], and by Chen and Mann [CM23]),
and show a general rigidity result for locally moving subgroups of Homeo0(S1), based on elementary
methods, that generalizes Ghys’ results for Thompson’s group T [Ghy01].

1.2. Part II. The dynamics of C0 actions: laminations and horogradings

In Part II we push our study further, by looking at actions of locally moving subgroups
of Homeo0(R) in C0 regularity. Given the abundance of actions in this case, showcased by
Proposition 1.1.1, the next natural step is to obtain structure theorems describing them. An
important role in our answer to this problem will be played by the study of invariant laminations
for actions on the line, and the related notion of horograding, that we introduce and develop. For
simplicity, we shall discuss here only the case of minimal actions, keeping in mind that for finitely
generated groups, this is no substantial loss of generality upon to passing to a semi-conjugate
action.

Definition 1.2.1 (Lamination). — A lamination of the real line is a non-empty collection
L of non-empty bounded open intervals, which is closed (for the topology of convergence of
endpoints), and cross-free, namely any two I, J ∈ L are either nested or disjoint. A lamination
is covering if it defines a cover of R. An action φ : G → Homeo0(R) will be called laminar if it
preserves a covering lamination.

Laminar actions are classically studied in the setting of group actions on the circle, where
they appear naturally in connection with actions of Fuchsian groups and 3-manifolds groups, see
e.g. the book of Calegari [Cal07, §2.1]. For actions on the real line, they have not been studied
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systematically yet, perhaps because of an apparent lack of examples. One of the main findings of
this paper is that laminar actions appear naturally, although in contexts which are very different
in nature from the classical examples on the circle.

We begin Part II by studying general properties of laminar actions (Chapter 8). A particularly
useful fact is that, in a laminar action φ : G → Homeo0(R), elements g ∈ G can be classified
according to the dynamics of φ(g) into two types, that we call totally bounded and pseudo-
homothetic; more general subgroups H ⊆ G can be classified into four types: totally bounded,
pseudo-homothetic, horocyclic, and focal. Without getting into the details of this classification
here (see Proposition 8.1.10), let us mention that it is modeled on the classical context of group
actions on trees which fix an end (see Gromov [Gro87, §3.1], or Caprace, Cornulier, Monod, and
Tessera [CCMT15] for a more modern presentation). A reason for this analogy is that, given an
invariant lamination for a minimal action φ : G → Homeo0(R), one can construct an action of G
on (topological) real tree, with a fixed end. This construction is not required for the statements or
proofs of the main results, but we provide details in Chapter 11, as it helps building intuition and
it is used in some examples. It also plays an important role in our subsequent work [BMBRT].

Part II contains two main results. The first highlights a tight connection between laminar
and locally moving actions. These two types of actions are in strong contrast (for instance, a
locally moving subgroup G ⊆ Homeo0(R) acts minimally on the space of ordered n-tuples of
distinct points of R for every n ≥ 1, while the existence of an invariant lamination contradicts
this property for n = 2). It turns out that for a vast class of subgroups of Homeo0(R), all faithful
minimal actions satisfy the following dichotomy.

Theorem B (Laminar/locally moving alternative). — Let G ⊆ Homeo0(R) be a subgroup
acting minimally on R and containing a compactly supported element. Then every faithful minimal
action φ : G → Homeo0(R) is either laminar or locally moving. The second possibility holds if
and only if the standard action of G on R is locally moving, and φ is conjugate to it.

For a subgroup G acting minimally on R, the existence of a compactly supported element is
equivalent to G being micro-supported. In particular, Theorem B implies that all exotic actions
of a locally moving subgroup G ⊆ Homeo0(R) are laminar. When G is not locally moving, the
theorem implies that all faithful minimal actions of G, including the standard one, are laminar.
Under an additional hypothesis of finite generation, we obtain a much stronger result (Theorem
C) that shows that all exotic actions are still tightly related to the standard action, although not
via a semi-conjugacy. This is based on the following notion.

Definition 1.2.2 (Horograding). — A positive (respectively, negative) horograding of a
laminar action φ : G → Homeo0(R) by an irreducible action ρ : G → Homeo0(R), is a pair (L, h)
consisting of a φ-invariant covering lamination L, and a map h : L → R, such that:

— for every intervals I, J ∈ L with I ⊆ J , we have h(I) ≤ h(J) (respectively, h(I) ≥ h(J));

— for every I ∈ L and g ∈ G, we have h(φ(g)(I)) = ρ(g)(h(I)).

We shall see how the existence of a horograding of an action φ by an action ρ implies that
the large-scale dynamics of φ is controlled by ρ. For example, the type of each element g ∈ G

under φ (according to the classification of elements in laminar actions) is determined by ρ(g) (see
Proposition 8.2.10). For this reason, we believe that this notion is a useful concept in the study
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of structure theorems for group actions on the line, as it provides a possible replacement of a
semi-conjugacy to a well-understood “model” action when the latter does not exist.

To state the second main result of Part II, we also need the following terminology.

Definition 1.2.3. — For a subgroup G ⊆ Homeo0(R), the fragmentable subgroup of G is the
(normal) subgroup Gfrag generated by elements with support contained in a half-line. When
G = Gfrag, we say that G is fragmentable. (1)

Theorem C (Horograding exotic actions). — Let G ⊂ Homeo0(R) be a subgroup acting
minimally on R, whose fragmentable subgroup Gfrag is non-trivial and finitely generated. Then G

is locally moving, and every faithful minimal action φ : G → Homeo0(R) is either topologically
conjugate to the standard action, or it is laminar and horograded by the standard action.

Theorem C can be equivalently formulated as a classification of actions into three types, as
follows.

Theorem C’. — Let G ⊂ Homeo0(R) be as in Theorem C. Then, every irreducible action
φ : G → Homeo0(R) is semi-conjugate to an action in one of the following families.
— (Non-faithful) A non-faithful action, factoring through the largest quotient G/[Gc, Gc]
— (Standard) The standard action of G on R.
— (Horograded) A faithful minimal laminar action, horograded by the standard action.

Further results in Part II. — In addition to these main results, a substantial portion of Part
II is devoted to applications, discussion of concrete cases, examples and constructions of laminar
actions, and investigation of their finer properties.

A natural question is which locally moving subgroups G ⊂ Homeo0(R) actually do admit
minimal exotic (and hence laminar) actions. We do not have a complete answer to this question,
and obtaining a full characterization appears to be difficult. We provide various sufficient condition
on G which imply the existence of minimal exotic actions, and are satisfied by many familiar classes
of locally moving subgroups of Homeo0(R); these include all locally moving groups of piecewise
linear or piecewise projective homeomorphisms of intervals, see §9.3. On the other hand, we
manage to construct a finitely generated, fragmentable, locally moving subgroup G ⊂ Homeo0(R)
without any exotic action (Theorem 10.4.6).

For groups within the scope of Theorem C, although the theorem provides a satisfactory
understanding of the qualitative dynamics of all exotic actions, the amount and finer properties
of such actions depend subtly on G. An interesting family of examples is provided by the
Bieri–Strebel groups G(X;A,Λ) from [BS16]. These are groups of PL homeomorphism of an
open interval X ⊆ R, naturally associated with the choice of a countable multiplicative subgroup
Λ ⊂ R>0 and a countable Λ-submodule A ⊂ R (the definition is recalled in §2.3). The groups
G(X;A,Λ) are all locally moving, and Thompson’s group F belongs to this family. We describe
a natural construction of exotic actions that applies to all groups G(X;A,Λ), that we refer to as
the jump cocycle construction (explained in §§6.2 and 10.1). This construction provides a family
of actions φ±,≤Λ , which are all laminar and horograded by the standard action, indexed by the

1. When G is locally moving, it is not difficult to show that G is fragmentable in this sense if and only if for
every finite cover R = I1 ∪ · · · ∪ Ik, the group G is generated by the subgroups GIi

. This property if often called
the fragmentation property in the literature on groups of homeomorphisms of manifolds, justifying the terminology.
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choice of an orientation of the interval X, and of an invariant (pre)order ≤Λ on the abelian group
Λ; depending on Λ.

In Chapter 10, we study actions of G(X;A,Λ) in the case X = R. From the results of [BS16]
we can easily characterize when the group G(R;A,Λ)frag is finitely generated. When this is the
case, using Theorem C, we show that all exotic actions of G(R;A,Λ) arise from the jump cocycle
construction (Theorem 10.3.1). For suitable choices of (A,Λ), this provides examples with exactly
two minimal exotic actions up to conjugacy. In contrast we give an example where G(R;A,Λ)frag
is not finitely generated, and the group G(R;A,Λ) has additional minimal laminar actions that
cannot be horograded by the standard action (Proposition 10.2.3), showing that the assumption
of finite generation of Gfrag in Theorem C cannot be dropped.

The situation for intervals X ⊊ R is completely different, as showed by the case of Thompson’s
group F . It is well-known that F is finitely generated and fragmentable, so Theorem C also
applies to it. In this case there is a much richer amount of horograded laminar actions. Indeed the
jump cocycle construction provides only two non-conjugate actions, yet (as stated in Proposition
1.1.1), the group F has uncountably minimal faithful actions. In Chapter 13, we provide a variety
of constructions of minimal laminar actions of F , which all share a somewhat similar flavour
and many qualitative properties (forced by Theorem C), but are pairwise non-conjugate. These
constructions admit an arborescent set of variations, which keep yielding new non-conjugate
actions. For this reason, we are not able to conjecture any reasonably explicit classification of the
minimal laminar actions of F up to conjugacy.

1.3. Part III. Local rigidity and the space of harmonic actions

In Part III, we use the results from Part II (notably Theorem C’) to study the topology of the
space of actions on the line of locally moving groups. The main application, Theorem D below, is
a local rigidity result for a class of locally moving groups (including Thompson’s group F ).

We write Homirr(G,Homeo0(R)) for the space of irreducible actions of G on R. Recall that
the space Homirr(G,Homeo0(R)) can be endowed with the natural compact-open topology, which
means that a neighborhood basis of a given action φ ∈ Homirr(G,Homeo0(R)) is defined by
considering, for every ε > 0, finite subset S ⊂ G, and compact subset K ⊂ R, the subset of
actions {

ψ ∈ Homirr(G,Homeo0(R)) : max
s∈S

max
x∈K

|φ(s)(x) − ψ(s)(x)| < ε

}
.

Definition 1.3.1. — An action φ ∈ Homirr(G,Homeo0(R)) is locally rigid if there exists a
neighborhood U ⊂ Homirr(G,Homeo0(R)) of φ such that every ψ ∈ U is semi-conjugate to φ in
an orientation-preserving way (we will simply say positively semi-conjugate).

Recall that for G ⊂ Homeo0(R) and an open interval I ⊂ R, we denote by GI the subgroup of
G of elements that are supported in I. Our local rigidity criterion relies on a finite generation
assumption on the subgroups GI (that we state here in a slightly non-optimal form for simplicity).

Theorem D (Local rigidity). — Let G ⊂ Homeo0(R) be a locally moving subgroup. Assume
that G is finitely generated, and that there exist y, z ∈ R such that G(−∞,z) and G(y,+∞) are
finitely generated. Then, the positive semi-conjugacy class of the standard action is open in
Homirr(G,Homeo0(R)). In particular, the standard action is locally rigid.
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It is well known that the assumptions of Theorem D are satisfied by Thompson’s group F ,
so that in particular its standard action is locally rigid. They are also satisfied by various other
examples. The assumption of finite generation of subgroups of the form G(−∞,y), G(z,+∞) is an
actual restriction on G. It implies finite generation of the fragmentable subgroup Gfrag (which
allows to use Theorem C), but it is stronger in general. With Proposition 16.4.1, we give an
example of a finitely generated, fragmentable, locally moving subgroup G ⊂ Homeo0(R), whose
standard action is not locally rigid, showing that this assumption in Theorem D is substantial.

A well-developed approach to local rigidity of group actions on the line is through the space
LO(G) of left-invariant orders on G. Any such order defines an irreducible action, by the so-called
dynamical realization, and isolated points in LO(G) produce locally rigid actions (see Mann and
the third author [MR18, Theorem 3.11]). This can be used to show that some groups, for instance
braid groups (see Dubrovin and Dubrovina [DD01], or the monograph by Dehornoy, Dynnikov,
Rolfsen, and Wiest [DDRW08]), do have locally rigid actions. However, the converse to this
criterion does not hold, and this approach has been more fruitful in the opposite direction, namely
for showing that a group has no isolated orders from flexibility of the dynamical realization (see
for instance the works by Navas [Nav10], or by Alonso, and the first and third named authors
[ABR17,AB18], as well as by Malicet, Mann, and the last two authors [MMRT19]). One difficulty
underlying this approach is that it is usually not easy to determine when two orders in LO(G)
give rise to semi-conjugate actions. Also the dynamical realization of an isolated order never
gives rise to a minimal locally rigid action (as it is the case in Theorem D).

To prove Theorem D, we introduce a new approach to local rigidity and spaces of actions on the
line, based on a compact space suggested by Deroin [Der13] as a dynamical substitute of the space
of left-invariant orders. One way to construct this space is based on work by Deroin, Kleptsyn,
Navas, and Parwani [DKNP13] on symmetric random walks on Homeo0(R). Given a probability
measure µ on G whose support is finite, symmetric, and generates G, one defines the space
Harmµ(G;R) as the subspace of Homirr(G,Homeo0(R)) of normalized µ-harmonic actions (2), that
is, actions of G for which the Lebesgue measure is µ-stationary (see §14.1 for details, and our
subsequent work [BMBRT24] for a more abstract approach). The space Harmµ(G;R) is compact
and metrizable; it is endowed with a natural topological flow

Φ: R × Harmµ(G;R) → Harmµ(G;R),

defined on it by the conjugation action of the group of translations, and has the property that
two actions in Harmµ(G;R) are positively (semi-)conjugate if and only if the are on the same
Φ-orbit. It was shown in [DKNP13] that every irreducible action is semi-conjugate to a normalized
µ-harmonic action. As a starting point of our approach, we show that the harmonic representative
can be chosen to depend continuously on the original action. More precisely, Theorem 14.2.1
states that there exists a continuous retraction

(1.3.1) r : Homirr(G,Homeo0(R)) → Harmµ(G;R),

called the harmonic retraction, which has the property that two irreducible actions φ and ψ are
positively semi-conjugate, if and only if r(φ) and r(ψ) belong to the same Φ-orbit. Our proof of
continuity of the harmonic retraction is based on an alternative description of Harmµ(G;R) as a

2. In the first version of this work, we proposed to name it the Deroin space of G, acknowledging the intuition
from [Der13] and the efforts of Bertrand Deroin to advertise this object.
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quotient of the space of left-invariant preorders on G (Theorem 14.3.16), which also implies that
Harmµ(G;R) does not depend on the choice of the probability measure µ, up to homeomorphism.

Continuity of the harmonic retraction implies that the structure of orbit closures of the flow
(Harmµ(G;R),Φ) carries topological information on how the positive semi-conjugacy classes sit
inside Homirr(G,Homeo0(R)). Notably, local rigidity of irreducible actions can be deduced by
studying the dynamics of the translation flow on Harmµ(G;R) (Corollary 14.2.4). For groups
as is Theorem D, this can be done starting from the classification in Theorem C’: the space
Harmµ(G;R) can be naturally decomposed into three Φ-invariant subsets according to that result.
Showing local rigidity of the standard actions amounts to show that the exotic actions cannot
accumulate on the standard one in Harmµ(G;R), and this requires understanding the dynamics
of the flow Φ on them. Using Theorem C’, and studying properties of horograded actions in
the space Harmµ(G;R), we manage to show that for a group G as in Theorem D, the flow
(Harmµ(G;R),Φ) has extremely simple dynamics in restriction to the faithful actions. Namely we
show the following, which implies Theorem D.

Theorem D’ (Dynamics of the translation flow on harmonic actions)
Let G ⊂ Homeo0(R) be as in Theorem D. Fix any symmetric probability measure µ supported

on a finite generating set of G, and consider the associated flow Φ on the space of normalized
harmonic actions Harmµ(G;R). Then, the subset U ⊂ Harmµ(G;R) of faithful actions is an open
Φ-invariant subset, and the following hold:

(i) the restriction of Φ to U is proper;

(ii) if ι ∈ U is a representative of the standard action, then its Φ-orbit is an open subset of U .

Figure 1.3.1 represents the dynamics of the flow (Harmµ(G;R),Φ) for Thompson’s group F .
We conclude by pointing out another consequence of (i): properness of the flow Φ implies that

the quotient space U/Φ is a locally compact Polish space. Together with the continuity of the
harmonic retraction (1.3.1), this has the following consequence for a group G as in the statement:
on the space of faithful minimal actions of G on the line, there exists a continuous function,
with values in a locally compact Polish space, whose value is a complete invariant of the positive
conjugacy class of an action. The existence of such an invariant is not at all a general fact for
group actions on the line: for general groups G (such as non-abelian free groups), it is not even
possible to find a measurable invariant taking values in a standard Borel space (see the discussion
in §14.4, and in particular Remark 14.4.4). This is an important conceptual difference between
actions on the line the case of group actions the circle, which can be classified up to positive
semi-conjugacy by the bounded Euler class (see Ghys [Ghy87,Ghy01]). This has been successfully
used to understand the space of actions on the circle for various discrete subgroups of Lie groups
(see for instance Burger and Monod [BM99], Matsumoto [Mat87], Mann [Man15b], or Mann and
Wolff [MW]), mapping class groups (Mann and Wolff [MW20]) or of Thompson’s group T (Ghys
and Sergiescu [GS87,Ghy01]). In contrast, a similar global understanding of actions on the line
was available only in more limited situations (mostly concerning rather small groups, or groups
admitting none or very few actions).

For groups satisfying the assumptions of Theorem D’, it is natural to study the topology of
the quotient space U/Φ, which can be interpreted as a “moduli space” of faithful minimal actions
on the line. While we can completely describe it in some cases (such as for the groups considered
in Chapter 10, in general we do not know much about it (for instance, for Thompson’s group
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F , we do not know whether the standard action is its only isolated point; see Question 16.3.5).
Obtaining a finer understanding of the topology of this space is the main problem left open by
this work.

Figure 1.3.1. The space of normalized harmonic actions of Thompson’s group F .
The outer red circle parameterizes the actions of F ab ∼= Z2, and it is pointwise fixed
by the flow Φ. The remaining Φ-orbits are the faithful actions. The purple and blue
orbits correspond to the standard action and to its conjugate by the reflection, and are
transversely isolated (this gives local rigidity). The pencils of green and yellow orbits are
the laminar actions: both pencils contain uncountably many orbits, admit a compact
transversal to the flow, and the shown convergence to limit points is uniform. The
four limit points correspond to four special cyclic actions, given by the epimorphisms
F → Z associated with the derivatives at the endpoints in the standard PL action on
(0, 1). See Figure 16.3.1 and §16.3.1 for details.

1.4. How to read this paper

The next chapter (Chapter 2) contains the common background results and basic terminology
for the three parts, about general group actions on the line and on ordered sets. The remaining
chapters are divided into three parts, where each part has little dependence from the others, as we
explain. Part I is clearly totally independent. The main results of Part II require the discussions
from Chapters 3 and 4, while several examples in Part II are generalizations of the constructions
in Chapter 6. Finally, the results of Part III are mainly based on the results in Chapters 8 and 9
from Part II.

Chapters 7 and 11–13 can be skipped at first reading, as they do not affect the understanding
of the main results.
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CHAPTER 2

NOTATION AND GENERAL PRELIMINARIES

2.1. Actions on the line

2.1.1. Some notation for actions. — In this work we are mainly concerned with orientation-
preserving actions on the real line, that is, homomorphisms φ : G → Homeo0(R). We will almost
always be interested in actions without (global) fixed points, which will often be called irreducible
for short. Note that every action φ : G → Homeo0(R) can be described in terms of irreducible
actions, just considering all restrictions

φJ : G → Homeo0(J) ∼= Homeo0(R)
g 7→ φ(g) ↾J

of the action φ to minimal φ-invariant open intervals J ⊂ R. We write Hom(G,Homeo0(R)) for
the space of order-preserving actions of the group G, endowed with the compact-open topology,
and Homirr(G,Homeo0(R)) ⊂ Hom(G,Homeo0(R)) for the subspace of irreducible actions.

Given f ∈ Homeo(R), we write Fix(f) = {x ∈ R : f(x) = x} for the set of fixed points, and
Supp(f) = R ∖ Fix(f) for its support. Note that by definition Supp(f) is an open set (we do
not take its closure unless specified). For a subgroup G ⊆ Homeo0(R) (1) and a point x ∈ R, we
write StabG(x) for the stabilizer of x. We denote by Homeoc(R) the group of homeomorphisms
whose support is relatively compact, and we occasionally write A ⋐ B when A is relatively
compact in B. Given an action φ : G → Homeo(R) and g ∈ G, we set Fixφ(g) = Fix(φ(g)) and
Suppφ(g) = Supp(φ(g)), and write StabφG(x) for the stabilizer. When there is no risk of confusion,
we write g.x instead of φ(g)(x). The notation g(x) will be reserved to the case when G is naturally
given as a subgroup G ⊂ Homeo0(R) to refer to its standard action (but never to another action
φ : G → Homeo0(R)).

For x ∈ R ∪ {±∞}, we denote by Germ(x) the group of germs of homeomorphisms that
fix x. Recall that this is defined as the group of equivalence classes of homeomorphisms f ∈
Homeo0(R) that fix x, where two such homeomorphisms are identified if they coincide on a
neighborhood of x. By considering only one-sided neighborhoods, one gets two groups Germ−(x)
and Germ+(x), the groups of right germs and the group of left germs, respectively, such that
Germ(x) = Germ−(x) × Germ+(x). If G is a group of homeomorphisms that fixes x, we denote

1. As we will be working with several orders throughout the paper, we prefer to reserve the symbol < for order
relations, and use the inclusion ⊂ when referring to subgroups.
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by Germ(G, x) the group of germs induced by elements of G, and by Gx : G → Germ(G, x) the
associated homomorphism.

2.1.2. Commuting actions. — Every homeomorphism g ∈ Homeo0(R) is basically determined
by its set of fixed points Fix(g) and by how it acts on every connected component of its support
Supp(g) = R ∖ Fix(g). Therefore, it is fundamental to understand the set of fixed points of
a given element, or at least to be able to say whether it is empty or not. For this, a very
useful relation is that for an element g ∈ Homeo0(R) and a subgroup H ⊆ Homeo0(R), one has
g(Fix(H)) = Fix(gHg−1). In particular, when G ⊆ Homeo0(R) and H ⊴ G is a normal subgroup,
for every g ∈ G one has g(Fix(H)) = Fix(H). This holds in particular for commuting subgroups,
for which we have the following observation, easily obtained from the fact that the set of fixed
point is a closed subset.

Lemma 2.1.1. — Consider two commuting subgroups H1 and H2 of G ⊆ Homeo0(R) (that
is, [h1, h2] = id for every h1 ∈ H1 and h2 ∈ H2). Suppose that both Fix(H1) and Fix(H2) are
non-empty. Then H1 and H2 admit a common fixed point.

This lemma will be used in the text without explicit reference.

2.1.3. Semi-conjugacy. — It is customary in the field to consider actions up to semi-conjugacy.
This means that not only we do not really take care of the choice of coordinate on R (which
corresponds to the classical notion of conjugacy), but we want to consider only the interesting
part of the dynamics of the action. This was first formalized by Ghys in his work on bounded
Euler class [Ghy87], but the definition has been unanimously fixed only recently. We follow
here the presentation by Kim, Koberda, and Mj [KKM19, Definition 2.1], although we allow
order-reversing semi-conjugacies. For the statement we will say that a map h : R → R is proper if
its image h(R) is unbounded in both directions of the line.

Definition 2.1.2. — Let φ,ψ : G → Homeo(R) be two actions of a group G on the real line.
We say that φ and ψ are semi-conjugate if there exists a proper monotone map h : R → R such
that

(2.1.1) hφ(g) = ψ(g)h for every g ∈ G.

Such a map h is called a semi-conjugacy between φ and ψ. Note that if φ and ψ are irreducible,
the requirement that the map h be proper follows automatically from the equivariance (2.1.1)
and thus can be omitted. When h ∈ Homeo(R), we say that h is a conjugacy between φ and ψ, in
which case we say that h is a conjugacy. When h is non-decreasing (respectively, non-increasing),
we say that φ and ψ are positively (respectively, negatively) semi-conjugate.

Remark 2.1.3. — The previous definition can be naturally extended to group actions on
arbitrary non-empty open intervals X,Y ⊆ R, using homeorphisms X ∼= Y ∼= R.

Remark 2.1.4. — Both conjugacy and semi-conjugacy are equivalence relations (for conjugacies
this is obvious, for semi-conjugacies the reader can check [KKM19, Lemma 2.2]). Notice that
in the semi-conjugacy case, we do not require that h be continuous; indeed, being continuously
semi-conjugate is not even a symmetric relation.

In a few places (essentially only in §7.2), we will need the analogous notion of semi-conjugacy
for actions on the circle, which is defined as follows.
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Definition 2.1.5. — Let φ,ψ : G → Homeo0(S1) be two actions on the circle. They are
semi-conjugate if there exist a group G̃ which is a central extension of G of the form

1 → C → G̃ → G → 1,

with C ∼= Z, and two semi-conjugate actions φ̃, ψ̃ : G̃ → Homeo0(R) which both map C to the
group Z of integer translations, and which descend to the quotient, respectively, to the actions φ
and ψ of G = G̃/C on S1 = R/Z.

Given an action φ : G → Homeo(R), one can consider the reversed action φ̂ : G → Homeo(R),
defined by conjugating φ by the order-reversing isometry x 7→ −x. After our definition, the
actions φ and φ̂ are conjugate.

Given a monotone map h : R → R, we denote by Gap(h) ⊂ R the open subset of points at
which h is locally constant; we also write Core(h) = R ∖ Gap(h). Note that when h : R → R is
a semi-conjugacy between two irreducible actions φ,ψ : G → Homeo(R) (in the sense that the
equivariance (2.1.1) holds), then Core(h) is a closed φ-invariant subset and h(Core(h)) = h(R).
The following folklore result is a sort of converse to this observation, and describes the inverse
operation of blow up of orbits (compare for instance [KKM19, Theorem 2.2]).

Theorem 2.1.6. — Let φ : G → Homeo0(R) be an irreducible action, and F ⊆ R a non-empty
closed φ-invariant subset. Then, there exist an action φF : G → Homeo0(R), and a continuous
positive semi-conjugacy h : R → R between φ and φF such that Core(h) = F .

We follow with an easy application of Theorem 2.1.6 that will be repeatedly used in the article
when discussing actions coming from quotients.

Corollary 2.1.7. — Let φ : G → Homeo0(R) be an irreducible action, and let N ⊴ G be a
normal subgroup. Then φ is semi-conjugate to an action of the quotient G/N if and only if
Fixφ(N) ̸= ∅.

Proof. — Notice that, since N is normal, the subset F = Fixφ(N) is closed and φ(G)-invariant.
Assume that F ̸= ∅; we consider the action φF given by Theorem 2.1.6. Clearly we have
N ⊆ kerφF . The other implication is trivial.

The following lemma basically states that the semi-conjugacy class is determined by the action
on one orbit.

Lemma 2.1.8. — Let φ,ψ : G → Homeo0(R) be irreducible actions. Consider a non-empty
φ-invariant subset Ω ⊆ R, and a monotone map j0 : Ω → R which is equivariant in the sense that
it satisfies

ψ(g)j0 = j0φ(g) ↾Ω for every g ∈ G.

Then j0 can be extended to a semi-conjugacy j : R → R between φ and ψ.

Proof. — Consider the map j : R → R defined by

j(x) = sup{j0(y) : y ∈ Ω and y ≤ x}.

Since j0 is monotone, we get that j is an extension of j0. It is direct from the definition of j that
it is monotone and equivariant; therefore j defines a semi-conjugacy, as desired.
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2.1.4. Minimal invariant sets. — Next, we briefly recall basic facts about minimal invariant
sets for group actions on the line; see for instance the book of Navas [Nav11, §2.1.2] for a more
detailed discussion.

Definition 2.1.9. — A non-empty subset Λ ⊂ R is a minimal invariant set for an action
φ : G → Homeo0(R), if it is closed, φ-invariant, and contains no proper, non-empty, closed
φ-invariant subsets. When Λ = R, we say that the action φ is minimal. When Λ is a proper
perfect subset we say that Λ is an exceptional minimal invariant set. On the other hand, when
the image φ(G) is generated by a homeomorphism without fixed points, we say that the action φ
is cyclic.

Remark 2.1.10. — A global fixed point is always a minimal invariant set. When an irreducible
action is semi-conjugate to a cyclic action, minimal invariant sets are given by discrete orbits.
On the other hand, for irreducible actions φ : G → Homeo0(R) which are non-semi-conjugate to
any cyclic action, when a minimal invariant set Λ exists, it is unique, and it is contained in the
closure of any φ-orbit.

Note however that minimal invariant sets may not exist for general group actions. An
archetypical example is given by an action of the group Z∞ =

⊕
Z Z in which each canonical

generator has fixed points but there is no fixed point for the action. This happens, for instance,
in the dynamical realization (see Lemma 2.2.14) of the lexicographic ordering of Z∞.

When the acting group is finitely generated, there is always a minimal invariant set for the
action; see e.g. Navas [Nav11, Proposition 2.1.12], whose proof actually gives the following more
general criterion for the existence of a minimal invariant set.

Lemma 2.1.11. — An irreducible action φ : G → Homeo0(R) admits a minimal invariant set
if and only if there exists a compact interval I ⊂ R intersecting every φ-orbit.

Proof. — The “if” direction is proven by a standard Zorn argument, in the same way as [Nav11,
Proposition 2.1.12]. Conversely, assume that Λ is a minimal invariant set. Suppose first that Λ is a
discrete orbit. Choose x ∈ Λ and g ∈ G such that g.x is the successor of x in Λ. Then I = [x, g.x]
intersects every φ(g)-orbit, and thus every φ-orbit. Otherwise, Λ is the unique minimal set for φ,
and the orbit closure of every x ∈ R contains Λ (see Remark 2.1.10). In this case, we can choose
any I whose interior intersects Λ non-trivially.

We will occasionally use the following terminology.

Definition 2.1.12. — We say that an interval I ⊂ R is wandering for an action φ : G →
Homeo0(R) if for every g ∈ G, either g.I = I, or g.I ∩ I = ∅.

Remark 2.1.13. — Let h : R → R be a semi-conjugacy between two actions φ,ψ : G →
Homeo0(R), in the sense that (2.1.1) holds. It is immediate to show that when ψ is minimal, the
semi-conjugacy h is continuous, and that when φ is also minimal, then h is a conjugacy. Indeed,
the subsets Core(h) and h(R) are closed subsets, invariant under φ and ψ, respectively.

2.1.5. Canonical model. — We next introduce a family of canonical representatives for the
semi-conjugacy relation when G is finitely generated. Such representatives are well defined up to
conjugacy. Later, in §14.1, we will define a (much less redundant) family of representatives for
the semi-conjugacy relation consisting of normalized µ-harmonic actions.
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The following notion corresponds to the minimalization considered by Kim, Koberda, and Mj
in [KKM19, Definition 2.3].

Definition 2.1.14. — An action φ : G → Homeo0(R) is a canonical model if it is either minimal
or cyclic.

We have the following consequence of the discussion in §2.1.4 and Theorem 2.1.6.

Corollary 2.1.15. — Let φ : G → Homeo0(R) be an irreducible action that admits a minimal
invariant set (this is automatic when G is finitely generated). Then φ is semi-conjugate to a
canonical model, unique up to conjugacy.

A similar discussion holds for actions on the circle. In this case we say that an action
φ : G → Homeo0(S1) is a canonical model if it is either minimal or conjugate to an action whose
image is a non-trivial finite cyclic group of rotations (in which case we say that it is cyclic).
However a crucial simplifying difference is that in this case, by compactness, every group action on
the circle admits a non-empty minimal invariant set (regardless on whether G is finitely generated
or not). This yields the following well-known fact (see e.g. Ghys [Ghy01]).

Proposition 2.1.16. — Every group action φ : G → Homeo0(S1) on the circle without fixed
points is semi-conjugate to a canonical model.

After Corollary 2.1.15, semi-conjugacy classes of finitely generated group actions can be divided
into two families: cyclic and minimal actions. However, for practical purposes, it is preferable to
split further the case of minimal actions and the following classical notion will be important.

Definition 2.1.17. — For M ∈ {R,S1}, we say that a minimal action φ : G → Homeo0(M) is
proximal if for every non-empty open intervals I, J ⊊M with I bounded and I ̸= M , there exists
an element g ∈ G such that g.I ⊂ J .

For further reference in §7.2, let us point out the following.

Remark 2.1.18. — When a subgroup G ⊆ Homeo0(M) commutes with a non-trivial element
h ∈ Homeo0(M), then its action cannot be proximal. In fact, this is a well-known obstruction for
minimal group actions on arbitrary topological spaces (see [Gla76, Lemma 3.3]).

A crucial feature of minimal actions on the circle and the line is that a sort of a converse
also holds. In the case of the circle, this goes back to Antonov [Ant84] and was rediscovered
by Margulis [Mar00] and Ghys [Ghy01, Theorem 5.14], and an analogous result for the real
line is provided by Malyutin [Mal08], although McCleary had a similar statement for ordered
groups (this appears in the book of Glass [Gla99, Theorem 7.E]; see also the discussion in the
monograph by Deroin, Navas, and the third named author [DNR, §3.5.2]). Given a subgroup
G ⊆ Homeo0(M) with M ∈ {R,S1}, its centralizer (in Homeo0(M)) is the subgroup

C(G) := {h ∈ Homeo0(M) : gh = hg for every g ∈ G} .

We will write Cφ := C(φ(G)) for the centralizer of a given action φ : G → Homeo0(M). We have
the following two results.

Theorem 2.1.19. — We have the following alternative for minimal actions φ : G → Homeo0(S1):
— either Cφ is trivial, in which case φ is proximal, or
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— Cφ is a non-trivial finite cyclic subgroup acting freely, and the action on the topological circle
S1/Cφ is proximal, or

— Cφ is conjugate to the group of rotations R/Z, and φ(G) is conjugate to a subgroup of it.

Theorem 2.1.20. — We have the following alternative for minimal actions φ : G → Homeo0(R):

— either Cφ is trivial, in which case φ is proximal, or

— Cφ is an infinite cyclic subgroup acting freely, and the action on the topological circle R/Cφ

is proximal, or

— Cφ is conjugate to the group of translations (R,+), and φ(G) is conjugate to a subgroup of it.

2.2. Preorders and group actions

2.2.1. Preordered sets. — In this work, by a preorder on a set Ω, we mean a transitive binary
relation ≤ which is total, in the sense that for every x, y ∈ Ω we have x ≤ y or y ≤ x (possibly
both relations can hold).

We write x ⪇ y whenever x ≤ y but it does not hold that y ≤ x. On the other hand, when
x ≤ y and y ≤ x, we say that x and y are equivalent and denote by [x]≤ the equivalence class of
x (we will simply write [x] when there is no risk of confusion).

Remark 2.2.1. — When [x] = {x} for every x ∈ Ω, the preorder ≤ is a total order; if so, we
prefer to denote it by <, and say that (Ω, <) is a totally ordered set to stress this property.

A preorder ≤ on Ω induces a total order on the set of equivalence classes {[x]≤ : x ∈ Ω}, by
declaring [x] < [y] whenever x ⪇ y.

Definition 2.2.2. — We say that a map between preordered sets f : (Ω1,≤1) → (Ω2,≤2) is
(pre)order-preserving if x ≤1 y implies f(x) ≤2 f(y).

On the other hand, given a map f : Ω1 → (Ω2,≤), we define the pull-back of ≤ by f as the
preorder f∗(≤) on Ω1, denoted by ⪯ here, so that x1 ⪯ x2 if and only if f(x1) ≤ f(x2).

Definition 2.2.3. — An automorphism of a preordered set (Ω,≤) is an order-preserving bijection
f : (Ω,≤) → (Ω,≤), whose inverse is also order-preserving. We denote by Aut(Ω,≤) the group of
all automorphisms of (Ω,≤).

An order-preserving action of a group G on a preordered set (Ω,≤) is a homomorphism
ψ : G → Aut(Ω,≤).

Remark 2.2.4. — Given two actions ψ1 : G → Sym(Ω1) and ψ2 : G → Aut(Ω2,≤), and an
equivariant map f : Ω1 → (Ω2,≤), we have that the pull-back preorder f∗(≤) is preserved by
ψ1(G).

Definition 2.2.5. — A subset A of a preordered set (Ω,≤) is (≤-)convex if, whenever x ≤ y ≤ z

and x, z ∈ A, one has y ∈ A.

Remark 2.2.6. — It is a direct consequence of the definitions that if f : (Ω1,≤1) → (Ω2,≤2) is
order-preserving and A ⊂ (Ω2,≤2) is ≤2-convex, then the preimage f−1(A) is ≤1-convex. This
fact will be used several times without direct reference.
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2.2.2. Preorders on groups. — A preorder on a group G is left invariant if h ≤ k implies gh ≤
gk for all g, h, k ∈ G. In other words, the left-multiplication gives an action by automorphisms
G → Aut(G,≤). Recall also that a preorder on G is bi-invariant if it is preserved by left and
right multiplications.

By invariance and Remark 2.2.1, given a left-invariant preorder ≤ on G, the equivalence class
[1]≤ is a subgroup of G, and ≤ is a left-invariant order on G if and only if [1]≤ = {1}. The
subgroup [1]≤ is called the residue. We say that a left-invariant preorder ≤ on G is trivial
whenever [1]≤ = G, and non-trivial otherwise. We denote by LPO(G) the set of all non-trivial
left-invariant preorders on G.

From now on, by a preorder on a group, we always mean a non-trivial left-invariant preorder.
We endow LPO(G) with the product topology induced by the realization of preorders as subsets of
{≤,⪈}G×G. It turns out that with this topology, LPO(G) is a metrizable and totally disconnected
topological space, which is moreover compact whenever G is finitely generated (see Antolín and
the third author [AR21], where preorders are called relative orders). Clearly LPO(G) contains
the more classical compact space LO(G) of left-invariant orders of a group G. For a modern
treatment of left-invariant orders and preorders see the monograph by Deroin, Navas, and the
third author [DNR], Antolín, Dicks, and Šunic [ADŠ18], or Decaup and Rond [DR].

Definition 2.2.7. — The positive cone of a preorder ≤∈ LPO(G) is the subset P≤ = {g ∈ G :
g ⪈ 1}. Similarly, the subset N≤ = {g ∈ G : g ⪇ 1} defines the negative cone of ≤.

Remark 2.2.8. — A preorder ≤∈ LPO(G) induces a partition G = P≤ ⊔ [1]≤ ⊔N≤. Note that
P≤ and N≤ are semigroups and satisfy P−1

≤ = N≤, where P−1
≤ := {g−1 : g ∈ P≤}. Reciprocally,

given a partition G = P ⊔H ⊔N such that
— P is a semigroup,
— N = P−1,
— H is a proper (possibly trivial) subgroup, and
— HPH ⊆ P ,
there exists a preorder ≤∈ LPO(G) such that P = P≤, H = [1]≤, and N = N≤. See Decaup and
Rond [DR] for details.

When H ⊆ G is a ≤-convex subgroup, the preorder ≤ naturally descends to a preorder ≤G/H

on the left-coset space G/H = {gH : g ∈ G}, defined by setting g1H ≤G/H g2H if g1h ≤ g2h for
some h ∈ H. This condition does not depend on the choice of h, since left cosets are convex. The
preorder ≤G/H is invariant under left-multiplication of G on G/H.

Definition 2.2.9. — Given a ≤-convex subgroup H ⊆ G, we define the quotient preorder of
≤∈ LPO(G) underH, as the preorder ≤H∈ LPO(G) given by the pull-back ≤H := p∗(≤G/H), where
p : G → G/H is the coset projection. Equivalently, we can define ≤H by setting P≤H

= P≤ ∖H.

2.2.3. Dynamical realizations of actions on totally ordered sets. — One general principle
that we often use is that for building actions of a group G on the line by homeomorphisms, one
may start by finding an order-preserving action ψ : G → Aut(Ω, <) on a totally ordered set. If
the order topology on Ω is nice enough, for instance when Ω is (infinite (2)) countable, then the

2. Countable ordered sets are assumed to be infinite here, otherwise some of the statements could be wrong for
trivial reasons.
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action ψ can be “extended” to an action φ : G → Homeo0(R) in such a way that there exists an
equivariant order-preserving map i : Ω → R. Under some mild extra conditions, we call such a φ
a dynamical realization of ψ. See Definition 2.2.13.

Remark 2.2.10. — It is a classical fact that a countable group is left orderable if and only if
it embeds into Homeo0(R) (a fact that we trace back to Conrad [Con53] in the abelian setting,
see the already cited [DNR, Ghy01] for a proof of the general case). In fact, one direction
of the proof consists in building a dynamical realization of the left-multiplication action of a
countable left-ordered group on itself. Analogously, one can show that a countable group admits
a left-invariant preorder if and only if it admits a (possibly non-faithful) non-trivial action by
order-preserving homeomorphisms of the real line; see the work of Antolín and third author
[AR21].

We now proceed to formally define what we mean by dynamical realization.

Definition 2.2.11. — Let (Ω, <) be a countable totally ordered set. We say that an injective
order-preserving map i : Ω → R is a good embedding if its image is unbounded in both directions,
and every connected component I of the complement of i(Ω) satisfies ∂I ⊂ i(Ω).

Remark 2.2.12. — Following the classical construction of the dynamical realization of a
countable left-ordered group (see [DNR,Ghy01]), it follows that any countable and totally ordered
set (Ω, <) has a good embedding and that, given two different good embeddings i1, i2 : Ω → R,
there exists h ∈ Homeo0(R) so that i2 = h ◦ i1.

Definition 2.2.13. — Assume that ψ : G → Aut(Ω, <) is an order-preserving action. An action
φ : G → Homeo0(R) is said to be a dynamical realization of ψ if there exists a good embedding
i : Ω → R such that the following hold:

(i) i is (φ,ψ)-equivariant: φ(g)(i(x)) = i(ψ(g)(x)) for all g ∈ G;

(ii) for every connected component I of the complement of i(Ω), the stabilizer Stabφ(I) acts
trivially on I.

Lemma 2.2.14. — Every order-preserving action ψ : G → Aut(Ω, <) on a countable totally
ordered set admits a dynamical realization of ψ, unique up to positive conjugacy.

Sketch of proof. — Consider a good embedding i : Ω → R. By inducing the action ψ through i on
i(Ω), and extending it by continuity to the closure, we obtain an action φ0 : G → Homeo0(i(Ω)).
For every g ∈ G denote by φ(g) the extension of φ0(g) which is affine on every connected
component I of i(Ω). It is direct to check that g 7→ φ(g) is a dynamical realization of ψ.

Now, consider two actions φ1, φ2 : G → Homeo0(R), both dynamical realizations of ψ, with
associated good embeddings i1, i2 : Ω → R, respectively. By Remark 2.2.12, there exists h ∈
Homeo0(R) with i2 = h ◦ i1, and after conjugating φ1 by h, we can suppose that i1 = i2 =: i. By
equivariance, φ1 and φ2 must coincide on i(Ω). Let I be the set of connected components of
R∖ i(Ω), and note that the G-actions on I induced by φ1 and φ2 coincide, so that the set of orbits
I/G does not depend on the action. For J ∈ I, we denote by α(J) ∈ I/G its G-orbit. Pick a
system of representatives {Iα}α∈I/G of orbits. For J ∈ I, choose gJ ∈ G such that gJ (J) = Iα(J),
and for i ∈ {1, 2}, set fi,J = φi(gJ ) ↾J . After the assumption (ii) in Definition 2.2.13, each fi,J is
a homeomorphism from J to Iα(J) that does not depend on the choice of gJ . Thus, f−1

2,Jf1,J is
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a self-homeomorphism of J . Define a map q : R → R which is the identity on i(Ω) and satisfies
q ↾J= f−1

2,Jf1,J for every J ∈ I. Then one readily checks that q conjugates φ2 to φ1.

We proceed to give a sufficient condition for minimality of dynamical realizations of actions on
totally ordered sets.

Lemma 2.2.15 (Minimality criterion). — Let ψ : G → Aut(Ω, <) be an order-preserving
action on a countable totally ordered set, and assume that for every four points x1, x2, y1, y2 of Ω
with

x1 < y1 < y2 < x2,

there exists g ∈ G such that
g.y1 < x1 < x2 < g.y2.

Then the dynamical realization of ψ is minimal.

Proof. — Let φ : G → Homeo0(R) be a dynamical realization of ψ with associated good embedding
i : Ω → R. We first claim that i has dense image. Suppose by contradiction that it is not the case,
and take a connected component (η1, η2) of the complement of i(Ω). Since i is a good embedding,
we have that {η1, η2} ⊂ i(Ω). Choose two points ξ1 and ξ2 in i(Ω) such that (η1, η2) ⊊ (ξ1, ξ2);
by our assumption, we can find an element g ∈ G such that g.(ξ1, ξ2) ⊊ (η1, η2), contradicting
φ(g)-invariance of i(Ω). This shows that i has dense image.

Suppose again by contradiction that there exists a proper closed φ-invariant subset Λ ⊂ R.
Take a connected component (η1, η2) of R ∖ Λ. By density of i(Ω), we can find four points
ξ1, ξ2, ζ1, ζ2 in i(Ω) such that

ζ1 < η1 < ξ1 < ξ2 < η2 < ζ2.

After our assumption, we can find an element g ∈ G such that g.(ζ1, ζ2) ⊊ (ξ1, ξ2) ⊊ (η1, η2).
This contradicts φ(g)-invariance of Λ, showing that φ is minimal, as desired.

Let us highlight a situation which allows to apply the previous criterion; this requires the
following definition.

Definition 2.2.16. — Let (Ω, <) be a totally ordered set. We say that a subgroupH ⊆ Aut(Ω, <)
is of <-homothetic type if the following conditions are satisfied.

— There exists x0 ∈ Fix(H).

— For every x ∈ Ω∖ {x0}, there exists a sequence of elements (hn) ⊂ H such that hn(x) → +∞
if x > x0, and hn(x) → −∞ if x < x0.

Proposition 2.2.17. — Let ψ : G → Aut(Ω, <) be an order-preserving action on a countable
totally ordered set. If for every x ∈ Ω there exists a subgroup Hx ⊆ G such that ψ(Hx) is a
subgroup of <-homothetic type fixing x, then the dynamical realization of ψ is minimal.

Proof. — Consider four points x1, x2, y1, y2 of Ω with x1 < y1 < y2 < x2. By assumption, we can
find an element h1 ∈ Hy1 such that y1 < h1.y2 < y2. Write now x∗ = h1.y2, and take h∗ ∈ Hx∗

such that h∗.y1 < x1 < x2 < h∗.y2. Thus Lemma 2.2.15 applies.
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2.3. Bieri–Strebel groups of piecewise linear homemorphisms

To illustrate our results we will often consider examples of locally moving groups arising as
groups of piecewise linear (PL) homeomorphisms of the line. Let us briefly fix the terminology
and recall a large systematic family of such groups, following Bieri and Strebel [BS16].

We say that a homeomorphism f : X → X of an interval X ⊆ R is piecewise linear (PL, for
short) if there exists a discrete subset Σ ⊂ X such that in restriction to X ∖ Σ, the map f is
locally affine, that is, of the form x 7→ λx + a, with λ > 0 and a ∈ R. We denote by BP(f)
the minimal subset Σ satisfying such condition, and points of BP(f) will be the breakpoints of
f . When BP(f) is finite, we say that f is finitary PL. Note that with this definition, a PL
homeomorphism always preserves the orientation.

Definition 2.3.1. — Given a non-trivial multiplicative subgroup Λ ⊆ R>0, a non-trivial Z[Λ]-
submodule A ⊂ R, and an interval X ⊆ R, the Bieri–Strebel group G(X;A,Λ) is the group of
finitary PL homeomorphisms f : X → X with the following properties:
(i) breakpoints of f are in A,
(ii) in restriction to X ∖ BP(f), the map f is locally of the form λx+ a, with λ ∈ Λ and a ∈ A.

For example, Thompson’s F corresponds to G((0, 1);Z[1/2], ⟨2⟩∗). Other interesting examples
are provided by the so-called Thompson–Brown–Stein groups, defined as follows.

Definition 2.3.2. — Let 1 < n1 < · · · < nk be natural numbers such that the multiplicative
subgroup Λ = ⟨ni⟩ ⊆ R>0 is an abelian group of rank k. Denote by A the ring Z [1/m], where m
is the least common multiple of the ni. The group

Fn1,...,nk
:= G((0, 1);A,Λ)

is the corresponding Thompson–Brown–Stein group.

The group F2 is simply Thompson’s group F . For every n ≥ 2, the group Fn is isomorphic to
a subgroup of F , and these groups were first considered by Brown in [Bro87], inspired by the
so-called Higman–Thompson groups. Later Stein [Ste92] started the investigation of the more
general class of groups Fn1,...,nk

. She proved that every Thompson–Brown–Stein group is finitely
generated and even finitely presented. Moreover, given any m-adic open interval I ⊂ (0, 1) (that
is, an interval with endpoints in Z[1/m]), the subgroup (Fn1,...,nk

)I is isomorphic to Fn1,...,nk
.

We refer to the classical monograph by Bieri and Strebel [BS16] for an extensive investigation
of the groups G(X;A,Λ).

Remark 2.3.3. — It would be interesting to see how the results of this text apply to other
groups of piecewise projective homeomorphisms, such as Monod’s groups H(A) [Mon13] (we will
not pursue this task).



PART I

RIGIDITY RESULTS FOR LOCALLY
MOVING GROUPS: C1 ACTIONS

This part contains our first results on locally moving groups, which are of rigidity nature.
Namely, we provide various sufficient conditions that ensure that an irreducible action φ : G →
Homeo0(R) of a locally moving subgroup G ⊆ Homeo0(R) is semi-conjugate to the standard
defining action of G. The culminating point of this part is Theorem A (appearing below as
Theorem 5.3.2), dealing with actions by diffeomorphisms of class C1.

Chapter 3 contains the preliminary definitions and results for micro-supported and locally
moving subgroups of Homeo0(R): besides relatively standard results about topological dynamics
(§3.1) and normal subgroup structure (§3.2), we show a slightly refined version of the so-called
“2-chain lemma” (first introduced by Brin in the PL setting [Bri99]) to prove that any locally
moving subgroup of Homeo0(R) contains an isomorphic copy of Thompson’s group F acting in
the standard way, up to semi-conjugacy (Proposition 3.3.1).

In Chapter 4, given a locally moving subgroup G ⊆ Homeo0(R), we begin the study of actions
of G on the line. We first show a fundamental criterion for semi-conjugacy to the standard action
(Proposition 4.1.1), formulated in terms of fixed points for the action of two families of subgroups
dynamically defined from the standard action. Building on Proposition 4.1.1 and on a method to
exploit commutation within Homeo0(R), we show that any action φ : G → Homeo0(R) that is not
semi-conjugate to the standard one must satisfy various general constraints (Proposition 4.2.5).

Chapter 5 contains the main result of this part, corresponding to Theorem A from the
introduction: any differentiable irreducible action on the line of a locally moving subgroup
G ⊆ Homeo0(R) either is semi-conjugate to the standard action, or comes from an action of
a proper quotient. The proof goes through a reduction to a simpler problem on differentiable
actions of Thompson’s F , based on the results from the previous chapters. More precisely,
Proposition 3.3.1 combined with Proposition 4.2.5 allow to show that the image of every exotic
action φ : G → Homeo0(R) must contain embedded copies of F in G with a large centralizer.
Assuming by contradiction that φ is an action by diffeomorphisms, such copies of F cannot contain
elements having hyperbolic fixed points. Consequently, it is enough to understand differentiable
actions of F on the line with no element having hyperbolic fixed points: we show that they
actually have abelian image (Proposition 5.2.3).

At this point, it is natural to wonder whether the global rigidity highlighted in Theorem A
remains true for actions by homeomorphisms of class C0. In Chapter 6 we show that this is
not the case, by providing some first examples of exotic actions φ : G → Homeo0(R) of locally
moving subgroups G ⊂ Homeo0(R) (recall that an irreducible action φ : G → Homeo0(R) is exotic
if it is not semi-conjugate to the standard action, nor to any action of any proper quotient).
In particular we provide two different classes of examples of faithful minimal exotic actions of
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Thompson’s group F . These examples anticipate a through analysis of exotic actions in Part II,
where structure theorems describing their dynamics in much more details will be proved.

The last chapter contains some additional results, that complement the main results of this
part and are proven using the same methods. In §7.1 we provide soft conditions on a large
(necessarily uncountable) locally moving subgroup G ⊆ Homeo0(R), which imply that G has
a unique irreducible action φ : G → Homeo0(R) up to conjugacy. Particular cases of groups
satisfying this criterion are the groups of all compactly supported homeomorphisms and Cr

diffeomorphisms of the line (for r ̸= 2), recovering results of Militon [Mil16] and Chen and Mann
[CM23]. The results shown in §7.2 basically say that there are no exotic actions on the circle of
locally moving groups of homeomorphisms of Homeo0(S1) (and of groups acting on more general
locally compact Hausdorff spaces). Finally, in §7.3 we show some non-smoothability results. For
some locally moving groups of PL homeomorphisms, we show that the standard action cannot
actually be semi-conjugate to any Cr action (for any r > 1, or even for r = 1 for some class of
PL groups). Combined with Theorem A, this shows that such groups cannot admit any faithful
actions on intervals by Cr diffeomorphisms.



CHAPTER 3

MICRO-SUPPORTED AND LOCALLY MOVING GROUPS

3.1. Definitions

Throughout this chapter (and mostly in the rest of the paper), we let X = (a, b) be an open
interval, with endpoints a, b ∈ R ∪ {±∞}. Recall that for a subgroup G ⊆ Homeo0(X) and a
subinterval I ⊂ X, we write

GI = {g ∈ G : g(x) = x for every x /∈ I}

for the subgroup of G consisting of elements that fix pointwise the complement X ∖ I.

Definition 3.1.1. — A subgroup G ⊆ Homeo0(X) is micro-supported if for every non-empty
subinterval I ⊂ X, the subgroup GI is non-trivial. We also say that G is locally moving if for
every open subinterval I ⊂ X, the subgroup GI acts on I without fixed points.

Recall that given subsets I and J in X, we write I ⋐ J if I is relatively compact in J . For
G ⊆ Homeo0(X), we denote by Gc the normal subgroup of elements with relatively compact
support in X, that is, Gc =

⋃
I⋐X GI . We also let Germ(G, a) and Germ(G, b) be the groups of

germs of elements of G at the endpoints of X. Recall that the germ of an element g ∈ G at a is
the equivalence class of g under the equivalence relation that identifies two elements g1, g2 ∈ G

if they coincide on some interval of the form (a, x), with x ∈ X. The germ of g at b is defined
similarly. We denote by Ga : G → Germ(G, a) and Gb : G → Germ(G, b) the two natural germ
homomorphisms, and their kernels will be denoted by G− and G+, respectively. Note that we
have

G− =
⋃
x∈X G(x,b) and G+ =

⋃
x∈X G(a,x).

We also introduce the following normal subgroup, which plays an important role in some of our
main results.

Definition 3.1.2. — For X = (a, b) and G ⊂ Homeo0(X), the fragmentable subgroup of G is
defined as Gfrag := G−G+. When G = Gfrag, we say that G is fragmentable.

Note that since G± are normal subgroups, so is Gfrag. In practice, Gfrag consists of all elements
g that can be written as a product g = g1g2, where each gi is supported in a strict subinterval
Ii ⊊ X (that can be chosen to share one endpoint with X). This definition coincides (for X = R)
with Definition 1.2.3 from the introduction.
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Remark 3.1.3. — A subgroup G ⊆ Homeo0(X) is fragmentable if and only if, for every pair
of germs γ1 ∈ Germ(G, a) and γ2 ∈ Germ(G, b), there exists g ∈ G such that Ga(g) = γ1 and
Gb(g) = γ2. Note that this is equivalent to the condition that the natural injective homomorphism

G/Gc → Germ(G, a) × Germ(G, b)

be an isomorphism.

The next result says that when G acts minimally, the micro-supported condition is equivalent
to the non-triviality of the subgroup Gc.

Proposition 3.1.4. — For X = (a, b), let G ⊆ Homeo0(X) be a subgroup acting minimally on
X. Then G is micro-supported if and only if it contains a non-trivial element with relatively
compact support. Moreover, when this holds, the action of G on X is proximal.

Proof. — The forward implication is obvious. Conversely, assume that there exists a relatively
compact subinterval I ⋐ X for which GI ̸= {id}. The centralizer of GI in Homeo0(X) must fix
the infimum of the support of every non-trivial element of GI , so its action on X is not free.
Then by Theorem 2.1.20 the action of G on X is proximal. Therefore, for every non-empty
open subinterval J ⊂ X, there exists g ∈ G such that g(I) ⊂ J , so the subgroup GJ contains
Gg(I) = gGIg

−1 and is non-trivial.

Let us summarize some basic observations on the locally moving condition in the following
lemma.

Lemma 3.1.5. — For X = (a, b), let G ⊆ Homeo0(X) be locally moving. Then the following
hold for every non-empty open subinterval I ⊂ X.
(i) The subgroup GI acts minimally on I. In particular, G acts minimally on X.

(ii) The derived subgroup [GI , GI ] also acts without fixed points on I.

Proof. — Write I = (c, d) ⊆ X for a non-empty open subinterval. Fix x, y ∈ I and assume, say,
that x < y. Since the subgroup G(c,y) ⊆ GI has no fixed point in (c, y), there exist elements
g ∈ G(c,y) such that g(x) is arbitrarily close to y. Thus the GI -orbit of x accumulates at y. By a
symmetric argument, the same holds if y < x. Since x and y are arbitrary, this shows that every
GI -orbit in I is dense in I. Finally if [GI , GI ] admits fixed points in I, its set of fixed points
is closed and GI -invariant; by minimality of the action of GI on I, we deduce that [GI , GI ] is
trivial, and so GI is abelian (conjugate on I to a group of translations). This is not possible,
since the action of GI on I is micro-supported.

3.2. Normal subgroup structure

The following proposition shows that locally moving groups are nearly simple. This follows
from well-known arguments, that we repeat here for completeness.

Proposition 3.2.1 (Structure of normal subgroups). — For X = (a, b), let G ⊆ Homeo0(X)
be a micro-supported subgroup whose action is minimal. Then every non-trivial normal subgroup
of G contains [Gc, Gc]. Moreover, if [Gc, Gc] acts minimally, then it is simple.

In particular, when G is locally moving, the subgroup [Gc, Gc] is simple and contained in every
non-trivial normal subgroup of G.
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The proof uses the following classical observation on normal subgroups of homeomorphisms,
sometimes known as the “double-commutator lemma”. With this formulation it appears in
Nekrashevych [Nek18, Lemma 4.1]

Lemma 3.2.2. — Let H be a group of homeomorphisms of a Hausdorff space Z, and N a
non-trivial group of homeomorphisms of Z normalized by H. Then, there exists a non-empty
open subset U ⊂ Z such that N contains [HU , HU ], where HU is the subgroup of elements fixing
pointwise the complement Z ∖ U .

Proof of Proposition 3.2.1. — Suppose that N ⊴ G is a non-trivial normal subgroup. By Lemma
3.2.2, N contains [GI , GI ] for some non-empty open subinterval I ⊂ X. Given an element
g ∈ [Gc, Gc], we can find an open subinterval J ⋐ X such that g ∈ [GJ , GJ ]. By proximality of
the action of G (Proposition 3.1.4), we can find h ∈ G such that h(J) ⊂ I, and consequently
hgh−1 ∈ [GI , GI ] ⊆ N . By normality of N , this gives g ∈ N . Since g is arbitrary, we have
[Gc, Gc] ⊆ N . Note that this implies in particular that [Gc, Gc] is perfect, since its commutator
subgroup is normal in G and thus must coincide with [Gc, Gc].

Assume now that [Gc, Gc] acts minimally on X. Then it is micro-supported (Proposition
3.1.4), and we can apply the first part of the proof: every non-trivial normal subgroup of [Gc, Gc]
must contain the derived subgroup of [Gc, Gc]. Since [Gc, Gc] is perfect, this implies that it is
simple.

It follows that when G ⊆ Homeo0(X) is micro-supported and acts minimally (in particular,
when G is locally moving), the quotient G := G/[Gc, Gc] is the largest proper quotient of G. The
largest quotient G is an extension of G/Gc with abelian kernel:

1 → Gc/[Gc, Gc] −→ G −→ G/Gc −→ 1.

Whereas the (a priori smaller) quotient G/Gc has a dynamical interpretation, in the sense that
it is naturally a subgroup of the product of groups of germs Germ(G, a) × Germ(G, b), the abelian
group Gc/[Gc, Gc] can be difficult to identify in general. However, for some relevant examples of
locally moving groups it is known that the group Gc is perfect, so that G = G/Gc.

Example 3.2.3. — Consider the Brin–Navas group B, which was studied independently by Brin
[Bri05] and Navas [Nav04], and further studied by Bleak [Ble09] who showed that B is contained
in any non-solvable subgroup of PL([0, 1]). (1) The group B has the following presentation (see
Bleak, Brough, and Hermiller [BBH21], and Proposition 12.2.5):

(3.2.1) B = ⟨f, wn (n ∈ Z) | fwnf−1 = wn+1 ∀n ∈ Z, [wi, wmn wjw−m
n ] = 1

∀n > i, n > j, ∀m ∈ Z ∖ {0}⟩.

That is, the group B is defined as an HNN extension of the group generated by the wn (n ∈ Z),
and the latter is a bi-infinitely iterated wreath product of Z. Following the notation in [Ble09],
we write ( ≀Z ≀ )∞ for the subgroup generated by the wn in B, so that B = ( ≀Z ≀ )∞ ⋊ Z. A

1. In fact, the group B was first considered by Hector [Hec77] as a group of diffeomorphisms of the interval,
although the action defined by Hector is cyclic, and thus not semi-conjugate to the actions considered by Brin and
Navas.
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minimal micro-supported action on (0, 1) of B is realized in the group PL([0, 1]) of piecewise
linear homeomorphisms, choosing generators (see [Ble09] and Figure 3.2.1)

f(x) =
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In this case, the subgroup Bc is the normal subgroup ( ≀Z ≀ )∞, and Bc/[Bc, Bc] ∼= Z∞, so that
the largest proper quotient B ∼= Z∞ ⋊ Z = Z ≀ Z is the lamplighter group. Observe that the
bi-infinite wreath product Bc does not act minimally on (0, 1).

0 1

1

w0

f

w1 = fw0f
−1

Figure 3.2.1. PL realization of the Brin–Navas group with minimal micro-supported action.

Example 3.2.4. — A rich source of examples of micro-supported (actually locally moving)
groups, are the Bieri–Strebel groups introduced in Definition 2.3.1. Recall that these are defined as
the groups of finitary piecewise linear homeomorphisms of an interval with prescribed arithmetic
conditions on breakpoints and slopes. For a quite simple class of examples, fix n ≥ 2 and consider
the group G = Fn of all finitary PL homeomorphisms of (0, 1) such that all derivatives are
powers of n, and the breakpoints are in the ring A = Z[1/n] (e.g. recall that when n = 2, this
is Thompson’s group F ). The subgroup Gc of compactly supported elements consists exactly
of elements with derivative 1 at the endpoints of [0, 1], so that G/Gc ∼= Z2. However, the
abelianization of G is larger for n ≥ 3, and more precisely one has Gab ∼= Zn. One can check this
directly from the presentation given in [BS16, D15.10] (cf. also the proof of Lemma 10.3.4, where
we discuss the abelianization of different Bieri–Strebel groups).
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3.3. Subgroups isomorphic to Thompson’s group

Thompson’s group F plays a special role among locally moving groups, due to the following
result.

Proposition 3.3.1. — For X = (a, b), any locally moving subgroup G ⊆ Homeo0(X) contains
a subgroup isomorphic to Thompson’s group F .

This fact will be crucial in our proof of the C1 rigidity of locally moving groups (Theorem
5.3.2). Its proof is based on the following variant of the “2-chain lemma” of Kim, Koberda, and
Lodha [KKL19]. The key idea can be traced back to Brin [Bri99], and has been also largely
developed by Bleak et al. in [BBK+19]. It is based on the following two properties: on the one
hand, every non-trivial quotient of F is abelian; on the other hand, F admits the following finite
presentation,

(3.3.1) F =
〈
a, b

∣∣ [a, (ba)b(ba)−1] = [a, (ba)2b(ba)−2] = 1
〉
,

and the two relations have in fact a meaningful dynamical interpretation.

Lemma 3.3.2 (Noisy 2-chain lemma). — Take two homeomorphisms f, g ∈ Homeo0(R),
write d = sup Supp(f) and c = inf Supp(g), and assume the following:

(i) c < d;

(ii) c /∈ Fix(f) and d /∈ Fix(g);

(iii) d and f(c) are in the same connected component of Supp(g).

Then ⟨f, g⟩ contains a subgroup isomorphic to Thompson’s F

f

supp(f)

supp(g)

f(supp(g))

gNf(supp(g))

d

c f(c)

Figure 3.3.1. Proof of the noisy 2-chain lemma (Lemma 3.3.2).

Proof. — After the assumptions, there exists N ∈ Z such that gNf(c) > d. Thus we also have
(gNf)2(c) = g2Nf(c) > d. Hence, for i ∈ {1, 2}, we have that the subset

(gNf)i (Supp(g)) = Supp
(
(gNf)ig(gNf)−i) = Supp

(
(gNf)igN (gNf)−i)

is disjoint from Supp(f) (see Figure 3.3.1). We deduce that the elements a = f and b = gN satisfy
the two relations in the presentation (3.3.1), and thus ⟨f, gN ⟩ is isomorphic to a quotient of F .
As the supports Supp(f) and Supp(gN ) = Supp(g) overlap, we deduce that the subgroup ⟨f, gN ⟩
is non-abelian and thus isomorphic to F .
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Proof of Proposition 3.3.1. — Take f ∈ Gc. Using Lemma 3.1.5, it is not difficult to find an
element g conjugate to f , such that conditions (i)–(ii) in Lemma 3.3.2 are satisfied by f and
g. Write c = inf Supp(g) and d = sup Supp(f). Up to replace f by its inverse, we can assume
f(c) > c. If condition (iii) in Lemma 3.3.2 is not satisfied, we use Lemma 3.1.5 again to find an
element h ∈ G(c,d) such that h(f(c)) belongs to the same connected component of Supp(g) as d.
Replace f by the conjugate hfh−1 and now property (iii) is also satisfied.



CHAPTER 4

FIRST RESULTS FOR ACTIONS OF LOCALLY MOVING
GROUPS ON THE LINE

Let X = (a, b) be an open interval, and G ⊆ Homeo0(X) a locally moving subgroup. In this
chapter we begin to study the possible actions of G on the line. We derive some general restrictions
on such actions, and provide sufficient conditions under which an action φ : G → Homeo0(R) must
be semi-conjugate to the standard action on X, or to an action induced from the largest quotient
G/[Gc, Gc]. In the next chapter, we will use these results in the proof of our main theorem on
differentiable actions. General actions by homeomorphisms will be analyzed in much greater
detail in Part II.

In the sequel we will often be dealing with two different actions of the same group G, namely
its standard action on X and another action φ : G → Homeo0(R) on the real line. We will use
the following terminology.

Definition 4.0.1. — For X = (a, b), let G ⊆ Homeo0(X) be a subgroup whose action on X is
irreducible, and let φ : G → Homeo0(R) be another irreducible action. We say that φ is exotic if
it is not semi-conjugate neither to the standard action on X, nor to any action factoring through
a proper quotient.

Recall also that to avoid confusion, we fix the following notation throughout the paper.

Notation 4.0.2. — Let G ⊆ Homeo0(X) be a subgroup and φ : G → Homeo0(R) an action on
the real line. For g ∈ G and x ∈ X we use the notation g(x) to refer to the standard action on
X, while for ξ ∈ R we will write g.ξ := φ(g)(ξ). We also write Fixφ(H) for the set of fixed points
of a subgroup H ⊆ G with respect to the action φ, and Suppφ(H) = R∖ Fixφ(H).

We will often write N = [Gc, Gc], although this will be systematically recalled.

4.1. Constructing a semi-conjugacy to the standard action

The following result will be our main criterion to show that an action φ : G → Homeo0(R)
cannot be exotic. For the proof, the locally moving assumption on G is crucial.

Proposition 4.1.1. — For X = (a, b), let G ⊆ Homeo0(X) be locally moving, and write
N = [Gc, Gc]. Let φ : G → Homeo0(R) be an irreducible action for which there exist x, y ∈ X

such that both images φ(N(a,x)) and φ(N(y,b)) admit fixed points. Then φ is not exotic: it is
semi-conjugate either to the standard action on X, or to an action factoring through the quotient
G/N .
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Proof. — First of all, observe that if φ(N) admits fixed points, then Fixφ(N) is a closed φ(G)-
invariant subset of R which accumulates at both ±∞, and the action on it factors through G/N .
In this case we deduce that φ is semi-conjugate to an action of G/N . Thus we will assume that
φ(N) has no fixed point, and show that in this case the action must be semi-conjugate to the
standard action of G on X.

Note that since there exists x such that φ(N(a,x)) has fixed points, this is actually true for
every x ∈ X, for a subgroup N(a,x) is always conjugate into every other N(a,y), where y ∈ X. The
same holds true for the images of the form φ(N(x,b)). In particular, for every x ∈ X, both images
φ(N(a,x)) and φ(N(x,b)) admit fixed points, and since they commute, they admit common fixed
points. Thus for every x ∈ X, the φ-image of the subgroup Hx := ⟨N(a,x), N(x,b)⟩ admits fixed
points. The idea is to construct a semi-conjugacy q : X → R by setting q(x) = inf Fixφ(Hx). We
need to check that such a map q is well-defined (i.e. that the subsets Fixφ(Hx) are bounded), and
monotone. Let us first prove the following claim.

Claim 1. — Let x and y be two distinct points of X. Then we either have

sup Fixφ(Hx) < inf Fixφ(Hy),

or viceversa.

Proof of claim. — If the conclusion does not hold, then upon exchanging the roles of x and y if
needed, we can find two distinct points ξ, ξ′ ∈ Fixφ(Hx), and η ∈ Fixφ(Hy), such that ξ ≤ η ≤ ξ′.
Assume first that x < y, and take g ∈ N . We are going to show that in this case g.ξ ≤ ξ′,
contradicting our assumption that φ(N) has no fixed points (as g ∈ N is arbitrary). Let z > x

be a point of X such that g ∈ N(a,z). By Lemma 3.1.5, the action of N(x,b) on (x, b) has no fixed
point, so we can find h ∈ N(x,b) such that h(z) ∈ (x, y). Note that h ∈ Hx, so that φ(h) fixes
both ξ and ξ′. On the other hand, the element k = hgh−1 belongs to N(a,y) ⊂ Hy, and therefore
φ(k) fixes η. Thus, writing g = h−1kh, we have

g.ξ = h−1k.ξ ≤ h−1k.η = h−1.η ≤ h−1.ξ′ = ξ′,

proving the claim in the case x < y. The case y < x is treated analogously.

After Claim 1, the map q : x 7→ inf Fixφ(Hx) is well-defined and injective. We next have to
verify that it is monotone.

Claim 2. — Given points x1 < x2 < x3 of X, we either have q(x1) < q(x2) < q(x3), or
q(x1) > q(x2) > q(x3).

Proof of claim. — The arguments are similar to those given for the proof of the previous claim.
For i ∈ {1, 2, 3}, set ξi = q(xi) and note that, by the previous claim, these three images are
pairwise distinct. We divide the proof into cases according to their relative position. We will
detail the case ξ1 < ξ2 (the case ξ1 > ξ2 being totally analogous); for this, we will assume for
contradiction that ξ3 < ξ2 and we further split into two subcases depending on the relative
position of ξ3.

Case I. — We have ξ1 < ξ3 < ξ2.

In this case, we choose an element g ∈ N such that g.ξ1 > ξ2. Let y > x2 be a point of X
such that g ∈ N(a,y). Let h ∈ N(x2,b) be such that h(y) ∈ (x2, x3). Note that h ∈ Hx2 , and since
(x2, b) ⊂ (x1, b), we also have h ∈ Hx1 , so that φ(h) fixes ξ2 and ξ1. On the other hand, the
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element k = hgh−1 belongs to N(a,h(y)); since (a, h(y)) ⊂ (a, x3), we have k ∈ Hx3 , and thus φ(k)
fixes ξ3. Writing g = h−1kh, we have

g.ξ1 = h−1k.ξ1 < h−1k.ξ3 = h−1.ξ3 < h−1.ξ2 = ξ2,

contradicting the choice of g such that g.ξ1 > ξ2.

Case II. — We have ξ3 < ξ1 < ξ2.

In this case, choose an element g ∈ N such that g.ξ2 < ξ3. Let y < x2 be a point of X such
that g ∈ N(y,b). Let h ∈ N(a,x2) be such that h(y) ∈ (x1, x2). Note that h ∈ Hx2 , and since
(a, x2) ⊂ (a, x3), we also have h ∈ Hx3 , so that φ(h) fixes ξ2 and ξ3. On the other hand, the
element k = hgh−1 belongs to N(h(y),b); since (h(y), b) ⊂ (x1, b), we have k ∈ Hx1 , and thus φ(k)
fixes ξ1. Writing g = h−1kh, we have

g.ξ2 = h−1k.ξ2 > h−1k.ξ1 = h−1.ξ1 > h−1.ξ3 = ξ3,

contradicting the choice of g such that g.ξ2 < ξ3.
Thus, the unique possibility is that ξ1 < ξ2 < ξ3, as desired.

The claim implies that the map q : X → R is monotone (increasing or decreasing). Moreover,
it is clearly equivariant by construction:

g.q(x) = g. inf Fixφ(Hx) = inf g.Fixφ(Hx) = inf Fixφ(Hg(x)) = q(g(x)).

Hence, the map q establishes a semi-conjugacy between φ and the standard action of G on X.

Recall from the introduction that any two locally moving actions on the line of the same
group G are conjugate (this is customarily deduced from the much more general results of Rubin
[Rub89,Rub96]). From Proposition 4.1.1, we recover this fact in the following more general form.

Corollary 4.1.2. — For X = (a, b), let G ⊆ Homeo0(R) be locally moving. Let φ : G →
Homeo0(R) be a faithful irreducible action, and suppose that there exists a non-trivial element
g ∈ G such that Suppφ(g) is contained in a half-line. Then φ is semi-conjugate to the standard
action of G on X. In particular, if in addition φ is minimal, then it is conjugate to the standard
action on X.

Proof. — Set again N = [Gc, Gc]. Assume that the element g ∈ G from the statement is such
that Suppφ(g) is bounded above (the case where it is bounded below is analogous). Then, the
germ homomorphism G+∞ ◦ φ : G → Germ(φ(G),+∞) is not injective, so its kernel contains N
(Proposition 3.2.1). Thus, for any h ∈ N , we have that Suppφ(h) is also bounded above, and the
point ξ = sup Suppφ(h) must be fixed by the centralizer of h. Since the centralizer of h contains
N(a,x) and N(y,b) for suitable x, y ∈ X, Proposition 4.1.1 gives that φ must be semi-conjugate to
the standard action on X, or to an action of G/N . Suppose by contradiction that the second
case holds, i.e. that Fixφ(N) ̸= ∅. In this case, since both Fixφ(N) and Suppφ(N) are non-empty
φ-invariant sets, they both accumulate on ±∞. Then every connected component of Suppφ(N) is
bounded, and N acts faithfully on each of them, for it is simple. This contradicts that Suppφ(h)
is bounded above for every h ∈ N . We conclude that φ is semi-conjugate to the standard action
of G on X.
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4.2. Abundance of subgroups with fixed points in exotic actions

Here we use the criterion given by Proposition 4.1.1 to get some first restrictions on the
dynamics of exotic actions. We begin with a useful observation based on Theorems 2.1.19 and
2.1.20.

Proposition 4.2.1 (Actions of direct products). — Let M ∈ {R,S1}. Let Γ1 and Γ2
be two groups, and if M = R assume that Γ1 is finitely generated. Then for every action
φ : Γ1 × Γ2 → Homeo0(M), there exists i ∈ {1, 2} such that the image of [Γi,Γi] has fixed
points. (1)

Proof. — Suppose that φ(Γ1) admits no fixed point (otherwise, the conclusion is true). If the
action of Γ1 admits a discrete orbit, then the action on it factors through a cyclic quotient of Γ1,
and consequently [Γ1,Γ1] fixes it pointwise; so in this case we are done. Otherwise, we can take
the unique minimal invariant set Λ ⊂ M for φ(Γ1), whose existence is ensured by the assumption
that Γ1 be finitely generated. By uniqueness, Λ is preserved by φ(Γ2), and the action of Γ1 is
semi-conjugate to a minimal action, obtained by collapsing the connected components of M ∖ Λ.
In the case M = R, we apply Theorem 2.1.20 to this minimal action. If this action is conjugate
to an action by translations, then again [Γ1,Γ1] acts trivially on Λ. Otherwise its centralizer
is trivial or cyclic, so that [Γ2,Γ2] fixes Λ pointwise. When M = S1, we argue similarly using
Theorem 2.1.19, which gives that either the action is conjugate to an action by rotations (in
which case [Γ1,Γ1] acts trivially), or the centralizer of φ(Γ1) is finite cyclic (in which case [Γ2,Γ2]
fixes every point of Λ).

Remark 4.2.2. — The case M = S1 will be used only in §7.2. In the case M = R, the assumption
that Γ1 be finitely generated cannot be dropped, as shown by the following example. Let (H,≺)
be any left-ordered non-abelian countable group, and consider the direct sum G =

⊕
n∈NH, i.e.

the group of all sequences (hn) in H such that hn = 1 for all but finitely many n, with pointwise
multiplication. Consider the lexicographic order on G, given by (hn) ≺ (h′

n) if hm ≺ h′
m for

m = max{n ∈ N : hn ̸= h′
n}, and let φ : G → Homeo0(R) be the dynamical realization of this

order (Lemma 2.2.14). Let Γ1 ⊂ G be the subgroup consisting of all sequences (hn) such that
hn = 1 for n even, and Γ2 ⊂ G the subgroup of sequences such that hn = 1 for n odd, so that
G = Γ1 × Γ2. It is easy to see that neither the image of [Γ1,Γ1] nor of [Γ2,Γ2] have fixed points.

Remark 4.2.3. — A special case of Proposition 4.2.1 appears in Matsumoto [Mat14, Proposition
3.1] (for M = S1 and assuming Γi are simple).

Proposition 4.2.1 has the following consequence in our setting of micro-supported groups.

Corollary 4.2.4. — For X = (a, b), let G ⊆ Homeo0(X) be a subgroup whose action is
irreducible, and Γ ⊆ Gc a finitely generated subgroup. Then, for every action φ : G → Homeo0(R),
the image φ([Γ,Γ]) has fixed points.

Proof. — Let I ⋐ X be a relatively compact subinterval such that Γ ⊆ GI . Since the standard
action of G has no fixed points, we can find g ∈ G such that g(I) ∩ I = ∅. Then gΓg−1 ⊆ Gg(I)
commutes with Γ, so that Proposition 4.2.1 applied to the subgroups Γ1 := Γ and Γ2 := gΓg−1

implies in either case that φ([Γ,Γ]) has fixed points.

1. We identify here Γ1 with the subgroup Γ1 × {1}, and similarly for Γ2.
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When G is locally moving, Corollary 4.2.4 can be combined with Proposition 4.1.1 to obtain
the following stronger conclusion.

Proposition 4.2.5. — For X = (a, b), let G ⊆ Homeo0(X) be locally moving, and write
N = [Gc, Gc]. Then, for any exotic action φ : G → Homeo0(R) and finitely generated subgroup
Γ ⊆ N , the following hold.
(i) The boundary ∂ Fixφ(Γ) of its set of fixed points accumulates on both ±∞.

(ii) ∂ Fixφ(Γ) is non-discrete.
(iii) For every connected component I of Suppφ(Γ) = R∖ Fixφ(Γ), there exists f ∈ N centralizing
Γ, and such that f.I ∩ I = ∅.

Proof. — Since Γ is finitely generated and every element in some finite generating set can be
written as a product of commutators of finitely many elements in Gc, we have Γ ⊆ [∆,∆] for
some finitely generated subgroup ∆ ⊆ Gc, and thus Fixφ(Γ) ̸= ∅ by Corollary 4.2.4. Also, since
φ is faithful, we have Fixφ(Γ) ̸= R, and so ∂ Fixφ(Γ) ̸= ∅. The centralizer of Γ contains N(a,x)
and N(y,b) for suitable x, y ∈ X, and by Proposition 4.1.1 one of these two subgroups, say N(a,x),
acts without fixed points under φ. Since ∂ Fixφ(Γ) is non-empty and φ(N(a,x))-invariant, it must
accumulate on both ±∞, showing (i). In particular, every connected component of Suppφ(Γ) is
bounded. Let I = (ξ1, ξ2) be such a component; since Fixφ(N(a,x)) = ∅, we can choose f ∈ N(a,x)
such that f.ξ1 > ξ2, showing (iii). Now, since f ∈ N , we can apply (i) to ⟨f⟩, and get that
Fixφ(f) also accumulates on ±∞. Thus fn.ξ1 must converge, as n → +∞, towards a fixed point
ζ ∈ Fixφ(f). Since ∂ Fixφ(Γ) is φ(f)-invariant, the sequence fn.ξ1 is contained in ∂ Fixφ(Γ), and
the limit ζ = limn→∞ fn.ξ1 also belongs to ∂ Fixφ(Γ), showing (ii).

Remark 4.2.6 (Rigidity of piecewise analytic actions). — Parts (i)–(ii) of Proposition
4.2.5 can be seen as a first rigidity result of combinatorial nature, saying that irreducible actions
with particularly “nice” structure of fixed points are not exotic. For example, any action φ by
piecewise real-analytic homeomorphisms has the property that ∂ Fixφ(g) is discrete for every g ∈ G,
so Proposition 4.2.5 implies that φ cannot be exotic. When φ is a faithful piecewise analytic
action on a compact interval, without fixed points in the interior, one can actually conclude that
φ is semi-conjugate (on the interior) to the standard action. Indeed if φ were semi-conjugate
to a non-faithful action then by Corollary 4.1.2, the subset ∂ Fixφ(g) would accumulate on the
endpoints for every g ∈ [Gc, Gc], but this is impossible in piecewise analytic regularity.

Some special cases of this result can be found in the literature, for instance when studying
embeddings between certain groups of piecewise linear or projective homeomorphisms (such as
Thompson–Brown–Stein groups Fn1,...,nk

). Typically such results are proven by showing that the
image of an embedding must be locally moving, and applying Rubin’s theorem. See, for instance,
the work of Lodha [Lod20].





CHAPTER 5

DIFFERENTIABLE ACTIONS OF LOCALLY MOVING GROUPS

In this chapter we are interested in actions on a closed interval, or on the real line, by
diffeomorphisms of class C1. First, let us observe that Proposition 4.2.5 already gives a rigidity
result for actions on the real line by C2 diffeomorphisms: irreducible actions φ : G → Diff2

0(R) of
a locally moving group cannot be exotic. Indeed, recall that the classical Kopell’s lemma states
that whenever f and g are non-trivial commuting C2 diffeomorphisms of a compact interval, if
f has no fixed point in its interior, then neither does g. Thus, by Proposition 4.2.5, it is easy
to see that when φ is an exotic action, the image of G contains commuting elements preserving
a compact interval, but not satisfying the conclusion of Kopell’s lemma. We will get the same
rigidity result for C1 actions on the line, but this requires a different strategy, because Kopell’s
lemma fails for C1 actions (as pointed out by the examples of Tsuboi [Tsu95], based on the work
of Pixton [Pix77]).

5.1. Conradian actions and differentiable actions

Although we cannot use Kopell’s lemma in the C1 setting, there are other classical tools to
understand how fixed points of different (possibly non-commuting) elements are disposed.

A pair of successive fixed points for a subgroup G ⊆ Homeo0(R) is a non-empty open interval
I ⊂ R, for which there is an element g ∈ G such that I is a connected component of Supp(g).
A linked pair of successive fixed points for G consists of two pairs of successive fixed points
I = (a, b) and J = (c, d), such that either {a, b} ∩ (c, d) or (a, b) ∩ {c, d} is a point. As pointed
out by Navas [Nav10], the previous notion is related to the dynamical counterpart of Conradian
orderings on groups. Following the terminology of Navas and the third named author [NR09],
we will say that a group action on an interval is Conradian if it is irreducible (in restriction
to the interior of the interval) and has no linked pair of successive fixed points. We have the
fundamental fact that any Conradian action of a finitely generated group is semi-conjugate to an
action by translations. This goes back to Plante [Pla75, Theorem 5.5] (in the case of groups of
sub-exponential growth), and then to Solodov [Sol82], and Beklaryan [Bek04] (for a concise proof,
we refer to Navas [Nav10, Proposition 3.12]). Here we adapt the statement to our purposes.

Theorem 5.1.1. — Any Conradian action φ : G → Homeo0(R) of a finitely generated group is
positively semi-conjugate to an action by translations, via a non-trivial morphism τ : G → R (the
Conrad homomorphism), which is unique up to positive rescaling.
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Moreover, if f ∈ ker τ and J is a connected component of Suppφ(f), then g.J ∩ J = ∅ for any
g ∈ G such that τ(g) ̸= 0.

This result can be applied to describe the dynamics of finitely generated subgroups. Indeed,
assume that φ : G → Homeo0(R) is Conradian, let H ⊆ G be a finitely generated subgroup, and
I ⊂ R a connected component of Suppφ(H). Then, the restriction to I of the φ-action of H is
still Conradian, therefore it is also semi-conjugate to an action by translations.

The following result is a version for C1 pseudogroups of the classical Sacksteder’s theorem in
foliation theory. We state it here in the way it appears in the work of Deroin, Kleptsyn, and
Navas [DKN07, Théorème E] (see also Bonatti and Farinelli [BF15, Theorem 1.3] for a simplified
proof). This result can be actually deduced from the earlier work of Katok and Mezhirov [KM98].

Theorem 5.1.2. — Let G ⊆ Diff1
0([0, 1]) be a subgroup acting with a linked pair of successive

fixed points. Then there exist a point x ∈ (0, 1) and an element h ∈ G for which x is a hyperbolic
fixed point: h(x) = x and h′(x) ̸= 1.

Remark 5.1.3. — In fact, the proof of Theorem 5.1.2 gives a more precise statement that we
point out, as it will be useful for the sequel.

Write I = [0, 1]. It is not difficult to see that the existence of a linked pair of successive fixed
points for G, as in Theorem 5.1.2, gives a subinterval J ⊂ I and two elements f, g ∈ G such that
the images f(J) and g(J) are both contained in J , and are disjoint: f(J) ∩ g(J) = ∅. (This
situation is the analogue of a Smale’s horseshoe for one-dimensional actions.) It follows that
every element h ∈ ⟨f, g⟩+ in the (free) semigroup generated by f and g satisfies h(J) ⊂ J , and
moreover the images h(J), where h runs through the 2n elements of length n in the semigroup
⟨f, g⟩+ (with respect to the generating system {f, g}), are pairwise disjoint. Clearly the inclusion
h(J) ⊂ J gives that every h admits a fixed point in h(J). Using a probabilistic argument, and
uniform continuity of f ′ and g′ on J , one proves that, as n goes to infinity, most of the elements h
of length n are uniform contractions on J . This implies that most elements h ∈ ⟨f, g⟩+ of length
n, when n is large enough, have a unique fixed point in J , which is hyperbolic.

We deduce that if Λ ⊂ J is an invariant Cantor set for f and g (and thus for ⟨f, g⟩+), then
the hyperbolic fixed point for a typical long element h ∈ ⟨f, g⟩+ will never belong to the closure
of a gap J0 of Λ: otherwise, h would fix the whole gap J0, and therefore there would be a point
y ∈ J0 for which h′(y) = 1, contradicting the fact that h is a uniform contraction.

We point out a straightforward consequence of Theorem 5.1.2, attributed to Bonatti, Crovisier,
and Wilikinson in [Nav11, Proposition 4.2.25] (and largely investigated in [BF15]).

Corollary 5.1.4. — If G ⊆ Diff1
0([0, 1]) is a subgroup acting with a linked pair of successive

fixed points, then there is no non-trivial element f ∈ Diff1
0([0, 1]) without fixed points in (0, 1),

centralizing G.

5.2. Conradian differentiable actions of Thompson’s group F

Before discussing C1 actions of general locally moving groups, we first prove a preliminary
result in the case of Thompson’s group F , namely we rule out the existence of faithful Conradian
C1 actions of F . In fact, this will be used when studying general locally moving groups.
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The first step is to analyze actions which are sufficiently close to the trivial action. For the
statement, we recall that the C1 topology on Diff1

0([0, 1]) is defined by the C1 distance

dC1(f, g) = sup
ξ∈[0,1]

|f(ξ) − g(ξ)| + sup
ξ∈[0,1]

|f ′(ξ) − g′(ξ)|.

When G is a finitely generated group endowed with a finite generating set S, we consider the
induced topology on Hom

(
G,Diff1

0([0, 1])
)
, saying that two representations φ and ψ are δ-close if

dC1(φ(g), ψ(g)) ≤ δ for every g ∈ S.

Lemma 5.2.1. — There exists a neighborhood V of the trivial representation in the space
Hom

(
F,Diff1

0([0, 1])
)
, such that if φ ∈ V has no linked pair of successive fixed points, then φ(F )

is abelian.

Proof. — Let φ ∈ Hom
(
F,Diff1

0([0, 1])
)

be an action with no linked pair of successive fixed points.
As any proper quotient of F is abelian, it is enough to prove that kerφ is not trivial. Consider
two non-empty open subintervals I ⋐ J ⋐ X = (0, 1) with dyadic rational endpoints (we will say
that the intervals are dyadic). Let h ∈ F be such that h(I) = J , choose an element f ∈ FI ∼= F

without fixed points in I, and set g = hfh−1 ∈ FJ for the conjugate element (which acts without
fixed points on J). Note that both f and g belong to the subgroup H := ⟨g, [FJ , FJ ]⟩ = ⟨g, (FJ )c⟩.
The group H is finitely generated (it is generated by g and the subgroup FL for any dyadic
subinterval L ⋐ J such that g(L) ∩ L ̸= ∅), and since [FJ , FJ ] is simple and non-abelian, the
abelianization of H is infinite cyclic, generated by the image of g. We want to prove that φ(H) acts
trivially, giving the desired conclusion. (1) For this, assume by contradiction that Suppφ(H) ̸= ∅,
and take any connected component (ξ1, ξ2) of Suppφ(H). By assumption, the restriction of the
φ-action of H to (ξ1, ξ2), is Conradian, so we can apply Theorem 5.1.1: the corresponding Conrad
homomorphism τ : H → R has cyclic image, generated by the image of g, and therefore φ(g) acts
without fixed points on (ξ1, ξ2). As this holds for any connected component of Suppφ(H), we
have Suppφ(g) = Suppφ(H). We now fix a connected component (ξ1, ξ2) of Suppφ(g) of maximal
length (denoted as |(ξ1, ξ2)|). The interval h−1.(ξ1, ξ2) =: (η1, η2) is a connected component
of Suppφ(f) = h−1.Suppφ(g), so it is contained in Suppφ(H) = Suppφ(g); let (ξ′

1, ξ
′
2) be the

connected component of Suppφ(g) containing (η1, η2). Using Theorem 5.1.1 again, we observe
that g.(η1, η2) ∩ (η1, η2) = ∅, so that upon replacing g by its inverse, we can assume η2 ≤ g.η1.

Claim. — There exists a point γ ∈ [0, 1] such that |(η1, η2)| ≤ |φ(g)′(γ) − 1| |(ξ′
1, ξ

′
2)|.

Proof of claim. — We choose γ ∈ [ξ′
1, η1] such that

|(ξ′
1, g.η1)|

|(ξ′
1, η1)| = |g.(ξ′

1, η1)|
|(ξ′

1, η1)| = φ(g)′(γ).

Then we have
|(η1, η2)|
|(ξ′

1, ξ
′
2)| ≤ |(η1, g.η1)|

|(ξ′
1, η1)| =

∣∣∣∣g.η1 − ξ′
1

η1 − ξ′
1

− 1
∣∣∣∣ = |φ(g)′(γ) − 1|,

as desired.

1. We thank the anonymous referee for suggesting the following elementary proof. A similar argument appears
in Navas [Nav08, Lemma 2.7].
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Now, we assume that φ is sufficiently closed to the trivial representation, so that

sup
ξ∈[0,1]

|φ(g)′(ξ) − 1| < 1
2 and sup

ξ∈[0,1]
φ(h)′(ξ) < 2

(these inequalities determine the neighborhood V in the statement). If so, the claim gives the
inequality |(η1, η2)| < 1

2 |(ξ′
1, ξ

′
2)|, and thus

|(ξ1, ξ2)| = |h.(η1, η2)| < 2 |(η1, η2)| < |(ξ′
1, ξ

′
2)|,

contradicting the choice of (ξ1, ξ2) with maximal size.

The previous statement, which is of local nature (perturbations of the trivial actions), is used
to obtain a global result.

Lemma 5.2.2. — Every Conradian C1 action of F on the closed interval [0, 1] has abelian
image.

Proof. — Let φ ∈ Hom
(
F,Diff1

0([0, 1])
)

be a Conradian action. Again, as any proper quotient of
F is abelian, it is enough to show that kerφ is non-trivial. After Theorem 5.1.1, the action φ

(restricted to the interior (0, 1)) is semi-conjugate to an action by translations, and this is given
by the Conrad homomorphism τ : F → R. Take a minimal φ-invariant set Λ ⊂ (0, 1), and note
that ker τ pointwise fixes Λ. We write J for the collection of connected components of (0, 1)∖Λ.
Let us fix a dyadic subinterval I ⋐ X = (0, 1). Since FI ⊂ ker τ , the image φ(FI) preserves every
interval J ∈ J ; let us denote by φI,J ∈ Hom

(
FI ,Diff1

0(J)
)

the action obtained by restriction of
φ. Note that for any element g ∈ F such that Supp(g) ∩ I = ∅, one has the relation

(5.2.1) φ(g) ◦ φI,J ◦ φ(g)−1 = φI,g.J .

Claim. — There exists δ > 0 such that the image of φI,J is abelian for every J ∈ J contained
in (0, δ).

Proof of claim. — (2) Note that as φ is Conradian, φI,J has no linked pair of successive fixed
points. Let V be the neighborhood of the trivial representation provided by Lemma 5.2.1, and
denote by VI,J ⊂ Hom

(
FI ,Diff1

0(J)
)

the corresponding neighborhood obtained after considering
an identification Hom

(
FI ,Diff1

0(J)
) ∼= Hom

(
F,Diff1

0([0, 1])
)
. As FI fixes Λ, which accumulates

at 0, we see that φ(g)′(0) = 1 for any g ∈ FI ; as a consequence (since FI is finitely generated),
we can find δ > 0 such that if J ⊂ (0, δ), then φI,J ∈ VI,J , and hence the image of φI,J is
abelian.

Now, the abelianization of F , isomorphic to Z2, is given by the derivatives of elements at 0 and
1 (for the standard action of F on X), so when considering the Conrad homomorphism τ : F → R
for φ, at least one of the two following situations happens:
(i) if D+g(0) ̸= 1 and D−g(1) = 1, then τ(g) ̸= 0,
(ii) if D+g(0) = 1 and D−g(1) ̸= 1, then τ(g) ̸= 0.
Let us assume that the first case holds (otherwise we can argue similarly). We take an element
g ∈ F satisfying the conditions in (i), and such that Supp(g) ∩ I = ∅. As τ(g) ̸= 0, given any
J ∈ J , we can find n ∈ Z such that gn.J ⊂ (0, δ). According to the relation (5.2.1), the actions
φI,J and φI,gn.J are conjugate; since by the claim φI,gn.J is abelian, we deduce that φI,J also is.

2. We thank again the anonymous referee for this more elementary argument.
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As J ∈ J was arbitrary, and φ(FI) fixes Λ pointwise, we deduce that φ(FI) is abelian, and thus
[FI , FI ] ⊂ kerφ, as desired.

With a similar proof, we can extend the previous result to C1 actions on the real line.

Proposition 5.2.3. — Every Conradian C1 action of F on the real line has abelian image.

Proof. — We proceed as in the proof of Lemma 5.2.2, and for this reason we skip some details. We
start with a Conradian action φ ∈ Hom

(
F,Diff1

0(R)
)
, and consider the Conradian homomorphism

τ : F → R, and a minimal invariant set Λ ⊂ R, pointwise fixed by ker τ . We denote by J the
collection of connected components of R∖ Λ. For a given dyadic subinterval I ⋐ X, this gives
rise to actions φI,J ∈ Hom

(
FI ,Diff1

0(J)
)

without linked pairs of successive fixed points (J ∈ J ).
After Lemma 5.2.2 (applied to the restriction of φI,J to the closure of every connected component
of SuppφI,J (FI)), we deduce that [FI , FI ] ⊆ kerφI,J and therefore [FI , FI ] ⊆ kerφ.

5.3. Differentiable actions of general locally moving groups

Using that any locally moving group contains a copy of F (Proposition 3.3.1), we get the
following consequence of Proposition 5.2.3.

Proposition 5.3.1. — Locally moving groups admit no faithful Conradian C1 actions on the
real line.

We actually have the following alternative, which is a more precise formulation of Theorem A
from the introduction.

Theorem 5.3.2. — For X = (a, b), let G ⊆ Homeo0(X) be locally moving, and write N =
[Gc, Gc]. Then, every irreducible action φ : G → Diff1

0(R) satisfies one of the following:
— either φ is semi-conjugate to the standard action of G on X,or
— φ is semi-conjugate to an action that factors through the quotient G/N .
Moreover, the second case occurs if and only if φ(N) has fixed points, in which case the φ-action
of N on each connected component of its support is semi-conjugate to its standard action on X.

Proof. — Assume by contradiction that φ : G → Diff1
0(R) is an exotic action of G (that is, not

semi-conjugate to the standard action on X, nor to any action of the quotient G/N). Note that
N is itself locally moving, and by Proposition 3.3.1 we can find a subgroup Γ ⊆ N isomorphic to
F . Take a connected component I ⊂ Suppφ(Γ). By Proposition 4.2.5, I is bounded, and we can
take an element f ∈ N centralizing Γ, such that f.I ∩ I = ∅. Take the connected component J
of Suppφ(f) containing I. Again by Proposition 4.2.5, we have that J is bounded. Since Γ and f
commute, we have that Γ preserves J and, applying Corollary 5.1.4 to the induced action of Γ on
J obtained by restriction of φ, we deduce that the restriction of φ(Γ) to J has no linked pair of
successive fixed points. Thus, the action of Γ on I is Conradian, and we deduce from Lemma
5.2.2 that the restriction of φ(Γ) to I is abelian. As I ⊂ Suppφ(Γ) is arbitrary, we get that φ(Γ)
is abelian, and therefore φ : G → Diff1

0(R) is not faithful, which is an absurd.
The last statement is a consequence of the fact that the subgroup N is still locally moving (by

Lemma 3.1.5), thus we can apply the first part of the theorem to its action on the connected
components of the support; since N is simple (Proposition 3.2.1), only the first case can occur.
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For the last result of this section, recall from Definition 3.1.2 that G ⊂ Homeo0(X) is
fragmentable if it is generated by elements having trivial germ at one of the endpoints of X.

Corollary 5.3.3. — For X = (a, b), let G ⊆ Homeo0(X) be a fragmentable locally moving
subgroup. Then the following hold.

— Every faithful action φ : G → Diff1
0([0, 1]) without fixed points in (0, 1) is semi-conjugate (on

(0, 1)) to the standard action on X.

— Every irreducible faithful action φ : G → Diff1
0(R) is either semi-conjugate to the standard

action on X, or to a cyclic action.
In the latter case, if τ : G → Z is the homomorphism giving the semi-conjugate action, then

the action of ker τ on each connected component of its support is semi-conjugate to its standard
action on X.

To prove Corollary 5.3.3 we need the following lemma.

Lemma 5.3.4. — For X = (a, b), let G ⊆ Homeo0(X) be a fragmentable locally moving subgroup.
Then, for every pair of points c < d in X, the subgroup ⟨G(a,c), G(d,b)⟩ projects onto the largest
quotient G/[Gc, Gc].

Proof. — Given γ ∈ Germ(G, a), the assumption implies (by Remark 3.1.3) that there exists g ∈ G

with Ga(g) = γ and Gb(g) = id. Thus, we have g ∈ G(a,x) for some x ∈ X. If we choose h ∈ Gc such
that h(x) < c, the element g′ = hgh−1 belongs to G(a,c) and satisfies Ga(g′) = γ. We conclude that
the group G(a,c) projects onto Germ(G, a), and similarly G(d,b) projects onto Germ(G, b). Therefore
the subgroup ⟨G(a,c), G(d,b)⟩ projects onto Germ(G, a) × Germ(G, b) ∼= G/Gc. Consequently, it
is enough to show that its image in G/[Gc, Gc] contains Gc/[Gc, Gc]. This happens because
every g ∈ Gc is conjugate inside Gc to an element of ⟨G(a,c), G(d,b)⟩ with the same image in the
abelianization Gc/[Gc, Gc].

Proof of Corollary 5.3.3. — Write N = [Gc, Gc] and usual, and Y = [0, 1] or Y = R, according
to the case in the statement. By Theorem 5.3.2, the φ-action of G on the interior of Y is either
semi-conjugate to the standard action on X, or to an action that factors through G/N . Assume
that the second condition holds: after Theorem 5.3.2, we know more precisely that if I is a
connected component of Suppφ(N), then the induced action of N on I is semi-conjugate to the
standard action on X. In particular, it admits linked pairs of successive fixed points and by
Theorem 5.1.2 we can find h ∈ N with a hyperbolic fixed point ξ ∈ I. We make a slightly more
elaborate argument than the one that is needed for Corollary 5.1.4. Let (c, d) ⋐ X be such that
h ∈ N(c,d). Then the subgroup H = ⟨G(a,c), G(d,b)⟩ centralizes h, and thus every point in the
orbit H.ξ is fixed by h, with derivative always equal to φ(h)′(ξ) ̸= 1. As the derivative φ(h)′

is continuous, it must be that the orbit H.ξ is discrete in Y . In the case Y = [0, 1], the only
possibility is that ξ is fixed by φ(H), and after Lemma 5.3.4, the quotient action of G/N has
a fixed point as well. Similarly, in the case Y = R, φ(H) cannot fix ξ, so that the orbit H.ξ is
infinite and discrete. Using Lemma 5.3.4 again, we deduce that the quotient action of G/N has
an infinite discrete orbit, which means that it is semi-conjugate to a cyclic action.

For the last statement, apply the case Y = [0, 1] to the action of ker τ .

Notice that, since Thompson’s group F is fragmentable, Corollary 5.3.3 gives the following.



5.3. DIFFERENTIABLE ACTIONS OF GENERAL LOCALLY MOVING GROUPS 43

Theorem 5.3.5 (Rigidity of differentiable actions). — Thompson’s group F satisfies the
following.
— For every faithful action φ : F → Diff1([0, 1]) without fixed points in (0, 1), the φ-action of F
on (0, 1) is semi-conjugate to the standard action of F on (0, 1).
— Every faithful action φ : F → Diff1(R) without discrete orbits is semi-conjugate to the standard
action on (0, 1).

Remark 5.3.6. — Note that the conclusion is optimal: there exist C1 actions (and even C∞

actions) of F on closed intervals which are semi-conjugate, but not conjugate to its standard
action. The existence of such actions was shown by Ghys and Sergiescu [GS87], or alternatively
can be shown using the “2-chain lemma” of Kim, Koberda, and Lodha [KKL19] (see Proposition
3.3.1).

Remark 5.3.7. — In the setting of Theorem 5.3.2 (or Corollary 5.3.3), it may well happen that
the standard action of G is not semi-conjugate to any C1 action. In this case, the theorem also
provides a tool to show that certain subgroups of Homeo0(R) do not admit any embedding into
groups of interval diffeomorphisms of a certain regularity. We give some examples of applications
in this direction in §7.3.

Remark 5.3.8. — Theorem 5.3.2 is not true if the locally moving assumption on G is relaxed
to the assumption that G be only micro-supported. In §12.2, we construct groups admitting
many, pairwise non-semi-conjugate, micro-supported differentiable actions (this construction is
described within the framework of laminar actions, developed in Part II).





CHAPTER 6

FIRST EXAMPLES OF EXOTIC ACTIONS

The goal of this chapter is to give some first examples showing that the rigidity of C1 actions
established in Theorem 5.3.2 fails for actions by homeomorphisms: namely we provide three
classes of examples of locally moving subgroups of Homeo0(R) that admit exotic actions on the
line (in the sense of Definition 4.0.1). More constructions will appear in Part II, and some of
these examples will be also revisited after proving our main structure theorems for C0 actions.

First, in §6.1, we discuss a general construction of left orders on the group Homeoc(R) of
compactly supported homeomorphisms, and use it to show that every countable subgroup of
Homeoc(R), whose standard action is minimal, admits exotic actions. While this construction is
particularly simple, it cannot be applied to any finitely generated group, and the exotic actions
obtained are never minimal (in fact, they do not admit any minimal invariant set). In §6.2, we
provide a different construction, that applies to groups of (finitary) PL homeomorphisms. We
shall show that every group in the family G(X;A,Λ) of Bieri–Strebel groups admits minimal
exotic actions. This provides, in particular, examples of exotic actions of Thompson’s group F .
Finally, in §6.3 we describe yet another construction that produces minimal exotic actions, and
applies to any locally moving subgroup of Homeo0(X) having a cyclic group of germs at one
endpoint of X. This class also contains Thompson’s group F , as well as many examples outside
the realm of groups of PL homeomorphisms.

6.1. Orders of germ type

In this section we build exotic actions on the line that are obtained as dynamical realizations
of some left-invariant orders on the group of compactly supported homeomorphisms of R. The
orders here are inspired by the well-known construction of bi-invariant orders on the group of
orientation-preserving piecewise linear homeomorphisms of an interval (see for instance the work
of Brin and Squier [BS85, §2], or even the older work by Dlab [Dla68]).

Let G ⊂ Homeoc(R) be a countable subgroup whose action on R is minimal (note that G is
automatically micro-supported, by Proposition 3.1.4). For example, one can take G = [F, F ], the
commutator subgroup of Thompson’s group F . Note that G = Gc, so that N = [G,G] is the
minimal non-trivial proper normal subgroup of G (Proposition 3.2.1). For a point x ∈ R and an
element g ∈ StabG(x), we let Gx(g) be its germ at x; with abuse of notation, we will denote by id
the trivial germ, without reference to the base point.
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It is known that groups of germs of interval homeomorphisms are left orderable (see Mann
[Man15a, Proposition 3], where the proof, based on a compactness argument, is attributed to
Navas; see also the monograph [DNR, Remark 1.1.13]). Using this fact, for each x ∈ R we can
take a left-invariant order <(x) on Germ

(
G(−∞,x), x

)
, and define

P =
{
g ∈ G : Gpg

(g) >(pg) id
}
,

where pg := sup{x ∈ X : g(x) ̸= x}. It is straightforward to check that P is a semigroup, disjoint
from P−1, and that defines a partition G = P ⊔ {1} ⊔ P−1. Thus, P is the positive cone of a
left-invariant order ≺∈ LO(G) (see Remark 2.2.8). Denote by φ : G → Homeo0(R) its dynamical
realization.

Proposition 6.1.1. — Let G ⊂ Homeoc(R) be a countable subgroup whose action is minimal.
Then the action φ : G → Homeo0(R) defined above is not semi-conjugate to any action of the
largest proper quotient G/[Gc, Gc], nor to the standard action. Furthermore, the action φ does
not admit any minimal invariant set.

Proof. — First, we will show that φ is not semi-conjugate to any action induced from a quotient.
For this purpose, we claim that the image φ(N) acts on R without fixed points, where we set
N = [Gc, Gc] as usual. Indeed to show this, it is enough to show that the orbit of id under the
action of N is unbounded from above and from below, in the ordered et (G,≺). For this, fix an
element h ∈ G with h ≻ id. Since N is normal in G, the subset {pg : g ∈ N} ⊆ X is G-invariant,
so that by minimality there exists g ∈ N with pg > ph, and thus pgh−1 = pg. Upon replacing g
with g−1, we can assume Gpg (g) >(pg) id, so that

Gpgh−1 (gh−1) = Gpg
(g) >(pg) id,

meaning that g · id = g ≻ h. Similarly, for every h ≺ id, we can find an element g′ ∈ N such that
g′ · id ≺ h. This shows that the N -orbit of id is unbounded in both directions, as desired.

For the remaining part of the statement, note that every action which is semi-conjugate
to a minimal action admits a minimal invariant set. So it is enough to show that φ has no
minimal invariant set. For this, note that for every x ∈ X, the subgroup G(a,x) is ≺-convex, so
G =

⋃
xG(a,x) is an increasing union of ≺-convex bounded subgroups. It follows that R can

be correspondingly written as an increasing union of bounded intervals R =
⋃
x Ix, which are

wandering intervals for φ, in the sense that any two φ-images of Ix are either equal or disjoint
(namely, define Ix as the interior of the convex hull of ι(G(a,x)), where ι : (G,≺) → R is the good
embedding associated with the dynamical realization, see Definition 2.2.13). This easily implies
that no bounded interval intersects every φ-orbit, so φ has no minimal invariant set (Lemma
2.1.11).

6.2. A construction of minimal exotic actions for Bieri–Strebel groups

Recall that we denote by G(X;A,Λ) the Bieri–Strebel group acting on an interval X, associated
with a multiplicative subgroup Λ ⊆ R>0, and a non-trivial Z[Λ]-submodule A ⊂ R (see Definition
2.3.1). We shall assume that A and Λ are countable, and set G := G(X;A,Λ). We proceed to
construct minimal exotic actions of such groups, working in particular for Thompson’s group
F = G((0, 1),Z[1/2], ⟨2⟩∗).
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For g ∈ G, we define the associated jump cocycle as the function

(6.2.1)
jg : X → Λ

x 7→ D+g−1

D−g−1 (x).

Note that for every g ∈ G, the support {x ∈ X : jg(x) ̸= 1} of jg coincides with the set BP(g−1)
of breakpoints of g−1, which is finite. The chain rule for derivatives gives the cocycle relation:

(6.2.2) jgh(x) = jg(x)jh(g−1(x)) for every x ∈ X and g, h ∈ G.

We denote by S = {jg : g ∈ G} the collection of all jump cocycles, which we consider as a subset
of the set

⊕
X Λ of all finitely supported functions f : X → Λ. The cocycle rule (6.2.2) allows to

define an action of G on
⊕

X Λ by the formula

(6.2.3) g · s(x) = jg(x) s(g−1(x)) for s ∈
⊕

X Λ and g ∈ G.

This action preserves the subset S, which is exactly the orbit of the function with constant value 1:
indeed, the cocycle rule yields g · jh = jgh.

We now use this action to construct a family of left preorders on G. For this, consider a
(non-trivial, invariant) preorder ≤Λ∈ LPO(Λ) on the abelian group Λ, and denote by ≡Λ the
associated equivalence relation on Λ (that is, λ1 ≡Λ λ2 if λ1 ≤Λ λ2 ≤Λ λ1). To the preorder ≤Λ,
we can associate a preorder of lexicographic type on

⊕
X Λ, defined by setting s ⪯ t if and only if

— either s(x) ≡Λ t(x) for every x ∈ X, or
— s(xs,t) ⪇Λ t(xs,t), where xs,t := max{x ∈ X : s(x) ̸≡Λ t(x)}.

Definition 6.2.1 (Jump preorders on Bieri–Strebel groups)
For a given preorder ≤Λ∈ LPO(Λ), the jump preorder on the Bieri–Strebel group G(X;A,Λ)

associated with ≤Λ is the preorder defined by the relation: g ⪯ h if and only if jg ⪯ jh for the
preorder of lexicographic type on

⊕
X Λ. (1)

Lemma 6.2.2. — Jump preorders on Bieri–Strebel groups are left invariant.

Proof. — First notice that preorder of lexicographic type ⪯ on
⊕

X Λ is invariant with respect to
the group structure on

⊕
X Λ given by pointwise multiplication. It is also clearly invariant under

the action of Homeo0(X) on
⊕

X Λ by precomposition. By (6.2.3), it is invariant under the action
of G. Finally, left invariance of the jump preorder on G follows from the relation g · jh = jgh.

Given a jump preorder ⪯∈ LPO(G), we can consider its dynamical realization to obtain an
action on the line φ : G → Homeo0(R). More precisely, we take the dynamical realization of
the action on the ordered space (G/H,≺), where H := [1]⪯ is the residue of the preorder (the
subgroup consisting of all g ∈ G such that g ⪯ h ⪯ g); see §2.2.2. We will show the following.

Proposition 6.2.3. — Let G = G(X;A,Λ) be a (countable) Bieri–Strebel group, where X = (a, b)
is an interval with a, b ∈ A ∪ {±∞}. Then for every preorder ≤Λ∈ LPO(Λ), the dynamical
realization φ : G → Homeo0(R) of the associated jump preorder is a faithful minimal action, not
semi-conjugate to the standard action of G on X. Moreover, when ≤Λ and ≤′

Λ are different
preorders on Λ, the dynamical realization of their associated jump preorders are not positively
(semi-)conjugate.

1. The notation should not cause any confusion, as the correspondence g 7→ jg preserves the preorder.
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Remark 6.2.4. — When ⪯ is a jump preorder and H = [id]⪯ ⊂ G its residue, the ordered
space (G/H,≺) can be concretely described as follows. Let Λ0 = [1]≤Λ ⊂ Λ be the residue of the
preorder ≤Λ. Then the preorder ≤Λ descends to an invariant order on the quotient Λ∗ = Λ/Λ0
(which is a group, since Λ is abelian), and ≡Λ is the congruence relation modulo Λ0. Therefore, H
consists precisely of elements g ∈ G(X;A,Λ) such that jg(x) ∈ Λ0 for every x ∈ X. Considering
the formula (6.2.3) modulo Λ0, the G-action on

⊕
X Λ descends to an action on

⊕
X Λ∗, and

H coincides with the stabilizer of the trivial function (constant, equal to 1). Thus G/H can be
identified with the image S∗ of S in

⊕
X Λ∗. Under this identification, the invariant order ≺

coincides with the natural lexicographic order on S∗ induced by ≤Λ.

The proof of Proposition 6.2.3 requires some preliminaries. In what follows, we fix a preorder
≤Λ on Λ, and use ⪯ to denote both the induced lexicographic preorder on

⊕
X Λ, and the jump

preorder on G. We denote by ≡ the equivalence relation on
⊕

X Λ (and on G) associated with
the preorder ⪯, namely s ≡ t if s(x) ≡Λ t(x) for every x ∈ X, and g ≡ h if jg ≡ jh. For simplicity,
given g, h ∈ G with jg ̸≡ jh, we write xg,h := xjg,jh

, and when g ̸≡ id we simply write

xg := xid,g = max{x ∈ X : jg(x) ̸≡Λ 1}.

Notice that with this notation, we have id ¬ g if and only if 1 ⪇Λ jg(xg).

Lemma 6.2.5. — With notation as above, assume that g, h, k ∈ G are such that g(xh) > xk
and BP(g) ∩ [xh, b) = ∅. Then, we have the following:
— if h  id, then gh  k,
— if h ¬ id, then gh ¬ k.

Proof. — Let us first show that xgh = g(xh). From the assumption BP(g) ∩ [xh, b) = ∅ and the
observation that g(BP(g)) = BP(g−1), we have

∅ = g (BP(g) ∩ [xh, b)) = BP(g−1) ∩ [g(xh), b),

and therefore jg(x) = 1 for every x ∈ [g(xh), b). On the other hand, we have

max{x ∈ X : jh(g−1(x)) ̸≡Λ 1} = g(xh).

With these two observations in mind when looking at the relation jgh(x) = jg(x)jh(g−1(x)), we
get that xgh = g(xh), as desired. By assumption, this gives xgh > xk, and thus xgh,k = xgh.
Therefore, the condition k ¬ gh is equivalent to

1 ⪇Λ jgh(xgh) = jgh(g(xh)) = jg(g(xh))jh(xh) = jh(xh),

giving the first statement. The proof of the second statement is analogous.

We will also need the following elementary lemma on Bieri–Strebel groups, which uses the
assumption that the endpoints of X belong to A ∪ {±∞}.

Lemma 6.2.6. — Let X = (a, b) with a, b ∈ A ∪ {±∞}, and take any two points x1 < x2 in
A ∩X. Then there exists g ∈ G(X;A,Λ) such that g(x1) > x2 and BP(g) ∩ (x1, b) = ∅.

Proof. — We will use the result of Bieri and Strebel [BS16, Theorem A4.1], which states that
given y, z1, z2 ∈ A with y < z1 and y < z2, there exists an element h ∈ G(R;A,Λ) that maps
(y, z1) to (y, z2) if and only if z2 − z1 belongs to the submodule

IΛ ·A := ⟨(1 − λ)a with λ ∈ Λ, a ∈ A⟩.
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For λ ∈ Λ and w ∈ A, we denote by g(w, λ) the affine map x 7→ λx+(1−λ)w with slope λ and fixed
point w. Let us suppose first that b = +∞. Choose λ ∈ Λ large enough so that g(a0, λ)(x1) > x2.
Then we choose g coinciding with id on (a, a0), and with g(a0, λ) on (a0,+∞). Suppose now that
b < +∞. Fix a0 ∈ A ∩ (a, x1); when λ ∈ Λ is small enough, we have g(b, λ)(x1) ∈ (x2, b). Since

g(b, λ)(x1) − x1 = (λ− 1)x1 + (1 − λ)w ∈ IΛ ·A,

we can choose h ∈ G(R;A,Λ) that fixes a0 and maps x1 to g(b, λ)(x1). Let g ∈ G(X;A,Λ) be
the element that coincides with the identity on (a, a0), with h on (a0, x1), and with g(b, λ) on
[x1, b). Then g satisfies the desired conclusion.

Lemma 6.2.7. — For every g1, g2, h1, h2 ∈ G satisfying g1 ¬ h1 ¬ h2 ¬ g2, there exists g ∈ G

such that gh1 ¬ g1 ¬ g2 ¬ gh2.

Proof. — First we show that there exists k ∈ G so that h1 ¬ k ¬ h2. For this, take x ∈ X so
that BP(hi) ∩ (x, xh1,h2) = ∅ for i ∈ {1, 2}, and choose y ∈ A ∩ (x, xh1,h2). Since y ∈ A, we can
take k′ ∈ G such that xk′ = h−1

1 (y) and jk′(xk′) ⪈Λ 1. After these choices, and from the relation
jh1k′(x) = jh1(x)jk′(h−1

1 (x)), we get xh1k′,h1 = y, and

jh1k′(y) = jh1(y)jk′(xk′) ⪈Λ jh1(y).

Hence, h1 ¬ h1k
′. On the other hand, we have jh1k′(x) ≡Λ jh1(x) for every x > y, and in

particular for x = xh1,h2 . This gives the other inequality h1k
′
¬ h2. Then k := h1k

′ satisfies the
desired conclusion.

Now, to prove the statement, by transitivity we can assume h1 ¬ id ¬ h2. Using Lemma 6.2.6,
choose g ∈ G so that BP(g) ∩ (xhi , b) = ∅ and g(xhi) > xgi for i ∈ {1, 2}. Then from Lemma
6.2.5, we deduce that gh1 ¬ g1 and g2 ¬ gh2, as desired.

Proof of Proposition 6.2.3. — Denote by φ : G → Homeo0(R) the dynamical realization of the
jump preorder. Let H = [id]⪯ be the residue of the jump preorder (see Remark 6.2.4), and denote
by i : G → R the map obtained by composing the projection G → G/H with the good embedding
(G/H,≺) → R associated with the dynamical realization (Definition 2.2.13). Minimality of φ
follows from Lemma 6.2.7, which ensures the conditions in the minimality criterion from Lemma
2.2.15.

We proceed to check that φ is faithful, which is the same as checking that for every non-trivial
g ∈ G, there exists k ∈ G such that gk ̸≡ k, or equivalently that jgk ̸≡ jk. When jg ̸≡ jid this is
easily verified, otherwise we must have jg(x) ≡Λ 1 for every x ∈ X. If so, then we have

jgk(x) = jg(x)jk(g−1(x)) ≡Λ jk(g−1(x))

for every k ∈ G. This implies that if jgk ≡ jk, then g must fix the finite set {x : jk(x) ̸≡Λ 1}.
However, it is clearly possible to choose k ∈ G such that jk(x) ̸≡Λ 1 for some x ∈ Supp(g), so
that jgk ̸≡ jk, as wanted.

We will now show simultaneously that φ is not semi-conjugate to the standard action, and that
the preorder ≤Λ can be read from the positive semi-conjugacy class of φ. Actually, as we have
already checked that φ is minimal, we have that any semi-conjugacy is automatically a conjugacy.
For this, fix c ∈ X and let (dn) ⊂ (c, b) ∩A be a sequence converging to b. Given a non-trivial
λ ∈ Λ, consider a sequence (gn) ⊆ G satisfying:

— gn ∈ G((c, dn);A, ⟨λ⟩∗) for every n, where G((c, dn);A, ⟨λ⟩∗) ⊆ G is the Bieri–Strebel group
associated with the interval (c, dn) ⋐ X and the cyclic multiplicative subgroup ⟨λ⟩∗ ⊆ Λ,
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— D−g−1
n (dn) = λ−1.

The existence of such a sequence follows from [BS16, Corollary A5.3.(ii)]. Now, for every h ∈ G

and n ∈ N, we have jgnh(x) = jh(x) for every x ∈ (dn, b), and jgnh(dn) ≡Λ λ jh(dn).
Assume first that λ ≡Λ 1, and notice that in this case jgn ≡ jid for every n ∈ N, since gn

is in the subgroup G((c, dn);A, ⟨λ⟩∗). Therefore, i(id) is a common fixed point of the family
{φ(gn) : n ∈ N}. Consider now the case where λ ̸≡Λ 1; in this case, for every h ∈ G and
sufficiently large n ∈ N, the above computation gives xgnh = dn and jgnh(dn) ≡Λ λ. Hence, if
λ ⪈Λ 1 and h ∈ G, we have gnh → +∞ as n → +∞ (with respect to the jump preorder), which
implies that φ(gn)(ξ) → +∞ for every ξ ∈ R. Analogously, when λ ⪇Λ 1, we get φ(gn)(ξ) → −∞
for every ξ ∈ R. As such qualitative properties of the action φ are invariant under positive
conjugacy, we deduce that the positive conjugacy class of φ determines the preorder ≤Λ. This
also shows that φ is not conjugate to the standard action, since by construction all elements in
the sequence (gn) act trivially on the interval (a, c).

6.3. Groups with cyclic group of germs at one endpoint

Throughout the section we write X = (a, b), and let G ⊂ Homeo0(X) be a locally moving
subgroup such that Germ(G, b) is infinite cyclic and acts freely near b (that is, for every g ∈ G

whose projection to Germ(G, b) is non-trivial, there is an interval (x, b) on which g has no fixed
point). We will say for short that G has cyclic germs at b.

Example 6.3.1. — One example of group with cyclic germs is Thompson’s group F , and more
generally any Higman–Thompson’s group Fn (see §2.3). A much larger class of examples with
this property is given by (pre)chain groups in the sense of Kim, Koberda, and Lodha [KKL19].

For G ⊂ Homeo0(X) with cyclic germs, we present a mechanism to build a continuum of
pairwise non-conjugate, minimal exotic actions. For this, we identify Germ(G, b) with Z in such a
way that any germ for which b is an attractive fixed point is sent to a positive integer. We denote
by τ : G → Z the homomorphism obtained via this identification, and we fix an element f0 ∈ G

such that τ(f0) = 1 (that is, the germ of f0 generates Germ(G, b) and we have f0(x) > x near b).
Choose next a bi-infinite sequence s = (sn)n∈Z ⊂ X with

(6.3.1) sn+1 = f0(sn) for n ∈ Z, and lim
n→+∞

sn = b.

Consider the action of the group G on the set of sequences XZ, where the action of g ∈ G on a
sequence t = (tn)n∈Z is given by

(6.3.2) g · t =
(
g(tn−τ(g))

)
n∈Z .

It is straightforward to check that this defines an action of G on XZ, using that τ is a ho-
momorphism. We let S ⊂ XZ be the orbit of s under this action. Note that s is fixed by
f0.

Lemma 6.3.2. — With notation as above, for every sequence t = (tn)n∈Z ∈ S, there exists
n0 ∈ Z such that tn = sn for every n ≥ n0.

Proof. — Let g ∈ G be such that t = g · s. Then tn = g(sn−τ(g)). As we required limn→+∞ sn = b

in (6.3.1), and g coincides with f
τ(g)
0 on a neighborhood of b, the conclusion follows.
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It follows from the lemma that for every two distinct sequences t = (tn) and t′ = (t′n) in S, the
integer

(6.3.3) m(t, t′) = max {n ∈ Z : tn ̸= t′n}

is well defined and finite. Thus we can introduce the total order relation ≺ on S, given by t ≺ t′

if and only if tm < t′m, with m = m(t, t′)

Lemma 6.3.3. — With notation as above, the total order ≺ on S is preserved by the action of
G on S defined by (6.3.2). Moreover, the element f0 acts as a homothety on (S,≺) (in the sense
of Definition 2.2.16), with fixed point s.

Proof. — It is routine verification that the order ≺ is G-invariant. Let us check that f0 is a
homothety. We have already noticed that the sequence s is a fixed point for f0. Fix sequences
t, t′ ∈ S such that

(6.3.4) s ≺ t ≺ t′.

We need to show that there exists n ∈ Z such that fn0 · t ≻ t′ (in fact, we will find some n ≥ 1,
showing that f0 acts as an expanding homothety). Write m0 = m(t, s) and m1 = m(t′, s) and
note that condition (6.3.4) gives m0 ≤ m1 and tm0 > sm0 . We claim that n = m1 − m0 + 1 is
fine for our purposes. For this, we compute directly:

(fn0 · t)m1+1 = fn0 (tm1+1−n) = fn0 (tm0)
> fn0 (sm0) = sm0+n = sm1+1 = t′m1+1,

while for every m > m1 + 1 = n+m0 we have

(fn0 · t)m = fn0 (tm−n) = fn0 (sm−n) = sm = t′m.

Thus m(fn0 · t, t′) = m1 + 1 and fn0 · t ≻ t′, as desired. Similarly one argues for t′ ≺ t ≺ s.

Assume now that G is countable, so that the set S is countable as well. Then we can consider
the dynamical realization φs : G → Homeo0(R) of the action of G on (S,≺).

Proposition 6.3.4. — For X = (a, b), let G ⊂ Homeo0(X) be a countable locally moving
subgroup with cyclic germs at b. For every sequence s = (sn)n∈Z as in (6.3.1), the action
φs : G → Homeo0(R) constructed above is minimal and faithful.

Moreover if s′ is another such sequence whose image is different from that of s (that is, if they
are not the same after a shift of indices), then φs and φs′ are not conjugate. In particular G has
uncountably many, pairwise non-conjugate, faithful minimal actions on the real line.

Proof. — The fact that φs is minimal follows from Lemma 6.3.3 and Proposition 2.2.17 (the
action on S is transitive, so it is enough to describe what happens at s). Let ι : (S,≺) → R be an
equivariant good embedding associated with φs. Since f0 is a homothety on (S,≺), it follows that
its φs-image is a homothety of R whose unique fixed point is ι(s). In particular the stabilizer of
this point inside G+ = ker τ , which after (6.3.2) coincides with the stabilizer of s for the natural
diagonal action of G+ on XZ, is a well-defined invariant of the conjugacy class of φs. Now, note
that if s and s′ are sequences with distinct images, using that G is locally moving, it is not
difficult to construct g ∈ G+ such that g · s = s and g · s′ ≠ s′, showing that φs and φs′ are not
conjugate.





CHAPTER 7

ADDITIONAL RESULTS

In this chapter we collect some further results and applications that follow from the methods
and results in Part I.

In §7.1, we use the results from Chapter 4 to provide a class of large (necessarily uncountable)
locally moving subgroups of Homeo0(R), which admit a unique irreducible action on R up to
conjugacy (recovering in particular the results for Homeoc(R) and Diffrc(R) of Militon [Mil16],
and Chen and Mann [CM23]). In §7.2, we show how the methods from Chapter 4 provide a
general rigidity result for actions of locally moving groups on the circle. In this case the situation
is much simpler than in the case of the line, and exotic actions essentially do not exist. In §7.3,
we improve arguments from the work of Bonatti, Lodha, and the fourth author [BLT19] to obtain
some non-smoothability results, that together with Theorem 5.3.2 give that certain groups of PL
homeomorphisms of intervals (such as most of Thompson–Brown–Stein groups) do not admit any
Cr actions on closed intervals for r > 1.

7.1. Uncountable groups

The class of locally moving groups contains several natural “huge” groups, such as the group
Homeo0(R) and Diffr0(R), or the subgroups Homeoc(R) and Diffrc(R) of compactly supported
elements. Actions of such groups on the line are well understood thanks to work of Militon
[Mil16], and of the recent work of Chen and Mann [CM23]. In fact, such results fit in a program
started by Ghys [Ghy91], asking when the group of all diffeomorphisms (or homeomorphisms) of
a manifold may act on another manifold; in the recent years, very satisfactory results have been
obtained, and we refer to the survey of Mann [Man21] for an overview.

In this section we provide a rigidity criterion for locally moving groups whose standard action
has uncountable orbits, and satisfies an additional condition. We then explain how this criterion
recovers some of the results in [Mil16,CM23], and unifies them within the setting of the other
results of this part of the paper. Our result requires the following relative version of a group
property first considered by Schreier [Mau15, Problem 111], and studied by Le Roux and Mann
[LRM18] in the setting of transformation groups (from whom we borrow the terminology).

Definition 7.1.1. — For a group G and a subgroup H ⊂ G, we say that the pair (G,H) has
the relative Schreier property if every countable subset of H is contained in a finitely generated
subgroup of G.
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When G = H, this is called the Schreier property in [LRM18].

Theorem 7.1.2. — For X = (a, b), let G ⊆ Homeo0(X) be a locally moving subgroup such that
for every non-empty open subinterval I ⋐ X, the following hold:

— all GI-orbits in I are uncountable;

— the pair ([Gc, Gc], [GI , GI ]) has the relative Schreier property.

Then, every irreducible action φ : G → Homeo0(R) is either conjugate to the standard action of G
on X, or semi-conjugate to an action that factors through G/[Gc, Gc].

The following special case is worth being pointed out.

Corollary 7.1.3. — Let G ⊆ Homeoc(R) be a perfect subgroup of compactly supported home-
omorphisms. Suppose that for every bounded non-empty open interval I ⊂ R the following
hold:

— the GI-orbit of every x ∈ I is uncountable;

— the pair (G,GI) has relative Schreier property.

Then every irreducible action φ : G → Homeo0(R) is conjugate to the standard action of G.

For the proof we need the following lemmas.

Lemma 7.1.4. — For X = (a, b), let G ⊆ Homeo0(X) be a subgroup such that every x ∈ X has
an uncountable G-orbit. Then every action φ : G → Homeo0(R) which is semi-conjugate to the
standard action on X, is conjugate to it.

Proof. — Note first that if orbits are uncountable, then the defining action on X is minimal.
Indeed, if Λ ⊂ X is a closed invariant subset, then the boundary ∂Λ is countable and G-invariant,
thus ∂Λ = ∅; hence Λ ∈ {∅, X}, as wanted. Assume that φ : G → Homeo0(R) is semi-conjugate
to the standard action on X, by a monotone equivariant map q : R → X. As the action on X

is minimal, the semi-conjugacy q is continuous. If it is not injective, there exist points x ∈ X

for which q−1(x) is a non-trivial interval. But the set of such points is G-invariant and at most
countable, which is a contradiction.

Lemma 7.1.5. — Let G be a group of homeomorphisms of a second countable Hausdorff space.
Then there exists a countable subgroup H ⊆ G such that Fix(G) = Fix(H).

Proof. — The statement is non-empty only when G is uncountable, and we will assume so. Let
U be a countable basis of open subsets of the space. For every z ∈ Supp(G), we can find a
neighborhood U ∈ U of z and an element gU ∈ G, such that gU (U) ∩ U = ∅. Thus, we can cover
Supp(G) with countably many subsets with this property, and the subgroup H generated by the
corresponding gU ∈ G is countable, and satisfies the desired condition.

Proof of Theorem 7.1.2. — Assume by contradiction that φ : G → Homeo0(R) is an exotic action:
after Lemma 7.1.4, this means that φ is not conjugate to the action on X, and φ(N) has no fixed
point (where N = [Gc, Gc], as usual).

Claim 1. — For every non-empty open subinterval I ⋐ X, the subsets Fixφ([GI , GI ]) and
Suppφ([GI , GI ]) accumulate at ±∞.
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Proof of claim. — By Lemma 7.1.5, we can find a countable subgroup H ⊆ [GI , GI ] with
Fixφ ([GI , GI ]) = Fixφ(H). By the relative Schreier property of (N, [GI , GI ]), the subgroup H is
contained in a finitely generated subgroup Γ ⊂ N , to which we can apply Proposition 4.2.5.(i) and
deduce that Fixφ(Γ) accumulates at ±∞. As H ⊂ Γ, the same holds for Fixφ(H) = Fixφ([GI , GI ])
as desired. Finally, as φ is exotic, Corollary 4.1.2 implies that Suppφ([GI , GI ]) accumulates at
±∞.

Since φ is exotic, Proposition 4.1.1 implies that, either Fixφ(G(a,x)) or Fixφ(G(x,b)) is empty
for every x ∈ X. Assume that the latter case holds, the other case being analogous. Fix
I = (c, d) ⋐ X, and let I be the collection of connected components of Suppφ ([GI , GI ]). Notice
that by Claim 1, all components in I are bounded, and their union accumulates at ±∞. Fix
L ∈ I. Then for every x ∈ (d, b), we have the inclusion [GI , GI ] ⊆ [G(c,x), G(c,x)], and therefore
L is contained in some connected component Lx of Suppφ

(
[G(c,x), G(c,x)]

)
. Consider then the

function
FL : (d, b) → R

x 7→ supLx,

which is well defined after Claim 1, and is monotone increasing.

Claim 2. — The function FL is not continuous.

Proof of claim. — Since we assumed that Fixφ(G(c,b)) is empty, it must hold that FL tends to +∞
as x tends to b. Note that for every x ∈ (d, b), the point FL(x) belongs to Fixφ

(
[G(c,x), G(c,x)]

)
and therefore also to Fixφ([GI , GI ]). Since FL(x) tends to +∞ as x tends to b, and its image
avoids Suppφ([GI , GI ]) (that accumulates at +∞ by Claim 1), we conclude that the image of FL
is not an interval, so FL is not continuous.

Notice now that since the subgroup G(d,b) centralizes [GI , GI ], it permutes the intervals in I.
Hence, for every g ∈ G(d,b), the family of functions {FL : L ∈ I} is equivariant in the following
sense:

g.FL(x) = Fg.L(g(x)).

In particular, a point x is a discontinuity point for FL if and only if g(x) is a discontinuity point
for Fg.L. Since all functions FL are monotone, and there are countably many of them, there are
at most countably many points x ∈ (d, b) which are discontinuity points of some FL, for L ∈ I.
Thus the G(d,b)-orbit of every such point must be countable, contradicting our assumption.

Let us now give some examples of groups that satisfy the hypotheses of Theorem 7.1.2 (or
simply Corollary 7.1.3). In several situations the relative Schreier property can be established
using an embedding technique for countable groups due Neumann and Neumann [NN59], based
on unrestricted permutational wreath product. This method has been exploited by Le Roux and
Mann [LRM18] to show that many homeomorphism and diffeomorphism groups of manifolds
have the Schreier property. In order to run this method, it is enough that the group G be closed
under certain infinitary products, in the following sense.

Definition 7.1.6. — For X = (a, b), let G ⊆ Homeo0(X) be a subgroup. Let (In)n∈N be a
collection of disjoint open subintervals of X. For every n ∈ N, take an element gn ∈ GIn

. We
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denote by
∏
gn the homeomorphism of X defined by∏

gn : x 7→

{
gn(x) if x ∈ In,

x if x /∈
⋃
n In.

We say that the group G is closed under monotone infinitary products if for every monotone
sequence (In)n∈N of disjoint open subintervals (in the sense that the sequence (inf In)n∈N is
monotone), and every choice of gn ∈ GIn

, we have
∏
gn ∈ G.

The following lemma provides a criterion for the relative Schreier property in our setting.

Lemma 7.1.7. — For X = (a, b), let G ⊆ Homeo0(X) be locally moving. Suppose that G is
closed under monotone infinitary products. Then, for every open subinterval I ⋐ X, the pair
([Gc, Gc], [GI , GI ]) has the relative Schreier property.

Proof. — Let us write N = [Gc, Gc] as usual, and fix I = (x, y). It is enough to show that
for every sequence (fn)n∈N ⊂ GI , there exists a finitely generated subgroup Γ ⊂ N such that
[fn, fm] ∈ Γ for all n,m ∈ N. So let (fn) be such a sequence. Choose t ∈ N such that t(y) < x,
and an increasing sequence of positive integers (kn) which is parallelogram free, that is, if
kn1 − kn2 = km1 − km2 ̸= 0, then n1 = m1 and n2 = m2 (for example the sequence kn = 2n has
this property). Set gn = tknfnt

−kn , so that gn ∈ GIn
, where we set In := tkn(I). Note that the

choice of t gives that the intervals In are pairwise disjoint and form a monotone sequence, so
the product h :=

∏
gn is well defined, and belongs to G, by assumption. It is not difficult to

check that for every n ∈ N, the element t−knhtkn coincides with fn on I. Also, the fact that (kn)
is parallelogram free implies that for n ≠ m, the intersection of the supports of t−kmhtkm and
t−knhtkn is contained in I. Thus, we have [t−knhtkn , t−kmhtkm ] = [fn, fm]. It follows that the
finitely generated subgroup Γ := ⟨h, t⟩ ⊂ N gives the desired conclusion.

Combining this with Theorem 7.1.2, one can show that various sufficiently “huge” locally
moving groups do not admit any exotic action at all. For example, we have the following criterion.

Corollary 7.1.8. — For X = (a, b), let G ⊆ Homeoc(X) be a locally moving perfect subgroup
of compactly supported homeomorphisms, closed under monotone infinitary products. Assume that
for every non-empty open subinterval I ⊂ X, all GI-orbits in I are uncountable. Then, every
irreducible action φ : G → Homeo0(R) is conjugate to the standard action of G on X.

This criterion is clearly satisfied by the group G = Homeoc(R) of all compactly supported
homeomorphisms of R (it is well known that it is perfect, see for instance Ghys [Ghy01, Proposition
5.11] for a very short proof). Thus, Corollary 7.1.8 recovers the following result due to Militon
[Mil16].

Corollary 7.1.9 (Militon). — Every irreducible action φ : Homeoc(R) → Homeo(R) is conju-
gate to the standard action.

Let us now consider the group G = Diffrc(R) of compactly supported diffeomorphisms of R
of class Cr, with r ∈ [1,∞]. This case is more subtle since the group G is not closed under
monotone infinitary products: if gn ∈ GIn

, the element
∏
gn need not be a diffeomorphism

on a neighborhood of any accumulation point of the intervals In. A way to go around this is
provided by the arguments of Le Roux and Mann in [LRM18, §3], where they show that the
group Diffr(M) has the Schreier property for every closed manifold M , whenever r ̸= dim(M) + 1.
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Note that this result does not apply to the group Diffrc(R), which in fact does not have the
Schreier property, since it can be written as a countable strictly increasing union of subgroups
(see [LRM18]). However, the same argument of their proof can be adapted to show the following.

Proposition 7.1.10. — For every r ∈ [1,∞] ∖ {2} and interval I ⋐ R, the pair
(Diffrc(R),Diffrc(I)) has the relative Schreier property.

Remark 7.1.11. — The reason for the assumption r ̸= 2 is that in this case the group Diffrc(R)
is known to be simple, by famous results of Thurston [Thu74] (for r = ∞) and Mather [Mat74]
(for r ≠ 2 finite). Whether this holds for r = 2 remains an open question. Actually, Mather has
proved in [Mat85] that the group Diff1+bv

c (R) of compactly supported diffeomorphisms whose
derivative has bounded variation, is not perfect, by constructing an explicit surjection to R.

Proof of Proposition 7.1.10. — We outline the steps, and refer to [LRM18, §3] for details. First
of all, observe that in order to prove the proposition, it is enough to find a generating set S of
Diffrc(I) with the property that every sequence (bn) of elements of S is contained in a finitely
generated subgroup of Diffrc(R) (see Lemma 3.6 in [LRM18]). Set I = (x, y). Following the
same strategy as in the proof of Proposition 7.1.7, let t ∈ Diffrc(R) be such that t(y) < x, and
choose a parallelogram-free increasing sequence (kn) ⊂ Z+. The main difference with the proof
of Proposition 7.1.7 is that if, we choose gn ∈ Diffrc(In) arbitrarily, the element

∏
gn does not

necessarily belong to Diffrc(R). However, if the elements (gn) are such that their Cr norms satisfy
∥gn∥r ≤ 2−n, then the sequence of truncated products

∏m
n=1 gn is a Cauchy sequence, so that

the infinite product
∏
gn belongs to Diffrc(R). Since conjugation by tkn is continuous in the

Cr topology, this implies that there exists a sequence (εn) such that whenever the elements
fn ∈ Diffrc(I) are such that ∥fn∥r ≤ εn, then the product

∏
(tknfnt

−kn) is indeed in Diffrc(R)
(compare [LRM18, Lemma 3.7]).

With these preliminary observations in mind, the key idea of [LRM18, §3] is to consider a
well-chosen generating set of Diffrc(I), consisting of elements belonging to suitable copies of the
affine group. By an affine group inside Diffrc(I) we mean a subgroup generated by two one-
parameter subgroups {at}t∈R and {bt}t∈R of Diffrc(R), varying continuously in the Cr topology,
which satisfy the relations asbta−s = be

st. Existence of affine subgroups in Diffrc(I) can be
obtained by a classical trick (attributed to [Mul82] and Tsuboi [Tsu84]) applied to the two vector
fields generating the affine group (see [LRM18, Lemma 3.3]). Let now S ⊂ Diffrc(I) be the set
of all diffeomorphisms b that can be expressed as time-one maps b := b1 for some flow {bt}t∈R
belonging to a pair of flows generating an affine subgroup. Since the set S is non-empty and
stable under conjugation in Diffrc(I), it is a generating set, by simplicity of Diffrc(I). Now, let
(bn) ⊂ S be a sequence, where each bn = b1

n belongs to an affine subgroup An := ⟨atn, btn⟩. The
relations in the affine subgroups imply that for every t, s ∈ R we have [asn, btn] = b

(es−1)t
n . This

equality implies that for δ > 0 small enough, the flow element bδn can be written as a commutator
of elements with arbitrarily small Cr norm (see [LRM18, Corollary 3.4]). Thus, for every n ∈ N
we can choose δn = 1/ln for some sufficiently large positive integer ln > 0, such that we have
cn := bδn

n = [f2n, f2n+1] for some sequence (fn) ⊂ Diffrc(I) such that ∥fn∥r ≤ εn. By the choice of
the sequence (εn) made above, the product h :=

∏
tknfnt

−kn is in Diffrc(R). The same argument
in the proof of Lemma 7.1.7 then implies that [t−k2nhtk2n, t−k2n+1htk2n+1 ] = [f2n, f2n+1] = cn, so
that the subgroup Γ = ⟨h, t⟩ contains the sequence (cn), and thus also contains the sequence (bn),
since bn = clnn . By the remark made at the beginning of the proof, this proves the proposition.
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Combined with Proposition 7.1.10, Theorem 7.1.2 provides an alternative proof of the following
recent result of Chen and Mann [CM23].

Corollary 7.1.12 (Chen–Mann). — For r ∈ [1,∞] ∖ {2}, every irreducible action
φ : Diffrc(R) → Homeo0(R) is conjugate to its standard action.

Remark 7.1.13. — After Mather’s result mentioned in Remark 7.1.11, the result above is
false for the group Diff1+bv

c (R). Indeed, as Diff1+bv
c (R) surjects to R, it admits an action by

translations. One can even construct several faithful actions: fix an integer d ≥ 1, let N be the
kernel of an epimorphism Diff1+bv

c (R) → Qd (obtained by post-composing with some epimorphism
R → Qd), and take a faithful action of Qd by translations; then we can blow up the orbit of some
point x, for this translation action, and insert the standard action of N in the preimage of x, and
extend it to the other preimages in an equivariant way.

7.2. A result for actions on the circle

In this section we discuss actions of locally moving groups on the circle. This setting turns out
to be much simpler than what studied so far, essentially due to the compactness of S1. In fact,
we can actually prove a result for actions on S1 of a group of homeomorphisms G ⊆ Homeo(X)
where X is an arbitrary locally compact space, provided the action of G on X satisfies suitable
dynamical conditions.

Given a group G of homeomorphisms of a space X, and an open subset U ⊂ X, we let GU be
the subgroup of elements pointwise fixing the complement X ∖ U . Similarly to Definition 3.1.1,
we say that a subgroup G ⊆ Homeo(X) is micro-supported if for every non-empty subset U ⊂ X,
the subgroup GU is non-trivial. The action of G on X is extremely proximal if for every compact
subset K ⊊ X there exists y ∈ X such that for every open neighborhood V of y, there exists
g ∈ G with g(K) ⊂ V .

When G ⊆ Homeo(X) is a micro-supported group, we denote by MG ⊂ G the subgroup of G
generated by the subgroups [GU , GU ], where U varies over relatively compact non-dense open
subsets of X. Note that MG is non-trivial and normal in G. In fact, standard arguments similar
to the proof of Proposition 3.2.1 imply the following (see e.g. Le Boudec [LB21, Proposition 4.6]).

Proposition 7.2.1. — Let X be a locally compact Hausdorff space, and G ⊂ Homeo(X) a
micro-supported group acting minimally and extremely proximally on X. Then, every non-trivial
normal subgroup of G contains MG. Thus, G is simple when G = MG, and G/MG is the largest
non-trivial quotient of G otherwise.

For x ∈ X, we also denote by G0
x the subgroup of elements that fix pointwise a neighborhood of

x, and call it the germ-stabilizer of x. Moreover, we say that G has the independence property for
pairs of germs if for every distinct x1, x2 ∈ X, and elements g1, g2 ∈ G such that g1(x1) ̸= g2(x2),
there exist g ∈ G and open neighborhoods Ui ∋ xi such that g coincides with gi in restriction to
Ui, for i ∈ {1, 2}.

Theorem 7.2.2. — Let X be a locally compact Hausdorff space, and let G ⊆ Homeo(X) be a
micro-supported subgroup of homeomorphisms of X satisfying the following conditions:
— the action of G on X is extremely proximal;
— for every x ∈ X, the germ-stabilizer G0

x acts minimally on X ∖ {x}.
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Assume that φ : G → Homeo0(S1) is a faithful minimal action. Then, there exists a continuous
surjective map π : S1 → X, which is G-equivariant with respect to the φ-action on S1 and the
natural action on X. Moreover, if G has the independence property for pairs of germs, then X is
homeomorphic to S1, and the map π : S1 → X is a covering map.

Before discussing the proof we give some comment on the statement.

Remark 7.2.3. — The condition that φ be minimal is not so restrictive, since every group
action on S1 either has a finite orbit (and thus is semi-conjugate to an action factoring through a
finite cyclic group), or is semi-conjugate to a minimal action. The condition that φ is faithful
cannot be avoided, since in this generality little can be said about actions of the largest quotient
G/MG (which could even be a non-abelian free group, see Le Boudec [LB21, Proposition 6.11]).
However, when G = MG, the theorem implies that every non-trivial action φ : G → Homeo0(S1)
factors onto its standard action on X.

Remark 7.2.4. — It is likely that the assumptions on G in Theorem 7.2.2 may be relaxed
or modified, and we did not attempt to identify the optimal ones. In particular, we do not
know whether the assumption that the action of G has independent germs is needed in the
last statement. However, note that even with this assumption, the map π may be a non-trivial
self-cover of S1 (thus it is not necessarily a semi-conjugacy to the standard action). Indeed the
groups of homeomorphisms of the circle constructed by Hyde, Lodha, and the third named author
in [HLR23, §3] satisfy all assumptions in Theorem 7.2.2, and their action lifts to an action on the
universal cover R → S1; in particular, it also lifts to an action under all self-coverings of S1.

The proof of Theorem 7.2.2 follows an approach similar to the proofs of its special cases that
appeared in the work of Le Boudec and the second name author [LBMB18, Theorem 4.17] for
Thompson’s group T , and in that of two of the authors [MBT20, Theorem D] for the groups T(φ)
of piecewise linear homeomorphisms of suspension flows defined there. The main difference is
that some arguments there make crucial use on specific properties of those groups, such as the
absence of free subgroups in the group of piecewise linear homeomorphisms of an interval, while
here we get rid of these arguments using Proposition 4.2.1, and this allows for a generalization to
a much broader class of groups.

Proof of Theorem 7.2.2. — Assume that φ : G → Homeo0(S1) is a faithful minimal action. First
of all, note that there is no loss of generality in supposing that φ is proximal. Indeed, since G is
non-abelian, by Theorem 2.1.19 every minimal faithful action of φ : G → Homeo0(S1) has finite
centralizer Cφ, and the action φ descends via the quotient map S1 → S1/Cφ ∼= S1 to a proximal
action φp. Thus, by replacing φ with φp, we can assume that φ is proximal. Note that the group
G is center-free (for instance because of extreme proximality of its action on X, see Remark
2.1.18), so the centralizer Cφ has trivial intersection with φ(G).

Given x ∈ X we will denote by Kx the subgroup of all elements whose support is a relatively
compact subset of X ∖ {x}. That is, Kx is the union of the subgroups GU , where U varies over
all open subsets U ⋐ X ∖ {x}. Note that Kx is a normal subgroup of G0

x.
By extreme proximality and minimality of the action, for every open U ⋐ X, there exists

g ∈ G such that g(U) ∩U = ∅. Hence, GU is conjugate to a subgroup of its centralizer. Thus, by
Proposition 4.2.1, we have Fixφ([GU , GU ]) ̸= ∅. By compactness of S1, we deduce that for every
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x ∈ X we have
Fixφ([Kx,Kx]) =

⋂
U⋐X∖{x} Fixφ([GU , GU ]) ̸= ∅.

Note also that Fixφ([Kx,Kx]) ̸= S1, otherwise the subgroup [Kx,Kx] would act trivially, contra-
dicting that the action is faithful. Now, fix x ∈ X, and consider the subset C := Fixφ([Kx,Kx]),
which is φ(G0

x)-invariant (by normality of [Kx,Kx] in G0
x). Since we are assuming that φ is

proximal, we can find a sequence (gn) in G such that gn.C tends to a point ξ ∈ S1 in the Hausdorff
topology. Upon extracting a subnet from (gn), we can suppose that gn(x) tends to a limit y in
the one-point compactification X̂ := X ∪ {∞X}.

Claim 1. — We have y ∈ X, and φ(G0
y) fixes ξ.

Proof of claim. — Suppose that the limit y is ∞X , that is, that (gn(x)) escapes from every
compact subset of X. Then, every element g ∈ Gc belongs to G0

gn(x) for n large enough, so
that φ(g) preserves gn.C for every n large enough, and thus fixes the point ξ. Since g ∈ Gc is
arbitrary, we deduce that φ(Gc) fixes ξ, and by normality of Gc in G and minimality of φ, we
deduce that φ(Gc) = {id}, contradicting that the action is faithful. Thus, the limit of (gn(x)) is
a point y ∈ X. Similarly we prove that φ(G0

y) fixes ξ. Fix g ∈ G0
y. Since gn(x) → y, then g also

belongs to G0
gn(x), and thus preserves gn.C, for n large enough. Since gn.C tends to ξ, it follows

that φ(g) fixes ξ. Hence φ(G0
y) fixes ξ, since g ∈ G0

y is arbitrary.

Once the existence of such points y ∈ X and ξ ∈ S1 has been proven, the rest of the proof is
essentially the same as in [LBMB18] or [MBT20], but we outline a self-contained argument for
completeness. We claim that for every ζ ∈ S1, there exists a unique point π(ζ) ∈ X such that
φ(G0

π(ζ)) fixes ζ, and that the map π : S1 → X defined in this way is continuous.
Let us first show that if such a point exists, it must be unique. Namely, assume that

x1, x2 ∈ X are distinct points such that φ(G0
xi

) fixes ζ for i ∈ {1, 2}, so that the φ-image of
H := ⟨G0

x1
, G0

x2
⟩ fixes ξ. Let U ⊂ X be any non-dense open subset of X. After the minimality

assumption of the action of G0
x1

on X ∖ {x1}, we can find g ∈ G0
x1

such that g(x2) /∈ U , so that
g−1GUg = Gg−1(U) ⊂ G0

x2
⊂ H. Since we also have g ∈ H, we obtain that GU ⊂ H. Thus,

H contains the non-trivial normal subgroup N of G generated by the GU , where U varies over
all non-dense open subsets of X. Then φ(N) fixes ζ, which gives a contradiction using again
minimality and normality of N .

To show existence and continuity, one first checks the following fact.

Claim 2. — If (zi) is a net of points in X converging to a limit z ∈ X̂ = X ∪ {∞X}, and if (ζi)
is a net of points in S1 converging to some limit ζ ∈ S1 such that φ(G0

zi
) fixes ζi for every i, then

z ∈ X and φ(G0
z) fixes ζ.

Proof of claim. — The proof is similar to the one for Claim 1.

Now, let ζ ∈ S1 be arbitrary, and choose y ∈ X and ξ ∈ S1 such that φ(G0
y) fixes ξ (whose

existence has already been proven). By minimality of φ, we can find a sequence (gi) in G such
that ζi := gi.ζ converges to ζ, and upon extracting a subnet, we can suppose that yi := gi(y)
converges to some z ∈ X̂. Then, by Claim 2, we have that the limit z is actually in X, and φ(G0

z)
fixes ζ. Hence, we can define the map π : S1 → X, by setting π(ζ) := z. Claim 2 also gives
continuity of π. The map is clearly G-equivariant, so its image π(S1) is a compact G-invariant
subset of X. Therefore, by minimality of the standard action of G on X, the map π must be
surjective.
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Suppose now that G has the independence property for pairs of germs, and let us show that the
map π must be injective (and thus a homeomorphism). As a preliminary observation, note that
for every x ∈ X the fiber π−1(x) must have empty interior, since otherwise by G-equivariance
the interior of π−1(x) would be a wandering interval in S1, contradicting minimality. Assume by
contradiction that there exist ξ1 ̸= ξ2 in S1 such that π(ξ1) = π(ξ2) =: x, and let I := (ξ1, ξ2) be
the arc between them (with respect to the clockwise orientation of S1). Since I ̸⊂ π−1(x), we can
choose ζ ∈ I with z := π(ζ) ̸= x. By minimality of φ, there exists g ∈ G such that g−1.ζ /∈ I.

Assume first that g(x) ̸= z. Using the independence property for pairs of germs, we can
find h ∈ G which coincides with the identity on some neighborhood of z, and with g on some
neighborhood of x. On the one hand we have h ∈ G0

z, so h.ζ = ζ. On the other hand, we have
g−1h ∈ G0

x, so that φ(g−1h) fixes ξ1 and ξ2, and preserves the arc I.This gives g−1.ξ = g−1h.ξ ∈ I,
contradicting the choice of g.

Assume now that g(x) = z. In this case, choose an open subarc J ⊂ I containing ζ, and such
that g.J ∩ I = ∅. Since π−1(z) has empty interior, we can find a point ζ ′ ∈ J such that the point
z′ := π(ζ ′) is different from z. Then we have g(y) ̸= z′, so we can repeat the previous reasoning
using the points ζ ′, z′ instead of ζ, z. This provides the desired contradiction and shows that the
map π is injective.

We can deduce a rigidity result for groups that are given by a locally moving action on the
circle (in the sense that for every interval I ⊂ S1, the subgroup GI acts on I without fixed points).

Corollary 7.2.5. — For X = S1, let G ⊆ Homeo0(X) be locally moving. Then, for every
faithful minimal action φ : G → Homeo0(S1), there exists a continuous surjective equivariant map
π : S1 → X. Moreover, if G has the independence property for pairs of germs, then π is a covering
map.

Example 7.2.6. — Let us explain how Corollary 7.2.5 recovers the result of Matsumoto that
every non-trivial action of G = Homeo0(S1) on S1 is conjugate to its standard action. Note that
G clearly satisfies all assumptions of Corollary 7.2.5, and has the independence property for pairs
of germs. Since G has elements of finite order, it cannot act non-trivially on the circle with a
fixed point, and since it is simple, it cannot act with a finite orbit; hence, every non-trivial action
φ : G → Homeo0(S1) must be semi-conjugate to a minimal action φmin (which is automatically
faithful). Corollary 7.2.5 then shows that φmin is the lift of its natural action via a self-cover,
and again it is not difficult to see (using elements conjugate to rotations) that this is possible
only if φmin is conjugate to the standard action, and in particular all its orbits are uncountable.
If φ had an exceptional minimal set Λ ⊊ S1, then every connected component of the complement
would be mapped to a point with a countable orbit, and this is not possible. We deduce that φ is
minimal, thus conjugate to φmin, and thus to the standard action.

Example 7.2.7. — In a similar fashion, Corollary 7.2.5 recovers the result of Ghys [Ghy01]
that every action of Thompson’s group T on the circle is semi-conjugate to its standard action.
Indeed T satisfies all assumptions in Corollary 7.2.5. As above, one uses its simplicity to show
that every action φ : T → Homeo0(S1) is semi-conjugate to a faithful minimal action, and thus
by the corollary, to the lift of the standard action through a self-cover π : S1 → S1. One then
argues that this is possible only if π is a homeomorphism.
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By considering other kind of spaces, Theorem 7.2.2 can be used to construct groups that
cannot admit interesting actions on the circle.

Corollary 7.2.8. — Let X be a locally compact Hausdorff space which is not a continuous image
of S1 (e.g. if X is not compact, or not path-connected), and let G ⊆ Homeo(X) be a subgroup as
in Theorem 7.2.2. Then G has no faithful minimal action on S1. In particular, if G is simple,
every action φ : G → Homeo0(S1) has a fixed point.

Example 7.2.9. — Examples of groups to which Corollary 7.2.8 applies are the groups of
piecewise linear homeomorphisms of flows T(φ) from [MBT20]. For every homeomorphism φ of
the Cantor set X, the group T(φ) is a group of homeomorphisms of the mapping torus Y φ of
(X,φ) defined analogously to Thompson’s group T (see [MBT20] for details). When φ is a minimal
homeomorphism, the group T(φ) is simple [MBT20, Theorem B] and its action on Y φ satisfies all
assumptions in Theorem 7.2.2. Since the space Y φ is not path-connected, Corollary 7.2.8 recovers
the fact that every action of the group T(φ) on the circle has a fixed point (see [MBT20, Theorem
D]). Moreover, it allows to extend the conclusion to many groups defined similarly but not by PL
homeomorphisms, for instance any simple overgroup of T(φ) in Homeo(Y φ) (see Darbinyan and
Steenbock [DS22] for a vast family of such groups).

7.3. An application to non-smoothability

In Theorem 5.3.2 about rigidity of C1 actions, it may happen that the standard action of
G is not semi-conjugate to any action of a given regularity, so that the first possibility is not
realizable for actions in that regularity. Here we discuss two applications of this to certain groups
of piecewise linear homeomorphisms, which improve results on non-smoothability of such groups
of Bonatti, Lodha and the fourth author [BLT19].

7.3.1. Thompson–Brown–Stein groups. — Here we study differentiable actions of the
Thompson–Brown–Stein groups Fn1,...,nk

introduced in Definition 2.3.2, which are natural gen-
eralizations of Thompson’s group F . Such groups are clearly locally moving. It was shown in
[BLT19] that when k ≥ 2, the standard action of Fn1,...,nk

cannot be conjugate to any C2 action.
Here we show the following.

Theorem 7.3.1. — Let r > 1. For any k ≥ 2 and choice of n1, . . . , nk as in Definition 2.3.2,
the Thompson–Brown–Stein group Fn1,...,nk

admits no faithful Cr action on the real line.

We first need a lemma for the usual Higman–Thompson groups Fn. Corollary 5.3.3 applies
to them, so every faithful action of Fn of class C1 is semi-conjugate to its standard action on
the interval (0, 1). However, as pointed out by Ghys and Sergiescu [GS87], the group F (and
every Fn) actually admits C1 (even C∞) actions which are not conjugate to the standard action
(see Remark 5.3.6). In these examples, the action is obtained by blowing up the orbit of dyadic
rationals. The next lemma, which is a consequence of Theorem 5.1.2 and the structure of the
group, gives a restriction on possible semi-conjugate but not conjugate C1 actions.

Lemma 7.3.2. — For n ≥ 2, let φ : Fn → Diff1
0(R) be a faithful action which is semi-conjugate to

the standard action φ0 : Fn → PL((0, 1)), but not conjugate. Let h : R → (0, 1) be the corresponding
continuous monotone map such that hφ = φ0h. Then there exist a rational point p ∈ (0, 1) which
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is not n-adic (i.e. p ∈ (Q∖ Z[1/n]) ∩ (0, 1)), such that the preimage ξ = h−1(p) is a singleton,
and an element g ∈ Fn for which ξ is a hyperbolic fixed point.

Proof. — The proof is a tricky refinement of arguments in [BLT19, §5.1]. In the following, we
write G = Fn. Given an action φ as in the statement, denote by Λ ⊂ R the corresponding
minimal invariant Cantor set. Fix a non-empty open subinterval I ⋐ (0, 1) with n-adic endpoints.
Then φ(GI) preserves the interval h−1(I) and ΛI := Λ ∩ h−1(I) is the minimal invariant subset
for the restriction φI : GI → Diff1

0
(
h−1(I)

)
induced by φ.

After Theorem 5.1.2 and subsequent Remark 5.1.3 applied to φI , there exist an element g ∈ GI
and a point ξ ∈ ΛI , such that g.ξ = ξ and φ(g)′(ξ) < 1. Moreover, such a point ξ cannot belong
to the closure of any gap of ΛI (see Remark 5.1.3), or in other terms the semi-conjugacy h must
be injective at ξ. It is well known that if a point p ∈ I is an isolated fixed point for some element
of GI in the standard action, then p is rational (the point p must satisfy a rational equation
nkp+ a

nb = p; see Lemma 7.3.7 below). From this we deduce that the point p = h(ξ) is rational.
Moreover, the point p cannot be n-adic: take any element f ∈ GI such that φ0(f) coincides with
φ0(g) in restriction to [p, 1) and is the identity in restriction to (0, p]. Then the right derivative
of φ(f) at ξ must be equal to φ(g)′(ξ) < 1, and the left derivative of φ(f) at ξ must be equal to
1, contradicting the fact that φ is a C1 action. This concludes the proof.

As a consequence of Lemma 7.3.2, we get a strong improvement of [BLT19, Theorem 3.4], on
regularity of actions of Thompson–Brown–Stein groups. The idea is to replace the use of the
Szekeres vector field (which requires C2 regularity), with Sternberg’s linearization theorem, which
works in Cr regularity (r > 1), but requires hyperbolicity (granted from Lemma 7.3.2). (1) In this
form, these results can be found in Yoccoz [Yoc95, Appendice 4] or Navas [Nav11, Theorems 3.6.2
and 4.1.11] (a detailed proof when r < 2 appears in the work of the fourth author [Tri14, §6.2.1]).
A similar approach, although less technical, appears in Mann and Wolff [MW23] to exhibit
examples of groups at “critical regularity”.

Theorem 7.3.3. — Fix r > 1, and let f be a Cr diffeomorphism of the half-open interval
[0, 1) with no fixed point in (0, 1), and such that f ′(0) ̸= 1. Then there exists a diffeomorphism
h : [0, 1) → [0,+∞) of class Cr such that
— h′(0) = 1,
— the conjugate map hfh−1 is the scalar multiplication by f ′(0).

Theorem 7.3.4. — Fix r > 1, and let f be a Cr diffeomorphism of the half-open interval [0, 1)
with no fixed point in (0, 1), and such that f ′(0) ̸= 1. Then there exists a unique Cr−1 vector
field X on [0, 1), with no singularities on (0, 1), such that
— f is the time-1 map of the flow {ϕsX } generated by X ,
— the flow {ϕsX } coincides with the C1 centralizer of f in Diff1

0([0, 1)).

The vector field from Theorem 7.3.4 is called the Szekeres vector field. The following statement
is the analogue of [BLT19, Proposition 7.2].

1. Note however that Sternberg’s linearization theorem cannot be extended in general to C1 regularity, even
under hyperbolicity assumptions (and thus our proof cannot be extended to C1 regularity); see the recent work of
Eynard-Bontemps and Navas [EBN23].
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Proposition 7.3.5. — Fix a ∈ (0, 1) and r > 1. Assume that two homeomorphisms f, g ∈
Homeo0([0, 1)) satisfy the following properties.
— The restrictions of f and g to [0, a] are C2 contractions, namely the restrictions are C2

diffeomorphisms onto their images such that

f(x) < x and g(x) < x for every x ∈ (0, a].

— f and g commute in restriction to [0, a], that is,

fg(x) = gf(x) for every x ∈ [0, a].

— The C2 germs of f and g at 0 generate an abelian free group of rank 2.
Then, for every homeomorphism ψ ∈ Homeo0([0, 1)) such that
— ψfψ−1 and ψgψ−1 are Cr in restriction to [0, ψ(a)],
— (ψfψ−1)′(0) < 1,
one has that the restriction of ψ to (0, a] is Cr.

Sketch of proof. — The proof is basically the same as in [BLT19], and we only give a sketch.
As f and g are C2 contractions near 0 and commute, they can be simultaneously linearized by
considering the Szekeres vector field X for f (given by Theorem 7.3.4). As their germs generate a
rank 2 abelian group, we can find a dense subset of times A ⊂ R, such that for every α ∈ A, there
exists an element hα ∈ ⟨f, g⟩ such that the restriction of hα to [0, a] coincides with the time-α
map of the flow ϕαX . Given a map ψ as in the statement, we can also simultaneously linearize
ψfψ−1 and ψgψ−1, using Theorem 7.3.3. If Y is the corresponding vector field from Theorem
7.3.4, we deduce that the restriction of ψ to (0, a] is C1 and sends one vector field to the other:(
ψ[0,p]

)
∗ X = Y. Writing this relation more explicitly, we get

ψ′(x) = Y(ψ(x))
X (x) for every x ∈ (0, a],

whence we deduce that ψ is Cr in restriction to (0, a].

The next technical result is an adaptation of classical arguments in one-dimensional dynamics,
which can be traced back to Hector and Ilyashenko (see specifically [Nav06, Proposition 3.5] and
[Ily10, Lemma 3]).

Proposition 7.3.6. — For r > 1, let f, g ∈ Diffr0([0, 1)) be two diffeomorphisms with the
following properties:
(i) f ′(0) = λ < 1 and g′(0) = µ ≥ 1,

(ii) for every (l,m) ∈ N2 ∖ {(0, 0)}, there exists ε > 0 such that gmf l(x) ̸= x for every x ∈ (0, ε).
Then, there exists δ > 0 such that the ⟨f, g⟩-orbit of every point x ∈ (0, δ) is dense in (0, δ).

Proof. — By Theorem 7.3.3, we can take a Cr coordinate h : U → [0,+∞) on a open neighborhood
U ⊂ [0, 1) of 0, so that the map f becomes the scalar multiplication by λ on [0,+∞) (more
precisely, we take as U ⊂ [0, 1) the maximal interval containing no fixed points for f , except 0).
Write V = h(U ∩ g−1(U)), f = hfh−1 and g = hgh−1 ↾V . Note that g′(0) = g′(0) = µ.

We first rule out the case where log λ and logµ are rationally dependent. So take (l,m) ∈
N2 ∖ {(0, 0)} such that λlµm = 1, and consider the composition γ := gm ◦ f l, which satisfies
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γ′(0) = 1, and write γ = gm ◦ f l for the corresponding map defined on an appropriate open
subinterval V ′ ⊂ V containing 0. Then, for every x ∈ V ′ and n ∈ N, we have

f
−n
γf

n(x) = γ(λnx)
λn

,

from which we deduce that f−n
γf

n → id uniformly on compact subsets of V ′, as n → ∞. Going
back to the original coordinate, we get that there exists δ > 0 such that f−nγfn → id uniformly
on [0, δ] as n → ∞. Take now x ∈ (0, δ), and let K be the closure of the ⟨f, g⟩-orbit of x,
which clearly contains the point 0. Assume by contradiction that K ∩ [0, δ] ̸= [0, δ], and let I
be a connected component of [0, δ] ∖K. By ⟨f, g⟩-invariance of K, and the established uniform
convergence to the identity, there exists n0 ∈ N such that f−nγfn(I) = I for every n ≥ n0. This
gives that the element γ = gm ◦ f l preserves all the intervals of the form fn(I), for n ≥ n0, and
in particular it admits infinitely many fixed points accumulating at 0, which contradicts the
assumption (ii).

We assume next that log λ and logµ are rationally independent, and in particular that
µ > 1. Notice that, up to possibly redefining (f, g) := (g−1, f−1), we can assume that either
g(U) = U , or g has a fixed point in U ∖ {0}. Applying Theorem 7.3.3 again, take a Cr coordinate
k : W → [0,+∞) on an open neighborhood W of 0 so that the map g becomes the scalar
multiplication by µ on [0,+∞); to be precise, we can take as W the maximal interval containing
no fixed point for g, except 0, which is contained in V . Note that after Theorem 7.3.3, we can
take k such that k′(0) = 1, so that k(x) = x+O(xr) as x → 0.

Given ν > 0, there exist two increasing sequences (ln)n∈N, (mn)n∈N ⊂ N, such that λlnµmn → ν

as n → ∞. For n ∈ N, the composition gn = gmn ◦ f ln is defined on W , as f contracts W and g

preserves it. Fix x ∈ W , so that

gn(x) = k−1 (
µmnk(λlnx)

)
= k−1 (

µmn(λlnx+O(λrlnxr))
)

= k−1
(
µmnλlnx+O(λ(r−1)lnxr)

)
as n → ∞.

We deduce the convergence gn(x) → k−1(νx) as n → ∞. As ν > 0 was arbitrary, this gives that
the orbit of every x ∈ W ∩ (0,+∞) is dense in W ∩ (0,+∞), as desired.

Finally, we also need a basic fact.

Lemma 7.3.7. — Let n ∈ N be an integer, and p ∈ Q any rational. Then there exists a
non-trivial n-adic affine map g ∈ Aff(Z[1/n], ⟨n⟩∗) ⊂ Aff(R) such that g(p) = p.

Proof. — Write g(x) = nkx+ a
nb , with a ∈ Z and b, k ∈ N, for a generic ℓ-adic affine map. Note

that the condition g(p) = nkp+ a
nb = p gives p = −a

nb(nk−1) , which can be any rational number
(choosing appropriate a ∈ Z and b, k ∈ N).

We can now prove the main result of this section.

Proof of Theorem 7.3.1. — We argue by way of contradiction. Write G = Fn1,...,nk
and let

φ : G → Diffr0(R) be a faithful action (r > 1), that we can assume irreducible. After Corollary
5.3.3, φ is either semi-conjugate to the standard action on X, or to a cyclic action. Assume first
that the former occurs, and write h : R → X = (0, 1) for the semi-conjugacy. Using Lemma 7.3.2
applied to the action of Fn1 ⊆ G, we find a rational point p ∈ X and an element f ∈ Fn1 , such
that ξ = h−1(p) is a hyperbolic fixed point for φ(f). Using Lemma 7.3.7, we can find an element
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g ∈ Fn2 for which p ∈ X is an isolated fixed point. In particular, f and g commute in restriction
to a right neighborhood [p, q] of p, and their right germs at p generate an abelian free group
of rank 2 (they are scalar multiplications by powers of n1 and n2, respectively). Thus, up to
considering inverse powers, the assumptions of Proposition 7.3.6 are satisfied by the maps φ(f)
and φ(g), from which we deduce that the action of ⟨φ(f), φ(g)⟩ is minimal in restriction to an
interval of the form (ξ, ξ+ δ), with δ > 0. Hence, the semi-conjugacy h : R → X considered above
is a conjugacy (that is, h is a homeomorphism). On the other hand, up to considering inverse
powers, the elements f and g satisfy the assumptions of Proposition 7.3.5, and we deduce that h
is Cr in restriction to [p, q].

We conclude as in [BLT19, proof of Theorem 7.3]. Take an element γ ∈ G with a discontinuity
point r ∈ [p, q] for its derivative; then also the derivative φ(γ)′ has a discontinuity point at h−1(r).
This gives the desired contradiction.

In the case of cyclic action, considering the corresponding homomorphism τ : G → Z, we have
that the φ-action of ker τ on every connected component of its support is semi-conjugate to the
standard action (Corollary 5.3.3). Thus one can reproduce the previous argument, adapted to
ker τ . This is a little tricky, as the abelianization Fni

/[Fni
, Fni

] ∼= Zni is larger than the quotient
Fni/(Fni)c ∼= Z2. Start with an element f ∈ Fn1 ∩ ker τ with a hyperbolic fixed point ξ, as in the
previous case, and then choose g1 ∈ (Fn2)c fixing p = h−1(ξ) playing the role of g in the previous
case. However, it could be that g1 /∈ ker τ ; if this happens, take an element g2 ∈ G such that
g2 (Supp(g1)) ∩ Supp(g1) = ∅. Then the commutator g = [g1, g2] coincides with g1 on Supp(g1),
and belongs to ker τ .

As explained before, the method presented here cannot be applied directly to exclude C1

smoothability. We believe however that this can be achieved with a different approach. Let us
point out that all known examples of C1 smoothable groups of PL homeomorphisms embed in
Thompson’s group F . It would be tempting to conjecture that this is also a necessary condition.
However, we estimate that little is known about other groups of PL homeomorphisms, such as
those defined by irrational slopes (see however the very recent work [HTM23], where it is proved
that several such groups do not embed in F ). So, let us highlight the following concrete problem.

Question 7.3.8. — Fix an irrational τ ∈ R>0 ∖Q, and write Λ = ⟨τ⟩∗ and A = Z[Λ] (as an
explicit case, one can take the golden ratio τ =

√
5−1
2 ). Consider the irrational slope Thompson’s

group Fτ = G((0, 1);A,Λ). Is the action of Fτ on the interval C1 smoothable?

7.3.2. An application to Bieri–Strebel groups on the line. — Given a real number λ > 1,
we consider the Bieri–Strebel groups acting on the line G(λ) = G(R;Z[λ, λ−1], ⟨λ⟩∗). It was
remarked in [BLT19] that the standard action of G(λ) cannot be conjugate to any C1 action. One
of the main results of [BLT19] states that for certain choices of λ, the group G(λ) does not admit
any faithful C1 action on the line. Here we generalize this result by removing all restrictions on λ.

Corollary 7.3.9. — For λ > 1, there is no faithful C1 action of the Bieri–Strebel group G(λ)
on the closed interval.

Proof. — Indeed, it is proved in [BLT19, Theorem 6.10] that the standard action of G(λ) on the
line cannot be conjugate to any C1 action on the closed interval, but a closer look at the proof
(notably using the results from [BMNR17, §4.2]) shows that even a semi-conjugacy is impossible,
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as the action of the affine subgroup of G(λ) must be minimal. Hence the result follows from
Theorem 5.3.2.

In Chapter 10, we will classify C0 actions of G(λ) up to semi-conjugacy, whenever λ is
algebraic.





PART II

STRUCTURE THEOREMS FOR C0

ACTIONS: LAMINATIONS AND
HOROGRADINGS

In this part we obtain structure results for exotic actions on the line φ : G → Homeo0(R) of
locally moving subgroups G ⊂ Homeo0(R). In Chapter 8 we begin the study of laminar actions
on the line, namely actions preserving a lamination. In particular we introduce the crucial notion
of horograding, which provides a way to understand a laminar action by relating it to a different
action of the group on the line, which retains information on its large-scale dynamics (see §8.2.2).
Finally, we give a general criterion to find invariant laminations for actions on the line (Proposition
8.3.4), which will be the starting point of the main results in this part.

In Chapter 9, we obtain the main structure theorems for exotic actions on the line of micro-
supported and locally moving subgroups G ⊂ Homeo0(R), corresponding to Theorems B and C
from the introduction. More precisely, for micro-supported subgroups G ⊂ Homeo0(R) whose
standard action is minimal, we prove that any faithful minimal action φ : G → Homeo0(R) is either
laminar or locally moving, and in the second case it is conjugate to the standard action (Theorem
9.1.1). Then we show that under the assumption that G has finitely generated fragmentable
subgroup Gfrag (Definition 3.1.2), any exotic action of G is laminar and horograded by the
standard action (Theorem 9.2.1). We conclude the chapter with a general existence result of
minimal laminar actions for a large class of finitely generated micro-supported groups (§9.3),
elaborating on the construction from §6.1.

In Chapter 10 we see how the main structure theorems can be applied in an interesting family
of examples, the Bieri–Strebel groups of PL homeomorphisms of the line G := G(R;A,Λ). When
the finite generation condition on Gfrag is satisfied (for Bieri–Strebel groups this is a very explicit
condition, see Lemma 10.2.1), we use Theorem 9.2.1 to provide an explicit classification of exotic
actions of G: they are all obtained through the jump preorder construction introduced in §6.2
(Theorem 10.3.1). Interestingly, by a twist of this construction, we provide an example of a
faithful minimal laminar action of a Bieri–Strebel group which cannot be horograded by the
standard action (Proposition 10.2.3), thus showing that the finite generation condition for Gfrag
is crucial in Theorem 9.2.1. We also provide an example of a finitely generated locally moving
group (obtained as an overgroup of a Bieri–Strebel group) that admits no exotic actions at all,
see §10.4.

The remaining Chapters 11–13 are complementary to the main results of this part. They are
devoted to the analysis of further examples and properties of laminar actions.

In Chapter 11 we develop an alternative language to discuss laminar actions and their horograd-
ings, by considering actions on planar directed (real) trees, which are the natural dual objects of
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invariant laminations. This point of view is particularly useful in analyzing and parsing different
examples. The correspondence is formalized in the results in §11.2. The case when these actions
are isometric (for some appropriate choice of a metric on the tree) deserves a particular attention;
this is the content of §11.3. At the end of the chapter, we revisit the construction of minimal
exotic actions for locally moving groups with cyclic groups of germs at +∞ from §6.3, and show
that they can be easily described in terms of actions on simplicial trees.

In Chapter 12, we provide a general construction of micro-supported subgroups of Homeo0(R)
whose standard action is laminar, generalizing an example introduced by Brin [Bri05] and Navas
[Nav04]. This construction produces groups admitting uncountably many faithful minimal actions
on the line which are all micro-supported, in some cases even by diffeomorphisms, and are pairwise
non-semi-conjugate. This shows that the main rigidity results from Part I for locally moving
groups (in particular, Theorem A) cannot be extended to general micro-supported groups. The
point of view of trees is particularly useful here. Indeed these groups are naturally defined as
groups of automorphisms of a directed simplicial tree. The key observation is that, in some cases,
the action on the tree admits many distinct invariant planar orders, and each such order provides
a micro-supported action on the line.

The last chapter is focused on probably the most emblematic locally moving group of home-
omorphisms of the line, namely Thompson’s group F . In this case we have Ffrag = F , so the
main structure result (Theorem 9.2.1) gives that any exotic action is laminar, horograded by the
standard action. Most of the previous constructions give several examples of exotic actions for F
(more precisely, those in §§6.2, 9.3, and 11.3.3). Here we use the specific algebraic and dynamical
structure of F to find way more examples, with sensibly different dynamical behavior. Contrary
to the case of Bieri–Strebel groups on the line discussed in Chapter 10, we are not able to provide
a precise classification of laminar actions of F , and our examples here are meant to give a glimpse
of the variety of the possible constructions. Notably, it turns out that many examples of laminar
actions of F actually arise from actions of F on simplicial trees. However, in §13.4.2, we provide
an example of a minimal laminar action of F for which the dual tree cannot be chosen to be
simplicial.



CHAPTER 8

LAMINATIONS AND HOROGRADINGS

In this chapter we study group actions on the line with invariant laminations, and introduce
and study the associated notion of horograding. Recall that, given an action φ : G → Homeo0(R),
we use Greek letters to denote points of R, and we often use shortcut notation like g.ξ for φ(g)(ξ),
Fixφ(g) for Fix(φ(g)), and so on.

8.1. Laminar actions

8.1.1. First definitions. —

Definition 8.1.1. — Let Ω be a set. We say that two subsets I, J ⊂ Ω do not cross if they
are either nested or disjoint: either I ⊂ J , or J ⊂ I, or I ∩ J = ∅. A prelamination of a totally
ordered set (Ω,≺) is a non-empty collection L of convex bounded open subsets of Ω (with respect
to the order topology), which pairwise do not cross (we also say that L is cross free). Elements of
a prelamination are also called the leaves.

In the case (Ω,≺) is the real line R with its standard order, elements of a prelamination are
bounded open intervals. A lamination of the real line is a prelamination, which is a closed subset
of the set R(2) = {(x, y) ∈ R2 : x < y}, with respect to the usual topology (given by convergence
of endpoints). When X = (a, b) is a real interval, we will keep saying “bounded intervals” for
“relatively compact intervals”.

Remark 8.1.2. — If a group action φ : G → Homeo0(R) has an invariant prelamination L,
then its closure in R(2) is an invariant lamination. The requirement that laminations be closed
is coherent with the well-established terminology for group actions on the circle, inspired by
hyperbolic geometry (see e.g. the book of Calegari [Cal07, §2.1]). It is convenient to visualize a
prelamination of the line as a collection of pairwise disjoint, geodesic semi-circles in the upper
half-plane, whose diameters are the elements of the prelamination.

Remark 8.1.3. — When (Ω,≺) is an ordered set, and L a collection of convex bounded subsets
of Ω with non-empty interior and without crossings, then we can automatically get a prelamination
by removing the endpoints of each subset. Therefore, in the examples, we will never check that
leaves are open.

A prelamination is naturally a partially ordered set (L,⊂), or poset, with respect to the
inclusion order between intervals. We say that a subset L0 ⊆ L is cofinal if every I ∈ L is
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contained in some J ∈ L0. We will frequently use the fact that every totally ordered subset of a
poset is contained in a maximal one, by Zorn’s lemma.

We will also use the following terminology.

Definition 8.1.4. — A prelamination L of a set (Ω,≺) is covering if it contains an increasing
exhaustion of Ω; it is thin if for every maximal totally ordered family of leaves F ⊂ L, the
intersection

⋂
I∈F I contains at most one point.

Remark 8.1.5. — A prelamination L of the real line is covering in the previous sense if and
only if it is covers R. The forward direction is clear. For the converse, observe that since intervals
in L do not cross, the unions of any two maximal totally ordered subsets of L are either equal
or disjoint; by connectedness, if L covers R, then we can find a single maximal totally ordered
subset whose union covers R, which must contain an increasing exhaustion of R.

Definition 8.1.6. — An action φ : G → Homeo0(R) is laminar if it preserves a covering
lamination (equivalently, a covering prelamination).

In several examples, laminar actions are obtained by considering order-preserving actions on
sets admitting invariant prelaminations, and then taking their dynamical realization, as discussed
in §2.2.3. Although this sounds intuitive, let us detail how the construction works.

Remark 8.1.7. — Assume that ψ : G → Aut(Ω,≺) is an action on a totally ordered set,
admitting an invariant prelamination L0. When Ω is countable, we can then consider the
dynamical realization φ : G → Homeo0(R), with associated good embedding i : Ω → R. Then the
collection L obtained by considering interiors of the convex hulls of the images i(I), for I ∈ L,
defines a φ-invariant prelamination of R, as i is order preserving and equivariant. With abuse
of notation, we keep denoting by i : L0 → L this correspondence, which is actually bijective, as
i is injective. It is clear that if L0 is covering, then also L is. Note that when the image i(Ω)
is dense (this is the case when the dynamical realization φ is minimal), the elements of L are
simply obtained by taking the interior of the closures of the images of the leaves of L0. Let us
illustrate this with a concrete example, which will be our running example for getting familiar
with laminar actions.

Example 8.1.8 (Plante-like actions of permutational wreath products)
One of the first examples of focal laminar actions on the line appearing in the literature

is an action of the lamplighter group Z ≀ Z defined by Plante [Pla83]. In fact, this action can
be recovered as the dynamical realization of a natural affine action defined on the ordered field
of Hahn–Neumann series (see e.g. Neumann [Neu49]), but this correspondence has never been
pointed out in the literature (as far as we know). In similar spirit, we describe a construction
that works for permutational wreath products of countable left-orderable groups. Recall that
for general groups G and H, with G acting on a set X, the permutational (restricted) wreath
product H ≀X G is defined as the semidirect product (

⊕
X H) ⋊G, where G acts on the direct

sum by permutation of coordinates. More explicitly, considering the direct sum
⊕

X H as the
set of functions s : X → H which are trivial at all but finitely points of X, the action of g ∈ G

is given by σ(g)(s)(x) = s(g−1.x). When considering the action of G by left multiplication on
X = G, one simply refers to the wreath product H ≀G of H and G.

Given a left-invariant order <H∈ LO(H), and a G-invariant order <X on X, we can consider
an order ≺ of lexicographic type on

⊕
X H, as follows. We denote by e the trivial element of
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⊕
X H, that is the function satisfying e(x) = 1H for every x ∈ X, and we define

P = {s ∈
⊕

X H : s ̸= e, s(xs) >H 1H} ,

where for s ̸= e we set xs = max<X
{x ∈ X : s(x) ̸= 1H}. It is not difficult to check that

P defines a positive cone, and thus a left-invariant order ≺ on the direct sum
⊕

X H, which
is also invariant under the permutation action σ of G. This gives an order-preserving action
Ψ: H ≀X G → Aut (

⊕
X H,≺), that we call the Plante-like product of <G and <X . Assume now

that G, H, and X are countable; in particular, so is
⊕

X H. We can then consider the dynamical
realization of Ψ, which we call the Plante-like action associated with <X and <H . In this situation
we let ι : (

⊕
X H,≺) → R be the associated good embedding and φ : H ≀X G → Homeo0(R) the

dynamical realization. When G = H = X = Z, and <X and <H are the standard left orders
of Z, this construction yields the action of Z ≀ Z considered by Plante (see [DNR, §3.3.2]), an
illustration of which appears in Figure 8.1.1.

Now, assume that the G-action on X is cofinal, in the sense that for any two distinct x, y ∈ X

there exists g ∈ G such that g.x >X y. If so, we claim that the Plante-like action φ is minimal
and laminar. To prove minimality, note that the stabilizer of the trivial element e ∈

⊕
X H

coincides with G, and its orbit is the whole subgroup
⊕

X H. Thus, after Proposition 2.2.17, it is
enough to check that given four elements s1, s2, t1, t2 ∈

⊕
X H such that t1 ≺ s1 ≺ e ≺ s2 ≺ t2,

one can find g ∈ G such that

(8.1.1) σ(g)(s1) ≺ t1 ≺ t2 ≺ σ(g)(s2).

For this, we set y∗ = max<X
{xt1 , xt2} and x∗ = min<X

{xs1 , xs2}; by cofinality, we can take an
element g ∈ G such that g−1x∗ >X y∗. Then it is immediate to check that (8.1.1) is satisfied.

To check that φ is laminar, after our discussion right before this example, it is enough to find
a Ψ-invariant covering prelamination of (

⊕
X H,≺). For this, for s ∈

⊕
X H and y ∈ X, we set

(8.1.2) Cs,y = {t ∈
⊕

X H : t(x) = s(x) for every x >X y} .

Clearly, every Cs,y is a convex bounded subset of (
⊕

X H,≺) with non-empty interior, and the
family

L0 = {Cs,y : s ∈
⊕

X H, y ∈ X}

is Ψ-invariant. It only remains to check that L0 is a cross-free collection. For this, take two
elements Cs,y and Cs′,y′ in L0 with y ≤X y′, and assume there is some element t in their
intersection. It follows that s, t, and s′ all agree on {x ∈ X : x >X y′}, and so Cs,y ⊆ Cs′,y′ . This
shows that L0 is a prelamination, as desired.

8.1.2. Dynamical classification of subgroups and elements. — Here we want to describe
some restrictions for the dynamics of laminar actions. A first straightforward consequence of the
definitions is the following.

Lemma 8.1.9. — If φ : G → Homeo0(R) is a laminar action, then Fixφ(g) ̸= ∅ for every
element g ∈ G.

Proof. — Let L be an invariant covering prelamination and fix g ∈ G. For every ξ ∈ R, we can
find J ∈ L which contains ξ and g.ξ, so that g.J ∩ J ̸= ∅. Then either g or g−1 must map J into
itself. By the intermediate value theorem, φ(g) has a fixed point in J .
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g

h0
h1

h2

Figure 8.1.1. Plante-like action of Z ≀ Z on the line. One factor is generated by g

which acts as a homothety. The generator of the other factor is h0, and we have
hn = gnh0g−n for every n ∈ Z, where the hn commute and are a basis of the lamp
group

⊕
Z Z.

Laminations of the line can be considered as objects analogous to trees, with a marked point at
infinity (this analogy will be formalized in Chapter 11). Groups acting on trees (more generally,
on Gromov-hyperbolic spaces) admit a general classification into five types, only four of which can
arise for actions that fix a point in the boundary (see Gromov [Gro87, §3.1], or Caprace, Cornulier,
Monod, and Tessera [CCMT15] for a more modern presentation). In a tightly analogous way,
laminar group actions on the line can be divided into the following four types. Recall that we
say that an interval I ⊂ R is wandering (for φ) if for every g ∈ G, either g.I = I, or g.I ∩ I = ∅
(Definition 2.1.12).

Proposition 8.1.10 (Dynamical classification of laminar actions)
Let φ : G → Homeo0(R) be an action with an invariant covering lamination L, and denote

by LG ⊂ L the subset of φ-invariant leaves. Then exactly one of the following holds.
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(L1) (Totally bounded). The set LG is cofinal in L. In this case, the subset Fixφ(G) accumulates
on both ±∞.

(L2) (Pseudo-homothetic). We have Fixφ(G) ̸= ∅, and LG is not cofinal in L. In this case, the set
of fixed points Fixφ(G) is non-empty and compact, and the φ-actions of G on the two unbounded
connected components J− := (−∞,min Fixφ(G)) and J+ := (max Fixφ(G),+∞) of R∖ Fixφ(G)
are negatively semi-conjugate (that is, semi-conjugate by a non-increasing map J− → J+).

(L2’) (Homothetic) The previous case holds, and furthermore Fixφ(G) contains a single point; this
happens if and only if Fixφ(G) ̸= ∅ and LG = ∅.

(L3) (Horocyclic). The action φ is irreducible, and L has a cofinal subset of wandering intervals.
In this case, the action φ does not admit any minimal invariant set, and every finitely generated
subgroup H ⊂ G is totally bounded (in the sense that it satisfies (L1)).

(L4) (Focal). The action φ is irreducible, and there exists an interval I ∈ L whose φ-orbit is cofinal.
In this case, the action φ has a unique minimal invariant set Λ ⊆ R, which is not discrete.

In particular, irreducible laminar actions of finitely generated groups are focal.

Proof. — If the subset LG ⊂ L of φ-invariant leaves is cofinal, then the collection of endpoints of
elements of LG is contained in Fixφ(G) and accumulates on both ±∞. In this case, G is totally
bounded.

Suppose that Fixφ(G) ̸= ∅, but (L1) does not hold: the set of φ-invariant leaves is not cofinal in
L. Take ξ ∈ Fixφ(G), and write Lξ = {I ∈ L : ξ ∈ I}. Then Lξ is totally ordered, because any two
leaves in Lξ intersect non-trivially, and φ-invariant, as ξ is fixed by G. Since we assume that the
set of fixed leaves is not cofinal in L, the φ-orbit of any sufficiently large I ∈ Lξ must be cofinal, i.e.
there exists a sequence (hn) ⊂ G such that hn.I is an increasing exhaustion of R. It follows that
Fixφ(G) ⊂ I, thus Fixφ(G) is compact. Similarly, the collection LFixφ(G) = {I ∈ L : Fixφ(G) ⊂ I}
is totally ordered and φ-invariant. Let J− and J+ be the unbounded connected components
of Suppφ(G), adjacent respectively to −∞ and +∞. Considering the two endpoints of any
I ∈ LFixφ(G), we define two equivariant maps m± : (LFixφ(G),⊂) → J±, where m− is non-increasing
and m+ is non-decreasing. This implies that the actions of G on J− and on J+ are negatively
semi-conjugate. Explicitly, a semi-conjugacy is provided by the map J− → J+, ξ 7→ m+(Iξ),
where Iξ is the largest element of LFixφ(G) such that ξ ≤ m−(Iξ). This describes the pseudo-
homothetic case. Finally, note that if | Fixφ(G)| ≥ 2, then LFixφ(G) has an infimum I ∈ L, which
is φ-invariant, thus LG ̸= ∅. Conversely if LG ̸= ∅, the endpoints of any I ∈ LG belong to
Fixφ(G), so | Fixφ(G)| ≥ 2. This describes the homothetic subcase.

Suppose now that φ is irreducible, but not focal: no I ∈ L has a cofinal orbit. For I ∈ L, set
Î =

⋃
h∈G,I⊆h.I h.I. Note that Î is an open interval, which cannot be the whole real line. It also

cannot be a half-line for, if this was the case, then any J ∈ L containing its endpoint would have to
cross h.I, for some h ∈ G. Hence Î is a bounded interval, which belongs to L, since L is closed. It
is clear that no element of G can send Î to a leaf that strictly contains it, so that Î is a wandering
interval. Since I was arbitrary and I ⊂ Î, it follows that the subset W ⊂ L of wandering intervals
is cofinal. For every J ∈ W , the union of the φ-images of J is a proper open φ-invariant subset of
R. Now, suppose by contradiction that φ admits a minimal invariant set Λ ⊂ R. First note that
Λ cannot be a discrete orbit, as this would imply the existence of elements without fixed points,
contradicting Lemma 8.1.9. Thus, Λ is unique and contained in every φ-invariant closed subset of
R; equivalently, it does not intersect any φ-invariant proper open subset. However, cofinality of
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W gives an interval J ∈ W such that J ∩ Λ ̸= ∅, and we have remarked that its φ-orbit gives a
proper φ-invariant open subset and the desired contradiction. Finally, let S ⊂ G be any finite
symmetric subset, and (Jn) ⊂ W an increasing exhaustion of R by wandering intervals. For every
s ∈ S and every sufficiently large n, we must have s.Jn ∩ Jn ̸= ∅, and thus s.Jn = Jn. It follows
that the subgroup ⟨S⟩ fixes the endpoints of Jn for every sufficiently large n, and thus it is totally
bounded (in the sense that it fits the conditions in (L1)). This describes the horocyclic case.

In the remaining case, φ is irreducible and there exists I ∈ L with a cofinal orbit. As before,
the action φ cannot have a discrete orbit, so φ has at most one minimal invariant set; it is enough
to show that such a set exists. Since L is covering, every non-empty closed φ-invariant subset of
R intersects an element of L and so, by cofinality of the orbit of I, it intersects I as well. By
compactness of I, Lemma 2.1.11 provides a minimal invariant set.

Definition 8.1.11. — In the sequel, we adopt the terminology introduced in Proposition 8.1.10.
If φ : G → Homeo0(R) is a laminar action, we also use the same terminology to distinguish
different subgroups of G. For instance, we shall say that a subgroup H ⊆ G is horocyclic if φ|H
satisfies (L3). Note that the homothetic case is a subcase of the pseudo-homothetic case, but it is
convenient to single it out.

A particularly relevant special case of Proposition 8.1.10 is when H is a cyclic subgroup. In
this case, we have a classification of individual elements into two types, which are analogous to
the classification of isometries of trees into loxodromic and elliptic elements. This leads to the
introduction of the following terminology.

Definition 8.1.12. — We say that a homeomorphism g ∈ Homeo0(R) is an expanding (respec-
tively, contracting) pseudo-homothety if the set Fix(g) of fixed points is (non-empty and) compact,
and for every open interval I ⊃ Fix(g), we have

⋃∞
n=0 g

n(I) = R (respectively,
⋃∞
n=0 g

−n(I) = R).
If in addition Fix(g) is reduced to a single point, we say that g is a homothety.

Proposition 8.1.13 (Dynamical classification of elements)
Let φ : G → Homeo0(R) be a laminar action, with invariant covering lamination L. For

g ∈ G, set Lg = {I ∈ L : g.I = I}. Then the following alternative holds:

— if Lg is cofinal in L, then φ(g) is totally bounded; otherwise,

— φ(g) is a pseudo-homothety. Moreover, φ(g) is a homothety if and only if Lg = ∅.

Proof. — Most of the statement is Proposition 8.1.10, specialized to the cyclic subgroup generated
by g, which must satisfy one of the first two cases by Lemma 8.1.9. We only need to justify
the part of the statement characterizing when φ(g) is a homothety. Observe that if Lg ̸= ∅,
then φ(g) has at least two fixed points (the endpoints of any I ∈ Lg). Conversely, suppose φ(g)
is a pseudo-homothety with | Fixφ(g)| ≥ 2; then the set {I ∈ L : Fixφ(g) ⊂ I} has a smallest
non-trivial element, which belongs to Lg.

We now justify that all notions discussed above are stable under semi-conjugacy.

Proposition 8.1.14. — Let φ,ψ : G → Homeo0(R) be two irreducible semi-conjugate actions.
If φ is laminar, then so is ψ, and the type of each subgroup H ⊆ G is the same for φ and for ψ.
In particular, every focal laminar action is semi-conjugate to a minimal focal laminar action.
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Proof. — Let L be an invariant covering prelamination for φ, and h : R → R a semi-conjugacy
from φ to ψ (in the sense that (2.1.1) hold n h is proper, as a consequence of irreducibility of φ and
ψ. Thus for every sufficiently large interval I ∈ L, h(I) is not a singleton. Hence, the collection of
the interiors of the convex hulls of the images h(I), where I runs through all the intervals I ∈ L,
gives a ψ-invariant covering prelamination. The statement on the type of subgroups follows easily
from Proposition 8.1.10 since the properties that a subgroup be totally bounded, have compact
set of fixed point, admit or not a minimal set, are all stable under semi-conjugacy. Finally, note
that if φ is focal, then the existence of a non-discrete minimal invariant set implies that it is
semi-conjugate to a minimal action (Corollary 2.1.15), which must be focal by what we have just
proved.

Next, we observe that conversely, any minimal laminar action, is automatically focal. More
precisely, we have the following result, which is an improvement of Remark 8.1.5.

Proposition 8.1.15. — Let φ : G → Homeo0(R) be a minimal action which preserves a prelam-
ination L. Then L is covering, thin, and the φ-orbit of every I ∈ L is cofinal. In particular, φ is
focal and proximal.

Proof. — Fix I ∈ L. The family L0 = {g.I : g ∈ G} is also a φ-invariant prelamination. The
union of elements of L0 is a non-empty φ-invariant open subset, so that by minimality of the
action, it has to coincide with the whole real line. Remark 8.1.5 ensures that L0 is a covering
prelamination. Hence so is L, and it also follows that the orbit of I is cofinal in L. Since I is
arbitrary, this shows that the orbit of every I ∈ L is cofinal. Now, suppose that F ⊂ L is a
maximal totally ordered family, and consider the (possibly empty) open interval J defined as
the interior of the intersection

⋂
I∈F I. The φ-images of J are pairwise equal or disjoint, so their

union is a proper φ-invariant open subset, hence by minimality we must have J = ∅. This shows
that L is thin. Finally, this fact combined with cofinality of the action of G on L implies that
arbitrarily large intervals can be mapped into arbitrarily small neighborhoods of a given point, so
that φ is proximal.

Example 8.1.16. — The Plante-like actions in Example 8.1.8 are minimal and laminar, and so
they are focal.

8.2. Horogradings

We now introduce the notion of horograding, which will play a crucial role in our main theorem
for actions of locally moving groups.

8.2.1. Definitions. —

Definition 8.2.1. — Let L be a prelamination of an ordered set (Ω,≺). A horograding of
L is a monotone map h : (L,⊂) → (R, <). We say that a horograding h : L → R is positive
(respectively, negative) if it is non-decreasing (respectively, non-increasing): if I ⊆ J , then
h(I) ≤ h(J) (respectively, h(I) ≥ h(J)).

Definition 8.2.2 (Horogradings of actions). — Let ψ : G → Aut(Ω,≺) be an order-
preserving action admitting an invariant covering prelamination. A (positive or negative)
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prehorograding of ψ by an action ρ : G → Homeo0(X), where X ⊂ R is an open interval, is
a pair (L, h) consisting of:
— a ψ-invariant covering prelamination L;
— a (positive or negative) horograding h : L → X, such that h(ψ(g)(I)) = ρ(g)(h(I)) for every
I ∈ L and every g ∈ G.

In the case that Ω = R and L is a lamination, we say that (L, h) is a horograding of ψ by ρ.

Note that although it is convenient to state this definition without any assumptions on φ and ρ
(except laminarity of φ), in practice we will often assume that φ is focal and that the horograding
action ρ is irreducible. In this section, in order to discuss general properties of horogradings, we
restrict for simplicity to the case Ω = R

When there is no ambiguity, we will use the shortcut notation h(g.I) = g.h(I) for h(ψ(g)(I)) =
ρ(g)(h(I)) (and similar variations), assuming that it is clear that the action ψ is on the source of
h (where points are denoted by Greek letters) and the action ρ is on the image of h (where points
are denoted by Latin letters).

Remark 8.2.3. — If an action ψ : G → Aut(Ω,≺) has a prehorograding (L0, h) by an action
ρ : G → Homeo0(R), then the dynamical realization φ : G → Homeo0(R) of ψ also has a prehoro-
grading by ρ. Indeed, we have seen in Remark 8.1.7 that φ preserves a covering prelamination L,
obtained by considering interiors of convex hulls of the images of leaves of L0 under the associated
good embedding i : (Ω,≺) → (R, <). Then (L, h ◦ i−1) gives a prehorograding of φ by ρ.

Remark 8.2.4. — A positive (respectively, negative) prehorograding (L, h) of a laminar action
φ by ρ can be extended to a positive (respectively, negative) horograding defined on the closure
L, provided L is thin (this is always true if φ is minimal, by Proposition 8.1.15). Indeed, in this
case, every J ∈ L contains some element of L. It follows that the map h can be extended, in the
positive case, by setting h(J) = sup{h(I) : I ∈ L, I ⊂ J}.

Example 8.2.5 (Self-horograding). — Every laminar action φ can be (positively) horograded
by itself. Indeed, choose an invariant covering lamination L, and define a horograding by
h(I) = sup I.

Example 8.2.6 (Horograding of Plante-like actions). — Consider our running example
of a Plante-like action of a permutational wreath product H ≀X G, described in Example 8.1.8.
Fix a G-invariant order <X on X and <H∈ LO(H) and, as in Example 8.1.8, let Ψ: H ≀X G →
Aut(

⊕
X H,≺) be the associated Plante-like product (where ≺ is the order of lexicographic type

on
⊕

X H associated with <X and <H). As in Example 8.1.8, we assume that G, H, and X are
countable, and that the action of G on (X,<X) is cofinal, so that we can take the dynamical
realization φ : H ≀X G → Homeo0(R), with associated good embedding ι : (

⊕
X H,≺) → R. Let

also ρ : G → Homeo0(R) be the dynamical realization of the G-action on (X,<X), with associated
embedding ιG : (X,<X) → R. We claim that the Plante-like action φ is horograded by ρ (seen
as an action of H ≀X G which factors through the projection to G). To see this, recall that an
invariant prelamination for Ψ is given by L0 = {Cs,y : s ∈

⊕
X H, y ∈ X}, where Cs,y ⊂

⊕
X H is

defined as in (8.1.2). From (8.1.2) it is evident that the correspondence

h0 : L0 → (X,<X)
Cs,x 7→ x
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is monotone and G-equivariant. It follows that (L0, ιG ◦ h0) defines a prehorograding of Ψ by ρ.
After Remark 8.2.3, we obtain a prehorograding (L, h) of the dynamical realization φ of Ψ by the
dynamical realization ρ; after Remark 8.2.4, since φ is minimal (as shown in Example 8.1.8), the
prehorograding can be extended to a horograding of φ by ρ.

Let us point out the following simple consequence of Definition 8.2.2, that will be often used
implicitly.

Lemma 8.2.7. — Let φ, ρ : G → Homeo0(R) be irreducible actions, and (L, h) a positive
prehorograding of φ by an irreducible action ρ. If (In) ⊂ L is any increasing exhaustion of R,
then h(In) → +∞ as n → +∞.

Proof. — Since h(L) is ρ-invariant and ρ is irreducible, we must have sup h(L) = +∞. Since h is
non-decreasing and (In) is a cofinal sequence in L, the conclusion follows.

In contrast, it is not true that h(In) tends to −∞ whenever (In) is a decreasing sequence in L
with diameter tending to 0. Consider for example the self-horograding (L, h) of a focal laminar
action by itself (Example 8.2.5). Then for every decreasing sequence (In) in L, the sequence
h(In) = sup In cannot converge to −∞, since h(In) ≥ inf I0 for every n. It is therefore convenient
to introduce the following terminology.

Definition 8.2.8 (h-complete points). — Let (L, h) be a positive horograding of φ : G →
Homeo0(R) by ρ : G → Homeo0(R). A point ξ ∈ R is h-complete if there exists a decreasing
sequence (In) ⊂ L such that

⋂
In = {ξ} and lim h(In) = −∞. The analogous definition can be

given for negative horogradings.
(When the horograding action ρ is on an open interval X ⊊ R, this definition should be

modified by requiring convergence to the appropriate endpoint of X.)

Remark 8.2.9. — The set Ξh of h-complete points is always a Gδ-subset of R, i.e. a countable
intersection of open sets. For instance, in the case of a positive horograding, we have

Ξh =
⋂
n≥0

⋃
I∈L, h(I)≤−n I.

It is also clearly φ-invariant. It follows that when the action φ is minimal, the subset Ξh is either
empty or residual, i.e. generic in the sense of Baire.

8.2.2. Classification of elements in the horograded case. — A particularly useful conse-
quence of the existence of a horograding of a laminar action φ by an irreducible action ρ, is that
the type of each element for φ is determined by ρ.

Proposition 8.2.10 (Dynamical classification of elements in the horograded case)
Assume that a laminar action φ : G → Homeo0(R) is positively horograded by an irreducible

action ρ : G → Homeo0(R). Then for every element g ∈ G, the following hold.
— φ(g) is totally bounded if and only if ρ(g) has fixed points accumulating on +∞.
— Otherwise, φ(g) is a pseudo-homothety, which is expanding if ρ(g)(x) > x for every sufficiently
large x ∈ R, and contracting otherwise. Moreover if ρ(g) has no fixed point, then φ(g) is a
homothety, and its unique fixed point is h-complete.

Instead of proving Proposition 8.2.10 directly, we shall deduce it from the following two lemmas,
that give similar conclusions for more general subgroups.
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Lemma 8.2.11. — Assume that a laminar action φ : G → Homeo0(R) is positively horograded
by an irreducible action ρ : G → Homeo0(R). Then, a finitely generated subgroup H ⊆ G is totally
bounded for φ, if and only if Fixρ(H) accumulates on +∞.

Proof. — Let (L, h) be a positive horograding of φ by ρ. By Proposition 8.1.10, H is totally
bounded for φ if and only if the subset LH of H invariant leaves is cofinal. If this is the case,
then h(LH) consists of ρ(H)-fixed points, which by Lemma 8.2.7, accumulate on +∞. (1) For the
converse, assume that H is not totally bounded. By finite generation, Proposition 8.1.10 gives
that it is either pseudo-homothetic or focal. In either case, we can find I ∈ L and a sequence
(hn) ⊂ H such that hn.I is an increasing exhaustion of R. Then by Lemma 8.2.7, the images
hn.h(I) = h(hn.I) must converge to +∞, and so ρ(H) cannot have fixed points accumulating to
+∞.

Lemma 8.2.12. — Assume that a laminar action φ : G → Homeo0(R) is positively horograded
by an irreducible action ρ : G → Homeo0(R). Let H ⊆ G be a subgroup which is pseudo-homothetic
for φ, and denote by J− and J+ the two unbounded connected components of Suppφ(H) (see
Proposition 8.1.10). Then the following hold.
— Suppρ(H) has a connected component adjacent to +∞, denoted as U .
— the φ-action of H on J+ (respectively, J−) is positively (respectively, negatively) semi-conjugate
to its ρ-action on U .

Moreover, if Suppρ(H) = R, then φ(H) is homothetic, and its unique fixed point is h-complete.

Proof. — The proof is similar to part (L2) of the proof of Proposition 8.1.10. Let (L, h) be a
positive horograding. Set K = Fixφ(H), and consider the collection LK = {I ∈ L : K ⊂ I},
which is totally ordered and φ(H)-invariant. Set c = inf h(LK). It follows from Proposition 8.1.10
that every I ∈ LK has a cofinal orbit for φ(H), and can also be mapped arbitrarily close to
K. Hence the ρ(H)-orbit of h(I) accumulates on c and +∞. It follows that U = (c,+∞) is a
connected component of Suppρ(H). For ξ ∈ J±, define Iξ = inf{I ∈ LK : ξ ∈ I}. Then the maps
J± → U , ξ 7→ h(Iξ), are the desired semi-conjugacies. Finally if U = R, i.e. if c = −∞, it follows
that LK has no lower bound in L, and this is possible only if K is reduced to a single point,
which is h-complete.

Proof of Proposition 8.2.10. — Since every cyclic subgroup of G is either totally bounded or
pseudo-homothetic (Proposition 8.1.13), the proposition follows from Lemmas 8.2.11 and 8.2.12.

Remark 8.2.13. — In general, the type of a subgroup H ⊆ G with respect to a laminar action
φ, according to Proposition 8.1.10, is not determined uniquely by its image in the horograding
action ρ. Elaborating on the previous arguments, one can see the following.
— If Fixρ(H) accumulates on +∞, then H is either totally bounded or horocyclic. Both cases
are possible if H is not finitely generated. For instance in the case of a Plante-like action of
H ≀X G (see Example 8.1.8), the subgroup

⊕
X H is horocyclic, but ρ(

⊕
X H) = {id} = ρ({e}).

— If Fixρ(H) does not accumulate on +∞, then H can be either focal or pseudo-homothetic.
Again, both cases are possible. In the case of a Plante-like action, we have ρ(H ≀X G) = ρ(G);
the first is focal and the second is pseudo-homothetic.

1. Note that this implication does not use that H is finitely generated.
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In §15.1, we will describe a more global relation between the large-scale dynamics of a
horograded laminar action and the horograding action, which will be important for the results in
Part III.

8.3. Finding invariant laminations

In this final section we describe a mechanism to get an invariant lamination for an action
φ : G → Homeo0(R), that will be used in the proof of the main results of this part.

8.3.1. General criterion. — The central notion of our method is the following.

Definition 8.3.1. — Let φ : G → Homeo0(R) be an action and H ⊆ G a subgroup. We say
that a non-empty interval I ⊂ R is an irreducible wandering interval for φ(H) if the following
hold:

(W1) I is bounded and open,

(W2) I is wandering for φ|H (that is, for every h ∈ H either h.I = I or h.I ∩ I = ∅),

(W3) the action of StabφH(I) := Stabφ|H

H (I) on I has no fixed points.

We denote by Wφ(H) the family of irreducible wandering intervals for φ(H).

If Wφ(G) ̸= ∅, then φ cannot be minimal, as the union of all images of any I ∈ Wφ(G) is
a φ-invariant proper open subset of R. Conversely, we have the following criterion for finding
irreducible wandering intervals.

Lemma 8.3.2. — Let φ : G → Homeo0(R) be an action with no minimal invariant set. Then
every ξ ∈ R belongs to an irreducible wandering interval for φ(G).

Proof. — Note that φ is irreducible, because any global fixed point defines a minimal invariant
set. Then for any ξ ∈ R, we can find an element g ∈ G such that g.ξ > ξ. Since φ has no
minimal invariant set, there exists a closed non-empty invariant subset D that does not intersect
[ξ, g.ξ] (otherwise we could use Lemma 2.1.11 to find a minimal invariant set). Denote by J the
component of R∖D containing [ξ, g.ξ], and set H := Stabφ(J). Note that H is non-trivial, as it
contains the element g. Then, we can take the component J0 ⊆ J of Suppφ(H) that contains ξ.
We claim that J0 ∈ Wφ(G). We first check that condition (W2) is satisfied for J0. To see this,
take h ∈ G. Since D is φ-invariant and J is a component of R∖D, we have that either h.J = J

or h.J ∩ J = ∅. In the second case we have h.J0 ∩ J0 = ∅. In the first case, we have that h ∈ H,
and therefore h preserves J0, since it is a component of the support of the action of H. Finally,
condition (W3) holds because J0 is a component of the support of H.

Lemma 8.3.3. — Let φ : G → Homeo0(R) be an action, and consider two subgroups H1 and
H2 of G, and distinct wandering intervals Ji ∈ Wφ(Hi), for i ∈ {1, 2}. Then, the following hold.

(i) if H1 ⊆ H2, then J1 and J2 do not cross.

(ii) If H1 and H2 commute, then J1 and J2 do not cross.

In particular, any two distinct wandering intervals in Wφ(G) do not cross.
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Proof. — To prove (i), set J1 = (a, b) and J2 = (c, d). Suppose by contradiction that they are
crossed, and assume without loss of generality that a < c < b < d. Applying condition (W3) to
J2, we find g ∈ H1 such that g.J1 = J1 and g.c ̸= c. Since g.b = b and g ∈ H1 ⊆ H2, condition
(W2) applied to J2 implies that g.J2 = J2. This contradicts the fact that g.c ̸= c. Thus, J1 and
J2 do not cross. To show (ii), suppose by contradiction that J1 and J2 are crossed. Let ξ be
the endpoint of J1 contained in J2; by condition (W3), there exists g ∈ StabφH2

(J2) such that
g.ξ ∈ J1. However, ξ is fixed by StabφH1

(J1), while g.ξ is not (again by (W3)), contradicting the
assumption that H1 and H2 commute.

The combination of Lemma 8.3.3 and Proposition 8.1.15 immediately implies the following.

Proposition 8.3.4 (Criterion for laminarity). — Let H ⊆ G be a subgroup with the property
that any two conjugates of H in G commute or are related by inclusion, and suppose that
φ : G → Homeo0(R) is an action such that Wφ(H) ̸= ∅. Then L =

⋃
g∈G Wφ(gHg−1) is a

φ-invariant prelamination. In particular if φ is minimal, then it is focal.

8.3.2. The case of normal subgroups. — It is worth pointing out the following special case
of Proposition 8.3.4.

Proposition 8.3.5. — Consider a faithful minimal action φ : G → Homeo0(R), and let N ◁ G

be a normal subgroup which is not a cyclic subgroup of the center of G. Assume that the φ-action
of N is not minimal. Then Wφ(N) is a φ-invariant prelamination; in particular, φ is focal.

First we recall the following lemma. Its proof is well known but we include it for completeness.

Lemma 8.3.6. — Consider a faithful minimal action φ : G → Homeo0(R), and let N ◁ G be a
normal subgroup which is not a cyclic subgroup of the center of G. Then, either the image of N
acts minimally, or it admits no minimal invariant set.

Proof. — Assume that there exists a minimal φ(N)-invariant set Λ ⊆ R, and let us show that
Λ = R. Note that Λ cannot be a fixed point otherwise, as N is normal and φ is minimal, this
would imply that N acts trivially, which is an absurd because we are assuming that φ is faithful
(see Corollary 2.1.7 for details). Then Λ is either the unique minimal φ(N)-invariant set, or a
discrete orbit. In the first case, we have that Λ is preserved by the whole group G and thus
Λ = R by minimality. In the second case we have that the action of N must be semi-conjugate
to a cyclic action coming from a homomorphism τ : N → Z, and that ker τ acts trivially on Λ.
Since ker τ is precisely the subset of N acting with fixed points, the subgroup ker τ is necessarily
normal in the whole group G, and so, as before, we must have ker τ = {1}. Thus N is infinite
cyclic and acts as a group of translations. Since N is normal in G, this implies that N is central
in G, contradicting the assumption.

Proof of Proposition 8.3.5. — By Lemma 8.3.6, we have that φ|N does not admit any minimal
invariant set. Hence, by Lemma 8.3.2, the set Wφ(N) is non-empty, and Proposition 8.3.4 gives
that Wφ(N) defines a φ-invariant prelamination, and that φ is focal.

Remark 8.3.7. — The converse to Proposition 8.3.5 is not true, as we will see with an example
described in §13.4 that gives a minimal laminar action for the simple group [F, F ] (where F is
Thompson’s group). See however Proposition 11.3.3 for a partial converse to Proposition 8.3.5.
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8.3.3. An application to solvable groups. — We conclude this section with the following
application of Proposition 8.3.5, which shows that laminar actions appear naturally in the context
of solvable groups. Its derivation from Proposition 8.3.5 uses ideas of Rivas and Tessera in [RT16].
By an affine action of G on R we mean an action by affine transformations, i.e. transformations
of the form x 7→ ax+ b with a > 0 and b ∈ R.

Theorem 8.3.8 (Alternative for solvable groups). — Let φ : G → Homeo0(R) be an
irreducible action of a finitely generated solvable group. Then, either φ is semi-conjugate to an
affine action, or it is laminar and focal.

Proof. — If φ is semi-conjugate to a cyclic action, then the first case holds. So up to semi-
conjugacy, we can assume that φ is minimal; moreover upon replacing G by a quotient we can
suppose that it is faithful. Let G(n) denote the derived series of G, and consider k ∈ N so that
G(k) ̸= {1} and G(k+1) = {1}. Then H := G(k) is an abelian normal subgroup of G. As H is
normal, we deduce that φ(H) cannot have fixed points (otherwise, as Fixφ(H) is a closed invariant
subset, we would get that H acts trivially).

Assume first that H is a cyclic subgroup of the center of G. Then φ(H) is conjugate to the
cyclic group generated by a translation and the action φ induces a minimal action on the circle
R/φ(H). As G is solvable and thus amenable, it preserves a Borel probability measure on the
circle, which must be of total support for the action is minimal; as it is well known (see for
instance Navas [Nav11, Proposition 1.1.1]), this gives that the action is conjugate to a minimal
action by rotations (basically, this is the action defined by the rotation number homomorphism
rot : G → S1). Therefore, φ(G) is the lift of a group of rotations of the circle, thus conjugate to a
group of translations (and so of affine transformations).

Assume next that H acts minimally. Take a non-trivial h ∈ H and note as before that φ(h) has
no fixed points (otherwise we would get that H acts trivially). Thus, we obtain a minimal action
of H on the circle R/⟨φ(h)⟩, and the argument for the previous case leads to the conclusion that
φ(H) is conjugate to a minimal group of translations. Then, the set of invariant Radon measures
for φ(H) corresponds to the one-parameter family of positive multiples of the Lebesgue measure,
and this family must be preserved by φ(G), for H is normal in G. By a standard argument,
we deduce that φ(G) is conjugate to a group of affine transformations (see for instance Plante
[Pla83]).

If neither of the previous cases hold, Proposition 8.3.5 gives that φ is laminar and focal, as
desired.

Since in a minimal laminar action every element has fixed points (Lemma 8.1.9), we deduce
the following result first obtained by Guelman and Rivas in [GR18].

Corollary 8.3.9. — Let G be a finitely generated solvable group, and let φ : G → Homeo0(R) be
an action such that some element acts without fixed points. Then, the action φ is semi-conjugate
to an affine action.





CHAPTER 9

LAMINATIONS AND MICRO-SUPPORTED GROUPS

This chapter contains the main results of Part II, which describe the dynamics of exotic
actions of micro-supported and locally moving groups on the line, using invariant laminations
and horogradings. We refer to Chapters 3 and 4 for basic definitions and results used throughout
this chapter. In a first result (Theorem 9.1.1), we shall show that if G ⊆ Homeo0(X) is a
micro-supported group acting minimally on an interval X, then all faithful minimal actions of G
on the line must be laminar, with at most one exception. Our main result (Theorem 9.2.1) implies
that if G ⊂ Homeo0(X) is in addition finitely generated and fragmentable, then any faithful
minimal action of G on the line is either conjugate to the standard action on X, or laminar and
horograded by it.

9.1. Most actions of micro-supported groups preserve laminations

Let G ⊆ Homeo0(X) be a micro-supported subgroup acting minimally on an open interval
X (this is equivalent to the existence of one non-trivial element of relatively compact support,
see Proposition 3.1.4). When G is locally moving, the standard action of G cannot preserve any
lamination. Indeed, for any bounded (1) open interval I = (a1, a2), one can choose two disjoint
intervals J1 and J2, such that ai ∈ Ji for i ∈ {1, 2}. As G is locally moving, for each i ∈ {1, 2}
there exists gi ∈ GJi

such that gi(ai) > ai, so that g1g2(I) crosses I. Hence, no bounded open
interval I can belong to an invariant lamination. We will show the following.

Theorem 9.1.1 (Laminar/locally moving alternative). — Let G ⊆ Homeo0(X) be a
micro-supported subgroup acting minimally on an open interval X. Then the following hold.

(i) The standard action of G on X is either laminar or locally moving.

(ii) Every faithful minimal action φ : G → Homeo0(R) which is not conjugate to the standard
action, is laminar.

We first need to discuss a couple of lemmas in preparation for the proof. The following result
is essentially Proposition 4.2.1, which we restate here in a more explicit form, for the convenience
of the reader.

1. Recall our convention that “bounded” stands for “relatively compact” here.
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Lemma 9.1.2. — Let φ : Γ1 × Γ2 → Homeo0(R) be an action of a direct product, and suppose
that φ|Γ1 is irreducible and admits a minimal invariant set Λ. Then, either
(i) the action of Γ1 on Λ factors through a free action of an abelian quotient of Γ1, or

(ii) Γ2 preserves Λ, its action on Λ is non-trivial and factors through a free action of an abelian
quotient of Γ2, or

(iii) Γ2 fixes Λ pointwise.
In particular, in either case there exists i ∈ {1, 2} such that [Γi,Γi] fixes Λ pointwise.

Proof. — This is a consequence of Theorem 2.1.20, the proof is identical to the proof of Proposition
4.2.1 (note that the finite generation of Γ1 was used there only to ensure the existence of a
minimal invariant set).

Lemma 9.1.3. — For X = (a, b), let G ⊆ Homeo0(X) be a micro-supported subgroup whose
action on X is minimal. Suppose that for any x ∈ X, the subgroups G(a,x) and G(x,b) act without
fixed points on (a, x) and (x, b), respectively. Then G is locally moving.

Proof. — Take a bounded open interval I = (u, v) ⋐ X and x ∈ I. We need to show that
g(x) ̸= x for some g ∈ GI . Since G is micro-supported, the subgroup Gc of compactly supported
elements is non-trivial. Since the action of G is minimal and Gc is normal, we have that Gc has no
fixed points, and thus there exists h ∈ Gc such that h(u) > v. Consider a bounded interval (u0, v0)
containing Supp(h) ⋑ I. From the assumption, we can find elements k1 ∈ G(a,x) and k2 ∈ G(x,b)
such that k1(u0) ∈ (u, x) and k2(v0) ∈ (x, v). Writing k = k1k2, we have g = khk−1 ∈ GI and
g(x) ̸= x, as desired.

Proof of Theorem 9.1.1. — We first prove (i). Let us denote by ι : G → Homeo0(X) the standard
action, and suppose that G is not locally moving. After Lemma 9.1.3, we can assume that there
exists x ∈ X such that G(a,x) has fixed points in (a, x) (the symmetric case, in which this holds for
some G(x,b), can be treated similarly). This implies that Supp(G(a,x)) has a bounded connected
component J , which in particular belongs to the set Wι(G(a,x)) of irreducible wandering intervals.
Since all conjugates of G(a,x) are related by inclusion, we conclude by applying Proposition 8.3.4.

We next prove (ii) under the assumption that the standard action of G on X is locally moving.
We want to use Proposition 8.3.4 again. Note that the subgroups of the form G(x,b) or G(a,x)
satisfy the condition of Proposition 8.3.4 (as their conjugates are related by inclusion), and so
do their commutator subgroups. So it is enough to find one subgroup H of this type such that
Wφ(H) ̸= ∅. Fix x ∈ X. By Proposition 4.1.1, we can assume without loss of generality that
Fixφ(G(x,b)) = ∅. If G(x,b) does not admit any minimal invariant set, we conclude by Lemma
8.3.2. Else, if Λ ⊂ R is a minimal invariant set for G(x,b), we deduce from Lemma 9.1.2 that Λ is
fixed by H = [G(x,b), G(x,b)] or H = [G(a,x), G(a,x)]. In either case, any connected component J
of Suppφ(H) belongs to Wφ(H).

Finally, we prove (ii) under the assumption that the standard action on X is not locally moving.
By part (i), we can find a covering lamination L, invariant under the standard action. For every
I ∈ L, the subgroup GI satisfies the condition of Proposition 8.3.4, and so does [GI , GI ]. Hence
it is enough to find I ∈ L such that Wφ(H) ̸= ∅ for H = GI or H = [GI , GI ]. Fix I ∈ L. If
Suppφ(GI) has a bounded connected component, say J , then J ∈ Wφ(GI). Else, assume that
every connected component of Suppφ(GI) is unbounded above or below (and thus there are at
most two of them). If the action of GI on one such component J has no minimal invariant set, we
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can still conclude that Wφ(GI) ̸= ∅ by Lemma 8.3.2. Finally, suppose that the action of GI on
an unbounded component J has a minimal invariant set Λ. Choose g ∈ G such that g(I) ∩ I = ∅.
Then g.J is a component of Suppφ(Gg(I)), which intersects J non-trivially (as it is unbounded).
Since [Gg(I), GI ] = {id}, we deduce that g.J = J , so that we can apply Lemma 9.1.2 to the action
of GI × Gg(I) on J . We deduce that H = [GJ , GJ ] or H = [Gg(I), Gg(I)] fixes Λ pointwise. In
either case Suppφ(H) has bounded connected components, so that Wφ(H) ̸= ∅.

9.2. Horograding by the standard action

9.2.1. Statement of the main result. — Recall (from §3.1) that for a subgroup G ⊂
Homeo0(X), where X = (a, b), we denote by G+ (respectively, G−) the normal subgroup of
elements acting trivially on some neighborhood of b (respectively, a), and Gfrag = G−G+ is the
fragmentable subgroup of G. This subgroup plays an important role in the theorem below.

Theorem 9.2.1 (Horograding theorem). — For X = (a, b), let G ⊂ Homeo0(X) be a
subgroup acting minimally on X, with Gfrag non-trivial and finitely generated. Then G is locally
moving, and every faithful minimal action φ : G → Homeo0(R) is either conjugate to the standard
action on X, or laminar, horograded by the standard action on X.

The finite generation of Gfrag allows to prove the following corollary, providing a classification
for irreducible actions of G, up to semi-conjugacy.

Corollary 9.2.2. — For X = (a, b), let G ⊂ Homeo0(X) be a subgroup acting minimally on X,
with Gfrag non-trivial and finitely generated. Then, every irreducible action φ : G → Homeo0(R)
is semi-conjugate to an action in one of the following families.
— (Induced from a quotient). An action induced from the largest quotient G/[Gc, Gc].
— (Standard). The standard action on X.
— (Horograded by standard). A minimal laminar action, horograded by the standard action on
X.

Proof of Corollary 9.2.2 assuming Theorem 9.2.1. — Some argument is needed because G itself
is not supposed to be finitely generated, so that its actions need not be all semi-conjugate to
a minimal or cyclic action. Let φ : G → Homeo0(R) be an irreducible action. Suppose at first
that φ|Gfrag is irreducible. Since Gfrag is finitely generated, there exists a compact interval I ⊂ R
intersecting every φ(Gfrag)-orbit, and thus every φ(G)-closed invariant subset. Hence φ has a
minimal invariant set (by Lemma 2.1.11), and thus it is semi-conjugate to a minimal or cyclic
action; we conclude using Theorem 9.2.1. If φ(Gfrag) has a fixed point, then φ is semi-conjugate
to a non-faithful action (Corollary 2.1.7). Finally, any non-faithful action must factor through
G/[Gc, Gc] by the normal subgroup structure of locally moving groups (Proposition 3.2.1).

Remark 9.2.3. — A concrete consequence of Theorem 9.2.1 is that for all faithful minimal
actions of G, the dynamics of individual elements is determined by the way they act in the
standard action, via Proposition 8.2.10. For this, consider the case where φ is laminar, positively
horograded by the standard action of G on X (the other case is analogous). Then, we have the
following:
— if Fix(g) accumulates on b, then φ(g) is totally bounded;
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— if g(x) > x (respectively, g(x) < x) on a neighborhood of b, then φ is an expanding (respectively,
contracting) pseudo-homothety;
— if g(x) > x (respectively, g(x) < x) for every x ∈ X, then φ(g) is an expanding (respectively,
contracting) homothety.

Remark 9.2.4. — Let us comment on the assumption of finite generation of Gfrag, which is
crucial for Theorem 9.2.1. A common reason why this assumption is satisfied is if G is itself
finitely generated and fragmentable (that is, G = Gfrag), which boils down to say that G can be
generated by finitely many elements supported in strict subintervals of X. However, if G is a
locally moving group such that G ̸= Gfrag, the assumption of finite generation of Gfrag cannot be
replaced by finite generation of G: in §10.2.2, we will provide an example of a minimal laminar
action of a finitely generated locally moving group G (with Gfrag not finitely generated), which
cannot be horograded by the standard action of G.

9.2.2. Overall strategy. — The rest of this section is devoted to the proof of Theorem 9.2.1.
We will divide the proof into steps, which individually yield some additional information. Before
getting into details, let us provide an overview of the strategy. An application of Theorem 9.1.1
shows that a group G as in Theorem 9.2.1 is locally moving, and every faithful minimal action
φ : G → Homeo0(R) which is not conjugate to the standard action must be laminar. To find
a horograding, we will analyze the type of the subgroups G(a,x) and G(x,b), according to the
classification of laminar actions in Proposition 8.1.10 (this does not depend on x ∈ X). We shall
use the assumption that Gfrag is finitely generated to show that one of these two subgroups, say
G(a,x), must be totally bounded. This allows to introduce a natural prelamination consisting of
the union L =

⋃
x Lx, where Lx is the collection of components of Suppφ(G(a,x)). The horograding

is then constructed by mapping every I ∈ Lx to the point x. Let us start.

9.2.3. Type of subgroups. — We begin with the following general result on laminar actions
of locally moving groups (note that we do not need here the assumption that Gfrag is finitely
generated).

Proposition 9.2.5. — For X = (a, b), let G ⊆ Homeo0(X) be locally moving, and φ : G →
Homeo0(R) a laminar action which is not semi-conjugate to any action of G/[Gc, Gc]. Then
the type of the subgroups G(a,x) and G(x,b) (according to the classification of laminar actions in
Proposition 8.1.10) does not depend on x ∈ X. Moreover, one of the following holds.

(i) (One-sided domination). One of the subgroups G(a,x), G(x,b) acts without fixed points on R
(and thus it is either focal or horocyclic), and the other is totally bounded.
(ii) (Balance between sides). Both subgroups act without fixed points; in this case they are both
horocyclic.

Proof. — Note that since all subgroups in the family {G(a,x) : x ∈ X} can be conjugated into
each other, the property that one of them is totally bounded does not depend on x (for a subgroup
of a totally bounded subgroup is still totally bounded), and so is the property that one of them is
focal (for an overgroup of a focal subgroup is focal). Because of this, it is enough to show that
either case (i) or (ii) hold for any given x ∈ X, and the independence of the type on x follows.

Fix x ∈ X. Since φ is laminar, it is not semi-conjugate to the standard action (as the latter
is locally moving). By assumption, it cannot be conjugate to an action of a proper quotient.



9.2. HOROGRADING BY THE STANDARD ACTION 89

Hence, by Proposition 4.1.1, at least one of the two subgroups G(a,x), G(x,b) must act without
fixed points on R.

Suppose first that one of them has fixed points and the other does not. Let us assume that
Fixφ(G(a,x)) ̸= ∅. Then Proposition 8.1.10 implies that G(a,x) is either totally bounded, or
pseudo-homothetic. In the second case, φ(G(x,b)) would preserve the compact set Fixφ(G(a,x))
and thus fix its largest point, contradicting the assumption Fixφ(G(x,b)) = ∅. Thus G(a,x) can
only be totally bounded, and we are in case (i).

Suppose now that both G(a,x) and G(x,b) act without fixed points, and thus are either horocyclic
or focal. Assume by contradiction that one of them, say G(a,x), is focal. Then it admits a non-
discrete minimal invariant set Λ. We can therefore apply Lemma 9.1.2 to G(a,x) ×G(x,b). Note
that cases (i) and (ii) in Lemma 9.1.2 imply the existence of elements without fixed points,
which do not exist in a laminar action (Lemma 8.1.9). It follows that G(x,b) pointwise fixes Λ,
contradicting that it has no fixed points. Thus both subgroups are necessarily horocyclic.

Remark 9.2.6. — Recall from Proposition 8.1.10 that all finitely generated subgroups of a
horocyclic group are totally bounded. Thus Proposition 9.2.5 gives in either case that one of the
two subgroups G+ =

⋃
xG(a,x) and G− =

⋃
xG(x,b) must have the property that all of its finitely

generated subgroups are totally bounded. The reader might compare this with Proposition 4.2.5,
which provides the same conclusion for the smallest subgroup [Gc, Gc], and played an important
role in Part I. Proposition 9.2.5 provides a strengthening and a more precise explanation of that
statement.

In view of Proposition 9.2.5, for the rest of this section we shall say that a laminar action
φ : G → Homeo(X) has one-sided domination if case (i) holds. When needed, we will specify
the dominating side by saying, for instance, that φ has right-hand side domination if G(x,b) acts
without fixed points.

The next lemma is where finite generation of Gfrag is crucially used (in both conclusions).

Lemma 9.2.7 (Key lemma). — Let G ⊂ Homeo0(X) be a subgroup acting minimally on an
open interval X = (a, b), with Gfrag non-trivial and finitely generated. Then the following hold.

(i) The standard action of G on X is locally moving.

(ii) Every faithful minimal laminar action φ : G → Homeo0(R) has one-sided domination (in the
sense of Proposition 9.2.5).

Proof. — Recalling that Gfrag = G−G+, let us fix a finite symmetric generating set S of Gfrag of
the form S = S− ∪ S+, with S± ⊂ G±, and then choose x+, x− ∈ X such that S+ ⊂ G(a,x+) and
S− ⊂ G(x−,b).

To prove (i), note first that as Gfrag is non-trivial, at least one of the two subgroups G− and
G+ is non-trivial, say G−. Irreducibility of the action of G easily implies that G− is not finitely
generated, so finite generation of Gfrag gives that Gfrag ̸= G−. So also G+ is non-trivial, and not
finitely generated. This easily implies that we can choose g1 ∈ G+ and g2 ∈ G− that do not
commute, so that [g1, g2] is a non-trivial element of G− ∩ G+ = Gc. By Proposition 3.1.4, G
is micro-supported. By Theorem 9.1.1, if G is not locally moving, its standard action must be
laminar. Now, as the standard action of G is minimal and faithful, the normal subgroup Gfrag acts
without fixed points. As Gfrag = ⟨S−, S+⟩, we deduce that ⟨S+⟩ must act without fixed points
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on a neighborhood of a, and trivially on a neighborhood of b (and viceversa for ⟨S−⟩). After
Proposition 8.1.10, this behavior is not possible in a laminar action. Hence G is locally moving.

We next show (ii). Fix a φ-invariant covering lamination L. By Proposition 9.2.5, we can
suppose, without loss of generality, that the subgroups of the form G(x,b) act without fixed points.
If so, Proposition 9.2.5 already tells us that the subgroups G(x,b) are either focal or horocyclic.
Our goal is to show that we are in the first case.

Claim 1. — The φ-action of Gfrag is focal.

Proof of claim. — Since φ is faithful and minimal, and Gfrag is normal, the restriction φ|Gfrag

must be irreducible. Hence, finite generation of Gfrag implies that it must be focal (see Proposition
8.1.10).

Claim 2. — The φ-action of G− is focal.

Proof of claim. — Suppose by contradiction that G− is horocyclic. By Proposition 8.1.10, the
subset L0 ⊂ L of wandering intervals for G− is cofinal and closed in L; moreover, L0 is φ-invariant,
by normality of G−. By Claim 1 and Proposition 8.1.15, the φ(Gfrag)-orbit of every I ∈ L0 is
cofinal. Choose I large enough so that the image of I under every element of S intersects I (and
hence is related to I by inclusion). Then we can find a sequence (si) ⊂ S = S+ ∪ S− such that
sn · · · s1.I ⊊ sn+1 · · · s1.I and

⋃
n sn · · · s1.I = R. But since all intervals sn · · · s1.I belong to L0,

no element of S− can send any of them to a strictly larger interval, so the sequence (si) must
actually be contained in S+. It follows that the φ(G(a,x+))-orbit of I is cofinal in L. This is
absurd, since G(a,x+) is either totally bounded or horocyclic (by Proposition 9.2.5).

Claim 3. — The φ-action of G(x,b) is focal.

Proof of claim. — For I ∈ L and x ∈ X, let us set

(9.2.1) α(I, x) =
⋃

h∈G(x,b), I⊂h.I

h.I.

Observe that α(I, x) ⊂ α(I, y) for y < x, and that the function α(·, ·) is G-equivariant:

g.α(I, x) = α(g.I, g(x)).

Note also that the definition of α(I, x) and the cross-free property of L easily give that if I, J ∈ L
and x ∈ X are such that J ⊂ α(I, x), then α(J, x) ⊂ α(I, x); in particular we have that

(9.2.2) if α(I, x) ⊃ J and α(J, x) ⊃ I, then α(I, x) = α(J, x).

Suppose by contradiction that G(x,b) is not focal, and so horocyclic. Then α(I, x) ̸= R for
every I ∈ L and x ∈ X. In contrast, since G− is focal by Claim 2, we can choose I ∈ L whose
φ(G−)-orbit is cofinal in L. Since G− =

⋃
xG(x,b), this means exactly that

⋃
x α(I, x) = R. It

follows that we can choose x0 < x− such that for every s ∈ S, we have α(I, x0) ⊃ s.I. Since the
standard action of Gfrag on X has no global fixed point, we can choose a sequence (sn)n≥1 ⊂ S

such that the sequence xn = sn · · · s1(x0) is strictly decreasing and converges to the endpoint a.
Note that such a sequence (sn) will be automatically contained in S+, since we chose x0 < x−.
For every n ≥ 1, we have

α(I, xn) ⊃ α(I, x0) ⊃ sn.I,

and (recall that we have chosen S symmetric)

α(sn.I, xn) = sn.α(I, xn−1) ⊃ sn.α(I, x0) ⊃ sns
−1
n .I = I.
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Hence, from (9.2.2) and induction, we conclude that for every n ≥ 1 we have

α(I, xn) = α(sn.I, xn) = sn.α(I, xn−1) = sn · · · s1.α(I, x0).

Since α(I, xn) is an increasing exhaustion of R and all elements si are contained in S+, this implies
that the φ(G(a,x+))-orbit of α(I, x0) is cofinal in L; this contradicts the fact from Proposition
9.2.5 that G(a,x+) is either totally bounded or horocyclic.

By Proposition 9.2.5, focality of G(x,b) implies that φ has right-hand side domination.

9.2.4. End of the proof of Theorem 9.2.1: construction of the horograding. — Strictly
speaking, the next lemma could be avoided for the proof of Theorem 9.2.1, but it makes the
construction more natural, and it shows some good properties of the horograding constructed in
the proof.

Lemma 9.2.8. — For X = (a, b), let G ⊂ Homeo0(X) be a locally moving subgroup. Let
φ : G → Homeo0(R) be a faithful minimal laminar action, and assume that G(a,x) is totally
bounded. Then Suppφ(G(a,x)) is dense for every x ∈ X.

Proof. — For x ∈ X, set Cx := Fixφ(G(a,x)); note that Cx ̸= R because we are assuming that the
action φ is faithful. Assume by contradiction that there exists x ∈ X such that Cx has non-empty
interior. Fix also an arbitrary y ∈ X and write H = G(a,y). Let I be a connected component of
Suppφ(H) = R∖ Cy ̸= ∅. Since φ is proximal (Proposition 8.1.15), there exists g ∈ G such that
I ⊂ g.Cx = Cg(x). Thus φ(G(a,g(x))) acts trivially on I, and since G(a,g(x)) ∩H ≠ {id}, we deduce
that the action of H on I is not faithful. Since H is a locally moving subgroup of Homeo0((a, y)),
from Proposition 3.2.1 we have that the kernel of this action must contain [Hc, Hc]. Since I was an
arbitrary connected component of Suppφ(H), this implies that [Hc, Hc] acts trivially everywhere
on Suppφ(H), and thus the φ-image of [Hc, Hc] is trivial, contradicting the assumption that φ is
faithful.

Proof of Theorem 9.2.1. — By the first part of Lemma 9.2.7, we have that the group G is locally
moving, so by Theorem 9.1.1, every faithful minimal action φ : G → Homeo0(R) which is not
conjugate to the standard action must be laminar. After the second part of Lemma 9.2.7, every
such an action has one-sided domination. We take such a φ : G → Homeo0(R) with right-hand
side domination, and see how to construct a positive horograding by the standard action. The
case of left-hand side domination is symmetric, and can be treated by conjugating the standard
action by x 7→ −x, thus obtaining a negative horograding.

For the construction, consider the intersection of supports

Ξ :=
⋂
x∈X Suppφ(G(a,x)),

which defines a φ-invariant subset. By Lemma 9.2.8 and Baire’s theorem, we have that Ξ is a
Gδ-dense subset of R, and in particular it is non-empty. For every ξ ∈ Ξ and x ∈ X, we denote
by Iφ(x, ξ) the connected component of Suppφ(G(a,x)) which contains ξ. This is well defined for
every x ∈ X, by definition of Ξ, and is a bounded interval because G(a,x) is totally bounded.

Claim 1. — The collection L = {Iφ(x, ξ) : x ∈ X, ξ ∈ Ξ} defines a φ-invariant prelamination,
which is covering and thin.
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Proof of claim. — By definition, we have g. Iφ(x, ξ) = Iφ(g(x), g.ξ) for every g ∈ G, x ∈ X, and
ξ ∈ Ξ. So L is φ-invariant. Next, if x, y ∈ X are such that x < y, then for any ξ ∈ Suppφ(G(a,x))
we have ξ ∈ Suppφ(G(a,y)) and Iφ(x, ξ) ⊂ Iφ(y, ξ). Moreover, for x ∈ X and ξ1, ξ2 ∈ Ξ, we have
either Iφ(x, ξ1) = Iφ(x, ξ2), or Iφ(x, ξ1) ∩ Iφ(x, ξ2) = ∅. This gives that L is a prelamination.
Finally, Proposition 8.1.15 gives that L is covering and thin.

Claim 2. — The function
h : L → X

Iφ(x, ξ) 7→ x

is well defined, and (L, h) is a positive prehorograding of φ by the standard action of G on X.

Proof of claim. — In order to check that h is well defined, we need to prove that if Iφ(x, ξ) =
Iφ(y, η), then x = y. Note first that by Claim 1, the prelamination L is thin, so for any fixed
ξ ∈ Ξ, the length of Iφ(x, ξ) tends to 0 as x tends to a. Now, assume by contradiction that
Iφ(x, ξ) = Iφ(y, η) for some x < y. Since G(a,y) preserves the interval Iφ(y, η), for every g ∈ G(a,y)
we have

Iφ(y, η) = g. Iφ(y, η) = g. Iφ(x, ξ) = Iφ(g(x), g.ξ) = Iφ(g(x), η).

(The last equality follows from the fact that η belongs to the first interval in the chain of equalities.)
Since G(a,y) acts without fixed points on (a, y), we can choose g such that g(x) is arbitrarily
close to a, so the size of Iφ(g(x), η) can be made arbitrarily small. This contradicts the previous
equality.

The fact that h is non-decreasing follows from the fact that x ≤ y if and only if Suppφ(G(a,x)) ⊆
Suppφ(G(a,y)). Finally, equivariance follows from equivariance of the intervals Iφ(x, ξ): for any
g ∈ G, x ∈ X, and ξ ∈ Ξ, we have

h(g. Iφ(x, ξ)) = h(Iφ(g(x), g.ξ)) = g(x) = g(h(Iφ(x, ξ))),

as desired.

Finally, the positive prehorograding (L, h) from Claim 2 can be extended to a positive horo-
grading (L, h) as explained in Remark 8.2.4, since by Claim 1 we have that L is thin. This
concludes the proof.

Remark 9.2.9. — For further reference, let us write explicitly what we have proved in this
subsection.

For X = (a, b), consider a locally moving subgroup G ⊂ Homeo0(X) and a faithful minimal
laminar action φ : G → Homeo0(R) for which the subgroups G(a,x) are totally bounded. Set

Ξ =
⋂
x∈X Suppφ(G(a,x))

which is a Gδ-dense subset. Consider the following.

— For x ∈ X and ξ ∈ Ξ, let Iφ(x, ξ) be the connected component of Suppφ(G(a,x)) containing ξ.

— Define L = {Iφ(x, ξ) : x ∈ X, ξ ∈ Ξ}.

— Define
h : L → X

Iφ(x, ξ) 7→ x.
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Then, h is well defined, and (L, h) is a positive prehorograding of φ by the standard action of G
on X, which extends to a positive horograding (L, h).

Although unnecessary for the proof of Theorem 9.2.1, let us mention that one can check that
the set Ξ coincides with the set of h-complete points (see Definition 8.2.8).

9.3. Examples of minimal laminar actions: orders of germ type revisited

We have seen in Theorems 9.1.1 and 9.2.1 that laminations and horogradings can be used to
understand exotic actions of many micro-supported groups. In this section, we show that many
such groups (including most groups of piecewise linear or projective homeomorphisms) actually
do admit minimal laminar actions. More constructions of laminar actions will be found in the
subsequent chapters.

Set X = (a, b) and let G ⊆ Homeo0(X) be a (countable) micro-supported group acting
minimally on X. In order to run our construction, we require G to satisfy the following condition.

(G1) The group Germ(G, b) admits a section inside Homeo0(X), namely a subgroup Γ ⊆ Homeo0(X)
such that Germ(Γ, b) = Germ(G, b) and which projects bijectively to Germ(G, b). (2)

Under assumption (G1), let Γ ⊆ Homeo0(X) be a section of Germ(G, b), and consider the
overgroup Ĝ = ⟨G,Γ⟩. We will proceed by describing an action of Ĝ and then restricting it to G.
Note that Germ(Ĝ, b) = Germ(G, b), namely Ĝ induces the same group of germs at b as G. The
advantage of passing to Ĝ is that it splits as a semidirect product

Ĝ = Ĝ+ ⋊ Γ,

where as usual Ĝ+ ⊆ Ĝ is the subgroup of elements whose germ at b is trivial. Using this splitting,
we can let the group Ĝ act “affinely” on Ĝ+: the subgroup Ĝ+ acts on itself by left-multiplication,
and Γ acts on it by conjugation. Explicitly, if g ∈ Ĝ and h ∈ Ĝ+, writing g = g+γg with g+ ∈ Ĝ+
and γg ∈ Γ, we set

(9.3.1) g · h = ghγ−1
g .

Note that we actually have g · h = g+(γghγ−1
g ), from which it is straightforward to check that

this defines indeed an action on Ĝ+. We want to find an order ≺ on Ĝ+ which is invariant under
the action of Ĝ, and then consider the dynamical realization of the action of Ĝ on (Ĝ+,≺). For
this we look for a left-invariant order ≺ on Ĝ+ which is also invariant under the conjugation
action of Γ. We will say for short that such an order is Γ-invariant.

Good candidates are the orders of germ type on Ĝ+ described in §6.1. Recall that an order
of germ type is determined by a family of left-invariant orders {<(x): x ∈ X}, where for every
x ∈ X, <(x) is a left-invariant order on the group of germs Germ

(
Ĝ(a,x), x

)
: the associated order

of germ type on Ĝ+ is the order ≺ whose positive cone is the subset

P =
{
g ∈ Ĝ+ : Gpg (g) ≻(pg) id

}
,

where pg = sup{x ∈ X : g(x) ̸= x}. However, not every order of germ type is Γ-invariant, and
this is because for every x ∈ X the stabilizer Stab

Ĝ
(x) of x acts on Ĝ(a,x) by conjugation, and

2. The problem of when a group of germs admits a section as a group of homeomorphisms is very interesting.
We refer the reader to Mann [Man15a] for an example of a finitely generated group of germs which does not admit
any such section.
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this action descends to an action on Germ
(
Ĝ(a,x), x

)
. In light of this, we are able to produce a

Γ-invariant order of germ type on Ĝ+ if and only if the following condition is satisfied.

(G2) For every x ∈ X, the group Germ
(
Ĝ(a,x), x

)
admits a left-invariant order <(x) which is

invariant under the induced conjugation action of StabΓ(x).

Indeed, suppose that {<(x): x ∈ X} is a family such that the associated order of germ type is
Γ-invariant, then each ≺(x) is as in (G2). Conversely if we choose such an order <(x) as in (G2),
for x in a system of representatives of the Γ-orbits in X, then we can extend it uniquely by
Γ-equivariance to a family {<(x): x ∈ X} which defines a Γ-invariant order of germ type.

Remark 9.3.1. — Here are two simple sufficient conditions for (G2).

(G2a) The group Γ acts freely on X.

(G2b) For every x ∈ X, every non-trivial germ in Germ
(
Ĝ(a,x), x

)
has no sequence of fixed points

accumulating on x from the left (this does not depend on the choice of the element representing
the germ).

The fact that (G2a) implies (G2) is clear because in this case StabΓ(x) is trivial. In contrast,
when (G2b) holds, we can define an order <(x) on Germ

(
Ĝ(a,x), x

)
by setting Gx(g) >(x) id if

and only if g(y) > y for every y ̸= x in some left-neighborhood of x. Then this is a left-order on
Germ

(
Ĝ(a,x), x

)
, invariant under conjugation by the whole stabilizer of x in Homeo0(X).

Summing up, under conditions (G1) and (G2), we can consider a Γ-invariant order of germ
type ≺ on Ĝ+ and let Ĝ act on (Ĝ+,≺) by (9.3.1). Passing to the dynamical realization, we
obtain an action of Ĝ, and thus of G, on the real line. This construction yields the following
criterion for the existence of exotic actions.

Proposition 9.3.2. — For X = (a, b), let G ⊂ Homeo0(X) be a finitely generated, micro-
supported group acting minimally on X. Assume that Germ(G, b) admits a section Γ ⊂ Homeo0(X)
(that is, condition (G1) holds) such that Ĝ = ⟨G,Γ⟩ satisfies (G2).

Then there exists a faithful minimal laminar action φ : G → Homeo0(R) which is not conjugate
to the standard action of G on X.

Proof. — Choose a Γ-invariant order of germ type ≺ on Ĝ+, defined from a family of orders
{<(x): x ∈ X}. We let ψ : G → Homeo0(R) be the dynamical realization of the action of G on
(Ĝ+,≺). Set N = [Gc, Gc], which by Proposition 3.2.1 is the smallest non-trivial normal subgroup
of G.

Claim. — For every x ∈ X the group ψ(N(x,b)) acts on R without fixed points.

Proof of claim. — Let ι : (Ĝ+,≺) → (R, <) be an equivariant good embedding associated with ψ
(Definition 2.2.11). Observe that the subgroups Ĝ(a,y), for y ∈ X, are bounded convex subgroups
of (Ĝ+,≺) which form an increasing exhaustion of Ĝ+, thus the interior of the convex hull of
every ι(Ĝ(a,y)) is a bounded open interval Iy ⊂ R, giving an increasing exhaustion of R. Now
given any x, y ∈ X, every g ∈ N(x,b) with pg > y satisfies gĜ(a,y) ̸= Ĝ(a,y), which in turn implies
that ψ(g)(Iy) ∩ Iy = ∅. Since y is arbitrary, and the intervals Iy exhaust R, this implies that
Fixψ(N(x,b)) = ∅.
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As G is finitely generated, we can consider a canonical model φ : G → Homeo0(R) of ψ, which
is thus either minimal or cyclic. Since φ is semi-conjugate to ψ, the claim gives Fixφ(N(x,b)) = ∅.
Using Proposition 3.2.1, we deduce that φ is faithful, and thus minimal. Moreover, we see that it
cannot be conjugate to the standard action of X, since N(x,b) does have fixed points on X.

Finally, arguing as in the proof of the claim, it is not difficult to see that the collection

L := {ψ(g)(Iy) : g ∈ G, y ∈ X}

is an invariant covering prelamination for ψ (thus ψ is laminar), see also Remark 8.1.7. Since φ
is semi-conjugate to ψ, Proposition 8.1.14 implies that φ is also laminar.

Remark 9.3.3. — Working as in §9.2.4, one can show that φ can be positively horograded
by the natural action of G on X. In particular, the dynamics of elements in the image of φ is
determined by their dynamics on X (see Remark 9.2.3).

The criterion given by Proposition 9.3.2 applies to several classes of examples of micro-supported
groups. Let us give a first illustration. We say that the group of germs Germ(G, b) acts freely
near b if every non-trivial germ has no sequence of fixed points accumulating on b (this condition
does not depend on the choice of the representative; cf. (G2b)).

Corollary 9.3.4. — For X = (a, b), let G ⊂ Homeo0(X) be a finitely generated, micro-supported
group acting minimally on X. Assume that Germ(G, b) is abelian and acts freely near b. Then
there exists a faithful minimal laminar action φ : G → Homeo0(X), which is not conjugate to the
standard action of G on X.

Proof. — We first check that if Germ(G, b) is abelian and acts freely near b, then it admits a
section Γ ⊂ Homeo0(X) which acts freely on X. To see this, using that G is finitely generated,
we can take finitely many elements g1, . . . , gr in G whose germs at b are non-trivial and generate
Germ(G, b). Up to taking inverses, the assumption that Germ(G, b) is abelian and acts freely
near b allows to find z ∈ X such that gi(x) > x and gigj(x) = gjgi(x) for every x ∈ (z, b) and
i, j ∈ {1, . . . , r}. Choose an element γ1 ∈ Homeo0(X) which coincides with g1 on (z, b) and has
no fixed points in X. Take x0 ∈ (z, b) and consider the fundamental domain I = [x0, γ1(x0)). As
the elements g2, . . . , gr commute with g1 = γ1 on I, they induce an action of Zr−1 on the circle
X/⟨γ1⟩ = [x0, γ1(x0)]/x0∼γ1(x0), which can be lifted to an action of Zr−1 on X commuting with
γ1. In simpler terms, writing In = γn1 (I), so that X =

⊔
n∈Z In, for every i ∈ {2, . . . , r} we can

consider the homemorphism γi ∈ Homeo0(X) defined by

(9.3.2) γi(x) = γn1 giγ
−n
1 (x) for x ∈ In and n ∈ Z.

The elements γ2, . . . , γr define exactly the action of Zr−1 on X which commutes with γ1, as
discussed above. From the definition (9.3.2), we see that every γi coincides with gi on [x0, b), and
in particular we have Gb(γi) = Gb(gi). This gives that Γ = ⟨γ1, . . . , γr⟩ is a section of Germ(G, b)
acting freely on X. Thus conditions (G1) and (G2a) are satisfied, so that the conclusion follows
from Proposition 9.3.2.

A case in which the previous criterion applies is when b < ∞ and the group of germs Germ(G, b)
coincides with a group of germs of linear homeomorphisms x 7→ λ(x−b)+b. This is for instance the
case whenever G is a subgroup of the group PL(X) of finitary piecewise linear homeomorphisms
of X. This case can be generalized as follows.
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Given an interval X = (a, b) ⊂ R, we denote by PDiffω0 (X) the group of all locally piecewise
analytic, orientation-preserving homeomorphisms of X, with a finite set of breakpoints in X. We
also let PP(X) be the subgroup of PDiffω0 (X) of piecewise projective homeomorphisms of X with
finitely many breakpoints, namely those that are locally of the form x 7→ px+q

rx+s , with ps− qr = 1.

Corollary 9.3.5. — For X = (a, b), let G ⊂ PDiffω0 (X) be a finitely generated micro-supported
group acting minimally on X. Assume that one of the following conditions is satisfied:
(i) G is contained in the group PP(X) of piecewise projective homeomorphisms;

(ii) the group of germs Germ(G, b) admits a section Γ contained in PDiffω0 (X).
Then there exists a faithful minimal laminar action φ : G → Homeo0(R), which is not conjugate
to the action of G on X.

Proof. — First of all observe that (i) implies (ii). To see this, assume first that X = R; then
Germ(G,+∞) is a subgroup of the group of germs of the affine group Aff(R) = {x 7→ ax + b},
and thus admits a section inside Aff(R) ⊆ PP(R). For general X, observe that if we fix x0 ∈ X,
we can find A,B ∈ PSL(2,R) which fix x0 and such that A maps the interval (a, x0) to (−∞, x0)
and B maps (x0, b) to (x0,+∞). Then the map H : X → R, given by

H(x) =
{
A(x) if x ≤ x0,

B(x) if x > x0,

conjugates PP(X) to PP(R), so that the we can conclude from the previous case.
Now assume that (ii) holds, and choose a section Γ ⊂ PDiffω0 (X) of Germ(G, b). Then since

non-trivial analytic maps have isolated fixed points, we see that Ĝ satisfies (G2b), thus (G2), and
we can apply Proposition 9.3.2.

Remark 9.3.6. — The conditions in Proposition 9.3.2 cannot be dropped: in §10.4 we will
construct an example of a finitely generated locally moving group G ⊂ Homeo0(R) which admits
no exotic action. Moreover, this example satisfies (G1) (but not (G2)) and its standard action
is by piecewise linear homeomorphisms with a countable set of singularities with finitely many
accumulation points inside X. This shows the sensitivity of Corollary 9.3.5 to its assumptions.



CHAPTER 10

A TEST FAMILY OF EXAMPLES: BIERI–STREBEL GROUPS
ON THE LINE

In this chapter we discuss how the previous results apply to a concrete family of examples:
Bieri–Strebel groups of the form G(R, A,Λ). Recall from §2.3 that we denote by G(X;A,Λ) the
Bieri–Strebel group, consisting of all finitary PL homeomorphisms of an interval X, with slopes
in the multiplicative subgroup Λ ⊆ R>0, and breakpoints and constant terms in a non-trivial
Z[Λ]-submodule A ⊂ R (see Definition 2.3.1). Our focus here is on the case X = R. The groups
G(R;A,Λ) turn out to be an illuminating test case for both the assumptions and the conclusion
of our results, in particular of Theorem 9.2.1.

Let us summarize the results of this chapter in a special case. For λ > 1, consider the group

G(λ) := G
(
R;Z[λ, λ−1], ⟨λ⟩∗

)
,

where ⟨λ⟩∗ denotes the cyclic multiplicative subgroup of R>0 generated by λ. We will begin by
revisiting, in §10.1, the concrete construction of faithful minimal exotic actions of Bieri–Strebel
groups from jump preorders (introduced in §6.2). We shall show that this construction yields
actions that are laminar and horograded by the standard action.

The group G(λ) is finitely generated for every λ (this follows from the result of Bieri and
Strebel [BS16, Theorem B.7.1]), but it is not always fragmentable. Its fragmentable subgroup
G(λ)frag turns out to be finitely generated if and only if λ is an algebraic number (see Lemma
10.2.1). Thus, the assumption of Theorem 9.2.1 is satisfied by G(λ) only in this case. We will
show the following.

— When λ is transcendental, there exists a faithful minimal laminar action on R that cannot
be horograded by the standard action (see Proposition 10.2.3). This shows that the hypothesis
of finite generation of the fragmentable subgroup Gfrag in Theorem 9.2.1 is not redundant, and
cannot be replaced by finite generation of the group G itself.
— If λ is algebraic, we will use Theorem 9.2.1 to show that G(λ) has exactly three faithful
minimal actions on R up to conjugacy: the standard action, and two laminar actions arising
from jump cocycles preorders, which are horograded by the standard action (this is a special case
of Theorem 10.3.1). This provides an application of Theorem 9.2.1, for which the conclusion is
particularly restrictive.
— Building on the previous result, we will construct an example of a finitely generated, frag-
mentable locally moving subgroup G ⊂ Homeo0(R), with the property that all its faithful minimal
actions on the line are conjugate to its standard action (Theorem 10.4.6). This example is a
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suitable modification of the group G(λ) for λ = 2, obtained by allowing PL maps with a countable
set of breakpoints (with some control on them). This shows that there exist groups which fall in
the scope of Theorem 9.2.1, but do not admit exotic actions at all. This should be compared
with the results in Chapter 6 (and other constructions in this paper), which imply that exotic
actions always exist for many natural classes of micro-supported groups.

10.1. Jump preorders revisited

Let us briefly recall the definition of jump preorders on Bieri–Strebel groups, discussed in §6.2.
Let G = G(X;A,Λ) be a Bieri–Strebel group, that we always assume to be countable. The jump
cocycle associated with an element g ∈ G is the map jg defined in (6.2.1), namely

jg : X → Λ

x 7→ D+g−1(x)
D−g−1(x) .

Recall that each jg is a finitely supported function, whose support coincides with the set BP(g−1)
of breakpoints of g−1. Recall also the cocycle relation (6.2.2):

jgh(x) = jg(x)jh(g−1(x)).

We denote by S := {jg : g ∈ G} the set of jump cocycles. The group G acts on S by g · jh := jgh.
The following is a slight generalization of the definition of jump preorders given in §6.2.

Definition 10.1.1. — Consider a non-trivial Λ-invariant preorder ≤Λ∈ LPO(Λ), with residue

Λ0 = [1]≤Λ = {λ ∈ Λ : 1 ≤Λ λ ≤Λ 1},

write Λ∗ = Λ/Λ0, and λ ≡Λ µ when λ/µ ∈ Λ0. The positive jump preorder on G associated with
≤Λ is defined by setting g ⪯ h if and only if either

— jg(x) ≡Λ jh(x) for every x ∈ X, or

— jg(xg,h) ⪇Λ jh(xg,h), where xg,h := max{x ∈ X : jg(x) ̸≡Λ jh(x)}.

The negative jump preorder associated with ≤Λ is defined analogously, by replacing xg,h with
xg,h := min{x ∈ X : jg(x) ̸≡Λ jh(x)}.

Recall also from §2.2.3 (more specifically, from what mentioned in Remark 2.2.10) that given a
left-invariant preorder ⪯ on G, its dynamical realization φ : G → Homeo0(R) is defined as the
dynamical realization of the action of G on the ordered space (G/[id]⪯,≺), where [id]⪯ = {g ∈
G : id ≤ g ≤ id} is the residue of ⪯.

Definition 10.1.2. — We denote by φ+,≤Λ : G → Homeo0(R) (respectively, φ−,≤Λ) the dynam-
ical realization of the positive (respectively, negative) jump preorder associated with ≤Λ.

Remark 10.1.3. — In §6.2 we only defined and studied positive jump preorders (simply called
jump preorders there), but all proofs given there extend to the negative case by symmetry.
In particular, any positive or negative jump preorder is left invariant (Lemma 6.2.2), and its
dynamical realization is a minimal faithful action, not semi-conjugate to the standard action,
whose positive conjugacy class is uniquely determined by the preorder ≤Λ (Proposition 6.2.3).
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Remark 10.1.4. — Given a preorder ≤∈ LPO(G) on a group G, we can consider its opposite
preorder, namely the preorder ≤op∈ LPO(G) with positive cone P≤op = P−1

≤ . Note that when
≤1,≤2∈ LPO(Λ) are one opposite of the other, their associated positive (respectively, negative)
jump preorders are also opposite to each other. Therefore, their dynamical realizations are
conjugate (although not positively conjugate).

With the language of horogradings at hand, we can complement the results in §6.2 by the
following.

Proposition 10.1.5. — Dynamical realizations of positive (respectively, negative) jump preorders
are laminar and positively (respectively, negatively) horograded by the standard action of the Bieri–
Strebel group G.

Proof. — We keep the same notation as before. We will prove the proposition in the case of
positive jump preorders, the negative case is analogous. Let us denote by H := [id]⪯ the residue
of the jump preorder, which consists of all g ∈ G such that jg(x) ∈ Λ0 for every x. Recall from
Remark 6.2.4 that the coset space G/H can be equivariantly identified with the set S∗ of jump
cocycles considered modulo Λ0 (and seen as finitely supported functions from X to Λ∗). With this
identification, the group action is given by g · j∗

h = j∗
gh, and the order on S∗ defined by j∗

g ≺ j∗
h if

and only if j∗
g (xg,h) <Λ j∗

h(xg,h), where we denote by j∗
g ∈ S∗ the projection of jg ∈ S.

After Remark 8.2.3, it is then enough to show that the action on (S∗,≺) preserves a prelami-
nation, positively horograded by the action on X. In fact, this can be deduced from the study
of Plante-like actions of permutational wreath products, discussed in Examples 8.1.8 and 8.2.6.
Namely, the jump cocycle relation (6.2.2) implies that the map

η : G → Λ∗ ≀X G

g 7→ (j∗
g , g),

is a group embedding. Recall from Example 8.1.8 that we have an order-preserving action

Ψ: Λ∗ ≀X G → Aut (
⊕

X Λ∗,≺) ,

where ≺ is the order of lexicographic type determined by the usual order on X and the order <Λ
on Λ∗. Then (S∗,≺) can be identified with the orbit of the trivial function for Ψ ◦ η. We saw in
Examples 8.1.8 and 8.2.6 that the action Ψ has a prehorograding (L0, h0) by the action on X,
where

L0 = {Cs,y : s ∈
⊕

X Λ∗, y ∈ X} , Cs,y := {t ∈
⊕

X Λ∗ : t(x) = s(x) for any x > y} ,

and h0(Cs,y) = y. With this in mind, given g ∈ G and x ∈ X, define

Lg,y := Cj∗
g ,y

∩ S∗ = {j∗
h ∈ S∗ : j∗

h(x) = j∗
g (x) for any x > y}.

It then follows that the set L := {Lg,y : g ∈ G, y ∈ X} is a prelamination of S∗ (as L0 is a
prelamination), and the map

h : L → X

Ig,y 7→ y,

well defined by the claim below, defines a positive prehorograding.

Claim. — Lg,y = Lh,z implies y = z for every g ∈ G and y, z ∈ X.
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Proof of claim. — Suppose by contradiction that z < y. Then, choose k ∈ G so that Supp(k) ⊂
(z, y). Since j∗

kg(x) = j∗
g (k−1(x))j∗

k(x), we get that j∗
kg ∈ Lg,y. On the other hand, since k can

be arbitrarily chosen inside G((z, y);A,Λ), we can choose k so that j∗
kg(x) ̸= j∗

h(x) for some
x ∈ (z, y). Therefore we get j∗

kg /∈ Lh,z.

This concludes the proof.

10.2. On the fragmentable subgroup of Bieri–Strebel groups

In this section and the next we restrict the attention to Bieri–Strebel groups of the form
G = G(R;A,Λ). Here we clarify the applicability of Theorem 9.2.1 in this case.

10.2.1. Characterising the fragmentable subgroup. — The fragmentable subgroup of
G(R;A,Λ) can be characterized from the results of Bieri and Strebel discussed in [BS16, §§A–B].
As for many properties of the groups G(X;A,Λ), this involves the Z[Λ]-submodule

IΛ ·A := ⟨(λ− 1)a : λ ∈ Λ, a ∈ A⟩.

We denote by Aff(A,Λ) ∼= A ⋊ Λ the group of all affine maps x 7→ λx + a, with λ ∈ Λ, and
a ∈ A, which is a subgroup of G(R;A,Λ). Note that the groups of germs of G(R;A,Λ) at both
±∞ are naturally isomorphic to Aff(A,Λ). We denote by G±∞ : G(R;A,Λ) → Aff(A,Λ) the
associated germ homomorophisms.

Lemma 10.2.1. — Write G = G(R;A,Λ). Then, the following hold.
(i) The fragmentable subgroup Gfrag coincides with the set of elements g ∈ G whose germ G+∞(g)
(equivalently, G−∞(g)) belongs to Aff(IΛ ·A,Λ), and we have

(10.2.1) G/Gfrag ∼= Aff(A,Λ)⧸Aff(IΛ ·A,Λ) ∼= A/IΛ ·A.

(ii) Gfrag is finitely generated if and only if the following conditions are satisfied:
(BS1) Λ is finitely generated as a group,
(BS2) A is finitely generated as Z[Λ]-module,
(BS3) the quotient A/IΛ ·A is finite;

this is also equivalent to the fact that G is finitely generated and Gfrag has finite index in G.

Proof. — Recall that Gfrag = G−G+, where G± = ker G±∞. It follows from [BS16, Corollary
A5.3] that

G+∞(G−) = G−∞(G+) = Aff(IΛ ·A,Λ),
and hence G±∞(Gfrag) = Aff(IΛ ·A,Λ). Conversely if g ∈ G is such that G+∞(g) ∈ Aff(IΛ ·A,Λ),
we can find h ∈ G− with G+∞(h) = G+∞(g), so that gh−1 ∈ G+, showing that g ∈ Gfrag. This
shows (i). To show (ii), note that by (10.2.1), condition (BS3) is equivalent to the fact that Gfrag
has finite index in G. On the other hand, (BS1) and (BS2) are equivalent to finite generation of G,
by [BS16, Theorem B7.1]. Hence (BS1)–(BS3) imply finite generation of Gfrag. Conversely if Gfrag
is finitely generated, then so is its homomorphic image Aff(IΛ ·A,Λ). This implies that Λ must
be finitely generated as a group and IΛ ·A must be finitely generated as a Z[Λ]-module. Also,
two points p, q ∈ A are in the same orbit under Gfrag if and only if p− q ∈ IΛ ·A [BS16, Corollary
A.5.1]. Since all points of A occur as breakpoints for elements in Gfrag, if Gfrag is finitely generated,
then A must be covered by the orbits of the breakpoints of elements in any finite generating set,
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which are finitely many (see [BS16, §B6]). Thus condition (BS3) is also necessary. Finally notice
that condition (BS3) together with the fact that IΛ ·A is finitely generated as a Z[Λ]-module,
implies that A is finitely generated as a Z[Λ]-module.

Recall our tacit choice to denote by ⟨S⟩∗ the multiplicative group generated by a subset
S ⊂ R>0. As an important special case, the reader can have in mind the following class of
Bieri–Strebel groups.

Example 10.2.2. — For λ > 1, we denote by G(λ) the Bieri–Strebel group G(λ) := G(R;A,Λ)
corresponding to the cyclic group Λ = ⟨λ⟩∗ and to A := Z[λ, λ−1]. One has

IΛ ·A = (λ− 1)Z[λ, λ−1].

It is not difficult to see that the quotient A/IΛ · A is finite if and only if λ is algebraic (see
[BS16, Illustration A4.3]). For instance, for a rational λ = p/q (with p and q coprime), one has
|A/IΛ ·A| = p− q. Therefore, by Lemma 10.2.1, the group G(λ)frag is finitely generated exactly
for algebraic λ.

10.2.2. An exotic action not horograded by the standard action. — Consider the group
G = G(λ) = G(R;Z[λ, λ−1], ⟨λ⟩∗), with λ transcendental. In this case the group G is finitely
generated but, by Lemma 10.2.1 (and Example 10.2.2), its fragmentable subgroup Gfrag is not.
The next result shows that the assumption of finite generation of Gfrag in Theorem 9.2.1 cannot
be replaced by finite generation of the group G (even assuming a priori that G is locally moving).

Proposition 10.2.3. — Let λ > 1 be a transcendent real number, and write G = G(λ). Then,
there exists a faithful minimal laminar action φ : G → Homeo0(R) which does not admit any
horograding by the standard action of G.

The proof is based on a modification of the jump preorder construction. Note that Definition
10.1.1 involves the usual order on X (actually on the subset A ∩X), which is used to define the
point

xg,h = max{x ∈ A ∩X : jg(x) ̸≡Λ jh(x)}.
The key observation is that the same construction will provide a left preorder whenever the
maximum xg,h is considered with respect to a G-invariant total order on A. It turns out that
such orders exist for the group G(λ), when λ is transcendental.

In what follows, we set A := Z[λ, λ−1], Λ = ⟨λ⟩∗, G := G(λ), and assume that λ is transcen-
dental. Note that we can see A as a ring of Laurent polynomials in the variable λ, and thus we
have an epimorphism (usually called the augmentation map)

(10.2.2) ε : A → Z∑
aiλ

i 7→
∑
ai.

Since IΛ · A = (λ − 1)A = ker ε, we deduce that A/IΛ · A is infinite cyclic, generated by the
image of 1 ∈ A. Denote by ta ∈ Aff(A,Λ) the translation x 7→ x+ a. By (10.2.1), we have

G/Gfrag ∼= Aff(A,Λ)⧸Aff(IΛ ·A,Λ) ∼= A/IΛ ·A,

which implies that G/Gfrag is infinite cyclic, generated by the image of t1. It follows that the
group G splits as a semidirect product:

G = Gfrag ⋊ ⟨t1⟩.
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After this preliminary discussion, we can prove Proposition 10.2.3.

Proof of Proposition 10.2.3. — Define an order <ε on A, by setting a <ε b if
— ε(a) < ε(b) (where ε is the map in (10.2.2)), or
— ε(a) = ε(b) and a < b with respect to the standard order on A induced from the inclusion
A ⊂ R.
We claim that the G-action on A preserves <ε. It is clear that t1 preserves it. Next, we observe
that by [BS16, Theorem A4.1], all elements of G having a fixed point in A preserve the IΛ·A-cosets.
Since Gfrag is generated by such elements and preserves the standard order on A ⊂ R, it follows
that Gfrag preserves <ε, and thus so does G = Gfrag ⋊ ⟨t1⟩.

Now, recall that we denote by S = {jg : g ∈ G} the set of jump cocycles, on which G acts by
g · jh = jgh. We see here jump cocycles as finitely supported functions jg : A → Λ (since jg is
supported on the set of breakpoints BP(g−1) ⊂ A).

We choose as ≤Λ the standard order < on Λ = {λn : n ∈ Z}, and define an order ≺ε on S by
setting jg ≺ε jh whenever jg ̸= jh (equivalently, g ̸= h) and jg(x∗

g,h) < jh(x∗
g,h), where

x∗
g,h = max<ε

{x ∈ A : jg(x) ̸= jh(x)}.

The same proof as for Lemma 6.2.2 shows that ≺ε is G-invariant. Let φ : G → Homeo0(R) be the
dynamical realization of the G-action on (S,≺ε).

Note that since for every a ∈ A the translation ta has trivial jump cocycle, the cocycle rule
(6.2.2)) gives:

(10.2.3) (ta · jh)(x) = jh(t−1
a .x).

Note also that t1-action on (A,<ε) is cofinal, namely for every x ∈ A, we have tn1 (x) → ±∞ in
(A,<ε) as n → ±∞. This, together with (10.2.3), implies that t1 acts on (S,≺ε) as an expanding
homothety with fixed point jid, namely for every elements satisfying

jh1 ≺ε jk1 ≺ε jid ≺ε jk2 ≺ε jh2 ,

there exists n such that
tn1 · jk1 ≺ε jh1 ≺ε jid ≺ε jh2 ≺ε t

n
1 · jk2 .

Therefore, by Lemma 2.2.17, we have that the action φ is minimal. Next, we have that φ is
faithful since the action of G on S is so (see the proof of Proposition 6.2.3). Finally, φ is not
conjugate to the standard action, since φ(t1) is a homothety. Laminarity follows from Theorem
9.1.1, or can be easily checked directly (as in Proposition 10.1.5).

It remains to show that φ cannot be horograded by the standard action. For this, consider a
translation ta with a ∈ IΛ ·A∖ {0}. Note that the action of ta on A preserves all IΛ ·A cosets,
which are bounded convex subsets of (A,<ε). From this and from (10.2.3), it easily follows that
every ta-orbit in (S,≺ε) is also bounded above and below. Hence φ(ta) is totally bounded. Now,
if φ was horograded by the standard action, after Proposition 8.2.10 we would have that φ(ta) is
a homothety, contradicting what we have just proved.

10.3. A classification result

We now turn the attention to the case where G(R;A,Λ) satisfies conditions (BS1)–(BS3), so
that its fragmentable subgroup is finitely generated (Lemma 10.2.1). In this case, we will use
Theorem 9.2.1 to show the following.
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Theorem 10.3.1. — Let G = G(R;A,Λ) be a Bieri–Strebel group satisfying conditions (BS1)–
(BS3). Then every faithful minimal action φ : G → Homeo0(R) is topologically conjugate either
to the standard action on R, or to the dynamical realization φ±,≤Λ of a jump preorder (Definition
10.1.2).

Example 10.3.2. — Let us consider the special case G = G(λ) as in Example 10.2.2, with
algebraic λ > 1. Since in this case the group Λ is infinite cyclic, it admits only two non-trivial
preorders, namely the usual order <Λ and its opposite. Thus, the jump preorder construction
gives exactly two actions φ+ := φ+,<Λ and φ− := φ−,<Λ , which are, respectively, the dynamical
realizations of the positive and negative jump preorders associated with <Λ∈ LPO(Λ). Indeed,
note that after Remark 10.1.4, the dynamical realization of the jump preorder corresponding to
<opΛ is conjugate to that for <Λ. Thus, in this case, the group G admits finitely many (more
precisely, three) faithful minimal actions, up to conjugacy.

The proof of Theorem 10.3.1 is given in §10.3.2 below.

10.3.1. Classification up to semi-conjugacy. — Before proving Theorem 10.3.1, let us
explain how we can complement it with a good description of actions of the largest quotient
G/[Gc, Gc] to obtain a full description of actions of G up to semi-conjugacy (see Corollary 9.2.2).

Corollary 10.3.3. — Under the assumptions of Theorem 10.3.1, every irreducible action
φ : G → Homeo0(R) is semi-conjugate to an action in one of the following families.

— (Non-faithful) A non-faithful action; these are all semi-conjugate to either

• an action by translations, obtained by composing the homomorphism G → Λ × Λ
determined by the eventual slopes near ±∞ with a homomorphism ρ : Λ × Λ → (R,+), or

• an action obtained by composing one of the two germ homomorphisms

G±∞ : G → Aff(A,Λ)

with a minimal action ρ : Aff(A,Λ) → Homeo0(R) with non-abelian image.

— (Standard) The standard piecewise linear action of G on R.

— (Jump preorder) The dynamical realization of a jump preorder.

In order to prove Corollary 10.3.3, recall from §3.2 that the largest quotient := G/[Gc, Gc] can
be written as an extension

1 → Gabc → G → G/Gc → 1,

where Gabc = Gc/[Gc, Gc]. The group G/Gc embeds in the product Aff(A,Λ) × Aff(A,Λ) via the
product (G−∞,G+∞) of the germ homomorphisms. In particular, G is solvable of derived length
at most 3. In contrast, a description of Gabc is not known in general. However, we will show that
all minimal actions of G on the line actually factor through G/Gc. For this we need the following
algebraic properties of Bieri–Strebel groups.

Lemma 10.3.4. — Let G = G(R;A,Λ) be a Bieri–Strebel group. For g ∈ G, write α±(g) ∈ Λ
and β±(g) ∈ A for the slope and translation parts, respectively, of the germ G±∞(g) ∈ Aff(A,Λ).
Then the following hold.
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(i) The image (G−∞,G+∞)(G) in Aff(A,Λ) × Aff(A,Λ) is the subgroup

P := {(f, g) ∈ Aff(A,Λ) × Aff(A,Λ) : β+(g) − β−(f) ∈ IΛ ·A} .

In particular, G/Gc is isomorphic to P .

(ii) The map
G → Λ × Λ × (A/IΛ ·A)
g 7→ (α−(g), α+(g), β−(g) + IΛ ·A)

descends to an isomorphism Gab → Λ × Λ × (A/IΛ ·A).

(iii) The quotient Gabc := Gc/[Gc, Gc] is central in Gfrag/[Gc, Gc].

Proof. — The statement (i) is [BS16, Corollary A5.5]. To show (ii), we first claim that Gc is
contained in [G,G]. For this, note first that since Gc ⊂ G+, the projection of Gc to Gab transits
through the natural homomorphisms

Gc → Gabc → Gab+ → Gab.

An explicit description of Gab+ is provided by [BS16, Proposition C12.1], as we explain now. Let
C ⊂ A be a coset of IΛ ·A, and recall that any such a coset is also an orbit for the action of G+
on A [BS16, Corollary A5.1]. For g ∈ G+, set

νC(g) :=
∏
a∈C

D+g(a)
D−g(a) ∈ Λ.

The previous product is well defined, since all but finitely many terms are equal to 1, and it
is easily seen to be a homomorphism, using the chain rule for the derivative. It follows from
[BS16, Proposition C12.1] that the map

ν : G+ → ΛA/IΛ·A

g 7→ (νC(g))C∈A/IΛ·A

descends to an isomorphism Gab+
∼= ΛA/IΛ·A. (More precisely, [BS16, Proposition C12.1] states

that the restriction of ν to any subgroup of the form G(−∞,x), with x ∈ A, induces an isomorphism
Gab(−∞,x)

∼= ΛA/IΛ·A; but since G+ =
⋃
xG(−∞,x), the conclusion follows.) Note also that for

every g ∈ G+, we have
∏
C νC(g) = α−(g). In particular,

(10.3.1)
∏

C∈A/IΛ·A

νC(g) = 1 for every g ∈ Gc.

Next, observe that if ta ∈ G is the translation x 7→ x+ a, then the chain rule gives the relation

(10.3.2) νC(tagt−1
a ) = νa+C(g).

From (10.3.1) and (10.3.2) we deduce that Gc is contained in [G,G]. To do so, fix g ∈ Gc, and
let us show that it must have trivial projection to Gab. Choose an enumeration C1, . . . , Cn of
A/IΛ·A, and for every i ∈ {1, . . . , n}, choose hi ∈ G+ such that νCi(hi) = νCi(g), and νCj (hi) = 1
for j ̸= i. Then ν(g) = ν (

∏n
i=1 hi), and so g and

∏n
i=1 hi project to the same element of Gab. It

follows that, if we choose representatives ai ∈ Ci, then g and
∏n
i=1 tai

hit
−1
ai

also have the same
projection to Gab (since this is true for each hi and taihit

−1
ai

). But by (10.3.2), we see that

νIΛ·A(tai
hit

−1
ai

) = νCi
(hi) = νCi

(g) for any i ∈ {1, . . . , n},
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and νC
(
taihit

−1
ai

)
= 1 for C ̸= IΛ ·A. Hence, if C ̸= IΛ ·A, we have

νC
(∏n

i=1 taihit
−1
ai

)
=

n∏
i=1

νC
(
taihit

−1
ai

)
= 1,

whereas (10.3.1) gives that

νIΛ·A
(∏n

i=1 taihit
−1
ai

)
=

n∏
i=1

νIΛ·A
(
taihit

−1
ai

)
=

n∏
i=1

νCi(g) = 1.

Consequently,
∏n
i=1 tai

hit
−1
ai

projects trivially already to Gab+ . This implies that it projects
trivially to Gab, and hence so does g.

Having shown that Gc ⊂ [G,G], we have that (G−∞,G+∞) induces an isomorphism Gab → P ab.
To compute P ab, observe that [P, P ] = {(ta, tb) : a, b ∈ IΛ · A}. Indeed, it is easy to check
that every commutator of elements in P is of this form, hence [P, P ] ⊆ {(ta, tb) : a, b ∈ IΛ ·A}.
Conversely, for λ ∈ Λ and a ∈ A, denoting by gλ the homothety x 7→ λx, the commutator of
(ta, ta) and (gλ, id) is (t(1−λ)a, id), and similarly one shows that (id, t(1−λ)a) ∈ [P, P ], which shows
that {(ta, tb) : a, b ∈ IΛ ·A} ⊆ [P, P ]. This implies (ii).

We now show (iii). Write π : G → G = G/[Gc, Gc] for the quotient projection, so that
Gabc = π(Gc). Note that Gabc is a subgroup of π(Gfrag). We claim that it is contained in its
center. For this, recalling that Gfrag = G−G+, fix g ∈ G− and k ∈ Gc, and let us show that π(g)
commutes with π(k) (the case of g ∈ G+ is similar). Choose x ∈ R such that g ∈ G(x,+∞). Pick
h ∈ Gc such that h(x) > sup Supp(k). Then g1 := hgh−1 and k commute. However, since π(h)
and π(k) commute, we have

π(h)[π(g), π(k)]π(h)−1 = [π(hgh−1), π(k)] = [π(g1), π(k)] = 1

showing that π(g) and π(k) commute.

Proof of Corollary 10.3.3. — By Theorem 10.3.1 and Corollary 9.2.2, it is enough to prove the
claim about non-faithful actions. Let φ : G → Homeo0(R) be a non-faithful minimal action (so
[Gc, Gc] ⊂ kerφ). As in the previous proof, write π : G → G = G/[Gc, Gc] for the quotient
projection. If φ is conjugate to an action by translations, then the claim follows directly from (ii)
in Lemma 10.3.4: indeed, as A/IΛ ·A is finite (by condition (BS3)), φ must factor through Λ × Λ.

Suppose now that φ is not conjugate to any action by translations. Then the same remains
true for the restriction φ|Gfrag , since Gfrag has finite index by Lemma 10.2.1. After (iii) in Lemma
10.3.4, we know that φ(Gc) is contained in the center of φ(Gfrag); therefore, if φ(Gc) ̸= {id}, then
by Theorem 2.1.20 we deduce that π(Gfrag) admits a minimal proximal action on the circle. But
the latter possibility is excluded by the fact that π(Gfrag) is solvable, and thus any action on the
circle preserves a probability measure. Hence φ(Gc) = {id}, i.e. φ|Gfrag factors through Gfrag/Gc.
By Lemma 10.2.1 and (i) in Lemma 10.3.4, we have that

Gfrag/Gc ∼= Aff(IΛ ·A,Λ) × Aff(IΛ ·A,Λ)

is a direct product of finitely generated groups. Using Lemma 9.1.2, it is not difficult to deduce
that one of the factors acts trivially. Equivalently, the kernel of φ contains one of the two
subgroups G−, G+. Since G± = ker G±∞, this shows that φ factors through one of the two germ
homomorphisms G±∞ : G → Aff(A,Λ).
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10.3.2. Proof of Theorem 10.3.1. — We now start working towards the proof of Theorem
10.3.1. Given a ∈ A and λ ∈ Λ, we will denote by g(a, λ) the affine transformation x 7→
λx+ (1 − λ)a, which is the unique element of Aff(A,Λ) which fixes a and has slope λ. We will
also consider the elements

(10.3.3) g+(a, λ) : x 7→

{
x if x ∈ (−∞, a],

g(a, λ)(x) if x ∈ [a,+∞),

and g−(a, λ) := g(a, λ) g+(a, λ)−1. Note that g+(a, λ) ∈ G(a,+∞) and g−(a, λ) ∈ G(−∞,a). For
a ∈ A, we keep denoting by ta the translation x 7→ x+ a.

For every a ∈ A and λ ∈ Λ, if h ∈ G(R;A,Λ) is an element with no breakpoint on (a,+∞)
(respectively on (−∞, a)), we have

hg+(a, λ)h−1 = g+(h(a), λ) (respectively, hg−(a, λ)h−1 = g−(h(a), λ)).

In particular, we have the following relations for such elements (see [BS16, §B7]):

(10.3.4) h g±(a, λ)h−1 = g±(h(a), λ) for every h ∈ Aff(A,Λ),

as well as
g+(a, λ) g+(b, µ) g+(a, λ)−1 = g+(g(a, λ)(b), µ) for every a > b,

(10.3.5) g−(a, λ) g−(b, µ) g−(a, λ)−1 = g−(g(a, λ)(b), µ) for every a < b.

We also remark that the subset

{ta}a∈A ∪ {g(0, λ), g+(0, λ)}λ∈Λ

is generating for G(R;A,Λ) (see [BS16, Theorem B7.1]).
For what follows, the reader can keep in mind the following example.

Example 10.3.5. — For λ > 1, the Bieri–Strebel group G(λ) is generated by the finite subset
{g(0, λ), g+(0, λ), t1}.

Remark 10.3.6. — The group ⟨g(0, λ), g+(0, λ), t1⟩ appears in the work of Bonatti, Lodha, and
the last author [BLT19] (denoted as Gλ), where it was shown that, for certain algebraic numbers
λ > 1 (called Galois hyperbolic ibid.) it admits no faithful C1 action on the closed interval. The
fact that this group coincides with the Bieri–Strebel group G(λ) was unnoticed in [BLT19].

To work towards the proof of Theorem 10.3.1, we need some technical results, stated in the
following setting.

Assumption 10.3.7. — Fix a non-trivial multiplicative subgroup ∆ ⊆ R>0, a ∆-submodule
A ⊂ R, and let H = G(R;A,∆) be the corresponding Bieri–Strebel group. Moreover, we let
G ⊆ Homeo0(R) be a subgroup such that Gfrag is finitely generated, which contains H as a
subgroup. Finally, we assume that {Bx}x∈R is a family of subgroups of G with the following
properties.

(C1) For each x ∈ R we have
⋃
y<xG(−∞,y) ⊆ Bx ⊆ G(−∞,x).

(C2) For every x ∈ R and every g ∈ G we have gBxg−1 = Bg(x).

(C3) For every x ∈ A and every δ ∈ ∆ we have g−(x, δ) ∈ Bx.
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Note that G+ =
⋃
x∈RBx, by (C1). Finally, we assume that φ : G → Homeo0(R) is a faithful

minimal laminar action of G. Note that φ is horograded by the standard action by Theorem
9.2.1, and we shall assume that it is positively horograded.

Remark 10.3.8. — For the proof of Theorem 10.3.1, the reader can have in mind the case
where G = G(R;A,Λ) is itself a Bieri–Strebel group, H is a subgroup corresponding to some
∆ ⊆ Λ, and the Bx are subgroups of G(−∞,x) consisting of elements whose left-derivative at x
belongs to some intermediate subgroup ∆ ⊆ Λ1 ⊆ Λ. However, a different choice of G will be
used later in §10.4.

To avoid confusion, we will write X = R for the real line on which the standard action
of G is defined. The proof of Theorem 9.2.1 gives us an explicit horograding of the action
φ : G → Homeo0(R) by the standard action, as explained in Remark 9.2.9. Namely, recall that
the groups G(a,x) are totally bounded for φ, and the set

Ξ :=
⋂
x∈X Suppφ

(
G(−∞,x)

)
is a Gδ-dense subset of R. For x ∈ X and ξ ∈ Ξ, we write Iφ(x, ξ) for the connected component
of Suppφ

(
G(−∞,x)

)
containing ξ. Then the collection

L = {Iφ(x, ξ) : x ∈ X, ξ ∈ Ξ}

is an invariant prelamination. A prehorograding for φ is given by (L, h), where
h : L → X

Iφ(x, ξ) 7→ x.

Note that the closure L is obtained by adding to L the open intervals

Iφout(x, ξ) := Int
(⋂

y>x Iφ(y, ξ)
)

and Iφinn(x, ξ) =
⋃
y<x Iφ(y, ξ).

The horograding h naturally extends to L by mapping intervals of the form Iφout(x, ξ) and Iφinn(x, ξ)
to x. Note also that Ξ is the set of h-complete points (Definition 8.2.8).

Lemma 10.3.9. — Under Assumption 10.3.7, the group Aff(A,∆) is homothetic for the laminar
action φ. Its unique fixed point, that we denote by η, belongs to Ξ.

In particular, the standard affine action of Aff(A,∆) on X = R is positively (respectively,
negatively) semi-conjugate to its action φ on (η,+∞) (respectively, (−∞, η)). Explicitly, the map

q+ : R → (η,+∞)
x 7→ sup Iφ(x, η)

is strictly increasing and Aff(A,∆)-equivariant. Similarly, the map
q− : R → (−∞, η)

x 7→ inf Iφ(x, η)
is strictly decreasing and Aff(A,∆)-equivariant.

Proof. — Every translation ta, with a ∈ A∖ {0}, acts without fixed points on X, therefore by
Proposition 8.2.10, its φ-image is a homothety, with a unique fixed point ηa ∈ Ξ. As the subgroup
of translations is abelian, the point ηa =: η does not depend on a ∈ A∖ {0}. Moreover, as this
subgroup is normal in Aff(A,∆), the point η is fixed by φ (Aff(A,∆)).

The second statement is a special case of Lemma 8.2.12. Monotonicity and equivariance of
the maps q± follow from the fact that the family of {Iφ(x, η)}x∈X is increasing with respect to
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x ∈ X, and moreover one has the equivariance relation g. Iφ(x, η) = Iφ(g(x), g.η) for every x ∈ X

and g ∈ G (see §9.2.4). Minimality of the action of Aff(A,Λ) on X then implies that both maps
are strictly monotone (since the union of the intervals on which they are locally constant would
give an invariant open set).

In what follows, we will always denote by η the unique fixed point of φ (Aff(A,Λ)) provided
by Lemma 10.3.9. For x ∈ X and ξ ∈ Suppφ(Bx), we will denote by Bφ(x, ξ) the connected
component of Suppφ(Bx) containing ξ. Note that condition (C1) implies that Bφ(x, ξ) is increasing
with respect to x ∈ R, and moreover

Iφinn(x, ξ) ⊆ Bφ(x, ξ) ⊆ Iφ(x, ξ).

The key point is to establish the following strict inclusion when x ∈ A.

Lemma 10.3.10. — Under Assumption 10.3.7, assume that there exists g ∈ H such that
g.η ̸= η. Then, for every x ∈ A we have a strict inclusion Iφinn(x, η) ⊊ Bφ(x, η).

Proof. — Assume by contradiction that Iφinn(x, η) = Bφ(x, η), for some x ∈ A. Note that then
this is automatically true for every x ∈ A, since the group Aff(A,∆) acts transitively on A

(it contains all translations by elements in A) and fixes η, so that for h ∈ Aff(A,∆) we have
h. Iφinn(x, η) = Iφinn(h(x), η) and

(10.3.6) h.Bφ(x, η) = Bφ(h(x), η)

(after condition (C2)).
Fix x ∈ A, and choose δ ∈ ∆ with δ > 1 and such that g−(x, δ).η ̸= η. Such a δ exists because

the elements g−(x, δ) together with Aff(A,∆) generate H, and we assume that φ(H) does not fix
η. Note also that once such an element g−(x, δ) is found, it follows that g−(y, δ).η ̸= η for every
y ∈ A, since these elements are all conjugate to each other by elements of Aff(A,Λ). Note that
by condition (C3) the image φ(g−(x, δ)) must preserve Bφ(x, η). Now, consider the collection

L0 = {I ∈ L : I ⊊ Bφ(x, η)}.

The assumption that Iφinn(x, η) = Bφ(x, η) implies that L0 is a covering lamination of Bφ(x, η).
Indeed, Lemma 10.3.9 implies that Iφ(η, y) ⋐ Iφ(η, z) for y < z < x, so that Bφ(x, η) =⋃
y<x Iφ(η, y) is exhausted by relatively compact subintervals in L0. Combined with the fact that

elements of L0 do not cross (as L0 ⊂ L), this also implies that no I ∈ L0 can share an endpoint
with Bφ(x, η), so that all elements of L0 are relatively compact subintervals of Bφ(x, η). It follows
that the restriction h0 of h to L0 defines a horograding of the φ-action of Bx on Bφ(x, η) by its
standard action on (−∞, x). From this and from Proposition 8.2.10, we deduce that φ(g−(x, δ))
acts on Bφ(x, η) as an expanding homothety. Let us denote by ξx ∈ Bφ(x, η) the unique fixed
point of φ(g−(x, δ)) ↾Bφ(x,η). Note that ξx ≠ η, by the choice of δ. Without loss of generality, we
assume that ξz > η for some z ∈ A. Then, we have the following.

Claim. — We have ξy > η for every y ∈ A, and the map x 7→ ξy is monotone increasing.

Proof of claim. — The relations (10.3.4) and (10.3.6) give that the map x 7→ ξx is Aff(A,∆)-
equivariant. The conclusion follows using that Aff(A,∆) acts transitively on A and that, after
Lemma 10.3.9, we know that the action of Aff(A,∆) on (η,+∞) is positively semi-conjugate to
the standard affine action.
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Now, by the assumption that Iφinn(x, η) = Bφ(x, η), and by (C1), we can find y ∈ A with y < x

such that Bφ(y, η) contains ξx. After the claim, we have η < ξy < ξx. Since ξx is a repelling
fixed point for φ(g−(x, δ)), we have the inclusion g−(x, δ).Bφ(y, η) ⊃ Bφ(y, η). Since the latter
contains η, we have

g−(x, δ).Bφ(y, η) = Bφ (g−(x, δ)(y), η) .
Then (10.3.5) implies that g−(x, δ).ξy = ξg−(x,δ)(y). However,on the one hand ξy < ξx gives the
inequality g−(x, δ).ξy < ξy. On the other hand, ξg−(x,λ)(y) > ξy since g−(x, λ)(y) > y, and the
map y 7→ ξy is increasing (after the claim). This gives the desired contradiction.

Lemma 10.3.11. — Under the same assumptions as in Lemma 10.3.10, for every x ∈ A, the
φ-action of Bx on Bφ(x, η) is semi-conjugate to a non-faithful action induced from an action of
the group of left germs Germ (Bx, x).

Proof. — Lemma 10.3.10 implies that the normal subgroup
(
G(−∞,x)

)
+ =

⋃
y<xG(−∞,y) of Bx

has fixed points in Bφ(x, η) (namely the endpoints of Iφinn(x, η)). Thus, the action of φ(Bx) on
Bφ(x, η) is semi-conjugate to an action induced from the quotient Bx/

(
G(−∞,x)

)
+

∼= Germ (Bx, x).

The next result is the only place where a particular choice of the family {Bx} is needed. From
now on, we withdraw the notation X = R for more explicit statements.

Proposition 10.3.12. — Let G = G(R;A,Λ) be a Bieri–Strebel group satisfying conditions
(BS1)–(BS3). Let φ : G → Homeo0(R) be a faithful minimal laminar action, positively horograded
by the standard action on R. Assume there exists an element g = g−(x, λ) ∈ G such that g.η ̸= η.
Then g. Iφinn(x, η) ∩ Iφinn(x, η) = ∅.

Proof. — Take g = g−(x, λ) not fixing η, and consider the Bieri–Strebel group H = G(R;A, ⟨λ⟩∗),
which is a subgroup of G. We consider the family {Bx}x∈R defined by

Bx =
{
h ∈ G(−∞,x) : D−h(x) ∈ ⟨λ⟩∗

}
.

It is straightforward to verify that Assumption 10.3.7 is fulfilled by such choices. Therefore, by
Lemma 10.3.11, the action of Bx on Bφ(x, η) is semi-conjugate to an action that factors through
the germ homomorphism Gx : Bx → Germ (Bx, x). Since in this case Germ (Bx, x) is generated
by Gx(g), we conclude that Fixφ(g) ∩ Bφ(x, η) = ∅. On the other hand, by Lemma 10.3.10 we
get that Bφ(x, η) strictly contains Iφinn(x, η). Then, since {Iφinn(x, ξ) : x, ξ ∈ R} is a prelamination
preserved by the action, we must have g. Iφinn(x, η) ∩ Iφinn(x, η) = ∅, as desired.

The next two lemmas analyze properties of the jump preorders. The first one gives decomposi-
tions for elements in G+ =

⋃
x<∞ G(−∞,x), which are well suited for our purposes. The second

one allows to identify dynamical realizations of jump preorders.

Lemma 10.3.13. — Let G = G(R;A,Λ) be a Bieri–Strebel group, and let ≤Λ be a preorder on
Λ. Let ⪯ be the corresponding positive jump preorder, and take g ∈ G+ with id ¬ g. Then, there
exist elements h, k, g−(y, λ) ∈ G+ satisfying the following conditions:
(i) g = kg−(y, λ)h,

(ii) h ∈ [id]⪯,
(iii) 1 ⪇Λ λ, and
(iv) k ∈ G(−∞,z) for some z < y.
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The analogous result holds for the negative jump preorder.

Proof. — Write Λ0 = [1]≤Λ , as usual. Since we are assuming id ¬ g, we can consider the point
y := xg = max{x ∈ R : jg(x) ̸≡Λ 1}. Since we assume g ∈ G+, the restriction of g−1 to (y,+∞)
has all slopes in Λ0, and thus so does the restriction of g to (z,+∞), where z := g−1(y). It
follows that we can choose h ∈ G(R;A,Λ0)+ coinciding with g on (z,+∞). Consider the product
f = gh−1. The rightmost point of Supp(f) is y = g(z) = h(z), and by the chain rule we have

D−f(y) = D−g(z)D−h−1(y) = D−h(z)−1/D−g−1(y).

Note now that id ¬ g implies that

1 ⪇Λ jg(y) = D+g−1(y)/D−g−1(y),

and since D+g−1(y), D−h(z) ∈ Λ0, we get 1 ⪇Λ D−f(y) =: λ. As before, we have that the
rightmost point of the support of fg−(y, λ)−1 coincides with g−(y, λ)(z), where z is the second
largest breakpoint of f (the one before y). Then, write k = fg−(y, λ)−1. Then the decomposition
g = kg−(y, λ)h satisfies conditions (i)–(iv) in the statement.

Lemma 10.3.14. — Consider a Bieri–Strebel group G = G(R;A,Λ) and a preorder ⪯∈ LPO(G)
containing Aff(A,Λ) in its residue. Assume further that ⪯′∈ LPO(G) is a positive (respectively,
negative) jump preorder coinciding with ⪯ over G+ (respectively, G−). Then ⪯ and ⪯′ are the
same preorder.

Proof. — Assume that ⪯′ is the positive jump preorder associated with the preorder ≤Λ∈ LPO(Λ),
the case where ⪯′ is a negative jump preorder is analogous. Denote by Λ0 the residue of ≤Λ and
notice that in this case the residue of ⪯′ is the subgroup

H := {g ∈ G : jg(x) ∈ Λ0 ∀x ∈ R}

(see Definition 10.1.1). Since elements of Aff(A,Λ) have constant derivative, it holds that jg(x) = 1
for every g ∈ Aff(A,Λ) and x ∈ R. In particular we have Aff(A,Λ) ⊆ H.

Note that G decomposes as G = G+ ⋊Aff(A,Λ). Then for every g ∈ G we can write g = g+ag,
with g+ ∈ G+ and ag ∈ Aff(A,Λ). Denote by P and P ′ the positive cones of ⪯ and ⪯′, respectively.
Since Aff(A,Λ) is contained in the residue of both ⪯ and ⪯′, it holds that g ∈ P if and only if
g+ ∈ G+ ∩ P , and also that g ∈ P ′ if and only if g+ ∈ G+ ∩ P ′. Finally, since by assumption the
equality G+ ∩ P = G+ ∩ P ′ holds, the lemma follows.

Proof of Theorem 10.3.1. — The assumptions on G = G(R;A,Λ) ensure that Gfrag is finitely
generated (see Lemma 10.2.1). After Theorem 9.2.1, we only need to show that a faithful
minimal laminar action φ : G → Homeo0(R), positively (respectively, negatively) horograded by
its standard action on R, is conjugate to an action of the form φ+,≤Λ (respectively, φ−,≤Λ) for
some preorder ≤Λ. We will only discuss the case of positive horograding, the negative case being
totally analogous.

We write η ∈ R for the unique fixed point of φ (Aff(A,Λ)) given by Lemma 10.3.9 (applied to
the case ∆ = Λ). In what follows, let ⪯ be the preorder on G induced by η, namely by declaring
g ¬ h if and only if g.η < h.η. We will show that this preorder coincides with a positive jump
preorder associated with some ≤Λ∈ LPO(Λ). Let us first give a candidate for the preorder ≤Λ.
For x ∈ A, the set of elements Tx := {g−(x, λ) : λ ∈ Λ} is a subgroup of G isomorphic to Λ, which
is a section inside G(−∞,x) of the group of germs Germ

(
G(−∞,x), x

)
. We put on Λ the preorder

≤Λ given by restricting ⪯ to this subgroup, namely by setting λ ⪇Λ µ if g−(x, λ).η < g−(x, µ).η.
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Note that this preorder does not depend on the choice of x ∈ A, as for x, y ∈ A the groups Tx
and Ty are conjugate by an element of Aff(A,Λ) (see (10.3.4)), which fixes η. Denote by ⪯′ the
positive jump preorder in G associated with ≤Λ. We proceed to show that ⪯′ and ⪯ coincide on
G+. By Lemma 10.3.14, this will conclude the proof.

Denote by Λ0 the residue of the preorder ≤Λ, and notice that in this case the residue of ⪯′

equals
H = {g ∈ G : jg(x) ∈ Λ0 ∀x ∈ R}.

Also notice that if g ∈ G+ and jg(x) ∈ Λ0 for every x ∈ R, then D±g(x) ∈ Λ0 for every x ∈ R.
Thus, we have the equality H ∩ G+ = G(R;A,Λ0)+. Note that H ∩ G+ fixes η, since it is
generated by {g−(x, λ) : x ∈ A, λ ∈ Λ0} (this can be easily checked from [BS16, §A8.1]). Thus,
we have

(10.3.7) G+ ∩ [id]⪯′ ⊆ G+ ∩ [id]⪯.

Assume now that g ∈ G+ satisfies id ¬′ g. We proceed to show that in this case η < g.η, which
implies that id ¬ g. For this, consider the decomposition g = kg−(y, λ)h given by Lemma 10.3.13.
Then, by (ii) in Lemma 10.3.13 and (10.3.7), we get h.η = η and therefore g.η = kg−(y, λ).η. On
the other hand, (iii) in Lemma 10.3.13 together with the definition of ≤Λ imply that g−(y, λ).η > η.
Then by Proposition 10.3.12, we get

g−(y, λ). Iφinn(y, η) ∩ Iφinn(y, η) = ∅.

Finally, by (iv) in Lemma 10.3.13 we have that k. Iφinn(y, η) = Iφinn(y, η), and this, in light of what
we have already done, shows that g.η = kg−(y, λ).η > η as desired. Analogously, one shows that
if g ¬′ id, then g ¬ id. This shows that the preorders ⪯′ and ⪯ coincide on G+ and concludes
the proof.

10.4. A relative of Bieri–Strebel groups with no exotic actions

Here we build on the previous results on Bieri–Strebel groups to construct an example of a
finitely generated, fragmentable locally moving group which admits no faithful minimal laminar
action at all. In particular every faithful minimal action on R is conjugate to the standard action.

The starting point of the construction is the Bieri–Strebel group G(2) = G(R;Z[1/2], ⟨2⟩∗) of
all finitary dyadic PL homeomorphisms of R, which we already proved to admit only two faithful
minimal laminar actions (Theorem 10.3.1 and Example 10.3.2).

As a consequence of Corollary 9.3.5, if we want to avoid the existence of faithful minimal
laminar actions, we must leave the setting of finitary PL transformations. We will consider groups
whose elements are PL with countably many breakpoints that accumulate on some finite subset
of “higher order” singularities (with some control on these).

Given an open interval X ⊆ R, we say that a homeomorphism f ∈ Homeo0(X) is locally
PL if there is a finite subset Σ ⊂ X such that f is (finitary) PL in X ∖ Σ. For such an f , we
denote by BP2(f) ⊂ X the smallest subset such that f is PL on X ∖ BP2(f). The set BP2(f)
is the set of second-order breakpoints of f . Points x ∈ X ∖ BP2(f) where f has discontinuous
derivative are called first-order breakpoints, and we denote them by BP1(f). Also, we write
BP(f) = BP1(f) ∪ BP2(f) for the set of breakpoints of f . Clearly, when BP2(f) = ∅ we have
that f is PL. We will silently use a couple of times the observation that for f and g locally PL,
we have that BP2(fg) ⊂ BP2(g) ∪ g−1 BP2(f).
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Definition 10.4.1. — Let X ⊆ R be an open interval. We write G(X) = G(X;Z[1/2], ⟨2⟩∗) for
the Bieri–Strebel group (see Definition 2.3.1). We also denote by Gω(X) the group of all locally
PL homeomorphisms of X with the following properties:

— f is locally dyadic PL, that is at each x ∈ X ∖ BP(f), the map f is locally an affine map of
the form x 7→ 2nx+ b for n ∈ Z and b ∈ Z[1/2];

— breakpoints of f are contained in a compact subset of X: BP(f) ⋐ X;

— breakpoints of f and their images are dyadic rationals: BP(f) ∪ f(BP(f)) ⊂ Z[1/2].

The group Gω(X) is uncountable, so too big for our purposes. We will instead consider some
subgroups defined in terms of the local behavior at the second-order breakpoints. Here we keep
the notation from the previous section, such as g(a, λ), g±(a, λ) (see (10.3.3)), and ta : x 7→ x+ a,
which denote elements in PL(R). For r ∈ R, we also write hr = g(r, 1

2 ), which corresponds to
the homothety of ratio 1/2 centered at r, and similarly we write hr± = g±(r, 1

2 ) for shorthand
notation.

Definition 10.4.2. — Let g : I → J be a homeomorphism between two open intervals. We
say that g has a 2n-scaling germ at r ∈ I, if there exists a neighborhood U of r such that
ghnr ↾U= hng(r)g ↾U .

Remark 10.4.3. — Note that when g(r) = r this simply means that the germ of g at r
commutes with the germ of hnr . More generally, if g(r) ̸= r and h is any PL map such that
hg(r) = r, then g has a 2n-scaling germ at r if and only if the germs of hg and hr at r commute.
This does not depend on the choice of h, since every PL map has 2n-scaling germ (and more
generally k-scaling germ for any k > 0, with the obvious extension of the definition) at every
point, including breakpoints.

Definition 10.4.4. — Given an open interval X ⊆ R and n ≥ 1, we let G(n)
ω (X) be the subgroup

of Gω(X) consisting of elements that have 2n-scaling germs at every second-order breakpoint
(and thus at all points x ∈ X).

For every dyadic point x ∈ X, let D(n)
x be the group of germs at x of elements in G(n)

ω (X) which
fix x. That is, D(n)

x is the group of germs of homeomorphisms that are locally dyadic PL away
from {x}, and that commute with hnx . We denote by D(n)

x− and D(n)
x+ the corresponding groups

of left and right germs, respectively, so that D(n)
x

∼= D(n)
x− × D(n)

x+ . The groups D(n)
x− and D(n)

x+ are
isomorphic to a well-known group, namely the lift T̃ ⊂ Homeo0(R) of Thompson’s group T acting
on the circle. Explicitly, T̃ is the group of all dyadic PL homeomorphisms of R which commute
with the unit translation t1 : x 7→ x + 1. The point is that for every n ≥ 1 and x ≥ 1 dyadic,
the map hnx ↾(−∞,x) can be conjugated to the translation t1 by a dyadic PL homeomorphism
f : (−∞, x) → R. This establishes an isomorphism of D(n)

r− with the group of germs of T̃ at +∞,
which is isomorphic to T̃ itself. Similarly one argues for D(n)

r+ . This fact will be constantly used in
what follows. A first consequence is that the groups D(n)

x− and D(n)
x+ are finitely generated, since T̃

is so. This leads to the following.

Proposition 10.4.5. — For every dyadic open interval X = (a, b) ⊆ R and every n ≥ 1, the
group G := G

(n)
ω (X) is finitely generated and fragmentable.
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Note that, as breakpoints of every element in G(n)
ω (X) are contained in a compact subset of X,

the group Germ(G, a) is infinite cyclic if a > −∞, and isomorphic to BS(1, 2) if a = −∞. The
corresponding statement holds for Germ(G, b).

Proof of Proposition 10.4.5. — Fix a dyadic point x ∈ (a, b). Since the group of germs D(n)
x =

D(n)
r− × D(n)

r+ is finitely generated, we can find a finite subset of elements S ⊂ G
(n)
ω (X) fixing x,

whose germs generate D(n)
x and that have no second-order breakpoints apart from x.

Claim. — We have G(n)
ω (X) = ⟨G(X), S⟩.

Proof of claim. — Let g ∈ G
(n)
ω , and let us show that g ∈ ⟨G(X), S⟩ by induction on the number

k = | BP2(g)| of second-order breakpoints of g. If k = 0, then g ∈ G(X). Assume that k ≥ 1, and
let y ∈ BP2(g) be a second-order breakpoint of g. Since G(X) acts transitively on dyadic rationals,
we can choose h1 ∈ G(X) such that h1(g(x)) = x. As BP2(h1) = ∅, we have that the element
g′ = h1g satisfies | BP2(g′)| = k, and moreover x belongs to BP2(g′) and is fixed by g′. Choose
h2 ∈ ⟨S⟩ whose germ at x is equal to the germ of g. By the choice of S, we have BP2(g) = {x}, so
that for the element g′′ = h−1

2 g′ we have BP2(g′′) = BP2(g′)∖{x}, and thus BP2(g′′) = k− 1 < k.
By induction, we have g′′ ∈ ⟨G(X), S⟩, and it follows that g = h−1

1 h2g
′′ ∈ ⟨G(X), S⟩.

Since the Bieri–Strebel group G(X) = G(X;Z[1/2], ⟨2⟩∗) is finitely generated for dyadic X,
from the claim we get that G is finitely generated as well. The fact G(n)

ω (X) is fragmentable (i.e.
generated by elements with trivial germ at one endpoint) follows from the facts that the group
G(X) is itself fragmentable, and that the set S in the claim can be chosen to be supported in a
relatively compact subinterval I ⋐ X.

Here is the main result of this section, whose proof will need some preliminary lemmas.

Theorem 10.4.6. — For n ≥ 2, every faithful minimal action φ : G(n)
ω (R) → Homeo0(R) is

conjugate to its standard action.

Until the end of the section, for fixed n ≥ 1, we write G = G
(n)
ω (R) and H = G(R) = G(2), so

that H ⊆ G.

Lemma 10.4.7 (Upgrading fixed points). — With notation as above, let φ : G → Homeo0(R)
be an action on the real line. Then every fixed point of φ(H) must be fixed by φ(G). In other
words, Fixφ(H) = Fixφ(G).

Proof. — Consider the subgroups

Kl =
{
g ∈ G(−∞,0) : BP2(g) ⊂ {0}

}
and Kr =

{
g ∈ G(0,+∞) : BP2(g) ⊂ {0}

}
,

and set K = ⟨Kl,Kr⟩ ∼= Kl ×Kr. Note that group K realizes the group of germs D(n)
0 ; after the

assumption on second-order breakpoints, the claim in the proof of Proposition 10.4.5 gives that
G = ⟨H,K⟩ = ⟨H,Kl,Kr⟩.

Consider the subgroup Hl ⊆ Kl consisting of all elements whose germ at 0 is given by a
power of hn0−. In particular, every g ∈ Hl satisfies BP2(g) = ∅, hence Hl is a subgroup of
H. Since the germ of hn0− is central in D(n)

0− , we have that Hl is normal in Kl, with quotient
Kl/Hl

∼= D(n)
0− /⟨hn0−⟩ which is isomorphic to Thompson’s group T acting on the circle. The same

considerations hold for the subgroup Hr ⊆ Kr defined analogously.
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Assume now that φ : G → Homeo0(R) is an action such that Fixφ(H) ̸= ∅, so that Fixφ(Hl)
is non-empty and contains Fixφ(H). Then φ(Kl) preserves Fixφ(Hl), and the φ-action of Kl

on Fixφ(Hl) factors through the quotient Kl/Hl
∼= T . Since T is a simple group and contains

elements of finite order, every order-preserving action on a totally ordered set is trivial. Thus the
action of Kl on Fixφ(Hl) is actually trivial, and in particular it fixes Fixφ(H). Similarly, so does
Kr. Since G = ⟨H,Kl,Kr⟩, this implies that every point in Fixφ(H) is fixed by φ(G).

The next lemma makes use of the assumption that n ≥ 2 in Theorem 10.4.6, and leverages
the fact that the group T̃ admits only one action on the real line up to semi-conjugacy. In the
statement, with abuse of notation, we identify hx− with its germ in D(n)

x−

Lemma 10.4.8. — For every n ≥ 2, the group D(n)
x− admits no (non-trivial, left-invariant)

preorder which is invariant under conjugation by the element hx−.

Proof. — The natural isomorphism D(n)
x−

∼= T̃ maps hx− to an element h ∈ T̃ which is an nth root
of the translation t1, i.e. hn = t1. So it is enough to show that T̃ admits no preorder invariant
under conjugation by such an h. Assume by contradiction that ≺ is such a preorder. By a result
of two of the authors [MBT20, Theorem 8.7], the dynamical realization of ≺ is semi-conjugate
to the standard action of T̃ on the real line, so that the maximal ≺-convex subgroup K must
be equal to the stabilizer T̃y of some point y ∈ R for the standard action. On the other hand,
K must be normalized by h, so that we must have T̃y = T̃h(y). However, since hn = t1, we have
h(y) ̸= y and |h(y) − y| < 1, so that y and h(y) have different projections to the circle R/Z. But
any two distinct points in the circle have different stabilizers in Thompson’s group T , and thus y
and h(y) have different stabilizers in T̃ , which is a contradiction.

Proof of Theorem 10.4.6. — Let φ : G → Homeo0(R) be an irreducible action. Since G is finitely
generated and fragmentable, we can apply Theorem 9.2.1. We then assume that φ is faithful
and minimal. By symmetry, it is enough to exclude that φ is laminar, positively horograded by
the standard action of h on R. Note that by Lemma 10.4.7 we know that φ(H) has no fixed
point. In order to fulfill Assumption 10.3.7, we will consider the family of subgroups {Bx}x∈R,
where Bx = G(−∞,x), and with this choice we will simply have Bφ(x, ξ) = Iφ(x, ξ). We apply
Lemma 10.3.9: let η be the unique fixed point of φ (Aff(A,Λ)). Fix a dyadic rational x ∈ R,
and consider the preorder ≺η on G(−∞,x) associated with the action of G(−∞,x) on Iφ(x, η). By
Lemma 10.3.11, this preorder descends to a non-trivial preorder ≺̄η on Germ

(
G(−∞,x), x

)
= Dx−.

Consider now the element hx ∈ Aff(A,Λ). Since hx fixes x, it normalizes G(−∞,x); moreover, it
fixes η and thus φ(hx) preserves Iφ(x, η). We also see that the preorder ≺η is invariant under
the automorphism induced by hx on G(−∞,x). But this automorphism coincides with the inner
automorphism defined by conjugation by hx−, so that the preorder ≺η, and thus ≺̄η, must be
invariant under conjugation by hx−. This is in contradiction with Lemma 10.4.8.



CHAPTER 11

THE POINT OF VIEW OF TREES

This chapter is a complement to Chapter 8. We describe how laminar actions and horogradings
can be reinterpreted in terms of actions on certain planar (real) trees naturally constructed from
the lamination. Beyond helping the intuition, this point of view will be useful in the next chapters
in building and understanding various examples of exotic actions on the line (for which in a
certain sense the associated tree comes first, and the problem of finding an invariant planar on it
comes later). The content of this chapter is rather elementary, but unfortunately it becomes a bit
technical when coming to proofs. For this reason, we have tried to keep a good balance between
providing all details and keeping proofs concise.

11.1. Terminology for trees

11.1.1. Directed trees. — Roughly speaking, a real tree is a space T obtained by gluing
copies of the real line in such a way that no closed loops appear. We are specifically interested in
directed real trees, which are trees together with a preferred direction to infinity (equivalently, a
preferred end ω ∈ ∂T). Usually real trees are defined as metric spaces, but we adopt the point of
view of Favre and Jonsson [FJ04], and introduce the following definition which does not refer to
any metric or topology. (The equivalence with the more familiar metric notion will be discussed
in §11.3.1 below.)

Definition 11.1.1. — A directed tree is a poset (T, ◁) with the following properties.

(T1) For every v ∈ T, the subset {u ∈ T : v ⊴ u} is totally ordered and order-isomorphic to a
half-line [0,+∞).

(T2) Every two points u, v ∈ T have a smallest common upper bound, denoted as u & v.

(T3) There exists a countable subset Σ ⊂ T such that for every distinct u, v ∈ T with u ⊴ v, there
exists z ∈ Σ such that u ⊴ z ⊴ v.

We say that a point v is below u (or that u is above v) if v ̸= u and v ⊴ u, and write v ◁ u.

Condition (T3) is a separability assumption that we include in the definition for convenience.
It ensures, in particular, that all totally ordered subsets of T are isomorphic to subsets of the real
line. Indeed, Zorn’s lemma gives that every totally ordered subset of a poset is contained in a
maximal one, and for maximal ones in (T, ◁) we have the following.
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Lemma 11.1.2. — Every maximal totally ordered subset ℓ ⊂ T is order-isomorphic to either
[0,+∞) or R. If ℓ1, ℓ2 are two distinct maximal totally ordered subsets, then ℓ1 ∩ ℓ2 is order-
isomorphic to [0,+∞).

Proof. — We have {u : v ⊴ u} ⊂ ℓ for every v ∈ ℓ„ because otherwise ℓ ∪ {u : v ⊴ u} would
be a strictly larger totally ordered set, contradicting maximality of ℓ. If ℓ has a minimum v,
condition (T1) gives ℓ = {u : v ⊴ u} ∼= [0,+∞). If not, condition (T3) implies that every
maximal totally ordered subset ℓ ⊂ T contains a strictly decreasing sequence (vn) such that
ℓ =

⋃
n{u : vn ⊴ u}. As by (T1) every element in the union is order-isomorphic to [0,+∞), it

follows that ℓ is isomorphic to R. If ℓ1 and ℓ2 are distinct maximal totally ordered subsets, choose
v1 ∈ ℓ1 and v2 ∈ ℓ2 which are not comparable; then ℓ1 ∩ ℓ2 = {w : v1 & v2 ⊴ w} ∼= [0,+∞).

11.1.2. Boundary, focus. —

Definition 11.1.3 (End completion). — Given a directed tree (T, ◁), we define its end-
completion (T, ◁) as the poset obtained by adding points to T as follows. First we add a point
ω, called the focus, which is the unique maximal point of (T, ◁). Next, for each maximal totally
ordered subset ℓ ⊂ T without minimum, we add a point ξ ∈ T which satisfies ξ ◁ v for every
v ∈ ℓ∪{ω}. The subset ∂T = T∖T is called the boundary of T. We will also write ∂∗T = ∂T∖{ω}.

Note that any two distinct points x, y ∈ T still admit a unique smallest upper bound, which
we continue to denote by x & y, and we have x & y ∈ T unless ω ∈ {x, y}.

11.1.3. Paths, branching points, directions, shadows. — Given distinct points u, v ∈ T
we define the arc between them as the subset

[u, v] =
{
z ∈ T : u ⊴ z ⊴ (v & u) or v ⊴ z ⊴ (v & u)

}
.

and set ]u, v[= [u, v] ∖ {u, v}. The subsets [u, v[ and ]u, v] are defined similarly. A subset Y ⊆ T
is path-connected if [u, v] ⊆ Y for every u, v ∈ Y . Every subset of T is a disjoint union of maximal
path-connected subsets, called its path-components. Given v ∈ T, we define the set Ev of directions
at v as the set of path-components of T∖ {v}. We say that v is a branching point if |Ev| ≥ 3; the
set of branching points is denoted as Br(T). We shall say that v is regular if |Ev| = 2, and a leaf
if |Ev| = 1. Leaves are precisely the minimal elements in (T, ◁). For most of our purposes, we
will consider only trees without leaves (see Remark 11.1.7), and we soon always assume so to
avoid technical discussions.

For z ∈ T ∖ {v}, we let ev(z) ∈ Ev denote the direction containing z. If ω is the focus, we let
E−
v = Ev ∖ {ev(ω)} denote the set of directions below v. Condition (T3) implies that each set

E−
v is countable, and that Br(T) is also countable (since every branching point can be written as

v = z1 & z2 for some z1, z2 ∈ Σ). Finally, we denote by Uv ⊂ T the subset of points below v. The
corresponding subset of the boundary ∂Uv ⊂ ∂∗T is called the shadow of v. See Figure 11.1.1 for
an illustration of these definitions.

11.1.4. Planar directed trees. —

Definition 11.1.4. — Let (T, ◁) be a directed tree (without leaves) with focus ω ∈ ∂T. A
planar order on (T, ◁) is a collection ≺= {<v: v ∈ Br(T)} of total orders <v defined on the set
E−
v of direction below v, for each v ∈ Br(T). The triple (T, ◁,≺) will be called a planar directed

tree.
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ξ η

ω

ξ ∧ η

leaf

regular point
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∂∗T
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u2

[u1, u2]
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∂Uv

Uv

z

ev(z)

Figure 11.1.1. A directed tree (T, ◁) with focus ω, and the corresponding defined
objects: arc between two points (brown), directions (blue), smallest upper bound (blue),
shadow (green).

A planar order induces a total order on ∂∗T = ∂T ∖ {ω}, that by slight abuse of notation we
will still denote by ≺, defined as follows. Given two distinct ends ξ1, ξ2 ∈ ∂∗T, write v = ξ1 & ξ2,
and note that ev(ξ1) ̸= ev(ξ2) in E−

v . We set ξ1 ≺ ξ2 if ev(ξ1) <v ev(ξ2). It is straightforward to
check that this defines an order on ∂∗T. Moreover, we say that the planar order ≺ is proper if for
every v ∈ T, the shadow ∂Uv is bounded from above and below in (∂∗T,≺).

Remark 11.1.5. — For every planar order ≺ on (T, ◁) and v ∈ T, the shadow ∂Uv is a convex
subset of (∂∗T,≺).

11.1.5. Group actions on (planar) directed trees. — Given a directed tree (T, ◁), we
denote by Aut(T, ◁) the group of its order-preserving bijections. We will be particularly interested
in the following class of actions.

Definition 11.1.6. — A group action Φ: G → Aut(T, ◁) is focal if every orbit is cofinal, namely
for every u, v ∈ T there exists an element g ∈ G such that v ◁ g.u.

As an equivalent definition, a group action is focal if for every v ∈ T there exists a sequence
(gn) ⊂ G such that gn.v tends to ω along the ray [v, ω[.

Remark 11.1.7. — Note that if a directed tree (T, ◁) admits a focal action, then it has no
leaves (as the orbit of a leaf cannot be cofinal).

Given a planar order ≺ on (T, ◁), we denote by Aut(T, ◁,≺) the subgroup of Aut(T, ◁) which
preserves the planar order ≺, meaning that for every element g ∈ G, the corresponding bijections
between E−

v and E−
g(v) induce isomorphisms between ≺v and ≺g(v). Note that the induced action

of Aut(T, ◁,≺) on ∂∗T preserves the total order ≺.
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Remark 11.1.8. — An action Φ: G → Aut(T, ◁) by automorphisms on a directed tree admits
an invariant planar order if and only if, for every v ∈ Br(T), there is an order on E−

v which
is invariant under StabG(v). Indeed, it is enough to choose such an order for v in a system of
representatives of Φ-orbits B ⊆ Br(T), and then uniquely extend this collection to all v ∈ Br(T),
in a Φ-invariant way.

We keep saying that an action Φ: G → Aut(T, ◁,≺) is focal if the induced action on (T, ◁) is
so. Given a group action Φ: G → Aut(T, ◁,≺) and ξ ∈ ∂∗T, we shall denote by Oξ ⊂ ∂∗T the
Φ-orbit of ξ.

Lemma 11.1.9. — Let Φ: G → Aut(T, ◁,≺) be a focal action on a planar directed tree with
|∂∗T| ≥ 2. Then the following hold.
(i) The planar order ≺ is proper.

(ii) For every ξ ∈ ∂∗T, its orbit Oξ is cofinal in (∂∗T,≺) (that is, unbounded in both directions)
and densely ordered (that is, for every ξ1, ξ2 ∈ Oξ with ξ1 ≺ ξ2, there exists η ∈ Oξ with
ξ1 ≺ η ≺ ξ2).

Proof. — We first prove (i). Since |∂∗T| ≥ 2, we can find two points u, v ∈ T such that none is
below the other, so that the shadows ∂Uu and ∂Uv are disjoint and ≺-convex (Remark 11.1.5).
Therefore at least one of them is bounded below, and at least one of them is bounded above. As
the action is focal, for every z ∈ T, there exist elements g, h ∈ G such that g.∂Uu = ∂Ug.u ⊃ ∂Uz
and h.∂Uv = ∂Uh.v ⊃ ∂Uz. It follows that the shadow ∂Uz is bounded above and below, so that
≺ is proper.

We next prove (ii). First of all, observe that by focality we have Oξ ∩ ∂Uv ≠ ∅ for every v ∈ T.
Indeed, it is enough to choose u above ξ, and g ∈ G such that u ◁ g.v, so that ξ ∈ ∂Ug.v, or
equivalently g−1.ξ ∈ ∂Uv. This immediately gives that the orbit Oξ is cofinal in (∂∗T,≺). Let us
show that it is densely ordered. Assume by contradiction that there are two points ξ1 ≺ ξ2 in Oξ

with no elements of Oξ between them, and let g ∈ G be such that ξ2 = g.ξ1. Since the action is
order preserving, applying g−1 we deduce that the point ξ0 = g−1.ξ1 satisfies ξ0 ≺ ξ1 ≺ ξ2, and
there is no η ∈ Oξ satisfying ξ0 ≺ η ≺ ξ1 nor ξ1 ≺ η ≺ ξ2. Now choose v ∈ T such that ξ1 ∈ ∂Uv
and ξ0, ξ2 /∈ ∂Uv. Since ∂Uv is a ≺-convex subset, we deduce that ∂Uv ∩ Oξ = {ξ1}. But clearly
we can find u ∈ T such that |∂Uu ∩ Oξ| ≥ 2 (just take u = ξ1 & ξ2). This gives a contradiction
since, by focality, there exists h ∈ G so that h.∂Uu ⊂ ∂Uv, and therefore {h.ξ1, h.ξ2} ⊂ ∂Uv. See
Figure 11.1.2.

11.1.6. Horogradings of trees. —

Definition 11.1.10. — Let (T, ◁) be a directed tree. A positive (respectively, negative)
horograding of T is an order-preserving (respectively, order-reversing) map h : (T, ◁) → (R, <) such
that for every u ∈ T, the restriction of h to the arc [u, ω[⊂ T is an order-preserving isomorphism
with the interval [h(u),+∞) (respectively, an order-reversing isomorphism with (−∞, h(u)]).

In other words a horograding is the choice of a way to parametrize vertical totally ordered
segments of T. Depending on the circumstances, we may want to consider horogradings h : T → X,
where X = (a, b) is a non-empty open interval.

If h is a positive horograding, the restriction of h to a maximal totally ordered subset ℓ ⊂ T
is not always a bijection onto R; namely, it is not necessarily true that infv∈ℓ h(v) = −∞. In
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Figure 11.1.2. Proof of (ii) in Lemma 11.1.9.

general this infimum might be either a finite value a ∈ R or −∞, so that h(ℓ) is an open interval
of the form (a,+∞), with a ∈ R ∪ {−∞}.

Definition 11.1.11. — Assume that h : T → R is a positive horograding of a directed tree
(T, ◁). We define the h-complete boundary as the subset

∂∗
hT := {ξ ∈ ∂∗T : infξ◁v h(v) = −∞} .

The analogous definition can be given for a negative horograding.

The following observation will not be needed, but we include it for completeness.

Proposition 11.1.12. — Every directed tree admits a horograding.

Sketch of proof. — We rely on (T3). Enumerate the points of Σ as (vn), and proceed inductively
by defining h on each ray [vn, ω[. As first step, define h on [v0, ω[ as an arbitrary order-preserving
bijection onto an interval [h(v0),+∞). At step n, h has already been defined on the subray
[wn, ω[⊂ [vn, ω[, where wn = min◁{vn & vj : j < n}, and can be extended arbitrarily to [vn, wn].
This will define h on all points of T, except perhaps on leaves; if T has leaves, take care in
the inductive process to keep the image of h bounded below, and then extend h to leaves by
continuity.

Finally we define a horograding of actions in this context.

Definition 11.1.13. — Let Φ: G → Aut(T, ◁) be a focal action, and ρ : G → Homeo0(R) be an
action. A (positive or negative) horograding of Φ by ρ is a (positive or negative) G-equivariant
horograding h : T → R. When such a horograding exists, we say that Φ can be horograded by ρ.
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This terminology extends naturally to the case where ρ is an action on an open interval
X = (a, b). Also, a horograding of an action Φ: G → Aut(T, ◁,≺) on a planar directed tree is a
horograding of the action on the underlying directed tree (T, ◁).

11.2. Planar directed trees and laminations

We now clarify the connection between actions on directed trees and actions on R. This is
done in Propositions 11.2.1 and 11.2.3 below, which allow to make a transition from one to the
other. We assume here that G is a countable group (this assumption could be avoided, but it
substantially simplifies the discussion). Let Φ: G → Aut(T, ◁,≺) be an action on a planar directed
tree. For every end ξ ∈ ∂∗T, the Φ-orbit Oξ ⊂ ∂∗T is a countable totally ordered set on which G
acts by order-preserving bijections. We can therefore consider the dynamical realization of the
Φ-action on (Oξ,≺) (as explained in §2.2.3), thus obtaining an action φξ : G → Homeo0(R). We
have the following.

Proposition 11.2.1 (From planar directed trees to actions on the line)
Let Φ: G → Aut(T, ◁,≺) be a focal action of a countable group G on a planar directed tree

(T, ◁,≺) with |∂∗T| ≥ 2. For ξ ∈ ∂∗T, let φξ : G → Homeo0(R) be the dynamical realization of
the Φ-action on the orbit of ξ. Then φξ is a minimal laminar action, and it does not depend on
the choice of ξ, up to positive conjugacy. Furthermore, if Φ admits a horograding by an action
ρ : G → Homeo0(R), then so does φξ.

Proof. — We denote by ιξ : Oξ → R the good embedding associated with the dynamical realization
φξ. Let us first show that φξ is minimal. Recall from Lemma 2.2.15 that it is sufficient to show
that for any points ζ1 ≺ ξ1 ≺ ξ2 ≺ ζ2 of Oξ, there exists g such that ξ1 ≺ g.ζ1 ≺ g.ζ2 ≺ ξ2. By
Lemma 11.1.9, we can choose η ∈ Oξ such that ξ1 ≺ η ≺ ξ2. Let v, w ∈ T be such that ∂Uv
contains {ζ1, ξ1, η, ξ2, ζ2}, and ∂Uw separates η from {ζ1, ξ1, ξ2, ζ2} (one can take for instance
v = ζ1 & ζ2 and w ∈]η, ξ1 & ξ2[). By focality, there exists g ∈ G such that g.∂Uv ⊂ ∂Uw. Since
∂Uw is convex, this implies that ξ1 ≺ g.ζ1 ≺ g.ζ2 ≺ ξ2 as desired.

To prove that the action φξ is laminar, we observe that the collection S = {∂Uv ∩ Oξ : v ∈ T}
is a Φ-invariant prelamination of (Oξ,≺). Indeed, Lemma 11.1.9 gives that any element of S is a
non-empty ≺-convex bounded subset, and from Remark 8.1.7 we get a φξ-invariant prelamination
by considering interiors of convex hulls of ιξ-images of elements in S. By minimality of φξ,
Proposition 8.1.15 gives that φξ is focal. Moreover, if h is a horograding of Φ by an action
ρ : G → Homeo0(R), it defines a prehorograding (S, hξ) by ρ by the expression hξ(∂Uv∩Oξ) = h(v),
and consequently by Remarks 8.2.3 and 8.2.4, we get a horograding of φξ by ρ.

Finally, let us check that if ξ1, ξ2 ∈ ∂∗T, then the actions φξ1 and φξ2 are positively conjugate.
For clarity, let us denote by Ri the line on which φξi is defined. First, define a map h : ιξ1(Oξ1) →
R2, by setting h(ιξ1(ξ)) = sup{ιξ2(η) : η ∈ Oξ2 , η ⪯ ξ}, for ξ ∈ Oξ1 . Then, h is non-decreasing,
G-equivariant, so by Lemma 2.1.8 it extends to semi-conjugacy h : R1 → R2. Since both actions
φξi are minimal, the map h must be a conjugacy.

Definition 11.2.2. — After Proposition 11.2.1, we say that the action φξ : G → Homeo0(R)
is the dynamical realization of the focal action Φ: G → Aut(T, ◁,≺). Given an action φ : G →
Homeo0(R), we will say that φ is represented by a focal action Φ: G → Aut(T, ◁,≺) if φ is
positively conjugate to the dynamical realization of Φ.
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Conversely, we have the following.

Proposition 11.2.3 (From minimal laminar actions to planar directed trees)
Let φ : G → Homeo0(R) be a minimal laminar action of a countable group. Then there

exists a focal action Φ: G → Aut(T, ◁,≺) on a planar directed tree, representing φ. If moreover φ
can be horograded by an action ρ, then one can choose Φ which can be horograded by ρ.

Proof. — It is enough to prove the proposition in the horograded case, since every focal laminar
action can be horograded by itself (Example 8.2.5). Let therefore (L, h) be a horograding of φ
by an action ρ : G → Homeo0(R). Then for every I, J ∈ L, there is a smallest leaf containing
I ∪ J , that we denote by I & J . The proof proceeds as follows: for every I ∈ L, take a copy
of the ray [h(I),+∞), and consider the quotient space T obtained by gluing pairwise the rays
corresponding to I, J along the subray [h(I & J),+∞). Then T is naturally a planar directed
tree, and inherits a group action and a horograding. Formalizing this idea and performing all the
necessary verification is routine; we include below some further detail for the interested reader.

First note the map h need not be (strictly) increasing along totally ordered subsets of L: this
is not really a problem, but it is a source of more case-by-case analysis. We avoid this possibility
with a trick. First, replace h with the map h1, defined by h1(I) = supJ⊊I h1(J) if I is non-trivially
accumulated by leaves J ⊊ I, and h1(I) = I otherwise. The map h1 is still non-decreasing and
equivariant, moreover it is now continuous from below. Next, consider the subset

L1 = {I ∈ L : h1(J) > h1(I) for every J ⊋ I}.

Then L1 ̸= ∅, as for every I0 ∈ L the subset {I ∈ L : I ⊇ I0, h1(I) = h1(I0)} has a maximum, by
continuity from below of h1, which belongs to L1. Further, L1 is easily seen to be φ-invariant
and, although not necessarily closed, it is still closed from above, namely the limit of a decreasing
sequence in L1 belongs to L1. As a consequence, every I, J ∈ L1 still have a smallest upper bound
in L1, which we still denote by I & J . Note also that the restriction of h1 to L1 is increasing. We
shall work with the prehorograding (L1, h1), that we rename (L, h) from now on.

Let T be the quotient of {(I, t) ∈ L × R : t ≥ h(I)} by the equivalence relation that identifies
(I1, t1) and (I2, t2) if t1 = t2 ≥ h(I & J) (transitivity of this relation follows easily from the
cross-free property of L). We denote by [I, t] the equivalence class of (I, t). The order ◁ on T is
given by v1 ⊴ v2 if for some (equivalently, every) choice of representatives vi = [Ii, ti], we have
t1 ≤ t2 and t2 ≤ h(I1 & I2). It is not difficult to verify, using again the cross-free property of L,
that (T, ◁) satisfies (T1), and that (T2) is satisfied with

[I1, t1] & [I2, t2] = [I1 & I2,max{t1, t2, h(I1 & I2)}].

Note that the map (L,⊆) → (T,⊴), I 7→ [I, h(I)] is order preserving and injective (its injectivity
uses that h is increasing). Since L is separable (for its natural topology), the image Σ of
any countable dense subset satisfies (T3). The action Φ: G → Aut(T, ◁) is given by g.[I, t] =
[φ(g).I, ρ(g).t], and the map [I, t] 7→ t is a G-equivariant horograding, that we still denote by
h : T → R. Note that since every φ-orbit in L is cofinal (by Proposition 8.1.15), and since
every point in T has lower and upper bounds in the image of L, it follows that Φ is focal.
To define a planar order on (T, ◁), choose v ∈ Br(T). Let e1, e2 ∈ E−

v be distinct directions,
and choose points of the form wi = [Ji, h(Ji)] ∈ ei. Then the Ji must be disjoint (since
the points wi are necessarily not comparable, as they belong to distinct directions ei). We
declare that e1 <

(v) e2 if sup J1 < inf J2. For a different choice w′
i = [J ′

i , h(J ′
i)] ∈ ei, we have
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wi & w′
i = [J1 & J ′

1, h(J1 & J ′
i)], and again J1 & J ′

1 and J2 & J ′
2 are disjoint. This implies that

sup J1 < inf J2 if and only if sup J ′
1 < inf J ′

2, and hence <(v) is a well-defined total order. The
planar order ≺ defined by the orders <(v) is clearly Φ-invariant.

Now, let (In) ⊂ L be a decreasing sequence such that
⋂
n In = {x} for some x ∈ R (such a

sequence exists by Proposition 8.1.15). Then [In, h(In)] is a decreasing sequence in T, and we
claim that it converges to a point ξ ∈ ∂∗T. Suppose by contradiction that [J, t] is a lower bound
of [In, h(In)] for every n. By definition of ◁, this implies that h(In) ≥ h(In & J), and thus it
is equal, since In ⊂ In & J . But since h is increasing, this is possible only if In = In & J ⊇ J

for every n, contradicting that In is decreasing to a point. Now, from the construction of the
planar order ≺, it follows that the G-orbits of ξ and x, with the respective induced orders, can
be G-equivariantly identified. Since φ is minimal, it follows that it is conjugate to the dynamical
realization of Φ: G → Aut(T, ◁).

Example 11.2.4 (Planar directed trees for Plante-like actions)
Let us illustrate how to get a focal action on a planar directed tree in our running example

of a Plante-like action of a permutational wreath product. As in Example 8.1.8, we consider two
countable groups G and H, with an action of G on a countable set X, and we fix a left-invariant
order <H∈ LO(H), and a G-invariant order <X on X such that the G-action on (X,<X) is
cofinal. We also take a good embedding ι : X → R. For every x ∈ R, consider the collection of
functions

Sx = {s : (x,+∞) → H : s(y) = 1H for all y > x but finitely many exceptions in ι(X)} .

As a set, we define T as the disjoint union
⊔
x∈R Sx. We declare that s ⊴ t if s ∈ Sx, t ∈ Sy for

some x ≤ y, and s ↾(y,+∞)= t. With this definition, it is immediate to see that for every s ∈ Sx,
the subset {u : s ⊴ u} = {s ↾(y,+∞): y ≥ x} is order-isomorphic to [x,+∞), giving (T1). To verify
(T2), given s ∈ Sx and t ∈ Sy, the restriction s ↾(x∗,+∞), where x∗ = max{z : s(z) ̸= t(z)}, gives
the desired smallest common upper bound. Finally, we have that the collection Σ =

⊔
x∈ι(X) Sx

is countable, as X and H are countable, and this gives (T3). Note that Σ coincides with the
collection of branching points Br(T). For x ∈ ι(X) and s ∈ Sx ⊂ Br(T), we note that E−

s is in
one-to-one correspondence with H, the identification being given by the value of s at x; this
allows to put on E−

s the total order coming from <H , defining a planar order ≺ on (T, ◁). A
horograding h : T → R is simply given by h(s) = x, where x ∈ R is such that s ∈ Sx.

In order to describe the boundaries ∂∗T and ∂∗
hT, set

S = {s : (x,+∞) → H : x ∈ R ∪ {−∞} and s ↾(y,+∞)∈ Sy for every y > x},

and notice that the partial order ◁ naturally extends to S. Denote by S∗ ⊆ S the subset of the
functions which are minimal for the relation ◁. That is, an element s ∈ S is in S∗ if and only
if, either s is defined over R or the support of s is infinite. There is a correspondence between
S∗ and ∂∗T so that the function s : (x,+∞) → H corresponds to the equivalence class of the
ray y 7→ s ↾(y,+∞). Under this correspondence, the h-complete boundary ∂∗

hT is identified with
those functions in S∗ whose domain is R. In particular, we can see

⊕
X H as a subset of ∂∗

hT
(a function s : X → H can be seen as a function s : R → H with support in ι(X)). Notice that
the order induced on

⊕
X H by ≺ under this identification coincides with that introduced in

Example 8.1.8.
The permutational wreath product H ≀X G acts on (T, ◁,≺). Indeed, every g ∈ G sends Sx

to Sg.x by pre-composition with g−1, where the action j : G → Homeo0(R) is the dynamical
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realization of the G-action on (X,<X) corresponding to the good embedding ι. If s ∈
⊕

X H,
then we can see it as a function defined on R as before, and thus s acts on T by pointwise
multiplication of functions. It is direct to check that this action preserves the poset structure ◁
and the planar order ≺.

Note that this action naturally extends to S∗, giving the action of H ≀X G on ∂∗T through the
correspondence between S∗ and ∂∗T. Moreover, the h-complete boundary ∂∗

hT and (the copy
of)

⊕
X H are invariant subsets for this action. Indeed, the restriction to

⊕
X H coincides with

the action Ψ (discussed in Example 8.1.8). In other terms, we constructed an order-preserving
and equivariant “embedding” of the Plante-like product Ψ: H ≀X G → Aut (

⊕
X H,≺) defined in

Example 8.1.8, into the restriction to the boundary of an action on a planar directed tree.
Finally, note that the horograding h satisfies h(g.s) = g.h(s) for every g ∈ G and s ∈ T, while

it is constant on
⊕

X H-orbits. See Figure 11.2.1.

h

ω +∞

R x j(G)

−∞⊆ S∗∂∗

hT

t ∈ S∗

Sx ∋ s
h(s) = x

g.t ∈ S∗

g.s ∈ Sg.x
h(g.s) = g.x

g g

Figure 11.2.1. The directed tree for the Plante-like action (Example 11.2.4).

11.3. Simplicial trees and metric R-trees

In this section we clarify how all the notions discussed above relate to the more familiar setting
of isometric group actions on simplicial or real trees.

11.3.1. Horogradings and metrics on R-trees. — A (metric) real tree, or R-tree, is a metric
space (T, d) such that every two points u, v ∈ T can be connected by a unique injective continuous
arc γ : [0, 1] → T, and this arc can be chosen to be geodesic (i.e. an isometric embedding). This
notion is well studied; see for instance the survey of Bestvina [Bes02]. Let us clarify the connection
between R-trees and directed trees, in the sense of Definition 11.1.1.

Assume that (T, d) is a separable metric R-tree. Let ∂∞T be the Gromov (or visual) boundary
of T, namely ∂∞T is the set of equivalence classes of geodesic rays in T, where a geodesic ray is
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a subset r ⊂ T isometric to [0,+∞), and two rays r1, r2 are equivalent if r1 ∩ r2 is a geodesic
ray. Assume that ∂∞T is non-empty, and choose ω ∈ ∂∞T. The choice of ω naturally defines a
partial order ◁ on T, by the condition that v ◁ u when u ∈ [v, ω[, where [v, ω[ is the ray from v to
ω. Moreover, the choice of a point z0 ∈ T allows to define a horofunction hω,z0 : T → R centered
at ω (normalized to vanish on z0), by the formula

(11.3.1) hω,z0(v) = d(z0, v & z0) − d(v, v & z0).

This function is a horograding in the sense of Definition 11.1.10, and commonly the level sets
{v ∈ T : hω,z0(v) = t} are called horospheres, see for instance the book of Bridson and Haefliger
[BH99, Chapter II.8]. Conversely, a directed tree (T, ◁) as in Definition 11.1.1 can always be
endowed with a metric that makes it a separable R-tree. Indeed, choose a horograding h : T → R
(see Proposition 11.1.12). We can then define a distance on T by the formula

(11.3.2) dh(u, v) = |h(u & v) − h(u)| + |h(u & v) − h(v)|.

This distance turns T into an R-tree; see Favre and Jonsson [FJ04, Proposition 3.10]. We call a
distance of this form a compatible R-tree metric on (T, ◁), associated with the horograding h. The
focus ω ∈ T defines a point in the visual boundary ∂∞T, and h is a horofunction with respect to
dh. Thus, these two constructions are inverse to each other.

(Note however that the visual boundary ∂∞T does not correspond to the whole boundary ∂T
in the sense of Definition 11.1.3, but rather to the subset {ω} ∪ ∂∗

hT, where ∂∗
hT is the set of

h-complete boundary points (Definition 11.1.11). To recover the whole of ∂T, consider the metric
completion T̂ of T. Then ∂T identifies with ∂∞T̂ ∪ (T̂ ∖ T).)

Suppose now that Φ: G → Aut(T, ◁) is an action horograded by an action ρ : G → Homeo0(R),
with associated horograding h : T → R, and let dh be the associated R-tree metric as in (11.3.1).
Equivariance of h simply means that Φ must preserve the partition of T into horospheres associated
with the focus ω. It is evident from (11.3.1) that the action on T preserves the metric if and only
if the horograding action ρ takes values in the group of translations (R,+). More explicitly, if
the action is isometric, then every g ∈ G must eventually coincide with a translation along any
ray [v, ω), and ρ(g) is equal to its signed translation length (with the convention that ρ(g) > 0
if g pushes points towards ω). This, together with Propositions 11.2.1 and 11.2.3, implies the
following.

Proposition 11.3.1 (Horogradings by translations and actions on R-trees)
A minimal laminar action φ : G → Homeo0(R) can be horograded by an action by trans-

lations ρ : G → (R,+), if and only if it is represented by a focal action Φ: G → Aut(T, ◁,≺)
preserving a compatible R-tree metric on T.

Remark 11.3.2. — Observe that when a laminar action can be horograded by an action by
translations, Proposition 8.2.10 gives that any pseudo-homothety is is actually a homothety. This
fact can also be recovered from Proposition 11.3.1, using the classification of isometries of R-trees.

11.3.2. Case of simplicial trees. — The simplest type of real trees are simplicial trees. A
simplicial tree is a connected graph T without cycles. We identify T with its geometric realization,
so that each edge is a subset of T isometric to [0, 1]. We will say that a directed tree (T, ◁) is
simplicial if T is a simplicial tree of countable degree (that is, the degree at every point is at most
countable), and ◁ is the partial order associated with the choice of an end ω ∈ ∂T, where u ◁ v if
v lies on the ray from u to ω. Note that in this case the set of directions E−

v below a vertex v
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can be identified with the set of edges at v which are in the opposite side of v with respect to the
focus. Thus, a planar order corresponds to the choice of a linear order of such edges, for every
vertex v.

As it turns out, there is a particularly explicit characterization of the laminar actions that
can be represented by an action on a simplicial planar directed tree. This characterization is
given by item (iv) in the following result (which can be seen as a partial converse to Proposition
8.3.5). We will elaborate on this result in §13.4.1, when studying examples of laminar actions of
Thompson’s group F .

Proposition 11.3.3 (Simplicial laminar actions). — Let φ : G → Homeo0(R) be a minimal
action whose image is not isomorphic to Z2. Then the following are equivalent.

(i) The action φ preserves a discrete lamination.

(ii) The action φ is represented by a focal action on a planar directed tree (T, ◁,≺), such that T
is a simplicial tree of countable degree, and the action of G on T is by simplicial automorphisms.

(iii) The action φ is laminar, horograded by a cyclic action ρ : G → Z.

(iv) There exists a non-trivial normal subgroup N ⊴G such that G/N ∼= Z, and φ(N) admits no
minimal invariant set.

Definition 11.3.4. — We shall say that a laminar action φ : G → Homeo0(R) is simplicial if it
satisfies one of the equivalent conditions in Proposition 11.3.3.

Proof of Proposition 11.3.3. — Too see that (i)⇒(ii), note that a discrete lamination L is natu-
rally the vertex set of a simplicial tree. Namely, for every I ∈ L, the set {J ∈ L : I ⊊ J} does not
accumulate on I, and thus has a smallest element Î. The tree T is obtained by connecting each
I to Î by an edge. It can be naturally endowed with a G-invariant order ◁ and a planar order
≺= {≺J : J ∈ L} on T, where two edges (I1, J) and (I2, J) with I1, I2 ⊊ J are ordered according
to the order in which I1 and I2 appear in J . By construction, φ is conjugate to the dynamical
realization of the action on (T, ◁,≺).

The implication (ii)⇒(iii) is a particular case of the discussion before Proposition 11.3.1.
Indeed, the action of G on (T, ◁) is horograded by the homomorphism ρ : G → (R,+) given by
the signed translation length in the direction of ω, which has integer values when T is simplicial.

To see that (iii)⇒(iv), assume that (L, h) is a horograding of φ by a cyclic action ρ : G → Z, and
let N = ker ρ. Then Fixφ(N) is a closed φ-invariant subset and thus, by minimality, Fixφ(N) = ∅
(as otherwise the φ-action of N would be trivial, which is impossible since G/N ∼= Z cannot act
minimally on R). Also, no I ∈ L can have a cofinal orbit under φ(N), since ρ(N) is trivial. It
follows from Proposition 8.1.10 that φ(N) has no minimal invariant set.

We now show that (iv)⇒(i). Assume that (iv) holds, and choose f ∈ G which projects to a
generator of G/N ∼= Z, so that G = N ⋊ ⟨f⟩. By Proposition 8.3.5, the set Wφ(N) of irreducible
wandering intervals for φ|N is a φ-invariant covering prelamination. Choose J ∈ Wφ(N) such that
f.J ∩J ̸= ∅ (e.g. containing ξ and f.ξ for some arbitrary ξ ∈ R.) First note that it is not possible
that f.J = J . Indeed, this would imply that for every g ∈ G, writing g = hfn with h ∈ N , we
would have g.J = h.J for some h ∈ N , and thus g.J = J or g.J ∩ J = ∅. But this contradicts
the fact that the φ-orbit of J is cofinal in L (Proposition 8.1.15). Therefore f.J ̸= J , and upon
replacing f by f−1, we may assume that J ⊊ f.J . For n ∈ Z, write Ln = {hfn.J : h ∈ N}, so
that L =

⋃
n∈Z Ln is the φ-orbit of J . Since fn.J ∈ Wφ(N), any two elements of Ln are either
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equal or disjoint. Moreover, every I ∈ Ln is contained in a unique element of Ln+1: indeed,
I = hfn.J ⋐ hfn+1.J . It follows that L is a discrete φ-invariant lamination.

11.3.3. Examples of simplicial trees: groups with cyclic germs at infinity. — Let us
revisit the construction of exotic actions in §6.3, and show that it actually gives rise to a simplicial
laminar action. As in in §6.3, we consider a locally moving subgroup G ⊂ Homeo0(X), where
X = (a, b), with cyclic germs at b. We fix the homomorphism τ : G → Z ∼= Germ(G, b) and the
preferred element f0 ∈ G such that τ(f0) = 1, in such a way that f0(x) > x on a neighborhood of
b. We then fix a bi-infinite sequence s as in (6.3.1): we fix s0 sufficiently close to b, such that
sn = fn0 (s0) tends to b as n → ∞, and set s = (sn)n∈Z ∈ XZ. Recall that in (6.3.2) we have
defined an action of G on XZ, by the expression

g · t =
(
g(tn−τ(g))

)
n∈Z ,

and considered the G-orbit of s, denoted as S. The relation t ≺ t′ if and only if tm < t′m, with
m = m(t, t′) = max{n ∈ Z : tn ≠ t′n}, defines a G-invariant order on S (Lemma 6.3.3), and
we observed that the dynamical realization φs : G → Homeo0(R) of the action of G on (S,≺)
is faithful and minimal (Proposition 6.3.4). Here we want to see that φs is in fact a simplicial
laminar action.

Remark 11.3.5. — After Remark 9.2.9, we have that the dynamical realization φs can also be
positively horograded by the action of G on X. This is an illustration of the fact that a planar
directed tree encoding a laminar action is not unique, and identifying a tree with good properties
may be important for some purposes.

For n ∈ Z, denote by Z≥n the set of integers j ≥ n. We let S≥n ⊂ XZ≥n be the subset of
sequences indexed by Z≥n obtained by restricting sequences in S to Z≥n:

Sn = {(tj)j≥n : (tj)j∈Z ∈ S}.

We will call truncation this operation. Given a sequence (tj)j≥n ∈ Sn, we say that (tj)j≥n+1 ∈ Sn+1
is its successor. The disjoint union

⊔
n∈Z Sn is naturally the vertex set of a simplicial tree T,

obtained by connecting each element to its successor. Indeed, it is clear that the graph obtained
in this way has no cycles; moreover it is connected, because all elements of S eventually coincide
with the sequence s (Lemma 6.3.2).

If we endow all edges of T with the orientation from a point to its successor, then all edges
point to a common end ω ∈ ∂T, hence we get a directed tree (T, ◁) with focus ω. Note that every
t = (tj)j∈Z ∈ S defines a bi-infinite ray of T, whose vertices are the successive truncations of t.
For every t ∈ S, this sequence converges to ω as n → +∞. As n → −∞, it converges to some end
αt ∈ ∂∗T = ∂T ∖ {ω}. The map t 7→ αt is clearly injective, and thus allows to identify S with a
subset of ∂∗T.

The group G has a natural action on (T, ◁): for every vertex v = (tj)j≥n of T and g ∈ G, we
set

g · (tj)j≥n =
(
g(tj−τ(g))

)
j≥n+τ(g) .

Note in particular that if v ∈ Sn, then g · v ∈ Sn+τ(g). This action is by simplicial automorphism
and fixes the end ω. Observe that if g ∈ G is such that τ(g) ̸= 0, then g has no fixed point on T,
and thus acts as a hyperbolic isometry. On the other hand, if τ(g) = 0, then g preserves each of
the sets Sn and acts as an elliptic isometry (indeed, since g acts trivially on some neighborhood
of b in x, it must fix all vertices (sj)j≥n for n large enough).
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Let us now define a planar order on (T, ◁). In this case, this just means an order <v for every
v = (tj)j≥n ∈ T on the set of edges E−

v which lie below v (i.e. opposite to ω). Fix v = (tj)j≥n,
and consider two distinct edges e1, e2 ∈ E−

v . Then for i ∈ {1, 2}, we have ei = (w, v) for some
w = (t(i)j )j≥n−1 with t(1)

j = t
(2)
j = tj for j ≥ n, and t(1)

n−1 ̸= t
(2)
n−1. Thus we set e1 <

v e2 if and only
if t(1)

n−1 < t
(2)
n−1. The collection {<v: v ∈ T} defines a planar order ≺ on (T, ω) which is invariant

under the action of G.
The map t 7→ αt is G-equivariant and order preserving, with respect to the order on S and

the order on ∂∗T induced from the planar order. Thus the G-action on (S,≺) can be identified
with an action on an orbit in ∂∗T. It follows that φs is represented by the action on the planar
directed tree (T,≺, ω).





CHAPTER 12

GROUPS WITH MANY MICRO-SUPPORTED ACTIONS

The goal of this chapter is to present a generalization of the Brin–Navas group defined in
Example 3.2.3. The new examples, called generalized Brin–Navas groups, serve to show that
some results in this article concerning locally moving groups do not extend to the general context
of micro-supported groups (notably Corollary 4.1.2 and Theorem 5.3.2 fail).

Recall from Theorem 9.1.1 that if G ⊂ Homeo0(R) is a micro-supported subgroup whose
action on R is minimal, then either G is locally moving or its standard action is laminar. In this
subsection we give a general construction of micro-supported subgroups of Homeo0(R) whose
action is minimal and laminar. We will use this construction to illustrate that the class of
micro-supported subgroups of Homeo0(R) is much more flexible than the class of locally moving
groups: we can find groups that admit uncountably many, pairwise non-semi-conjugate, faithful
micro-supported actions (in contrast with Rubin’s theorem for locally moving groups, see Corollary
4.1.2). Moreover, many of these examples can even be chosen to be of class C1 (in contrast with
Theorem 5.3.2). After Theorem 9.1.1, these actions are all laminar. In fact, these groups are
directly described as groups of automorphisms of directed (simplicial) trees, by adapting the
classical construction of Burger and Mozes [BM00], and the related groups defined by Le Boudec
[LB16]. The crucial point is that the directed trees admit many planar orders which are preserved
by our groups.

12.1. Construction of laminar actions

We say that a pair (A, a0) is a marked alphabet if A is a set and a0 ∈ A. Then, we denote by
S ⊆ AZ the set of sequences with values in A which take the constant value a0 in all but finitely
many terms. Following the notation as in §11.3.3, we denote by Sn the truncations to Z≥n of the
elements in S. Also, given a sequence (tj)j≥n, we say that (tj)j≥n+1 is its successor. This defines
a simplicial directed tree (TA, ◁) whose focus ω is defined by the successive truncations of the
constant path s with value a0. By abuse of notation, we will identify TA with its set of vertices⊔
n∈Z Sn. Recall that for a vertex v ∈ TA, we denote by E−

v the set of edges below v (opposite
to ω). For v = (tj)j≥n, the set E−

v is naturally identified with the alphabet A, considering the
labeling

jv : E−
v → A

[(tj)j≥n−1, (tj)j≥n] 7→ tn−1.
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Note also that every g ∈ Aut(TA, ◁) induces a bijection between E−
v and E−

g.v. We write
σg,v := jg(v) ◦ g ◦ j−1

v for the induced permutation of A. Observe that we have the cocycle relation

(12.1.1) σg,h(v) σh,v = σgh,v.

Definition 12.1.1. — Let (A, a0) be a marked alphabet, G ⊆ Sym(A) a group of permutations
of A, and (TA, ◁) the directed tree defined above together with the labelings jv, v ∈ TA. We
define the generalized Brin–Navas group BN(A;G) as the group of all elements g ∈ Aut(TA, ◁)
such that σg,v ∈ G for all v ∈ TA and σg,v = id for all but finitely many v ∈ TA.

Remark 12.1.2. — The name comes from the fact that the Brin–Navas group considered in
Example 3.2.3 is isomorphic to the group BN(Z;G) where a0 = 0 ∈ Z, and G ⊂ Sym(Z) is the
group of translations of the integers.

Remark 12.1.3. — Note that we omit the marked element a0 in the notation BN(A;G). This
is because we will only consider transitive subgroups G ⊆ Sym(A), and in this case the definition
of BN(A;G) does not depend on the choice of the marked element, up to a group isomorphism
induced by an isomorphism between the corresponding trees.

We need to define a suitable generating set. For this, given a vertex v ∈ TA, denote by
Gv ⊂ BN(A;G) the subgroup of all g ∈ BN(A;G) which fix v and such that σg,w = id for w ̸= v

(clearly Gv ∼= G). We then choose an extra generator defined as follows. Note that the shift map
σ : S → S, which sends a bi-infinite sequence (tj)j∈Z to (tj−1)j∈Z naturally acts on the set of
truncated sequences

⊔
n∈Z Sn preserving the successor relation. Thus it defines an automorphism

f0 ∈ Aut(TA, ◁). It is direct to check that f0 is a hyperbolic element in BN(A;G), whose axis
consists of the geodesic (wn)n∈Z with wn = (a0)j≥n, and that moreover σf0,v = id for every vertex
v ∈ TA. With this notation set, we have the following.

Lemma 12.1.4. — Let (A, a0) be a marked alphabet, and assume that G ⊂ Sym(A) acts
transitively on A. Then the group BN(A;G) is generated by Gw0 and f0. In particular, it is
finitely generated as soon as G is so.

Proof. — Write Γ = ⟨Gw0 , f0⟩ for the subgroup of Aut(TA, ◁) generated by Gw0 and f0. We first
observe the following.

Claim. — For every vertices v1, v2 ∈ TA, there exists g ∈ Γ such that g.v1 = v2 and σg,v = id
for every vertex v ◁ v1.

Proof of claim. — First notice that, by composing with powers of f0 and using the cocycle
relation (12.1.1), we can assume that both v1 and v2 belong to S0. Similarly, we can also assume
that v1 = w0 = (a0)n≥0; write v2 = (tn)n≥0. Since G acts transitively on A, there exists a
sequence (hn)n≥0 in G such that hn(a0) = tn. Moreover, since tn = a0 for n large enough, we can
take hn to be the identity for n large enough. With abuse of notation, denote by hn ∈ Gw0 the
element with σhn,w0 = hn. Then, the product g :=

∏
n≥0(fn0 hnf−n

0 ) is actually a finite product
and thus defines an element of Γ, which moreover satisfies σg,v = id for every v ∈

⊔
n<0 Sn. It

follows directly from the choices that g.w0 = v2. This proves the claim.

Take a vertex v0 ∈ TA. By the previous claim, we can take g ∈ Γ so that g.v0 = w0 and
σg,v = id for every v ◁ v0. Then it is direct to check that g−1Gw0g = Gv0 . This shows that
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Gv0 ⊆ Γ for every vertex v0 ∈ TA. Finally, given g ∈ BN(A;G), write

C(g) := |{v ∈ TA : σg,v ̸= id}|.

Notice that if C(g) = 0, then g is a power of f0, hence it belongs to Γ. Take an element g ∈ BN(G)
with C(g) > 0, and a vertex v ∈ TA so that σg,v ̸= id. Then we can find h ∈ Gv satisfying
σh,v = σg,v, and we have C(gh−1) = C(g) − 1. By repeating this procedure finitely many times,
we can find h′ ∈ Γ so that C(gh′) = 0. We deduce that g belongs to the group Γ.

Notice that for every total order < on the alphabet A, there exists a unique planar order ≺
on (TA, ◁) for which the maps jv are order preserving. If in addition the subgroup G ⊂ Sym(A)
preserves <, the group BN(A;G) preserves the associated planar order ≺. We call this action the
induced planar directed tree representation associated with G and <.

Proposition 12.1.5. — Let (A, a0) be a marked alphabet. Assume that G ⊂ Sym(A) acts
transitively on A, and let < be a G-invariant total order on A. Then, the dynamical realization
of the planar directed tree representation associated with G and <, is a faithful minimal laminar
action of BN(A;G), which is moreover micro-supported.

Moreover, for two different G-invariant orders on A, the dynamical realizations of their
corresponding planar directed tree representations are not positively semi-conjugate.

Proof. — Let ≺ be the planar order associated with <, and let Φ: BN(A;G) → Aut(TA, ◁,≺) be
the corresponding action. Since Φ acts transitively on the vertices of TA and BN(A;G) contains
a hyperbolic element, focality of Φ follows.

Let ξ ∈ ∂∗TA be the end defined by the sequence (wn)n≤0, and let Oξ be its orbit under the
induced Φ-action on ∂∗TA. Since f0 is a hyperbolic element with axis (wn)n∈Z, it acts on (Oξ,≺)
as a homothety fixing ξ. This allows us to apply Lemma 2.2.15 to deduce that the dynamical
realization of BN(A;G) → Aut(Oξ,≺) is minimal. In other words, the dynamical realization of
Φ, that we denote by φ, is minimal. On the other hand, since Gv is supported on the set of
points below v, its associated action on Oξ is supported on the shadow of v. This implies that
the support of φ(Gv) is relatively compact, and thus by Proposition 3.1.4 we deduce that φ is
micro-supported. Finally, faithfulness of φ follows from that of Φ.

Given an element h ∈ G and a vertex v ∈ TA we denote by hv the element of Gv satisfying
σhv,v = h. Also, let p ∈ R be the fixed point of φ(f0). Then, given h ∈ G, we have

φ(hw0)(p) > p if and only if h(a0) > a0.

Since the action of G on A is transitive, this implies that we can read the total order < from the
action φ. In particular, dynamical realizations corresponding to different G-invariant orders on
A give rise to non-positively-conjugate actions. Finally, since these dynamical realizations are
minimal and not positively conjugate, they are not positively semi-conjugate.

Note that by the transitivity assumption in Proposition 12.1.5, the planar directed tree
representation is in fact determined by a choice of a left-invariant preorder on G, as an abstract
group: write the identification A ∼= G/H, with H = StabG(a0), so that a G-invariant order on
A corresponds to a preorder ≤ on G whose residue (that is, the subgroup of elements which
are ≤-equivalent to 1G; see §2.2.2) is H. Hence, the second part in the statement says that
two different left-invariant preorders on G with same residue yield non-positively-semi-conjugate
actions. As a particular case, one can consider a left-invariant order on G, in which case we can
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identify the marked alphabet with (G, 1G), and the subgroup G ⊂ Sym(G) is the group of left
translations. In such a case, we will simply write BN(G) for the group BN(G;G).

Recall that if G ⊆ Homeo0(R) is a locally moving group, then every faithful locally moving
action of G on R is conjugate to its standard action (by Rubin’s theorem, or by Corollary 4.1.2).
The groups BN(G) show that the this is far from being true for micro-supported subgroups of
Homeo0(R).

Corollary 12.1.6. — Let G be a finitely generated group admitting uncountably many left-
invariant orders. Then BN(G) has uncountably many, pairwise non-conjugate, faithful minimal
micro-supported actions on the line.

Proof. — After the previous discussion, we can apply Proposition 12.1.5 to each left-invariant
order in LO(G), which gives the desired result.

12.2. Groups with many differentiable micro-supported actions

Here we extend the result given by Corollary 12.1.6 by showing that for some finitely generated
groups G, we can actually get many faithful micro-supported actions of class C1 of the group
BN(G) (compare with Theorem 5.3.2).

Theorem 12.2.1. — There exists a finitely generated group admitting uncountably many, faithful
minimal micro-supported actions, which are pairwise not conjugate (and not conjugate to any
non-faithful action), and each of which is semi-conjugate to a C1 action on R.More precisely, the
group BN(Z2) satisfies such properties.

Remark 12.2.2. — In fact, it seems also possible to prove that the group BN(Z2) admits
faithful minimal micro-supported actions which are conjugate to a C1 action and pairwise not
conjugate, but since this is more technical, we will content ourselves of the previous statement
(which suffices to disprove the analogue of Theorem 5.3.2 for micro-supported groups).

Let us also remark that from the point of view of regularity, our construction for BN(Z2) relies on
the Pixton–Tsuboi examples (see Tsuboi [Tsu95]) and naturally gives actions by diffeomorphisms
of class Cα, for any α < 3/2. On the other hand, a result of Deroin, Kleptsyn, and Navas (see
[DKN07, Théorème C]) tells that our construction cannot give more regular actions. We are not
aware of any method that could give uncountably many, pairwise non-semi-conjugate, micro-
supported actions by C2 diffeomorphisms on R, morally because actions by C2 diffeomorphisms on
[0, 1] with an exceptional minimal set in (0, 1) are expected to satisfy many constraints. However,
an elementary construction gives the following.

Proposition 12.2.3. — For any n ≥ 1, there exists a finitely generated group admitting (at
least) 2n pairwise non-positively-conjugate, faithful minimal micro-supported actions by C∞

diffeomorphisms on R.

Sketch of proof. — For any integer n ≥ 1, consider the subgroup Hn of BN(Z) generated by the
power fn0 and the subgroups Gwk

= fk0Gw0f
−k
0 , for k ∈ {0, . . . , n− 1}. The action of Hn on the

directed tree (TZ, ◁) has n distinct orbits of vertices (the orbits of wk, for k ∈ {0, . . . , n− 1}), so
it admits at least 2n distinct planar orders, obtained by taking all possible switching of signs of
the standard orders on the sets of edges E−

wk

∼= Z, for k ∈ {0, . . . , n− 1}. It is not difficult to see
(elaborating on the arguments described in this section) that the dynamical realizations of the
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actions of Hn on these planar ordered trees are conjugate to C∞ actions on R, and that different
choices of orders on the E−

wk
lead to pairwise non-positively-conjugate actions.

We now discuss Theorem 12.2.1. It will be obtained as a consequence of Proposition 12.2.7,
which is a criterion to recognize faithful actions of BN(G) on the line. As a preliminary result,
which may also help to follow the rather technical proof of Proposition 12.2.7, we work out a
presentation of BN(G), which is analogous to the one for BN(Z) = B appearing in Example 3.2.3.
So let G be a finitely generated group, and fix a presentation

G = ⟨g1, . . . , gn | rν(g1, . . . , gn) (ν ∈ N)⟩.

We will assume for simplicity that the generating set is symmetric and that for every distinct
i, j ∈ {1, . . . , n}, the generators gi and gj represent distinct non-trivial elements in G. The free
product G ∗ Z admits the presentation

G ∗ Z = ⟨f, g1, . . . , gn | rν(g1, . . . , gn) (ν ∈ N)⟩.

It is convenient to introduce the following more redundant presentation of G∗Z, which corresponds
to applying a (multiple) Tietze transformation to the previous one. For m ∈ Z, write Gm =
{gi,m}i∈{1,...,n}, and consider the union G =

⋃
m∈Z Gm. Then, we get the presentation

(12.2.1) G ∗ Z =
〈
f0,G

∣∣ fgi,mf−1 = gi,m+1 (i ∈ {1, . . . , n},m ∈ Z), rν(g1,0, . . . , gn,0) (ν ∈ N)
〉
.

Write R0 for the set of relators in the previous presentation. As in the proof of Lemma 12.1.5,
given g ∈ G ⊂ Sym(G) and v ∈ TG, we denote by gv the element in BN(G) fixing v such that
σg,v = g, and σg,w = id for every w ̸= v. Then we denote by Ψ0 : G ∗ Z → BN(G) the morphism
such that Ψ0(f) = f0 and Ψ0(gi,m) = fm0 (gi)w0f

−m
0 for every i ∈ {1, . . . , n} and m ∈ Z (as before,

we write w0 = (1G)n≥0).
In order to complete the set of relations for the desired presentation of BN(G), we need to

study the support of some elements.

Lemma 12.2.4. — With notation as above, fix m ∈ Z. Then, for every g ∈ ⟨Gm⟩ ∖ {1} and
g1, g2 ∈

⋃
q<m Gq we have that the commutator [g1, gg2g

−1] is in the kernel of Ψ0.

Proof. — We will show that for any such choices of elements, g1 and gg2g
−1 have disjoint support

in TG and hence commute. On the one hand, for every k ∈ Z, and h ∈ Gk, the support of Ψ0(h)
is contained in Twk

G , where wk = (1G)n≥k, and Twk

G = {u ∈ TG : u ⊴ wk} denotes the subtree
of vertices below wk. On the other hand, for any h ∈

⋃
q<m Gq, we have that the support of

Ψ0(ghg−1) is contained in the subtree Tvg,m−1
G , where vg,m−1 ∈ TG is the vertex corresponding

to the sequence (tn)n≥m−1 such that t0 = 1G for n ≥ m and tm−1 = g. In particular, these two
remarks apply respectively to the elements g1 and g2 from the statement, so that the images
Ψ0(g1) and Ψ0(gg2g

−1) have disjoint supports.

Write R1 for the set of all the commutation relators from Lemma 12.2.4 and set

(12.2.2) Γ = ⟨f,G | R0,R1⟩.

We are ready for the following statement.

Proposition 12.2.5. — The map Ψ: Γ → BN(G) induced by Ψ0 is an isomorphism.
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Before proving Proposition 12.2.5 we need to fix some notation and state a technical lemma
that will also be used later for Proposition 12.2.7, and whose proof is postponed. As in the
proof of Lemma 12.2.4, given g ∈ G and m ∈ Z denote by vg,m ∈ TG the vertex (tn)n≥m such
that tn = 1G for n > m and tm = g; in particular wm = v1,m. Note that after the conjugation
relations in R0, the subgroup H := ⟨G⟩ is the normal closure of G0 in Γ, and the quotient Γ/H is
generated by the image of f . Given γ ∈ H, we denote by ∥γ∥G its word-length with respect to
the generating system G.

Lemma 12.2.6. — Take a non-trivial element γ ∈ H, written as γ = γ1 · · · γk with γj ∈ Gmj

for j ∈ {1, . . . , k}, and write M = max{mj : j ∈ {1, . . . , k}}. Assume that Ψ(γ)(wm) = wm
for some m < M . Then, there exist h1, . . . , hl ∈

〈⋃
m<M Gm

〉
and pairwise distinct elements

f1, . . . , fl ∈ ⟨GM ⟩, such that

(12.2.3) γ = (f1h1f
−1
1 ) · · · (flhlf−1

l )

and ∥hi∥G < k for every i ∈ {1, . . . , l}.

Proof of Proposition 12.2.5. — First notice that, by Lemma 12.1.4, Ψ is surjective. To prove
injectivity of Ψ, suppose by contradiction that ker Ψ is non-trivial. As the tree TG is simplicial,
we have a morphism ρ : BN(G) → Z given by the translation length in the direction of ω (see
Proposition 11.3.3). Notice that ρ vanishes at Gw0 = Ψ(G0) and that ρ(f0) is non-trivial. As
the quotient of Γ by the normal closure H of G0 is generated by the image of f , we deduce that
ker Ψ ⊆ H. In particular, the word-length ∥ · ∥G is defined on the kernel of Ψ, so that we can
consider a non-trivial element γ ∈ ker Ψ of minimal word-length. We write γ = γ1 · · · γk with
k = ∥γ∥G and γj ∈ Gmj

for every j ∈ {1, . . . , k}. As Φ(γ) acts trivially, in particular it fixes every
vertex of the form wm, we can apply Lemma 12.2.6 to the factorization γ = γ1 · · · γk, and obtain a
decomposition as in (12.2.3) with ∥hi∥G < ∥γ∥G for i ∈ {1, . . . , l}. Keeping the same notation as
in Lemma 12.2.6, we observe that the support of Ψ(fihif−1

i ) is contained in the subtree Tvfi,M−1
G ,

for i ∈ {1, . . . , l}. Thus, since fi ≠ fj for i ̸= j, we get that different factors in the factorization
of γ above have disjoint support. We deduce that every such factor is in the kernel of Ψ, and
therefore also every element hi is. However, as the word-length of every such element is less than
∥γ∥G , the minimality assumption on γ implies that every hi is trivial, contradicting the choice of
γ.

Proof of Lemma 12.2.6. — In order to simplify notation, from here and until the end of the proof,
we will write

∏
j∈E α(j) := α(i1) · · ·α(ik), for any function α : E → Γ, with E = {i1, . . . , ik} ⊆ N

with i1 < · · · < ik. We will also write σg instead of σΨ(g),wM
, for every g ∈ Γ. Note that σg = id

for every g ∈ ⟨
⋃
m<M Gm⟩. For given j ∈ {1, . . . , k}, we let ij be the index such that γj = gij ,mj .

Notice that Ψ(γj)(wM ) = wM for every j ∈ {1, . . . , k}, and in particular Ψ(γ)(wM ) = wM . Using
the cocycle relation (12.1.1), we have

(12.2.4) σγ =
∏k
j=1 σγj

.

On the other hand, since Ψ(γ)(ws) = ws for some s < M and the action of G ⊂ Sym(G) on G is
free, we conclude that σγ = id. Since only factors in GM give non-trivial factors in the product
(12.2.4), writing P = {j ∈ {1, . . . , k} : γj ∈ GM}, we get the equality

id =
∏
j∈P σγj .
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Note that for j ∈ P , the permutation σj corresponds to the left translation by gij , whence we get∏
j∈P gij = 1G. This gives

(12.2.5)
∏
j∈P γj = 1Γ.

Next, for every j ∈ {1, . . . , k}, consider the product in ⟨GM ⟩ given by

fj :=
∏
l∈P, l≤j γl.

Set Q := {1, . . . , k} ∖ P , and notice that after the relation (12.2.5) we can write

(12.2.6) γ =
∏
j∈Q

(
fjγjf

−1
j

)
.

Note that as fj ∈ ⟨GM ⟩, and γj ∈ ⟨Gmj ⟩ with mj < M for every j ∈ Q, we deduce from Lemma
12.2.4 that we can make any two factors fiγif−1

i and fjγjf−1
j in the product in (12.2.6) commute,

provided fi ̸= fj . Rearranging factors in this way, we can write

(12.2.7) γ =
∏
j∈Q0

(
fj

(∏
l∈Qj

0
γl

)
f−1
j

)
,

where Q0 ⊆ Q is a section of the map Q → Γ given by j 7→ fj , and for j ∈ Q0 we set
Qj0 := {l ∈ Q0 : fl = fj}. We claim that the decomposition in (12.2.7) is the one that we are
looking for. First notice that, by the choice of Q0, fi ≠ fj whenever i, j are different indices in
Q0. Secondly for every j ∈ Q0, by definition of Q0 and Qj0, the element hj :=

∏
l∈Qj

0
γl belongs

to
〈⋃

m<M Gm
〉

and clearly satisfies ∥hj∥G ≤ |Qj0| < k.

Consider now, for a left-invariant order < on a group G, the directed tree representation
Φ: BN(G) → Aut(TG, ◁,≺) associated with G and <; let φ : BN(G) → Homeo0(R) be its corre-
sponding dynamical realization. Pursuing the discussion from the proof of Proposition 12.1.5, we
extract some properties of φ, which characterize it up to (positive) semi-conjugacy.

First recall that Gw0 ⊂ BN(G) is a subgroup supported on the subset of points below the
vertex w0. This implies that J0 := Suppφ(Gw0) is a relatively compact interval. Since Φ(f0) is a
hyperbolic element, the homeomorphism φ(f0) is a homothety (see for instance Remark 11.3.2).
For n ∈ Z, write Jn := fn0 .J0; since f−1

0 .w0 ◁ w0, we have the inclusion J−1 = f−1
0 .J0 ⋐ J0.

Finally, since the action of G on itself by left translations is free, we get that Gw0 acts freely on
E−
w0

, which implies g.J−1 ∩ J−1 = ∅ for every g ∈ Gw0 ∖ {1}. Moreover, the total order < on G
(which coincides with the planar order ≺w0 on E−

w0
) can be read from the action:

g > 1 ⇔ g.x > x for some x ∈ J−1 (equivalently, for any x ∈ J−1).
Summarizing we have the following:
(a) Suppφ(Gw0) =: J0 consists of a relatively compact interval;
(b) φ(f0) is a homotethy satisfying J−1 ⋐ J0, with J−1 := f−1

0 .J0;
(c) g.J−1 ∩ J−1 = ∅ for every g ∈ Gw0 ∖ {1};
(d) given x ∈ J−1 and g ∈ Gw0 , it holds that g.x > x if and only if g > 1.
For the next statement, recall that BN(G) is isomorphic to the group Γ which, in turn, can be
written as the quotient Γ = G ∗ Z/⟨⟨R1⟩⟩ (following the notation in (12.2.1) and (12.2.2), see
Proposition 12.2.5). We denote by π : G ∗ Z → Γ the corresponding projection. We also define
the height of an element γ ∈ H = ⟨G⟩ as

(12.2.8) ht(γ) := inf
{
n ∈ Z : γ ∈

〈⋃
m≤n Gm

〉}
.
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Notice that ht(γ) > −∞ for every γ ∈ H ∖ {1}. Indeed, if it were not the case, its image under
the isomorphism Ψ in Proposition 12.2.5 would be trivial, which is not the case.

Proposition 12.2.7. — Let (G,<) be a finitely generated left-ordered group. Consider the
free product G ∗ Z, and denote by f a generator of its cyclic factor. Consider also an action
φ0 : G ∗ Z → Homeo0(R) and assume that it satisfies conditions (a) to (d) above, with ⟨G0⟩ and f
instead of Gw0 and f0, respectively. Then, φ0 factors through the quotient π : G ∗Z → Γ, inducing
an action φ1 : Γ → Homeo0(R) which is (positively) semi-conjugate to the dynamical realization
of the directed tree representation associated with G ⊂ Sym(G) and <.

Proof. — After Proposition 12.2.5, in order to show that φ0 factors through the projection π

we need to check that the elements in R1 belong to the kernel of φ0. That is, we need to check
that the elements of the form [g1, gg2g

−1] are in the kernel of φ0, whenever g ∈ ⟨Gm⟩ ∖ {1} and
g1, g2 ∈

⋃
q<m Gq. We closely follow the proof of Lemma 12.2.4. On the one hand, for every

q < m and h ∈ Gq, there exists h′ ∈ G0 such that h = fqh′f−q, so that by condition (a), we have
that the support of φ0(h) is contained in Jq := fq0 .J0, and thus in Jm after condition (b) (and
the same argument for q = m). On the other hand, for any g ∈ ⟨Gm⟩ ∖ {1}, condition (c) gives
that g.Jm−1 ∩ Jm−1 = ∅. Thus, the support of φ0(gg2g

−1) is disjoint from Jm. Putting this all
together, we get that the support of φ0(g1) and that of φ0(gg2g

−1) are disjoint, as desired.
As in the statement, denote by φ1 : Γ → Homeo0(R) the action induced by φ0, and let I be

the orbit of J0 under φ1(Γ). Let also Φ: Γ → Aut(TG, ◁,≺) be the directed tree representation
associated with G and <, and denote by φ the dynamical realization of Φ. Our goal is to show
that φ and φ1 are semi-conjugate. This will be a direct consequence of the following statement.

Claim. — The family of intervals I is a covering prelamination, which determines a simplicial
planar directed tree, order-isomorphic to (TG, ◁,≺) via a Γ-equivariant isomorphism.

Proof of claim. — We consider the map

F : TG → I
g.w0 7→ g.J0

and then prove that it gives the desired Γ-equivariant order-isomorphism. To simplify notation,
given I1, I2 ∈ I, we write I1 < I2 if sup I1 ≤ inf I2. Also, given two vertices v1, v2 ∈ TG, we write
v1 ≺ v2 if for every points ξ1 ∈ ∂Uv1 and ξ2 ∈ ∂Uv2 in the shadows, we have ξ1 ≺ ξ2. We want to
show that the map F is well defined, Γ-equivariant, and satisfies the following conditions:
(i) v1 ◁ v2 implies F (v1) ⊂ F (v2),
(ii) v1 ≺ v2 implies F (v1) < F (v2)

To see that F is well defined, we need to check that StabΦ(w0) ⊆ Stabφ1(J0). Given γ ∈ ⟨G⟩
consider its height ht(γ) defined as in (12.2.8). Notice that if ht(γ) ≤ 0, then the support of γ is
contained in

⋃
r≤0 Jr, and therefore γ ∈ Stabφ1(J0). In order to show the inclusion between the

stabilizers, we claim that every γ ∈ StabΦ(w0) can be written as

(12.2.9) γ = γ1γ2 with γ1 ∈ Stabφ1(J0) and ht(γ2) < ht(γ).

To obtain a decomposition as in (12.2.9), first note that in the case ht(γ) ≤ 0 we are done.
Suppose it is not the case, and write γ = γ1 · · · γk with

max{ht(γj) : j ∈ {1, . . . , k}} = ht(γ) > 0.
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Then, since γ.w0 = w0 and 0 < ht(γ), we are in condition to apply Lemma 12.2.6 to the
decomposition γ = γ1 · · · γk. Thus, we can write γ = (f1h1f

−1
1 ) · · · (flhlf−1

l ) with f1, . . . , fl ∈
⟨Ght(γ)⟩ such that fi ̸= fj for i ̸= j, and ht(hi) < ht(γ) for i ∈ {1, . . . , l}. As discussed above,
for every i ∈ {1, . . . , l} such that fi ≠ 1Γ, we have that the support of φ1(fihif−1

i ) is disjoint
from Jht(γ)−1 and, as a consequence, disjoint from J0. Thus, if fi ̸= 1Γ for every i ∈ {1, . . . , l}
we are done. Suppose it is not the case, and that for some i we have fi = 1Γ. In this case, by
applying the commutation relations in R1 from Lemma 12.2.4, we can assume fl = 1Γ and we
set γ1 = (f1h1f

−1
1 ) · · · (fl−1hl−1f

−1
l−1) and γ2 = hl. Notice that, as we argued in the previous

case, the element γ1 fixes J0. Finally notice that, by the choice from Lemma 12.2.6, we have
ht(hl) < ht(γ). This gives the desired decomposition as in (12.2.9).

By applying the decomposition as in (12.2.9) finitely many times, we get a factorization
γ = δ1 · · · δr where δi is in the stabilizer of J0 for i ∈ {1, . . . , r− 1}, and ht(δr) ≤ 0. Finally, since
ht(δr) ≤ 0, we also have that δr is in the stabilizer of J0, and therefore the inclusion between the
stabilizers follows. This gives that the map F is well defined, as wanted. Moreover, by definition
of F , we also have that it is Γ-equivariant.

In order to prove condition (i), first recall that BN(G) acts transitively on the vertices of TG
(see the claim in the proof of Lemma 12.1.4). Thus, for every vertices v1 ◁ v2 in TG, there exists
γ ∈ Γ such that γ.v1 = ws for some s ∈ Z, and thus γ.v2 = wr for some r > s. Since the partial
order ◁ is preserved by the action Φ, and the inclusion relation is preserved by the action induced
by φ1 on I, using Γ-equivariance of F we only need to check that condition (i) holds when we
take v1, v2 in the subset {wn : n ∈ Z}. For this, consider wi ◁ wj ; then F (wi) = Ji ⊂ Jj = F (wj),
as desired. To prove condition (ii), first notice that, since condition (i) holds, it is enough to check
the condition taking v1 ≺ v2 adjacent to v1 & v2. Notice that the relation ≺ on TG is invariant
under Φ, and the relation < on I is invariant under the action induced by φ1. Following the same
reasoning as for condition (i), it is enough to check condition (ii) taking v1, v2 adjacent to w0. In
that case, condition (i) follows from condition (d) in the statement. Summarizing, conditions (i)
and (ii) are satisfied by the map F , as wanted.

After the claim, we have that the directed tree representation Φ: Γ → Aut(TG, ◁,≺) is conjugate
to a focal action representing φ1 (technically speaking, its positive semi-conjugacy class, as φ1
need not be minimal and we may be forced to consider a minimal action semi-conjugate to φ1).
This implies that φ and φ1 are positively semi-conjugate.

Proof of Theorem 12.2.1. — Given any irrational α ∈ R ∖ Q, denote by τα : Z2 → Homeo0(R)
the action by translations so that τα((1, 0))(x) = x+ 1 and τα((0, 1))(x) = x+α. By the Pixton–
Tsuboi examples (see Tsuboi [Tsu95]), for each α ∈ R∖Q, there exists an action φα : Z2 → Diff1

0(R)
such that:
— φα is supported on (0, 1),
— the restriction φα ↾(0,1) is semi-conjugate to τα, and
— φα ↾(0,1) has an exceptional minimal set Λα ⊂ (0, 1).
Then, for any irrational α ∈ R ∖ Q, consider an affine expanding homothety fα : R → R with
fixed point in (0, 1) ∖ Λα so that f−1

α ((0, 1)) ∩ Λα = ∅. Consider the free product Z2 ∗ Z, and
denote by f0 a generator of the cyclic factor. Then, we define the action φα0 : Z2 ∗ Z → Diff1

0(R)
so that φα0 coincides with φα on the Z2-factor and φα0 (f0) = fα. It is direct to check that the
action φα0 satisfies conditions (a) to (d) in the statement of Proposition 12.2.7, with G = Z2 and
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with < being the left-invariant order <α induced by τα. Then, applying Proposition 12.2.7 we
conclude that φα0 induces an action Ψα : BN(Z2) → Diff1

0(R), semi-conjugate to the dynamical
realization of the planar directed tree representation associated with Z2 ⊂ Sym(Z2) and <α,
which is faithful, minimal, and micro-supported (in particular, any action semi-conjugate to Ψα

must be faithful). On the other hand, by Proposition 12.1.5, different orders <α1 and <α2 give
rise to planar directed tree representations with non-conjugate dynamical realizations. Therefore,
Ψα1 and Ψα2 are not semi-conjugate.



CHAPTER 13

A PLETHORA OF LAMINAR ACTIONS OF THOMPSON’S
GROUP F

Perhaps the most basic example of a finitely generated locally moving group is Thompson’s
group F (cf. Proposition 3.3.1). Recall that we have defined F in §2.3 as the Bieri–Strebel
group G((0, 1);Z[1/2], ⟨2⟩∗). Some examples of laminar actions of F can be obtained by the
constructions in §6.2 (jump cocycles), §9.3 (orders of germ type revisited), and §11.3.3 (groups
with cyclic germs at infinity), which already show that F admits an uncountable family of
non-conjugate such actions. In this chapter, we illustrate the abundance of laminar actions of
the group F by providing various other constructions, and describing some subtle differences in
their dynamical behavior. While we will focus more on some significant examples, the reader will
notice that these constructions admit various variations involving several choices, which depend
on the data and are not always compatible between them. Trying to take them all into account
simultaneously would result in an obscure treatment. This abundance of laminar actions of F
may appear surprising when compared with the results in Chapter 10, where we have seen that
the Bieri–Strebel group G(2), whose definition is very close to that of F , admits exactly two
faithful minimal exotic actions up to conjugacy.

As we shall see, an interesting feature shared by many of the constructions that we will provide
is that they yield laminar actions of F that are simplicial in the sense of Definition 11.3.4 (that is,
preserve a discrete lamination). We will see in §13.4.1 various equivalent characterizations of this
property, one of them being that the commutator subgroup [F, F ] does not admit any minimal
invariant set for the action. However, we will also construct in §13.4.2 a family of actions which
remain minimal in restriction of [F, F ] (and thus are not simplicial).

13.1. Structure of laminar actions of F

We begin by restating Corollary 9.2.2 in the special case of F . Note that F is well known to be
fragmentable (for instance, the generators a and b in the presentation (3.3.1) can be taken in the
subgroups F+ and F−, respectively). Furthermore, the largest quotient of F is its abelianization
F ab ∼= Z2. Thus Corollary 9.2.2 applies and gives the following structure theorem for actions of
F .

Theorem 13.1.1. — Every irreducible action φ : F → Homeo0(R) is semi-conjugate to one of
the following.
— (Non-faithful) An action by translations of F ab ∼= Z2.
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— (Standard) The standard piecewise linear action of F on (0, 1).
— (Exotic) A minimal laminar action, horograded by the standard action of F on (0, 1).

Remark 13.1.2. — Note that minimal laminar actions of F are always faithful, as any proper
quotient of F is abelian, and minimal laminar actions cannot be conjugate to any action by
translations (for instance, because every element has fixed points, see Lemma 8.1.9).

Theorem 13.1.1 gives many constraints on the structure of actions of F on R, in terms of the
standard action. In particular, it implies that for all exotic actions, the type of all individual
elements of F satisfy a dynamical classification that can be read from the standard action on
(0, 1) (see Proposition 8.2.10). For ease of reference, let us restate this dynamical classification
in this special case. For this, recall that given g ∈ F , we denote by D±g(x) the (right or left)
derivative of g at a point x ∈ [0, 1], with respect to the standard piecewise linear action.

Proposition 13.1.3 (Dynamical classification of elements)
Let φ : F → Homeo0(R) be a minimal laminar action, positively horograded by the standard

action on (0, 1). Then the following hold.
— For every x ∈ (0, 1), the image φ(F(0,x)) is totally bounded. In particular, the φ-image of
every element g ∈ F with D−g(1) = 1 is totally bounded.
— For every g ∈ F such that D−g(1) ̸= 1 the φ-image of g is a pseudo-homothety, which is
expanding if D−g(1) < 1 and contracting otherwise. If moreover g ∈ F has no fixed points in
(0, 1), then its image is a homothety.

Let us also fix some notation that will be used throughout the chapter. Recall that the
commutator subgroup [F, F ] is simple and coincides with the subgroup Fc of compactly sup-
ported elements, so that the largest quotient F/[Fc, Fc] coincides with the abelianization
F ab ∼= Germ(F, 0) × Germ(F, 1) ∼= Z2. We choose the identification

(τ0, τ1) : F ab ∼−→ Germ(F, 0) × Germ(F, 1)

obtained by identifying the groups of germs Germ(F, 0) and Germ(F, 1) with Z, with the convention
that τx(g) > 0 if and only if the corresponding endpoint x ∈ {0, 1} is an attracting fixed point of
g. Explicitly,

(13.1.1) τ0(g) = − log2 D
+g(0) and τ1(g) = − log2 D

−g(1).

In addition, we will denote by f the element of the generating pair of F given by

(13.1.2) f(x) =


2x x ∈ [0, 1

4 ],

x+ 1
4 x ∈ [ 1

4 ,
1
2 ],

1
2x x ∈ [ 1

2 , 1].
We will also write 1F for the trivial element of F (and we will simply denote it by 1 when there
is no risk of confusion). Since τ1(f) is a generator of Germ(F, 1), we have a splitting

F = F+ ⋊ ⟨f⟩.

Remark 13.1.4. — A common feature of all our constructions of laminar actions of F is
the choice of a closed subset K ⊆ (0, 1), which is invariant under the element f defined in
(13.1.2). These sets appear quite naturally with the point of view of focal actions. To understand
this, take a minimal laminar action φ : F → Homeo0(R). By Theorem 13.1.1, we know that it
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can be horograded by the standard action on (0, 1), meaning that one can find a focal action
Φ: G → Aut(T, ◁,≺) on a directed planar tree, horograded by the standard action, and whose
dynamical realization is (conjugate to) φ. By Proposition 13.1.3, the element f fixes a unique
end ξ0 ∈ ∂∗T, so that it preserves the axis ]ξ0, ω[⊂ T, which is naturally identified with the
interval (0, 1) via the horograding map h : T → (0, 1). In particular, the h-image of the closure
]ξ0, ω[∩ Br(T) of the subset of branching points on this axis defines an φ(f)-invariant closed subset
K ⊆ (0, 1). Although for some choices of the action Φ, the subset K can be the whole interval
(0, 1), it is not the case in most examples with correct choice of Φ.

13.2. A plethora of laminar actions, I: restriction preorders

Starting from now, we will present various constructions of laminar actions of the group F

and study some of their properties.

13.2.1. A reinterpretation in terms of preorders. — Recall that we write τ1 : F → Z ∼=
Germ(F, 1) for the germ homomorphism given by (13.1.1), and consider the element f of the
standard generating pair of F given by (13.1.2). Recall also the splitting F = F+ ⋊ ⟨f⟩. As in
§9.3, we can make F act on F+ “affinely”, by letting F+ act on itself by left translations, and
f act on F+ by conjugation. As in (9.3.1), for g = hfn ∈ F , with h ∈ F+ and n ∈ Z and for
r ∈ F+, this action is given by g · r = hfnrf−n.

Assume that ⪯ is an f -invariant preorder on F+, that is, a left-invariant preorder on F+ which
is also invariant under conjugation by f . In particular its residue H = [1]⪯ is normalized by f , so
that the action of F on F+ descends to an order-preserving action on (F+/H,≺), where ≺ is the
total order induced by ⪯. Then we can consider the dynamical realization φ : F → Homeo0(R) of
this action. We have the following equivalence.

Proposition 13.2.1. — Let φ : F → Homeo+(R) be an action. The following are equivalent.
(i) φ is a minimal laminar action, horograded by the standard action on (0, 1).

(ii) There exists an f -invariant preorder ⪯ on F+ such that, writing H = [1]⪯, the map f acts as
a homothety on (F+/H,≺), and φ is conjugate to the dynamical realization of the action of F on
(F+/H,≺).
Moreover, two distinct preorders as in (ii) give rise to (positively) non-conjugate minimal laminar
actions.

Proof. — Let us prove that (ii) implies (i). Assume that ⪯ verifies the conditions, and let φ be
the dynamical realization of the action of F on (F+/H,≺). Since f is a homothety on (F+/H,≺),
Proposition 2.2.17 implies that φ is minimal. Furthermore, the fact that f is a homothety on
(F+/H,≺) implies that φ(f) is a homothety. As φ must be described by one of the cases of
Theorem 13.1.1, the only possibility is that φ is laminar, horograded by the standard action on
(0, 1).

For the converse, let φ be as in (i). If so, then Proposition 13.1.3 gives that φ(f) is a homothety;
let ξ ∈ R be its unique fixed point, and consider the preorder ⪯ on F+ associated with this
point: g ¬ h if and only if g.ξ < h.ξ. Using that ξ is fixed by f , we see that ⪯ is invariant under
conjugation by f , and that the natural action of F on (F+/[1]⪯,≺) can be identified with the
action of F on the orbit of ξ, showing the claim.
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Finally note that these two constructions are inverse to each other, and since ξ is the unique
fixed point of f , the preorder ≺ is uniquely determined by the (positive) conjugacy class of the
action.

13.2.2. Restriction preorders on F+. — Let us describe a concrete construction of preorders
on F+ satisfying (ii) in Proposition 13.2.1. This yields a family of laminar actions of F which
contains as special cases the constructions in §9.3 and §11.3.3.

Let K ⊆ (0, 1) be a closed subset. We consider a preorder ⪯K on F+ which is obtained by
looking at the restriction of elements of F+ to K, as follows. We first consider the subgroup
H = {g ∈ F+ : g(x) = x for every x ∈ K}, and for g ∈ F+ define

xg =
{

0 if g ∈ H,

sup{x ∈ K : g(x) ̸= x} if g ∈ F+ ∖H.

We immediately observe that xg = xg−1 for every g ∈ F+. Moreover, we have the following
behavior when considering compositions.

Lemma 13.2.2. — Let K ⊆ (0, 1) be a non-empty closed subset, and take g, h ∈ F+. Then we
have the inequality xgh ≤ max{xg, xh}, and when xh ̸= xg the equality xgh = max{xg, xh} holds.

Proof. — Note that if x ∈ K is such that x > max{xg, xh}, then gh(x) = g(x) = x. This gives
the inequality xgh ≤ max{xg, xh}.

Assume now xh ̸= xg. Since xgh = xh−1g−1 , upon replacing the pair (g, h) with (h−1, g−1), we
can assume that xh < xg. Assume first we are in the case g(xg) ̸= xg. Then gh(xg) = g(xg) ̸= xg,
proving that xg ≤ xgh, hence xgh = xg (using the previous inequality). When g(xg) = xg, then
xg is accumulated from the left by points of K which are moved by g; in particular for every such
point x with xh < x < xg, we have gh(x) = g(x) ̸= x, giving x ≤ xgh. Taking the supremum we
obtain the desired equality xg = xgh. Note also that the same assumption xh < xg (which is
equivalent to xh−1 < xg−1) gives xg−1h−1 = xg−1 = xg. As xhg = xg−1h−1 , we deduce from the
previous case that xhg = xg. This concludes the proof.

We next introduce the subset

(13.2.1) PK =
{
g ∈ F+ ∖H : either g(xg) > xg, or g(xg) = xg and D−g(xg) > 1

}
and observe the following.

Lemma 13.2.3. — For any non-empty closed subset K ⊆ (0, 1), the subset PK defines a positive
cone in F+.

Proof. — We have to verify the conditions in Remark 2.2.8. Let us first prove that F+ =
PK ⊔H ⊔ P−1

K . For this notice that, since xg = xg−1 , we have

P−1
K = {g ∈ F+ ∖H : either g(xg) < xg, or g(xg) = xg and D−g(xg) < 1}.

Thus, we automatically get that H ∩
(
PK ∪ P−1

K

)
= ∅ and PK ∩ P−1

K = ∅. It only remains to
show that F+ ⊆ PK ⊔ H ⊔ P−1

K . For this, take g ∈ F+ ∖H, so that xg > 0. If xg ̸= g(xg) we
are done. In the complementary case, xg must be accumulated from the left by points that are
moved by g. Since g is piecewise linear we must have D−g(xg) ̸= 1, showing that g ∈ PK ⊔ P−1

K .
Next, let us check that PK is a semigroup and HPKH ⊆ PK .

Take g, h ∈ PK , and assume first xh < xg. Then Lemma 13.2.2 gives xgh = xg and gh(xgh) =
g(xg). If g(xg) > xg, we deduce immediately gh ∈ PK ; otherwise xg is accumulated from the



13.2. A PLETHORA OF LAMINAR ACTIONS, I 143

left by points of K, which must be fixed by h, so that D−h(xg) = 1. Then D−(gh)(xgh) =
D−g(xg)D−h(xg) > 1, and we conclude that gh ∈ PK .

Assume now that xg < xh, so that xgh = xh by Lemma 13.2.2. Consider first the case
h(xh) = xh. Then gh(xgh) = g(xh) = xh = xgh, and as in the previous case we see that
D−g(xh) = 1, so that D−(gh)(xgh) = D−h(xh) > 1. If h(xh) > xh, then gh(xgh) > g(xh) = xh.
In both cases we have gh ∈ PK .

Note that the previous argument works also when one of the two elements is in the residue H,
proving that HPKH ⊆ PK .

Finally, consider the case xg = xh. As h(xh) ≥ xh and g(xg) ≥ xg, then if any of the two
inequalities is strict, we deduce gh(xg) > xg, and thus xgh = xg (by the inequality of Lemma
13.2.2) and gh ∈ PK . Otherwise, assume that both g and h fix xg = xh. Then we have the
relation D−(gh)(xgh) = D−g(xg)D−h(xh) > 1, showing that xgh = xg (again by Lemma 13.2.2)
and gh ∈ PK also in this case.

The previous lemma leads to the following definition.

Definition 13.2.4. — Given a closed subset K ⊆ (0, 1), the preorder ⪯K on F+ defined by the
positive cone PK in (13.2.1) will be called the restriction preorder associated with K. We will
always write H = [1]⪯K for its residue.

Let us describe some elementary properties related to the preorder ⪯K that will be useful in
the sequel.

Lemma 13.2.5. — Let K ⊆ (0, 1) be a non-empty closed subset, and let ⪯K be the corresponding
restriction preorder on F+. Then the following hold.

(i) For g, h ∈ F+ with 1 ⪯K g ⪯K h, we have xg ≤ xh.

(ii) For x ∈ (0, 1), the subset Lx := {g ∈ F+ : xg ≤ x} is a ⪯K-convex subgroup.

Proof. — We first prove (i). We can assume g ∈ PK , otherwise xg = 0 and the result follows.
Assume for contradiction that xg > xh. Then from Lemma 13.2.2 we have xg−1h = xg. Consider
first the case g(xg) > xg, then g−1h(xg) = g−1(xg) < xg, so that g−1h ¬K 1F , contradicting the
assumption g ⪯K h. Consider next the case g(xg) = xg, so that D−g(xg) > 1 and D−h(xg) = 1
(as in this case, xg is accumulated from the left by points of K). Then g−1h(xg) = xg and
D−(g−1h)(xg) = D−g(xg)−1 < 1, giving again the contradiction g−1h ¬K 1F .

The inequality xgh ≤ max{xg, xh} from Lemma 13.2.2 shows that the subset Lx in (ii) is a
subgroup, whilst (i) proves that Lx is ⪯K-convex.

Note that the coset space F+/H can be identified with the set of restrictions {g ↾K : g ∈ F+},
so that two elements g, h ∈ F+ are equivalent for ⪯K if and only if their restrictions to K coincide.

Lemma 13.2.6. — Suppose that the closed subset K ⊆ (0, 1) is f -invariant. Then the restriction
preorder ⪯K on F+ is f -invariant, and the conjugacy induces a homothety on (F+/H,≺K) fixing
H.

Proof. — The verification that ⪯K is f -invariant follows easily from f -invariance of K. Indeed,
it is clear that it fixes the point corresponding to H. We next verify that conjugation by f
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preserves the positive cone PK . Take h ∈ PK , write x∗ = xh and note that f(xh) = xfhf−1 .
When h(xh) > xh, we have fhf−1(xfhf−1) = fh(xh) > xh; otherwise, we have h(xh) = xh and

D−(fhf−1)(xfhf−1) = D−h(xh) > 1.

Hence fhf−1 ∈ PK , as wanted.
More generally, for n ∈ N, consider hn = fnhf−n and observe that the point xhn

= fn(xh)
tends to 1 as n → ∞. Take r ∈ PK , and let y ∈ (0, 1) be such that r acts trivially on (y, 1). If
n is large enough so that hn(xhn) = fnh(xh) and xhn are both greater than y, we have that
xr−1hn

= xhn and r−1hn coincides with hn on a neighborhood of xhn . Since hn ∈ PK , and this
depends only on the behavior of hn on some neighborhood of xhn

, we must have r−1hn ∈ PK for
n large enough, and thus hn K r. Since h and r were arbitrary ⪯K-positive elements and we
can repeat the same reasoning for arbitrary h, r ∈ P−1

K , this shows that the conjugation by f is a
homothety.

Proposition 13.2.7. — Given a non-empty f-invariant closed subset K ⊆ (0, 1), denote by
ψK : F → Homeo0(R) the dynamical realization of the action of F on (F+/H,≺K) defined above.
Then ψK is a minimal laminar action, positively horograded by the standard action on (0, 1).
Moreover, for two f -invariant closed subsets K1 ̸= K2, the actions ψK1 and ψK2 are not conjugate.

Proof. — By Proposition 13.2.1 ψK is laminar, positively horograded by the standard action on
(0, 1). Note also that since the residue H is the pointwise stabilizer of K, and two distinct closed
subsets of (0, 1) have different pointwise stabillizers, ⪯K determines K completely. In particular,
by the last part of Proposition 13.2.1, when K1 ̸= K2, we have that their associated actions ψK1

and ψK2 are not conjugate.

13.2.3. Some properties of the actions arising from restriction preorders. — Given
a non-empty f -invariant closed subset K ⊆ (0, 1), we keep denoting by ψK : F → Homeo0(R)
the action constructed above. We want to point out some dynamical features of this family of
actions. Recall that a minimal action of a group G on a locally compact space Y is topologically
free if the set of fixed points Fix(g) has empty interior for every g ∈ G. By Baire’s theorem, this
is equivalent to the requirement that there is a Gδ-dense set of points in Y with trivial stabilizer
in G.

Proposition 13.2.8 (Freeness and non-freeness). — Let K ⊆ (0, 1) be a non-empty
f-invariant closed subset. Then, the laminar action ψK : F → Homeo0(R) defined above is
topologically free if and only if K = (0, 1). In particular, F admits both topologically free and
non-topologically free minimal laminar actions.

Proof. — Assume K = (0, 1). We claim that the action ψ := ψK is topologically free. Indeed,
in this case, the preorder ⪯K is actually a total order on F+. Thus, there is a dense subset of
points in R with trivial stabilizer for ψ(F+), which implies that the action of F+ is topologically
free. Assume by contradiction that g ∈ F is such that Fixψ(g) has non-empty interior, and let I
be a connected component of its interior. Note that g /∈ F+, so that by Propositions 13.2.1 and
13.1.3, the image ψ(g) must be a pseudo-homothety; in particular I is bounded. As the action ψ
is proximal (see for instance Proposition 8.1.15), there exists h ∈ F such that ψ(h)(I) ⋐ I. Then
it is not difficult to see that the commutator [g, h] = ghg−1h−1 is non-trivial, belongs to F+, and
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fixes ψ(h)(I) pointwise. This is a contradiction since we have already shown that the action of
F+ is topologically free.

Now consider the case K ̸= (0, 1). We can take a connected component U = (y, z) of the
complement (0, 1) ∖K, and consider a non-trivial element h ∈ F+ whose support is contained in
U . Fix x < y and consider the ⪯K-convex subgroup Lx from Lemma 13.2.5. Take an element
g ∈ Lx, and let us prove that the conjugate g−1hg belongs to H. For this, note that the condition
xg < x implies g−1(U) = U , so that the restriction of g−1hg to the complement (0, 1) ∖ U is
trivial. This immediately implies that g−1hg fixes every point of K, so that g−1hg belongs to
the residue H. This proves that hgH = gH for any element g ∈ Lx, so that the element h fixes
the ≺K-convex subset Lx/H pointwise. We deduce that ψK(h) fixes a non-empty open interval.
Moreover, ψK(h) is non-trivial because laminar actions of F are always faithful (see Remark
13.1.2).

Remark 13.2.9. — Proposition 13.2.8 should be compared with the fact that many groups
arising via a micro-supported action by homeomorphisms satisfy rigidity results for their non-
topologically free actions on compact spaces, as shown in the works of Le Boudec and the second
author [LBMB18, MB, LBMB23] using results on uniformly recurrent subgroups and confined
subgroups. As an example tightly related to this setting, consider Thompson’s group F and its
sibling T acting on the circle. Then, every minimal action of T on any compact space is either
topologically free, or factors to its standard action on the circle, while every faithful minimal
action of F on a compact space is topologically free [LBMB18]. Proposition 13.2.8 shows that
actions on the line behave very differently from this perspective, and the notion of topological
freeness is much less relevant.

Another feature of this family of actions is the following. Recall that a minimal laminar action
is simplicial if it preserves a discrete lamination (see Definition 11.3.4 and Proposition 11.3.3).

Proposition 13.2.10 (Simpliciality). — Let K ⊂ (0, 1) be a non-empty f-invariant closed
subset, and consider the corresponding action ψK : F → Homeo0(R), as constructed above. Then,
the image of F+ does not act minimally on R. In particular, every action ψK is simplicial.

Proof. — Fix x ∈ (0, 1) and consider the ⪯K-convex subgroup Lx = {g ∈ F+ : xg ≤ x} (Lemma
13.2.5). In the dynamical realization ψK of the action F → Aut

(
F+/H,≺K

)
, the cosets of Lx

span a ψK(F+)-invariant family of disjoint open intervals, showing that the ψK-action of F+
is not minimal, and thus it does not admit any minimal invariant set (Lemma 8.3.6). After
Proposition 11.3.3, this is equivalent to ψK being simplicial.

One way to analyze finer properties of laminar actions of the group F is to apply Theorem
13.1.1 inductively, by exploiting the self-similarity of F . Namely, assume that φ : F → Homeo+(R)
is a minimal laminar action, positively horograded by the standard action on (0, 1). Recall that
for every dyadic x ∈ (0, 1), the group F(0,x) is isomorphic to F , and its image under φ is totally
bounded (that is, Fixφ(F(0,x)) accumulates on both ±∞). Thus, we can apply Theorem 13.1.1 to
the action of F(0,x) on every connected component J of Suppφ(F(0,x)). It follows that this action
still falls into one of the three cases up to semi-conjugacy: action by translations, the standard
action, and laminar actions. In the third case, this analysis can of course be iterated. We will
speak of “sublevels” of the action φ to refer to the actions of the subgroups F(0,x) obtained in
this way. From this point of view, the actions ψK arising from restriction preorders are very
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special: indeed they are not exotic on any sublevel (in contrast with other laminar actions
of F ; see Proposition 13.3.7 below). The proof of this fact is relatively short when using the
notion of domination between preorders that will be introduced later in Definition 14.3.1, and in
particular the fact that if one preorder dominates another one, then their dynamical realizations
are positively semi-conjugate (Lemma 14.3.12).

Proposition 13.2.11 (Absence of exotic sublevels). — Let K ⊆ (0, 1) be a non-empty
f-invariant closed subset, and consider the corresponding action ψK : F → Homeo0(R), as
constructed above. Let x ∈ X be a dyadic point, and J a connected component of Suppψ(F(0,x)).
Then, the ψ-action of F(0,x) on J is semi-conjugate either to its standard action on (0, x), or to a
cyclic action by translations induced from the group of germs Germ(F(0,x), x) ∼= Z.

Proof. — Let ξ0 be the unique fixed point of ψ(f). Let us first show the claim for the action
of F(0,x) on J = Iψ(x, ξ0) (the connected component of Suppψ(F(0,x)) containing ξ0). The semi-
conjugacy type of this action is determined by the preorder ⪯ξ0∈ LPO(F(0,x)) induced by the
point ξ0 on F(0,x), which coincides with the restriction of ⪯K to F(0,x). Now we distinguish two
cases.

First assume that K ∩ (0, x) does not accumulate on x. Write y = sup{K ∩ (0, x)} < x, and
let ⪯y∈ LPO(F(0,x)) be its induced preorder on F(0,x). If g ∈ F(0,x) is such that g(y) > y, then
g ∈ PK , and by Lemma 14.3.4, this is equivalent to the fact that ⪯y dominates ⪯ξ0 . Then Lemma
14.3.12 gives that the dynamical realizations of the two preorders are positively semi-conjugate;
as the dynamical realization of ⪯y is the standard action of F(0,x), the conclusion follows in this
case.

Assume now that sup{K ∩ (0, x)} = x. In this case, by definition of ⪯K , we get that ⪯ξ0 is
dominated by a preorder obtained as the pull-back of one of the two non-trivial preorders on
Germ(F(0,x), x) ∼= Z. This shows the conclusion for ξ = ξ0.

If now ξ ∈ Suppψ(F(0,x)) is arbitrary, then by minimality we can choose h ∈ F such that
ψ(h)(ξ0) ∈ Iψ(x, ξ). Then, the conclusion follows from the previous case applied to the action of
F(0,h−1(x)) = h−1F(0,x)h on Iψ(h−1(x), ξ0).

13.2.4. Some variations on the restriction preorder construction. — The restriction
preorder construction can be modified in multiple ways to produce new families of minimal
laminar actions, which are not conjugate to the actions ψK defined above. We indicate some of
them, without detailed exploration nor attempt to include them all in a unified family.

(1) Twisting with sign choices. In addition to the f -invariant subset K ⊆ (0, 1), consider an
f -invariant choice of signs u : K → {+1,−1}. We proceed to define a preorder ⪯(K,u) on F+. For
this, given g ∈ F+ we say that g (K,u) 1F if either u(xg) = 1 and g K 1F , or u(xg) = −1 and
g ¬K 1F . It is direct to check (following the proof of Lemma 13.2.3) that ⪯(K,u) is an invariant
preorder on F+ and that f -invariance of u makes ⪯(K,u) invariant under conjugation by f . Of
course, when u ≡ 1 the preorders ⪯(K,u) and ⪯K coincide. There are some straightforward
variations to this twist. For instance, one may consider two different f -invariant functions
u, v : K → {±1} to determine the sign in the two different cases g(xg) ̸= xg and g(xg) = xg.

(2) Twisting with derivative morphisms. In this case, in addition to the f -invariant set K ⊆ (0, 1),
consider a left-invariant order <0 on the abelian group

A = {(2n, 2m) : n,m ∈ Z} ∼= Z2
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(note that A can be though as the set of derivatives that an element of F can take at a dyadic
point). As before, we will define an f -invariant preorder on F+. For this, consider a different
definition of xg, namely define

x′
g := sup

{
x ∈ K : g(x) ̸= x, or g(x) = x and (D−g(x), D+g(x)) ̸= (1, 1)

}
.

Then, set ⪯K
0 ∈ LPO(F+) so that g 

K
0 1F if either g(x′

g) > x′
g, or g(x′

g) = x′
g and

(D−g(x′
g), D+g(x′

g)) >0 (1, 1). Again, it is straightforward to check (following the proof of
Lemma 13.2.3) that the preorder ⪯K

0 is f -invariant.
To compare these preorders with the preorders of the form ⪯(K,u), consider p ∈ (0, 1) ∩Z[1/2]

and the closed subset Kp = {fn(p) : n ∈ Z}. In this case, all the twists ⪯(Kp,u) given by sign
choices coincide with ⪯Kp , while the preorder ⪯Kp

0 just defined does not.

(3) Twisting with new orderings of (0, 1). In the construction of the preorder ⪯K one can modify
the definition of the point xg by taking the supremum with respect to an order ≺0 on K which
is different from the order induced from the embedding K ⊆ (0, 1). The whole construction will
still be well defined, provided ≺0 is f -invariant and satisfies suitable assumptions, which are not
difficult to figure out, but are rather technical to state. Instead of discussing this in general, let
us give an example.

Take 0 < x0 < p1 < p2 < f(x0) < 1, and define K as the union of the orbits of p1 and p2.
Then, we define the total order ≺0 on K so that fm(pi) ≺0 f

n(pj) if either m+ i < n+ j, or
m+ i = n+ j, i = 1 and j = 2. More explicitly, we have

· · · ≺0 f
−2(p2) ≺0 p1 ≺0 f

−1(p2) ≺0 f(p1) ≺0 · · · .

It is clear that ≺0 is f -invariant. We can then define a preorder ⪯K,≺0 in the same way as the
restriction preorder ⪯K , except that we replace the point xg by the point x′′

g consisting of the
≺0-greatest element of the subset {x ∈ K : g(x) ̸= x}. It is straightforward to check that ⪯K,≺0

is an f -invariant preorder, inducing an order-preserving action F → Aut
(
F+/[1]⪯K,≺0 ,≺K,≺0

)
as above. Denote by Ψ0 = ΨK,≺0 the dynamical realization of this action, and assume that its
associated good embedding satisfies ι([1]⪯K,≺0 ) = 0. It can be shown that different choices of p1
and p2 produce non-conjugate actions. On the other hand, the interested reader can check that
the semi-conjugacy classes of the sublevels F(0,x) ↷ IΨ0(x, 0) only depend on the choice of p2,
but not of p1. This shows that exotic actions cannot be reconstructed with the information of
the semi-conjugacy classes of its sublevels (as defined in Proposition 13.2.11).

Again there are some obvious variations of this, such as considering preorders on A instead of
orders, and modifying the definition of the point x′

g accordingly.

Of course one can consider appropriate combinations of the variants defined above. However,
whether such combinations make sense or not, depends on the choice of the parameters, and a
unified treatment would be obscure and pointless. All constructions obtained using these methods
yield simplicial actions.

13.3. A plethora of laminar actions, II: ordering the orbit of a closed subset of (0, 1)

We now describe another method to construct laminar actions of F . The starting ingredient of
this method is again a non-empty closed subset K ⊆ (0, 1) which is invariant under the generator
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f given by (13.1.2). We assume now K ̸= (0, 1), and consider the F -orbit of K among closed
subsets of (0, 1), and denote it as

OK := {g(K) : g ∈ F}.

As K ⊂ (0, 1) is a proper subset, we clearly have that the orbit OK is infinite. The natural
attempt is to try to define an F -invariant order on OK , and then consider its dynamical realization.
While this may seem similar to the construction just discussed in §13.2.2, it turns out to be quite
different, and it produces actions with more exotic dynamical properties. Note that we are not
aware of any general receipt to build F -invariant orders on OK which works for all K: the way
such orders arise depend subtly on the properties of the subset K. However, what is true is that
for any K we can consider a natural focal action on a directed tree

Φ: F → Aut(TK , ◁),

horograded by the standard action of F on (0, 1), together with an F -equivariant injective map
i : OK → ∂∗TK , so that the problem is reduced to find a Φ-invariant planar order on (TK , ◁),
which is in principle easier than finding a general F -invariant order on OK . We will first detail
this strategy in general, and then illustrate it in practice with a concrete choice of a subset K
(there are examples of subsets K for which this strategy cannot work, see Example 13.3.3). More
examples of actions obtained using this method will appear later in §13.4.

13.3.1. A strategy to order OK . — Assume that K ⊊ (0, 1) is an f -invariant closed subset.
Since the germ of f at 1 generates the group of germs Germ(F, 1) ∼= Z and K is f -invariant, it
follows that every K1 = g(K) ∈ OK must coincide with K on an interval of the form (1 − ε, 1),
with ε > 0. Thus, it follows that any two distinct subsets K1,K2 ∈ OK coincide on some interval
of the form (1 − ε, 1), so that we can define

(13.3.1) α(K1,K2) = inf{x ∈ (0, 1) : K1 ∩ [x, 1) = K2 ∩ [x, 1)}.

As K is closed, we have α(K1,K2) ∈ K1 ∩ K2; when K1 = K2, we declare α(K1,K2) = 0.
Moreover, in light of the previous discussion, we get that α(K1,K2) < 1 for every K1,K2 ∈ OK .
It is clear from the definition that for every K1,K2,K3 ∈ OK with α(K1,K3) ≤ α(K2,K3), we
have α(K1,K2) ≤ α(K2,K3) (indeed, when K2 ̸= K3, the three intersections Ki ∩ [α(K2,K3), 1)
for i ∈ {1, 2, 3} coincide). This gives the ultrametric inequality

α(K1,K2) ≤ max{α(K2,K3), α(K1,K3)}.

In other terms, we have just verified that the map α : OK × OK → [0, 1) is an ultrametric on OK .
For L ∈ OK and x ∈ [0, 1), we will write

Bα(L, x) = {L′ ∈ OK : α(L,L′) ≤ x}

for the α-ball of radius x centered at L. We denote by BK the collection of α-balls in OK of
radius x > 0. We remark the following property.

Lemma 13.3.1. — For every closed f-invariant subset K ⊊ (0, 1), let BK be the collection of
α-balls defined above. Then the following hold.

— The collection BK is cross free.
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— For any g ∈ F , L ∈ OK , and x ∈ [0, 1), we have

(13.3.2) g.Bα(L, x) = Bα(g(L), g(x)).

In particular, the collection BK is F -invariant.

— For any α-ball B ∈ BK , there exists a sequence of elements (gn) ⊂ F such that the sequence
gn.B defines an increasing exhaustion of OK .

Proof. — The fact that B is cross free is a well-known consequence of the ultrametric inequality.
Next, for given g ∈ F and K1,K2 ∈ OK , we have

α(g(K1), g(K2)) = inf{x ∈ (0, 1) : K1 ∩ [g−1(x), 1) = K2 ∩ [g−1(x), 1)}
= inf{g(y) ∈ (0, 1) : K1 ∩ [y, 1) = K2 ∩ [y, 1)} = g (α(K1,K2)) ,

from which we deduce the second statement. Finally, as the action of F on OK is transitive, it
is enough to check that there exists a sequence of elements (gn) ⊂ F such that the sequence of
α-balls gn.Bα(K,x) defines an increasing exhaustion of OK . For this, note that by f -invariance
of K we have fn.Bα(K,x) = Bα(K, fn(x)), and thus OK =

⋃
n≥0 f

n.Bα(K,x), as desired.

From this, we see that for any F -invariant order < on OK for which α-balls are convex, the
collection BK gives an F -invariant prelamination, and the action of F is focal. We will say for
short that < is α-convex if it satisfies this property. Note also that the relation (13.3.2) implies
that the function

(13.3.3) hK : BK → (0, 1)
Bα(L, x) 7→ x

defines a positive prehorograding of the F -action on OK by the standard action on (0, 1). By
taking the dynamical realization, this will give our desired laminar action of F . However, it is
not clear a priori that for a given subset K, such an α-convex order exists, and this is why what
we have just described is simply a strategy. In practice, α-convex orders on OK are such that the
order relation between K1 and K2 only depends on how K1,K2 behave “right before” the point
α(K1,K2), in an F -invariant way.

In fact, a nice way of thinking about possible α-convex orders is to go through the well-known
correspondence between ultrametric spaces and trees (see for instance Choucroun [Cho94] or
Hughes [Hug04]). Here we simply have to reproduce the construction in Proposition 11.2.3,
starting with the action of F on OK , preserving the collection BK , and using the monotone
equivariant function hK . This gives a focal action of F on a directed tree (TK , ◁), and α-convex
orders on OK correspond to F -invariant planar orders on (TK , ◁).

Roughly speaking, the directed tree (TK , ◁) is obtained by taking a copy of (0, 1) for each
K1 ∈ OK (so that a pair (K1, x) corresponds to the α-ball Bα(K1, x)), and by gluing the two copies
corresponding to K1 and K2 along the interval [α(K1,K2), 1). We denote by p : OK ×(0, 1) → TK
the quotient projection and [K1, x] := p(K1, x). Then, two points v, w ∈ TK satisfy v ◁ w (that
is, v lies below w) if and only there exist K1 ∈ OK and x, y ∈ (0, 1), so that v = [K1, x],
w = [K1, y], and x < y. The diagonal action of F on OK × (0, 1) descends to an action on (TK , ◁),
and the projection to the second coordinate descends to a positive F -equivariant horograding
hK : TK → (0, 1) (extending the function in (13.3.3)). Finally, the embedding i : OK → ∂∗TK is
defined so that each K1 ∈ OK is sent to the infimum of the ◁-chain {[K1, x] : x ∈ (0, 1)}, which
naturally belongs to ∂∗TK .
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One can actually see from this construction, by using Proposition 11.2.1, that if an F -invariant
order < on OK is α-convex, then the dynamical realization gives a minimal laminar action. Here
is a summary of this whole discussion.

Proposition 13.3.2. — For every closed f-invariant subset K ⊊ (0, 1) and F -invariant α-
convex order on OK , the dynamical realization of the action of F on (OK , <) is a minimal laminar
action, positively horograded by the standard action of F .

Example 13.3.3 (Non-planarly-orderable actions). — This point of view is well suited for
understanding in a more conceptual way whether, for a given K, we can find an α-convex order on
OK , or equivalently, a Φ-invariant planar order on (TK , ◁). This turns out to depend on the local
geometry of K relatively to dilations by 2. We explain this with an example, but first we introduce
some terminology to discuss the local geometry. We say that two closed subsets K1,K2 ⊆ (0, 1)
have equivalent left-germs at x if for some ε > 0 it holds K1 ∩ (x− ε, x] = K2 ∩ (x− ε, x]. We
denote by K−

x the left-germ class of the subset K at x. Notice that the group Germ−(x) of
left-germs of homeomorphisms fixing x naturally acts on the set of left-germs of closed subsets at
x. We denote by hx ∈ Germ−(x) the germ of the homothety that fixes x and has derivative 2.

Recall from Remark 11.1.8, that the existence of such an invariant planar ordering boils
down to the existence, for each branching point v ∈ TK , of an ordering of the set of connected
components E−

v below v, invariant under the action of the stabilizer StabΦ(v). An obstruction
for this is clearly given by finite orbits. With this in mind, consider an f -invariant closed subset
K ⊂ (0, 1), containing a dyadic point x ∈ K ∩ Z[ 1

2 ] such that hx(K−
x ) ̸= K−

x but hnx(K−
x ) = K−

x

for some n > 1. Write v = [K,x], and let ev(K) be the component of E−
v corresponding to the

ray {[K,x] : x ∈ (0, 1)}. Since hx generates the group of germs of elements in F fixing x, it holds
that the component ev(K) has a finite orbit which is not a fixed point, so that there exists no
StabΦ(v)-invariant total order on E−

v .

13.3.2. A concrete example. — We now illustrate the flexibility of the method described in
§13.3.1 with an explicit example of subset K. More precisely, we will construct a subset K ⊂ (0, 1)
with the following property: there is an explicit (continuous) injective map from the set O(N)
of orders on the natural numbers N to the set of F -invariant orders on the orbit OK . This will
provide a family of minimal laminar actions of F , which are naturally indexed by orders on N.

We start by choosing an irrational point x0 ∈ (0, 1), and consider the interval I = (f−1x0, x0],
which is a fundamental domain for f . Next we choose a sequence of open intervals (Jn)n≥1 with
dyadic endpoints such that Jn ⋐ Jn+1 ⊂ I for every n ≥ 1, and such that

⋃
n≥1 Jn = (f−1x0, x0).

For every n ≥ 1, write yn = sup Jn and choose an element hn ∈ FJn with the following properties:

— hn(x) > x for every x ∈ Jn,

— hn(Jn−1) ∩ Jn−1 = ∅ for n ≥ 2, and

— D−hn(yn) = 1/2 (in other words, the germ of hn at yn generates the group of germs
Germ(F(0,yn), yn)).

Choose now a dyadic point z0 ∈ J1, and let Σ0 = {hn1 (z0) : n ∈ N} be its forward orbit
under h1. By construction, we have the inclusion Σ0 ⊂ J1 and the equality Σ0 = Σ0 ∪ {y1}.
Set Σ1 =

⋃
n≥0 h

n
2 (Σ0), so that Σ1 = Σ1 ∪ {y2}. Continue in this way by defining a subset

Σi =
⋃
n≥0 h

n
i+1(Σi−1) for every i ≥ 1. Set Σω =

⋃
i∈N Σi, and note that Σω = Σω ∪ {x0}. Note
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also that Σω is contained in the fundamental domain I of f . Thus, we obtain an f -invariant
closed subset K as

(13.3.4) K =
⋃
n∈Z

fn(Σω).

By construction, the subset Σω is invariant under the semigroup S := ⟨hn : n ≥ 1⟩+, in the sense
that s(Σω) ⊂ Σω for every s ∈ S. See Figure 13.3.1.

z0 y1
Σ0

Σ1

Σ2

y2

y3

x0f−1(x0)

J1

J2

J3

h1

h2

h3

f

Figure 13.3.1. Construction of the compact set K for §13.3.2.

The subset Σω is countable and compact, and its points can be classified according to their
Cantor–Bendixson rank (see the book of Kechris [Kec95, §6]), as follows. Points of rank 0 are the
isolated points: these are exactly points in the orbit of z0 under the semigroup S. Points of rank
1 are those that are not isolated, but become isolated after removing the isolated points: these
are exactly points in the S-orbit of y1. Continuing in this way, points of rank n are precisely
points in the S-orbit of yn. Finally, there is a unique point whose rank is the first countable
ordinal ω, namely the point x0. This discussion can be directly extended to the subset K. We
write rkK(x) for the Cantor–Bendixson rank of a point x ∈ K. Note that we have the relation
rkg(K)(g(x)) = rkK(x) for every g ∈ F and x ∈ K.

We next consider the ultrametric α : OK × OK → [0, 1) defined as in (13.3.1), and the key
observation is that the particular choice of the subset K allows to directly relate α with the
Cantor–Bendixson rank.

Lemma 13.3.4. — Let K ⊂ (0, 1) be the subset defined at (13.3.4). For every K1,K2 ∈ OK ,
the point x = α(K1,K2) is such that rkK1(x) and rkK2(x) are both finite, and moreover rkK1(x) ̸=
rkK2(x) unless rkK1(x) = rkK2(x) = 0.

Conversely, for every distinct n,m ∈ N, there exist K1,K2 ∈ OK such that the point x =
α(K1,K2) satisfies rkK1(x) = n and rkK2(x) = m.

Proof. — We first need some observations.

Claim 1. — For every x ∈ K, and every g ∈ F such that g(x) = x, there exists ε > 0 such that
g(K) ∩ (x− ε, x] = K ∩ (x− ε, x].

Proof of claim. — Up to replace g by its inverse, we can assume D−g(x) ≤ 1. Also, upon
conjugating by powers of f , we can assume x ∈ Σω. When x = x0 this follows from the fact



152 CHAPTER 13. A PLETHORA OF LAMINAR ACTIONS OF THOMPSON’S GROUP F

that we chose x0 to be irrational, so that every element of F that fixes x0 must actually fix a
neighborhood of it. When x is isolated in K, the conclusion is obvious. Finally, assume that
n := rkK(x) /∈ {0, ω}. Then x is in the S-orbit of the point yn, so that it is fixed by a conjugate
h of hn, which has therefore the property that D−h(x) = 1/2. Hence, the restriction of g to a
left-neighborhood of x must coincide with the restriction of some non-negative power of h, so
that we can conclude from the fact that K is forward invariant under h.

Claim 2. — For every pair of points x, y ∈ K with rkk(x) = rkk(y), there exist an element
h ∈ F and ε > 0 such that h(x) = y and h(K) ∩ (y − ε, y] = K ∩ (y − ε, y].

Proof of claim. — Upon replacing x, y with fm(x), fn(y) for suitable n,m, we can assume x, y ∈
Σω. Then x and y are in the same S-orbit, and so it is enough to observe that elements of S and
their inverses have this property.

With this in mind, let us prove the lemma. We can assume without loss of generality that
K1 = K. Take g ∈ F such that K2 = g(K), and set x = α(K,K2) and y = g−1(x) ∈ K, so
that rkK2(x) = rkK(y). Assume by contradiction that rkK(x) = rkK(y) ≥ 1. After Claim 2, we
can choose h ∈ F such that h(x) = y, and ε > 0 such that h(K) ∩ (y − ε, y] = K ∩ (y − ε, y].
Then the element g′ = hg is such that g(y) = y, so that upon taking a smaller ε, by Claim 1
we also have g′(K) ∩ (y − ε, y] = K ∩ (y − ε, y]. Applying h−1, we deduce that there is ε′ > 0
such that g(K) ∩ (x− ε′, x] = K ∩ (x− ε′, x], and the latter intersection is not reduced to {x},
since we assume that rkK(x) ≥ 1. This contradicts the definition of x = α(g(K),K). Thus
rkK(x) ̸= rkg(K)(x), unless both ranks are 0. Finally, this also implies that we cannot have
rkK(x) = ω. Indeed, since points of rank ω are the only non-dyadic points in K, this would imply
that rkg(K)(x) = ω as well, contradicting the previous reasoning.

Now, let O(N) be the set of total orders on the natural numbers. To every order ≺ in O(N),
we associate an F -invariant order ≺∗ on OK , as follows. Given distinct K1,K2 ∈ OK , set
n1 = rkK1(α(K1,K2)) and n2 = rkK2(α(K1.K2)). If n1 ≠ n2, then we declare K1 ≺∗ K2 if and
only if n1 ≺ n2. Else, by Lemma 13.3.4, we have n1 = n2 = 0; that is, the point α(K1,K2) is
isolated in both K1 and K2. In this case, set

(13.3.5) xi = max{x ∈ Ki : x < α(K1,K2)} for i ∈ {1, 2}.

Then we must have xi < α(K1,K2) for i ∈ {1, 2}, and x1 ̸= x2 by definition of α(K1,K2). In
this case, we declare K1 ≺∗ K2 if and only if x1 < x2. It is routine to verify that this defines
indeed a total order relation, and it is clear from the construction, F -equivariance (13.3.2) of the
ultrametric α, and of the Cantor–Bendixson rank, that this order is F -invariant.

Denote by φ≺ : F → Homeo0(R) the dynamical realization of the action of F on (OK ,≺∗). We
want to prove that φ≺ is a laminar action, positively horograded by the standard action of F .
After Proposition 13.3.2, this is equivalent to the property that the order ≺∗ is α-convex. This is
what we verify next.

Lemma 13.3.5. — With notation as above, the α-ball

Bα(L, x) = {L′ ∈ OK : α(L,L′) ≤ x}

is ≺∗-convex for every L ∈ OK and x ∈ (0, 1).
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Proof. — First notice that the ≺∗-order relation between K1,K2 ∈ OK is determined by the
intersections K1 ∩ [x, 1) and K2 ∩ [x, 1), for any x ∈ (0, 1) such that these intersections do not
coincide.

Now, take elements K1,K2 ∈ Bα(L, x) for some L ∈ OK and x ∈ (0, 1). This is equivalent to
the condition that

(13.3.6) K1 ∩ [x, 1) = K2 ∩ [x, 1) = L ∩ [x, 1).

Consider next an element K3 between K1 and K2 (with respect to ≺∗), and assume by contra-
diction that K3 /∈ Bα(L, x). This means that K3 ∩ [x, 1) ̸= L ∩ [x, 1), and therefore, considering
the equalities (13.3.6), the ≺∗-order relation between Ki and K3 is determined by the inter-
sections K3 ∩ [x, 1) and L ∩ [x, 1), for every i ∈ {1, 2}. Hence, we conclude that the ≺∗-order
relation between K1 and K3 coincides with that of K2 and K3. As we are assuming that K3 lies
between K1 and K2, we necessarily have K1 = K2 = K3, but this contradicts the assumption
K3 /∈ Bα(L, x).

As a conclusion of our discussion, we have the following.

Proposition 13.3.6. — With notation as above, for any ≺∈ O(N), the dynamical realization
φ≺ : F → Homeo0(R) of the action of F on (OK ,≺∗) is a minimal laminar action, positively
horograded by the standard action of F .

Moreover, if ≺1 and ≺2 are distinct orders on N, then the actions φ≺1 and φ≺2 are not
conjugate.

Proof. — The first statement is a direct consequence of Lemma 13.3.5 and Proposition 13.3.2.
Next, for a given order ≺∈ O(N), observe that by definition of dynamical realization, the F -action
on (OK ,≺∗) can be identified with the φ≺-action on the orbit of the unique fixed point ξ of
φ≺(f), with the order induced by R, so that the order ≺∗ can be reconstructed from φ≺. Finally,
the order ≺ on N can be reconstructed from ≺∗ by the last statement in Lemma 13.3.4.

We now point out a qualitative difference which distinguishes the family of laminar actions
constructed here, from the one obtained via the restriction preorder construction, as in §13.2.2.
Indeed, in this case the actions of the subgroups F(0,x) ∼= F on the components of their support
can remain exotic (compare this with Proposition 13.2.11).

Proposition 13.3.7 (Presence of exotic sublevels). — Fix an order ≺ on N, and let
φ := φ≺ : F → Homeo0(R) be the laminar action constructed above. Then, there exist a dyadic
point x ∈ (0, 1) and a connected component J of Suppφ(F(0,x)), such that the action of F(0,x) on
J is semi-conjugate to a minimal laminar action.

Proof. — Note first that for every x ∈ (0, 1), and every g ∈ F such that g(K∩[x, 1)) = K∩[g(x), 1),
one has g.Bα(K,x) = Bα(K, g(x)). In particular, the α-ball Bα(K,x) is preserved by the
subgroup F(0,x). Let ι : (OK ,≺∗) → R be an equivariant good embedding associated with φ (in
the terminology of Definition 2.2.11), and let Ix be the open interval spanned by ι(Bα(K,x)).
That is, Ix is the interior of the closure of ι(Bα(K,x)) (using minimality of the action and that
α-balls are ≺∗-convex after Lemma 13.3.5). Consider the element h1 from the construction of K,
and consider the points z0 ∈ J1 and y1 = sup J1, as in the construction; for n ≥ 1, set zn = hn1 (z0),
which by construction is an increasing sequence converging to y1. For every n ≥ 0, we have
hn1 (K ∩ [z0, 1)) = K ∩ [zn, 1), so that hn1 .Bα(K, z0) = Bα(K, zn). The corresponding intervals
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Izn satisfy Izn ⋐ Izn+1 and h1.Izn = Izn+1 . Set B :=
⋃
n≥0 Bα(K,hn1 (z0)), and let J =

⋃
n≥0 Izn

be the interval spanned by ι(B). Then, B is preserved by F(0,y1), and the action of F(0,y1) on B

is cofinal (with respect to the order ≺∗ restricted to B). As a consequence, F(0,y1) preserves J ,
and acts on it without fixed points, so that J is a connected component of Suppφ(F(0,y1)). Since
moreover h1.Izn = Izn+1 , we deduce that φ(h1) acts on J as a pseudo-homothety. This cannot
happen if the action of F(0,y1) on J is semi-conjugate to an action by translations, nor if it is
semi-conjugate to the standard action on (0, y1). Thus, by Theorem 13.1.1 the action of F(0,y1)
must be semi-conjugate to a minimal laminar action.

Nonetheless, this family of examples still turns out to produce simplicial laminar actions, in
the sense of Definition 11.3.4.

Proposition 13.3.8 (Simpliciality). — For an order ≺ on N, let φ≺ : F → Homeo0(R) be
the laminar action constructed above. Then φ≺(F+) does not act minimally on R. In particular
each action φ≺ is simplicial.

Proof. — We keep the same notation as in the proof of Proposition 13.3.7. Let x0 ∈ K be the
point as in the construction of K. We claim that the α-ball Bα(K,x0) ⊂ OK has the property
that for every g ∈ F+ we have either g.Bα(K,x0) = Bα(K,x0), or g.Bα(K,x0) ∩Bα(K,x0) = ∅.
It then follows that the interval Ix0 has the same property for φ≺(F+), so that the union of its
translates defines a proper invariant open subset, contradicting minimality. To prove our claim,
suppose that g ∈ F+ and K1 ∈ Bα(K,x0) are such that g(K1) ∈ Bα(K,x0), namely we assume

K1 ∩ [x0, 1) = g(K1) ∩ [x0, 1) = K ∩ [x0, 1).

The key observation is that this implies that g must actually fix K ∩ [x0, 1). First of all, observe
that g must send points of rank ω in K1 to points of rank ω in g(K1), and the set of such points
in both K1 ∩ [x0, 1) and g(K1) ∩ [x0, 1) consists precisely of the sequence xn := fn(x0) for n ≥ 0.
This is a discrete increasing sequence, and we deduce from the condition g ∈ F+ that g(xn) = xn
for every n ≥ 0. As a consequence, the cyclic subgroup ⟨g⟩ must preserve every interval [xn, xn+1],
with n ≥ 0, and thus every intersection K ∩ [xn, xn+1], for n ≥ 0. Assume by contradiction that
there exist n ≥ 0 and a point t ∈ K ∩ [xn, xn+1] which is not fixed by g. Consider the orbit
Ω = {gm(t) : m ∈ Z}, which is a subset of K. As K ∩ [xn, xn+1] is compact, the point inf Ω is in
K ∩ [xn, xn+1], and it is accumulated by points of Ω (and hence of K) from the right. This is
in contradiction with the choice of K, as by construction, every point of K is isolated from the
right-hand side. Hence, g fixes K ∩ [x0, 1), which implies that g.Bα(K,x0) = Bα(K,x0).

13.4. A plethora of laminar actions, III: non-simplicial laminar actions

13.4.1. Simplicial laminar actions of F and minimality of the action of [F, F ]. — All
the examples of laminar actions of F discussed so far are simplicial in the sense of Definition
11.3.4. In this case, Proposition 11.3.3 can actually be stregnthened to give the following.

Proposition 13.4.1 (Simplicial laminar actions of F ). — Let φ : F → Homeo0(R) be a
minimal laminar action, positively horograded by the standard action on (0, 1). Then, the following
are equivalent.

(i) The image φ(F+) admits no minimal invariant set.
(ii) The image φ([F, F ]) admits no minimal invariant set.
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(iii) The action φ preserves a discrete lamination.
(iv) The action φ is represented by a focal action on a planar directed tree (T, ◁,≺), such that T
is a simplicial tree of countable degree, and the action of F on T is by simplicial automorphisms.
(v) The action φ is represented by a focal action on a planar directed tree (T, ◁,≺) such that F
acts by isometries with respect to a compatible R-tree metric on T.

(vi) Every pseudo-homothety in the image of φ is a homothety.
(vii) There exist non-empty bounded open intervals I, J ⊂ R such that J ̸⊂ g.I for any g ∈ F+.

For many constructions of laminar actions of F discussed below, one can easily check conditions
(i) or (ii), and thus they turn out to be simplicial (although a simplicial tree does not always
appear naturally in the construction, and it might also be not obvious to check directly condition
(vi)).

Proof of Proposition 13.4.1. — Let us first show that (i) and (ii) are equivalent. If [F, F ] admits
a minimal invariant set, then by Lemma 8.3.6 it acts minimally on R, and thus so does F+.
Conversely, assume by contradiction that [F, F ] does not act minimally on R, but F+ does.
Then, we can apply Proposition 11.3.3 to G = F+ and N = [F, F ]: we deduce that φ|F+ can
be horograded by a cyclic action coming from the quotient F+/[F, F ] ∼= Z. Since the quotient
F+/[F, F ] is simply the group of germs Germ(F+, 0) we deduce that the φ-image of every g ∈ F+
with a non-trivial germ at 0 must be a pseudo-homothety. However, we were assuming that φ is
positively horograded by the standard action of F on (0, 1), so that the image of every element
g ∈ F+ must be totally bounded (by Proposition 8.2.10). This is a contradiction.

The implications (i)⇒(iii)⇒(iv) follow from Proposition 11.3.3, (iv)⇒(v) is obvious, and
(v)⇒(vi) follows from Remark 11.3.2. To show that (vi) implies (vii), we show that (vi) actually
implies the following more explicit condition, which clearly implies (vii).

(vii’) For every element h ∈ F which in the standard action satisfies h(x) > x for every x ∈ (0, 1),
there exists a bounded open interval I ⊂ R such that I ⊂ h.I and h.I ̸⊂ g.I for any g ∈ F+.

Indeed, assume that h is such that h(x) > x for every x ∈ X, so that by (vi) its image φ(h) is
an expanding homothety; let ξ ∈ R be the unique fixed point of the image φ(h). Note that the
subgroup ⟨F+, h⟩ has finite index in F , and for any x ∈ X we have ⟨F+, h⟩ = ⟨F(0,x), h⟩. As φ
is irreducible, this implies that ξ ∈ Suppφ(F(0,x)) for any x ∈ X, and thus we can consider the
connected component I = Iφ(x, ξ) of Suppφ(F(0,x)) containing ξ (keeping the same notation as in
§9.2.4). As φ(h) is an expanding homothety, we have I ⊂ h.I. Suppose by contradiction that
there exists g ∈ F+ such that h.I ⊂ g.I. Note that we have the equalities

g.I = g. Iφ(x, ξ) = Iφ(g(x), g.ξ) = Iφ(g(x), ξ)

(the last equality follows from the assumption that ξ ∈ I ⊂ g.I). Moreover, we have h.I =
Iφ(h(x), ξ), and so we conclude that Iφ(h(x), ξ) ⊂ Iφ(g(x), ξ), implying that g(x) ≥ h(x) (see
§9.2.4). Since g ∈ F+, this implies that for some y ≥ x it holds that g(y) = h(y). Therefore, we
have

g. Iφ(y, ξ) = Iφ(g(y), ξ) = Iφ(h(y), ξ) = h. Iφ(y, ξ)
(the first equality follows from the fact that Iφ(y, ξ) ⊃ I), and this implies that φ(g−1h) preserves
Iφ(y, ξ). Since g−1h has the same germ at 1 as h, it acts as a pseudo-homothety, so that by (vi)
it is a homothety, and this is a contradiction with the fact that it preserves Iφ(y, ξ).
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Finally, to show that (vii) implies (i), assume by contradiction (using Lemma 8.3.6) that the
action of F+ is minimal. As we are assuming (vii), the action of F+ cannot be proximal, so by
Theorem 2.1.20 the centralizer of φ(F+) in Homeo0(R) must be infinite cyclic generated by an
element without fixed points. Since F+ is normal, we deduce that the whole group φ(F ) must
normalize this cyclic centralizer, and thus centralize it, contradicting that minimal laminar actions
are proximal (Proposition 8.1.15).

13.4.2. A non-simplicial action. — By the previous discussion and examples, it would be
tempting to try to prove that all laminar actions of F have this property. However, we build an
exotic action of Thompson’s group F which is non-simplicial. With Proposition 13.4.1 in mind,
we will prove the following.

Theorem 13.4.2. — There exist laminar actions φ : F → Homeo0(R) for which φ([F, F ]) acts
minimally (and thus are not simplicial). More precisely, there exist uncountably many such
actions, whose restriction to [F, F ] yield pairwise non-conjugate actions of [F, F ].

In particular, the group [F, F ] admits uncountably many, pairwise non-conjugate, minimal
actions φ : [F, F ] → Homeo0(R).

Remark 13.4.3. — The last statement in Theorem 13.4.2 should be compared with the general
constructions of exotic actions from orders of germ type for groups of compactly supported
homeomorphisms (including [F, F ]), described in §6.1, which provide actions without any minimal
invariant set.

The construction given here relies on the classical symbolic coding of the standard action of F
by binary sequences, which is specific to Thompson’s groups. For the proof, it will be convenient
to see F as a group of homeomorphisms of X = R rather than of the interval (0, 1). Namely, we
realize F ⊂ PL(R) as the group of piecewise linear maps of the line, with dyadic breakpoints,
slopes in the group ⟨2n : n ∈ Z⟩, and which coincide with integer translations near ±∞. It is well
known that this action is conjugate to the natural action of F on (0, 1) (see e.g. [BS16, Lemma
E18.4]). From now and until the end of this subsection, the term standard action will refer to the
action of F on R described above. We will denote by f ∈ F the translation f(x) = x+ 1. (Note
that the element f corresponds to the element given by (13.1.2) in the action on (0, 1).)

The proof of Theorem 13.4.2 employs the strategy described in §13.3.1. Namely, we will start
with a closed f -invariant subset K ⊂ R, and define an F -invariant α-convex order on its orbit
OK := {g(K) : g ∈ F}. The main difficulty is that we need to construct a subset K satisfying a
somewhat delicate combination of properties. We begin with a definition.

Definition 13.4.4. — We say that a subset K ⊂ R has property (O) if it is proper, non-empty,
closed, f -invariant, and moreover g(K) ∩K is open in K for every g ∈ F .

Remark 13.4.5. — Note that the last condition for property (O) is actually equivalent to
K1 ∩K2 being open in K1 and K2 for every K1,K2 ∈ OK .

Example 13.4.6. — Property (O) is clearly satisfied when K is a non-empty f -invariant
discrete subset, as for example the f -orbit of a point. However, this is not a good example for
the construction described in this subsection, as the stabilizer of such K in [F, F ] is trivial (cf.
Proposition 13.4.8).
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Assume that K is a subset with property (O) (many examples are exhibited by Lemma 13.4.9).
We consider the function α : OK × OK → R ∪ {−∞} similarly as in §13.3.1, namely

(13.4.1) α(K1,K2) := inf {x ∈ R : [x,+∞) ∩K1 = [x,+∞) ∩K2} .

Note that the function α defined here is not an ultrametric, but this is only because it takes
values in R∪ {−∞}: all the other properties discussed in §13.3.1 are satisfied, and one can recover
an ultrametric by considering, for instance, the function 2α. Reasoning as in the example of
§13.3.2, we proceed to construct an F -invariant order on OK , and then prove that the dynamical
realization of the action of F on (OK ,≺) is minimal and laminar. This is the content of the next
result.

Proposition 13.4.7. — If a subset K ⊂ R has property (O), the relation ≺ on OK defined by
K1 ≺ K2 if and only if

max {x ∈ K1 : x < α(K1,K2)} < max {x ∈ K2 : x < α(K1,K2)} ,

is an F -invariant total order on OK . Moreover, the dynamical realization φK : F → Homeo0(R)
of the action of F on (O,≺) is a minimal laminar action.

Proof. — Recall that α(K1,K2) ∈ K1 ∩K2 whenever K1 and K2 are different elements of OK .
As K satisfies property (O), we have that K1 ∩K2 is open inside both K1 and K2. Hence, K1 ∩K2
is an open neighborhood of α(K1,K2) inside K1 and K2. Therefore, α(K1,K2) is isolated from
the left-hand side in both K1 and K2. As for (13.3.5), we deduce that the points

xi := max{x ∈ Ki : x < α(K1,K2)} for i ∈ {1, 2}

are distinct, so we can declare K1 ≺ K2 if and only if x1 < x2. As for the order ≺∗ from §13.3.2,
it is routine to check that this defines indeed an F -invariant total order on OK .

One proceeds similarly as in §13.3.2, to check that φK is minimal and laminar. Namely, one
verifies that the order ≺ is 2α-convex, and the proof of Lemma 13.3.5 can be adapted verbatim to
this case (just replacing ≺∗ with ≺ and (0, 1) with R). Then Proposition 13.3.2 gives the desired
conclusion.

The main difference from the construction in §13.3.2 is the way that the commutator subgroup
[F, F ] acts in the actions φK .

Proposition 13.4.8. — Given a subset K ⊂ (0, 1) with property (O), let φK : F → Homeo0(R)
be the corresponding minimal laminar action from Proposition 13.4.7. Then the following hold.
(i) If K has property (O), then φK([F, F ]) acts minimally, provided that the stabilizer of K in
[F, F ] (with respect to the standard action) acts on K without fixed points. Moreover, in this case,
the induced action of [F, F ] is minimal and laminar.
(ii) If two distinct subsets K,K ′ ⊂ R have property (O), then the restrictions of φK and φK′ to
[F, F ] are not conjugate actions of [F, F ]. In particular, φK and φK′ are not conjugate.

Proof. — To prove (i), assume that the stabilizer of K in [F, F ] acts without fixed points on
K. Fix x ∈ (0, 1), and choose a sequence of elements (gn)n∈N in [F, F ] which preserve K, and
such that gn(x) tends to +∞ as n → ∞. Then, gn.Bα(K,x) = Bα(K, gn(x)) for every n ∈ N, so
that OK =

⋃
n≥0 gn.Bα(K,x). Then, by Proposition 8.1.14, the subgroup [F, F ] admits a unique

minimal invariant set Λ ⊂ R, which is preserved by F because [F, F ] is a normal subgroup. We
deduce that the action of [F, F ] is also minimal.
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To prove (ii), take K ̸= K ′ with property (O), and assume (without loss of generality) that
K ′ ̸⊂ K. Write α : OK ×OK → R∪{−∞} and β : OK′ ×OK′ → R∪{−∞} for the corresponding
functions defined as in (13.4.1). Fix x ∈ K, and let D be the subgroup of [F, F ](x,+∞) which
fixes K pointwise. Then, for every g ∈ D, we have g.Bα(K,x) = Bα(K,x), and actually g

fixes Bα(K,x) pointwise. Consequently, the dynamical realization φK fixes a non-empty open
interval pointwise. On the contrary, for any y ≥ x with y ∈ K ′ ∖ K, we can consider an
element h ∈ D such that h(y) /∈ K ′ and h(y) > y. Let us show that for such choices we have
h.Bβ(K ′, y) ∩Bβ(K ′, y) = ∅. Indeed, assume there exists L ∈ h.Bβ(K ′, y) ∩Bβ(K ′, y); then, as
h.Bβ(K ′, y) = Bβ(h(K ′), h(y)), we have

L ∩ [h(y),+∞) = h(K ′) ∩ [h(y),+∞),

and in particular h(y) ∈ L. However, if L ∈ B(K ′, y), then L∩ [y,+∞) = K ′ ∩ [y,+∞), and thus
h(y) /∈ L, which is an absurd.

By f -invariance of K ′ ∖K, we can find arbitrarily large points y, and thus elements h ∈ D,
satisfying such properties. As OK′ =

⋃
y Bβ(K ′, y), this implies that D acts without fixed points,

so that the actions φK and φK′ cannot be conjugate.

After the previous proposition, in order to prove Theorem 13.4.2, we need to show the existence
of subsets K ⊂ R with property (O) and the additional property that the stabilizer of K in [F, F ]
does not have fixed points. For this, we are going to use the symbolic description of real numbers
by binary expansions.

To each infinite sequence (an)n≥1 ∈ {0, 1}N, we associate the real number ev((an)) :=∑
n≥1 an2−n ∈ [0, 1]. Note that this association is continuous if we endow {0, 1}N with the

product topology. If z, w1, w2 are finite binary sequences (binary words for short), we consider
the cylinder over z, defined by

Cz = {w ∈ {0, 1}N : z is a prefix of w},

and denote by K̃0(w1, w2) ⊆ {0, 1}N the subset of all infinite concatenations of w1’s and w2’s.
Clearly, both images ev(Cz) and K0(w1, w2) := ev(K̃0(w1, w2)) are closed subsets of [0, 1], and
the former is a closed interval with dyadic endpoints (a dyadic interval for short). Note that,
conversely, any closed dyadic interval is the union of (the real numbers represented by) finitely
many cylinders.

With this in mind, if z1 and z2 are binary words, the substitution map S(z1, z2) : Cz1 → Cz2

defined by S(z1, z2)(z1w) = z2w represents an affine map S(z1, z2) between dyadic intervals of [0, 1].
Therefore, in the action of F on R, every element of F locally coincides (except at breakpoints,
which are finitely many dyadic rationals) with transformations of the form fn ◦ S(z1, z2) ◦ fm,
for some powers n,m ∈ Z and some finite sequences z1, z2.

We say that a pair of binary words w1, w2 has the cancellation property, if whenever zw = w′

for w,w′ ∈ K̃0(w1, w2), it holds that z is a finite concatenation of w1’s and w2’s. As a concrete
example of a pair of words with the cancellation property, we may take w1 = 0 and w2 = 1
but these are constant binary words (i.e. made of a single repeated bit). As a concrete example
of non-constant binary words with the cancellation property we can take w1 = 10001 and
w2 = 01110.

Lemma 13.4.9. — Let w1 and w2 be non-constant binary words satisfying the cancellation
property, and write K0 := K0(w1, w2). Then, the subset K :=

⋃
n∈Z f

n(K0) has property (O).
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Proof. — Since K0 is a closed subset of [0, 1], the subset K is a closed and f -invariant subset of
R. Also, since w1 and w2 are non-constant, the set K̃0(w1, w2) contains no eventually constant
sequences, and so the subset K0 contains no dyadic points. It follows that ev : K̃0(w1, w2) → K0 is
a homeomorphism onto its image, and that the set of intersections of the form (p/2n, (p+1)/2n)∩K,
with p ∈ Z and n ∈ N, forms a basis of its topology. The restriction of every element of F to K
is locally given by maps of the form fn ◦ S(z1, z2) ◦ fm, and since K is f -invariant, in order to
check property (O), it is enough to check that S(z1, z2)(K0 ∩ ev(Cz1)) is open in K0, for every
pair of finite binary words z1, z2.

For this, consider two binary finite words z1, z2, and also w ∈ K̃0(w1, w2) ∩ Cz1 so that
S(z1, z2)(w) ∈ K̃0(w1, w2). We need to check that S(z1, z2)(K̃0(w1, w2) ∩ Cz1) contains a neigh-
borhood of S(z1, z2)(w). Since the pair w1, w2 has the cancellation property, we can write
w = z′

1w
′ with z′

1 = z1z
′′
1 and w′ ∈ K̃0(w1, w2). Since S(z1, z2)(w) equals z2z

′′
1w

′, and belongs to
K̃0(w1, w2), again we conclude, by the cancellation property, that z2z

′′
1 is a finite concatenation

of w1’s and w2’s. Therefore,

S(z1, z2)
(
Cz′

1
∩ K̃0(w1, w2)

)
= Cz2z′′

1
∩ K̃0(w1, w2),

showing that S(z1, z2)(K̃0(w1, w2)) contains a neighborhood of S(z1, z2)(w) inside K̃0(w1, w2).
This concludes the proof.

In order to ensure that the stabilizer of K in [F, F ] has no fixed points, we need to impose one
last extra condition on K.

Say that a map h : I → J is a dyadic affine map between intervals if I is a dyadic interval, and
h is of the form x 7→ ax+ b, where a ∈ {2n : n ∈ Z}, and b ∈ Z[1/2]. Consider now a compact
subset K0 ⊆ (0, 1). We say that K0 admits a self-similar decomposition if there exists a pair of
dyadic affine maps h1, h2 : I → (0, 1) such that

h1(I) ∩ h2(I) = ∅, and h1(K0) ∪ h2(K0) = K0.

For example, the subset K0(w1, w2) admits a self-similar decomposition, provided the words w1
and w2 are such that ev(Cw1) and ev(Cw2) are disjoint. Indeed, in this case we have that for
i ∈ {1, 2}, the symbolic maps w 7→ wiw correspond to dyadic affine maps hi : [0, 1] → [0, 1] with
disjoint images, and such that K0 = h1(K0) ⊔ h2(K0).

Lemma 13.4.10. — Let K0 ⊂ (0, 1) be a closed subset admitting a self-similar decomposition,
and set K =

⋃
n∈Z f

n(K0). Then, the action of H = {g ∈ [F, F ] : g(K) = K} on K has no fixed
points.

To show Lemma 13.4.10 we use its self-similarity to build elements in H moving points of the
real line arbitrarily far away. But before giving the formal proof, let us see how this ends the
proof of Theorem 13.4.2.

Proof of Theorem 13.4.2 given Lemma 13.4.10. — Let K ⊊ R be a subset satisfying property
(O) and such that K ∩ (0, 1) admits a self-similar decomposition. As a concrete example, we may
take K =

⋃
n∈Z f

n(K0), with K0 = K0(w1, w2) for w1 = 10001 and w2 = 01110. By Lemma
13.4.9, we may consider the laminar action φK , and by Lemma 13.4.10 and Proposition 13.4.8,
we have that φK([F, F ]) acts minimally. To finish the proof, we show that from the existence of
one subset K with these properties, we can deduce the existence of uncountably many. Let K be
such a subset. Clearly K is locally a Cantor set, so R∖K is a countable union of open intervals,
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that we call the gaps of K. Pick β ∈ (0, 1). For each gap I of K, consider the point pI(β) where
pI : (0, 1) → I is the unique order-preserving affine map. We let Kβ be the subset resulting from
adding to K all the points of the form pI(β), where I runs over gaps of K. Clearly Kβ is still
closed, and f -invariant. Moreover, Kβ still admits a self-similar decomposition, since the maps
involved in the definition of a self-similar decomposition are affine maps sending gaps of K to
gaps of K, so in particular they preserve the proportion of the subdivision we have introduced in
the gaps. We claim that for uncountably many β ∈ (0, 1), the subset Kβ also satisfies (the last
condition of) property (O). That is, g.Kβ ∩Kβ is open in Kβ for every g ∈ F .

Fix g ∈ F . The only problem that may arise is that a point of the form pI(β) (which is an
isolated point) might land inside K under the action of g. But if we fix a gap I of K, the set
of parameters β such that g(pI(β)) does not belong to K, is open and dense in (0, 1) (since
K has empty interior). In particular, since there are only countably many gaps, and F is also
countable, with a Baire-like argument we obtain that Kβ satisfies property (O) for a generic
choice of β ∈ (0, 1).

We conclude this subsection with the proof of Lemma 13.4.10. For this, we need the following
elementary interpolation lemma. Its proof follows from transitivity of the action of [F, F ] on
unordered n-tuples of dyadic numbers (see for instance Bieri and Strebel [BS16]), and details are
left to the reader. To simplify the statement, given (possibly unbounded) intervals I, J , we write
I < J whenever sup I < inf J .

Lemma 13.4.11. — For k ≥ 1, consider intervals I1 < · · · < Ik and J1 < · · · < Jk in R with
dyadic endpoints, with I1 = J1 = (−∞, p], Ik = Jk = [q,+∞), and such that hn : In → Jn are
dyadic affine maps (for n ∈ {1, . . . , k}). Assume moreover that h1 and hk are restrictions of the
identity. Then, there exists g ∈ [F, F ] such that g ↾In= hn for n ∈ {1, . . . , k}.

Proof of Lemma 13.4.10. — Consider the dyadic affine maps h1, h2 : I0 → (0, 1) given by the
self-similar decomposition of K0. Since K0 is a closed subset of (0, 1), we can assume that I0 is a
closed dyadic interval inside (0, 1). For i ∈ {1, 2}, write Ki

0 = hi(K0) and Ii0 = hi(I0). Note that
I1

0 ∩ I2
0 = ∅ and K0 = K1

0 ⊔K2
0 .

Now, for n ∈ Z and i ∈ {1, 2}, write In = fn(I0), Ki
n = fn(Ki

0), and Iin = fn(Ii0). Let us
consider the following locally dyadic affine maps:
— a : I1

0 ⊔ I2
0 → I0 ⊔ I1 defined by

a(x) =
{
h−1

1 (x) if x ∈ I1
0 ,

f ◦ h−1
2 (x) if x ∈ I2

0 ,

— b : I3 ⊔ I4 → I1
4 ⊔ I2

4 defined by

b(x) =
{
f4 ◦ h1 ◦ f−3(x) if x ∈ I3,

f4 ◦ h2 ◦ f−4 if x ∈ I4,

— c : [1, 2] → [2, 3] defined by c(x) = x+ 1.
Then, we can apply Lemma 13.4.11 to construct h ∈ [F, F ] which simultaneously extends a, b, c
and id ↾(−∞,0]∪[4,+∞). By construction, h preserves K and has no fixed points in [1, 2]. Thus, the
subgroup H = {h ∈ [F, F ] : h(K) = K} has no fixed points inside [1, 2]. Finally, note that f
normalizes H, so that it preserves its set of fixed points. Since

⋃
n∈Z f

n([1, 2]) = R, we deduce
that H has no fixed points on R, whence on K.



PART III

LOCAL RIGIDITY AND THE SPACE OF
HARMONIC ACTIONS

In this final part, we investigate the structure of the space of irreducible actions
Homirr(G,Homeo0(R)). In particular, we obtain a criterion for the local rigidity of the
standard action of a locally moving subgroup G ⊂ Homeo0(R) (corresponding from Theorem D
from the introduction).

To this end, we develop a method to investigate the global structure of the space
Homirr(G,Homeo0(R)) for a finitely generated group G, based on the study of the sub-
space of so called normalized harmonic actions Harmµ(G;R), studied by Deroin, Kleptsyn, Navas,
and Parwani [DKNP13]. The formal definition and fundamental properties are discussed in
Chapter 14. To define this, one has to fix a symmetric probability measure µ on G whose support
is finite and generates G: then a µ-harmonic action of G on the line is an action for which the
Lebesgue measure is µ-stationary. By the results in [DKNP13], any irreducible action of G on the
line is semi-conjugate to a µ-harmonic action, unique up to affine conjugacy. By a normalizing
condition, we can reduce this extra symmetry to the group of isometries. This reduction leads
to the definition of the compact space Harmµ(G;R) of normalized µ-harmonic actions, with a
natural topological flow defined on it by considering conjugacy of actions by translations. These
facts can be deduced from previous works by Deroin and collaborators, and we summarize them
in Theorem 14.1.6. Our main result of Chapter 14 (Theorem 14.2.1) states that Harmµ(G;R)
is a retract of the space of irreducible actions of the line of G, by a retraction that preserves
positive semi-conjugacy classes. This provides an explicit correspondence between the topological
properties of semi-conjugacy classes in the space Homirr(G,Homeo0(R)), and the dynamical
properties of the translation flow on Harmµ(G,R). We use this to study how semi-conjugacy
classes behave under small perturbations in the compact-open topology, and we are particularly
interested in understanding when an action is locally rigid, meaning that sufficiently small
perturbations do not change the positive semi-conjugacy class (see Corollary 14.2.4). The proof of
Theorem 14.2.1 is discussed in §14.3, and passes through an alternative definition of Harmµ(G;R)
(considered as an abstract topological space) in terms of left-invariant preorders on G. This is the
content of Theorem 14.3.16, which gives as a by-product that the space Harmµ(G;R) does not
depend on the choice of the probability measure µ. In §14.4 we use the properties of the space
Harmµ(G;R) to understand the Borel complexity of the semi-conjugacy equivalence relation for
irreducible group actions on the line.

In Chapter 15 we discuss laminar actions on the line of finitely generated groups and their
relation to the space of µ-harmonic actions. For this, we first revisit the notion of horograding,
formalizing the idea that horogradings of laminar actions describe the large-scale dynamics of
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the action (see §15.1). When working with harmonic actions, this description can be used to
understand the closure of the subset of laminar actions in Harmµ(G;R) (see §15.2).

In the final chapter (Chapter 16) we put the pieces together to study the space Harmµ(G;R)
for locally moving subgroup G ⊂ Homeo0(R), by combining the results from the previous chapters
and the main results in Part II. Our main result states that, under a suitable finite generation
condition on G, the translation flow on Harmµ(G;R) must have very restricted dynamics; see
Theorem 16.2.3. As a corollary, we get the local rigidity of the standard action, which corresponds
to Theorem D from the introduction. In §16.3, we discuss some concrete families of groups
satisfying Theorem 16.2.3, including Thompson’s group F , for which we provide a more precise
description of the space Harmµ(F ;R). Finally, in §16.4, we give an example of a finitely generated,
locally moving subgroup of Homeo0(R) whose standard action is not locally rigid: this shows that
the additional assumptions on G in Theorem 16.2.3 cannot be removed.



CHAPTER 14

NORMALIZED HARMONIC ACTIONS AND PREORDERS

Recall from the introduction that for a finitely generated group G, we denote by
Homirr(G,Homeo0(R)) the space of irreducible actions φ : G → Homeo0(R), endowed with
the compact open topology.

In this preliminary chapter we study the subspace Harmµ(G) of (normalized) µ-harmonic
actions (associated to a suitable probability measure µ on G), whose construction is based on
the work of Deroin, Kleptsyn, Navas, and Parwani [DKNP13] on symmetric random walks in
Homeo0(R). The main result of the chapter shows that the space Homirr(G,Homeo0(R)) admits a
continuous retraction onto Harmµ(G;R) which preserves semi-conjugacy classes; as a consequence,
we derive a characterization of the locally rigid minimal actions of G in terms of properties of
Harmµ(G;R). The proof goes through an alternative description of Harmµ(G;R) as a quotient of
the space of left preorders on G.

14.1. Preliminiaries on harmonic actions

Throughout the chapter, we will work in the following setting.

Assumption 14.1.1. — We let G be a finitely generated group, and fix a probability measure
µ on G whose support is finite and generates G, and which is symmetric in the sense that

µ(g) = µ(g−1) for every g ∈ G.

We will denote by S ⊂ G the support of µ.

Recall that given a nontrivial action φ : G → Homeo0(R), a Radon measure ν on R is stationary
for the action φ (and the probability measure µ) if for every Borel subset A ⊆ R one has

ν(A) =
∑
g∈S

ν(g−1.A)µ(g).

Definition 14.1.2. — An action φ : G → Homeo0(R) is µ-harmonic if the Lebesgue measure
on R is stationary.

Properties of µ-harmonic actions are studied in [DKNP13]; a treatment can also be found
in the monograph by Deroin, Navas, and the third author [DNR, §4.4]. We summarize some
of them below. Recall from Chapter 2 that we say that an action φ ∈ Homirr(G,Homeo0(R)) is
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a canonical model if it is either minimal, or cyclic (the latter means that φ is conjugate to an
epimorphism to a cyclic group of translations).

Proposition 14.1.3 (After [DKNP13]). — Under Assumption 14.1.1, the following properties
hold.

(i) Every non-trivial µ-harmonic action φ : G → Homeo0(R) is a canonical model.

(ii) Conversely, every canonical model φ : G → Homeo0(R) is conjugate to a µ-harmonic action
ψ : G → Homeo0(R).

(iii) Moreover, any two semi-conjugate µ-harmonic actions ψ1 and ψ2 of a group G are conjugate
by an affine homeomorphism.

After a careful reading of the proof of [DKNP13, Proposition 8.1], there is a natural way to
reduce the symmetries in part (iii) of the statement above to the group of translations. For this,
given a homeomorphism h ∈ Homeo0(R) consider the following area function:

Ah(ξ) =


∫ ξ
h−1(ξ)(h(η) − ξ) dη if h(ξ) ≥ ξ,∫ ξ
h(ξ)(h

−1(η) − ξ) dη if h(ξ) ≤ ξ.

Note that Ah(ξ) ≥ 0 for every ξ ∈ R, and Ah(ξ) = 0 if and only if ξ ∈ Fix(h). In the case h(ξ) ≥ ξ,
the quantity Ah(ξ) represents indeed the area of the bounded planar region delimited by the
segments [h−1(ξ), ξ] × {ξ}, {ξ} × [ξ, h(ξ)], and the graph of h; when h(ξ) ≤ ξ one has to switch
the endpoints of the segments, and the same interpretation is valid. Being a two-dimensional
area, it should be clear that when considering the map h̃ = aha−1, obtained by conjugating h by
an affine map a(ξ) = λξ + b, one has the following relation:

(14.1.1) λ2Ah(ξ) = Ah̃(a(ξ)) for every ξ ∈ R.

Lemma 14.1.4 (After [DKNP13]). — Under Assumption 14.1.1, let φ : G → Homeo0(R) be a
µ-harmonic action. Then the expected area function Aφ : R → R defined by

Aφ(ξ) =
∑
g∈S

Aφ(g)(ξ)µ(g),

is constant and positive.

Definition 14.1.5. — Under Assumption 14.1.1, we introduce the space Harmµ(G;R) of
normalized (µ-)harmonic actions as the subset of µ-harmonic actions φ ∈ Hom(G,Homeo0(R))
such that Aφ = 1, endowed with the induced compact-open topology.

Note that as the group G is generated by the finite subset S, the compact-open topology of
Hom(G,Homeo0(R)) is simply given by the product topology of Homeo0(R)S , where Homeo0(R)
is considered with the topology of uniform convergence on compact subsets.

Theorem 14.1.6 (After [DKNP13,DNR,DH]). — Under Assumption 14.1.1, the following
properties hold.

(i) The space Harmµ(G;R) is compact.

(ii) Every irreducible action φ : G → Homeo0(G) is positively semi-conjugate to a normalized
µ-harmonic action ψ ∈ Harmµ(G;R), which is unique up to conjugacy by a translation.
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(iii) Conjugacy by translations defines a topological flow Φ: R × Harmµ(G;R) → Harmµ(G;R),
called the translation flow. Explicitly, this is given by

Φt(φ)(g) = T−tφ(g)Tt,

where Tt : ξ 7→ ξ + t.

Sketch of proof. — After the identity (14.1.1) and Lemma 14.1.4, if φ is a normalized µ-harmonic
action, then also Φt(φ) is normalized for every t ∈ R. So the translation flow is well defined.

After Corollary 2.1.15 and Proposition 14.1.3, we know that every irreducible action φ : G →
Homeo0(R) is semi-conjugate to a µ-harmonic action, which is unique up to affine rescaling.
Moreover, the identity (14.1.1) and Lemma 14.1.4 give that after an affine rescaling, we can
assume that the µ-harmonic action is normalized. This gives (ii).

The fact that Harmµ(G;R) is compact follows from the fact that in a µ-harmonic action, every
element g ∈ G acts as a bi-Lipschitz homeomorphism with bounded displacement, with constants
bounded uniformly over actions in Harmµ(G;R) [DKNP13]; further details can be found in the
work of Deroin and Hurtado [DH, proof of Theorem 5.4].

Although this will not be used, note that the group G acts on the space Harmµ(G;R) by the
formula g.φ = Φφ(g)(0)(φ) (see [DNR, (4.5)]). In other words, the action on the parameterized
Φ-orbit of φ is basically the action φ.

Let us point out the following consequence of Theorem 14.1.6.

Corollary 14.1.7. — Under Assumption 14.1.1, let φ1 and φ2 be two actions in Harmµ(G;R).
(i) If φ1 and φ2 are positively conjugate by a homeomorphism h : R → R that fixes 0, then
φ1 = φ2.
(ii) The actions φ1 and φ2 are positively conjugate if and only if they belong to the same Φ-orbit.

14.2. Retraction and local rigidity

Let us now state the main results of this chapter. From the probabilistic construction in
[DKNP13], it is not clear that the harmonic representative of an action φ ∈ Homirr(G,Homeo0(R))
can be chosen to depend continuously on φ (i.e. that sufficiently close actions have close harmonic
representatives). The following result states that this is the case.

Theorem 14.2.1. — Let G be a finitely generated group, and consider a symmetric probability
measure µ whose support is finite and generates G. There exists a continuous retraction

r : Homirr(G,Homeo0(R)) → Harmµ(G;R)

which preserves positive semi-conjugacy classes.

Definition 14.2.2. — The map r from Theorem 14.2.1 will be called the harmonic retraction
of the representation space Homirr(G,Homeo0(R)).

This has an application to the study of local rigidity of representations. The following notion
is classical in dynamical systems.

Definition 14.2.3. — An irreducible action φ : G → Homeo0(R) is locally rigid if there exists
a neighborhood U of φ in Homirr(G,Homeo0(R)) consisting of representations all positively
semi-conjugate to φ.
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In other terms, every sufficiently small perturbation of the action φ gives a positively semi-
conjugate action. Theorem 14.2.1 has the following consequence.

Corollary 14.2.4 (Local rigidity criterion). — Let G be a finitely generated group, and
consider a symmetric probability measure µ whose support is finite and generates G. For φ ∈
Homirr(G,Homeo0(R)), let ψ ∈ Harmµ(G;R) be a normalized µ-harmonic action which is positively
semi-conjugate to φ. If the orbit along the translation flow of ψ is open in Harmµ(G;R), then φ

is locally rigid. The converse holds provided φ is minimal.

Proof. — Let I = {Φt(ψ) : t ∈ R} be the orbit of ψ in Harmµ(G;R) and let r be the harmonic
retraction (Theorem 14.2.1). Then r(φ) is an element of Harmµ(G;R) which is positively semi-
conjugate to ψ and thus belongs to I, i.e. φ ∈ r−1(I). If I is open, then r−1(I) is an open
neighborhood of φ consisting only of actions positively semi-conjugate to ψ, so the claim follows.
Conversely, assume that φ is minimal. Since local rigidity is preserved under conjugacy, we can
assume that φ = ψ. Thus if I is not open, using the translation flow we find that φ can be
approximated by µ-harmonic actions in different Φ-orbits. Since actions in Harmµ(G;R) belonging
to different Φ-orbits are not positively semi-conjugate ((ii) in Corollary 14.1.7), this implies that
φ is not locally rigid.

Remark 14.2.5. — The requirement that φ is minimal in the second part of Corollary 14.2.4 is
essential to ensure that the orbit under the translation flow of its semi-conjugate representative
ψ ∈ Harmµ(G;R) is open. To see this, consider the action φ : F2 × Z → Homeo0(R) obtained as
the lift of the ping-pong action φ0 : F2 → PSL(2,R) ⊂ Homeo0(S1), given by the action of the
fundamental group of a hyperbolic one-holed torus on the boundary at infinity of the hyperbolic
plane; to make this more concrete, one can consider the subgroup of PSL(2,R) generated by

the two homographies
[
5 3
3 2

]
and

[
1 1
1 2

]
. The action φ0 is then non-minimal and locally rigid,

so the same holds for φ. However, the canonical model of φ0 corresponds to the action of
the fundamental group of a hyperbolic one-punctured torus on the boundary at infinity of the
hyperbolic plane, and so this canonical model has a parabolic element (the commutator of the
generators). This can be used to show that this minimal action and its corresponding lift to the
line are not locally rigid. Thus the representative of φ in Harmµ(F2 ×Z;R) has non-isolated orbit
along the translation flow.

The proof of Theorem 14.2.1 is postponed to the end of the next section.

14.3. Preorders and harmonic actions

Recall from §2.2.2 that given a finitely generated group G, we denote by LPO(G) the space
of non-trivial left-invariant preorders on G. To every preorder, we may associate an action
on the line given by its dynamical realization (after Lemma 2.2.14, this is well defined up to
positive conjugacy). In §14.3.1, we introduce an appropriate equivalence relation on the set of
preorders, such that equivalent preorders give rise to positively semi-conjugate actions (through a
semi-conjugacy preserving a marked point). In §14.3.2, we make explicit the relations between
properties of preorders and their dynamical realizations. In §14.3.3, we investigate the topology
of the corresponding quotient space. Finally, in §14.3.4 we identify such a quotient space with the
space of normalized harmonic actions, and provide the proof of Theorem 14.2.1. As a by-product
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of this, we will get that the topology of Harmµ(G;R) does not depend on the choice of the
probability measure µ.

14.3.1. Equivalence of preorders. — Part of our discussion in this subsection is close to the
exposition of Decaup and Rond [DR]. Before going on, let us recall from Remark 2.2.8 that a
preorder ≤∈ LPO(G) corresponds to a partition G = P≤ ⊔[1]≤ ⊔P−1

≤ , where P≤ = {g ∈ G : g ⪈ 1}
is positive cone of ≤ (which is a semigroup), and [1]≤ = {g ∈ G : g ≤ 1 ≤ g} is the residue (which
is a subgroup of G). For further basic terminology, we refer more generally to §2.2.

Definition 14.3.1. — Let ≤,⪯∈ LPO(G) be two preorders on a group G. We say that ≤
dominates ⪯ if the identity map id : (G,⪯) → (G,≤) is order-preserving.

Remark 14.3.2. — The direction in the definition of domination could appear counterintuitive,
but in fact it is justified when thinking in terms of preorders (it is even clearer in terms of
dynamical realization). Indeed, take an element g ∈ G, and suppose that we want to know
whether g  1. Then we first check whether g ⪈ 1 (or g ⪇ 1), and only in the case g ∈ [1]≤ we
take the preorder ⪯ into consideration.

Recall that given a preorder ≤ on G and a ≤ −convex subgroup H, the preorder ≤ descends to
a preorder on G/H, denoted as ≤G/H , and defines the quotient preorder ≤H on G by pull-back
via the projection p : G → G/H (or more concretely, defined by the positive cone P≤H

= P≤ ∖H).

Remark 14.3.3. — After Remark 2.2.4, the identity map id : (G,≤) → (G,≤H) is order-
preserving and equivariant with respect to the actions of G by left multiplication.

Note that when ≤ dominates ⪯, the subgroup H = [1]≤ is ⪯-convex, thus the quotient preorder
⪯H is well defined. The following lemma characterizes domination in terms of positive cones.

Lemma 14.3.4. — Let ≤,⪯∈ LPO(G) be two preoders on a group G. Then the following are
equivalent.
(i) ≤ dominates ⪯.

(ii) The subgroup H = [1]≤ is ⪯-convex, and P≤ = P⪯ ∖H (so that ≤ coincides with the quotient
preorder ⪯H).

(iii) P≤ ⊆ P⪯.

Proof. — We prove that (i) implies (ii). As id : (G,⪯) → (G,≤) is order preserving, the subgroup
H = [1]≤, which coincides with its preimage, is ⪯-convex. Moreover, we have the following
inclusions:

P⪯ ⊆ P≤ ⊔ [1]≤, [1]⪯ ⊆ [1]≤, P−1
⪯ ⊆ [1]≤ ⊔ P−1

≤ .

As G = P⪯ ⊔ [1]⪯ ⊔ P−1
⪯ , we deduce P⪯ = P≤ ∖ [1]≤. Clearly (ii) implies (iii). Finally, by left

invariance, we have g ⪯ h if and only if h−1g ∈ G ∖ P⪯, and clearly the same holds for the
preorder ≤. This gives that (i) and (iii) are equivalent.

For a given a preorder ≤∈ LPO(G) on a group G, the collection of proper ≤-convex subgroups
is totally ordered by inclusion. The subgroup [1]≤ is always the least such subgroup, however a
maximal proper ≤-convex subgroup may not exist. This issue is the order-theoretic analogue
of the problem of the existence of a minimal invariant set (Remark 2.1.10). To simplify the
discussion, we will systematically assume finite generation in the rest of the section, in which case
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there exists a maximal proper ≤-convex subset, that we will denote as H≤. This leads to the
notion of minimal model of a preorder which is an order-theoretic analogue of canonical models
for actions on the line.

Definition 14.3.5. — Let G be a finitely generated group. The minimal model of a preorder
≤∈ LPO(G) is the quotient preorder ≤H , where H = H≤ is the maximal proper ≤-convex
subgroup. The minimal model will be denoted as ≤∗. When the preorder ≤ coincides with ≤∗,
we say that ≤∈ LPO(G) is a minimal model.

Remark 14.3.6. — Minimal model preorders are exactly those whose structure of convex
subgroups is the simplest possible. Indeed, after Lemma 14.3.4, the minimal model dominates
the original preorder. Therefore, H≤ is the unique proper ≤∗-convex subgroup of (G,≤∗), and
thus H≤ = [1]≤∗ . Reversely, if [1]≤ = H≤ is the unique proper ≤-convex subgroup, then ≤ is a
minimal model.

It should be not surprising that the minimal model is unique, in the following sense.

Lemma 14.3.7. — Consider preorders ≤,⪯∈ LPO(G) on a finitely generated group G, such
that ≤ is a minimal model and dominates ⪯. Then ≤ is the minimal model of ⪯.

Proof. — As ≤ dominates ⪯, the subgroup H = [1]≤ is ⪯-convex, so H ⊆ H⪯. This gives
P≤ ⊇ P⪯∗ , so by Lemma 14.3.4, the map

id : (G,≤) → (G,⪯∗)

is order preserving. Using Remark 14.3.6, as H⪯ = [1]⪯∗ , we deduce that H⪯ is ≤-convex, and
thus that H⪯ = H.

We next introduce the following equivalence relation on preorders.

Definition 14.3.8. — We say that two preorders on a (finitely generated) group G are equivalent
if they have the same minimal model. We denote by [≤] the equivalence class of ≤∈ LPO(G) and
we write [LPO](G) = {[≤] :≤∈ LPO(G)} for the corresponding quotient.

It is immediate to verify that this is indeed an equivalence relation. We have the following
result.

Proposition 14.3.9. — Consider preorders ≤1,≤2∈ LPO(G) on a finitely generated group G.
Then, there exists a preorder ≤ that dominates ≤1 and ≤2 if and only if they are equivalent.

Proof. — We have that the minimal order ≤∗ dominates ≤ and thus both ≤1 and ≤2. From
Lemma 14.3.7, we conclude that ≤∗ is the minimal model of both ≤1 and ≤2. The converse
statement follows directly from Remark 14.3.6.

14.3.2. Relations between preorders and actions on the real line. — We can now make
explicit the relation between minimal models and their dynamical counterpart. For this, note that
if ≤∈ LPO(G) is a preorder on a finitely generated group G, writing H = [1]≤, we can consider a
dynamical realization φ≤ for the action of G on the totally ordered set (G/H,<G/H); see Lemma
2.2.14. Conversely, given an irreducible action φ : G → Homeo0(R), we denote by ≤φ∈ LPO(G)
the preorder induced by the φ-orbit of 0.
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Proposition 14.3.10. — Let G be a finitely generated group and φ : G → Homeo0(R) a canonical
model. Then the preorder ≤φ is a minimal model.

Proof. — Suppose by way of contradiction that there exists a proper ≤φ-convex subgroup
H ̸= [1]≤φ

. Then, for each gH ∈ G/H, denote by IgH ⊂ R the interior of the convex hull
of φ(gH)(0). Since H is ≤φ-convex, we get that R ∖

⋃
g∈G IgH is a proper closed φ-invariant

subset. On the other hand, since H strictly contains [1]≤φ
, the stabilizer in φ(G) of each Ig acts

non-trivially on Ig, and this implies that the action φ is not cyclic, a contradiction.

Proposition 14.3.11. — Consider a preorder ≤∈ LPO(G) on a finitely generated group G.
Then, the dynamical realization φ≤ is a canonical model if and only if ≤ is a minimal model.

Moreover, the dynamical realization φ≤∗ is a canonical model for φ≤.

The rest of the subsection is devoted to the proof of Proposition 14.3.11. We will need a
preliminary result.

Lemma 14.3.12. — Consider preorders ≤1,≤2∈ LPO(G) on a group G, with ≤2 dominating
≤1. Then the dynamical realizations φ≤1 and φ≤2 are positively semi-conjugate.

Proof. — For i ∈ {1, 2} we write Hi := [1]≤i and ιi : G/Hi → R for the corresponding good
embeddings (see Definition 2.2.13). As id : (G,≤1) → (G,≤2) is order preserving, we have
H1 ⊆ H2 and the quotient map

i0 : (G/H1, <1) → (G/H2, <2)

is order preserving and equivariant (here <i denotes the total ordered induced by ≤i for i ∈ {1, 2}).
Write Ω = ι1(G/H1), and define j0 : Ω → R as

j0(ι1(gH1)) = ι2(i0(gH1)) = ι2(gH2).

It follows directly from the definitions that Ω is φ≤1 -invariant and that j0 is order preserving and
equivariant. We conclude using Lemma 2.1.8.

Let us immediately point out the following conclusion.

Corollary 14.3.13. — For finitely generated groups, equivalent preorders have positively semi-
conjugate dynamical realizations.

Proof. — After Lemma 14.3.12, the dynamical realizations of equivalent preorders are positively
semi-conjugate to the dynamical realization of their minimal model. As positive semi-conjugacy
is an equivalence relation, the conclusion follows.

Proof of Proposition 14.3.11. — Suppose first that φ≤ is not a canonical model. Then φ≤ is
neither minimal nor cyclic, and so either φ≤ has an exceptional minimal invariant set Λ ⊂ R,
or φ≤ has a discrete orbit but its image is not cyclic. We write Ω = ι(G/[1]≤) for the image of
the good embedding ι : G/[1]≤ → R associated with φ≤, and remark that Ω consists of a single
φ≤-orbit.

Case I. — φ≤ has an exceptional minimal invariant set.

We first show the following.

Claim. — Ω is contained in R∖ Λ.
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Proof of claim. — We assume by contradiction that Ω ∩ Λ ̸= ∅. As Ω consists of a single orbit,
by invariance of Λ we get that Ω ⊂ Λ, and thus Λ = Ω by minimality of Λ. Consider a connected
component I = (ξ, η) of R∖ Λ and note that, by Definition 2.2.11 of a good embedding, we have
{ξ, η} ⊆ Ω and thus the points ξ and η are in the same orbit. This shows that Λ is discrete, which
is a contradiction.

Consider now the connected component U of R ∖ Λ that contains ξ0 = ι([1]≤), and write
H = Stabφ≤

G (U). Note that H = ι−1(U) is a ≤-convex subgroup. We will show that H strictly
contains [1]≤, which by Remark 14.3.6 implies that ≤ is not a minimal model. Equivalently, we
need to show that U ∩ Ω strictly contains ξ0. Assume that ξ0 is an isolated point of Ω, otherwise
there is nothing to prove. Let λ ∈ Λ be the rightmost point of U . Note that Ω is φ≤-invariant, so
we must have Ω ⊇ Λ. Thus λ ∈ Ω. If Ω ∩ (ξ0, λ) = ∅, then (ξ0, λ) is a connected component of
R∖ Ω. As ι is a good embedding, this gives λ ∈ Ω, contradicting the claim.

Case II. — φ≤ has a closed discrete orbit but its image is not cyclic.

Take a point ξ ∈ R with closed discrete orbit and write H = Stabφ≤
G (ξ) and F = Fixφ≤(H).

Note that H is the kernel of the morphism G → Z induced from the orbit of ξ. Since φ≤ is
assumed to be non-cyclic, we have that F is a proper closed subset, and it is φ≤-invariant, for H
is normal. If Ω ∩ F ̸= ∅, then the fact that Ω is a single φ≤-orbit gives Ω ⊆ F = Fixφ≤(H); as
φ≤ is a dynamical realization of ≤, this implies H = φ≤([1]≤), so the image φ≤(G) is cyclic. A
contradiction. Thus Ω ⊆ R∖ F . More precisely, we have the following.

Claim. — F = Fix(H) is contained in Ω ∖ Ω.

Proof of claim. — Assume by way of contradiction that there is a point of F in the complement
of Ω, and let I be corresponding connected component of the complement. As the action φ≤ is a
dynamical realization (Definition 2.2.13) and F = Fixφ≤(H), this gives that the closure I is fixed
by H, so that I ⊆ F . However, ι is a good embedding, so ∂I ∈ Ω, which contradicts the fact that
Ω ∩ F = ∅.

We can now argue analogously as in Case I to find a proper ≤-convex subgroup strictly
containing [1]≤.

For the converse, assume that ≤ is not a minimal model and take a proper ≤-convex subgroup
H ̸= [1]≤. Denote by U the interior of the convex hull of ι(H) ⊂ R and notice that the orbit
φ≤(G)(U) is a proper open φ≤-invariant subset. Also notice that the stabilizer Stabφ≤

G (U) acts
non-trivially on U , which implies that φ≤ is not a cyclic action. The last two facts together imply
that φ≤ is not a canonical model.

It remains to prove that φ≤∗ is a canonical model for φ≤. After Remark 14.3.6 and Lemma
14.3.12, the actions φ≤∗ and φ≤ are positively semi-conjugate. On the other hand, by the first
part of this proposition, the action φ≤∗ is a canonical model.

14.3.3. Topology of the space of equivalence classes of preorders. — Recall that we
consider LPO(G) as a subspace of {≤,⪈}G×G endowed with the product topology, and that this
makes LPO(G) a metrizable and totally disconnected topological space, which is compact when
G is finitely generated.
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Lemma 14.3.14. — Let G be a finitely generated group. The subset

E = {(≤1,≤2) ∈ LPO(G) × LPO(G) : [≤1] = [≤2]}

is closed in LPO(G) × LPO(G). Therefore, [LPO](G) considered with the quotient topology is a
Hausdorff topological space.

Proof. — Consider a convergent sequence (⪯n,⪯′
n) → (⪯∞,⪯′

∞) so that (⪯n,⪯′
n) ∈ E for every

n ∈ N. We want to show that [⪯∞] = [⪯′
∞] and this amounts to show, after Proposition 14.3.9,

that there exists a preorder that dominates both ⪯∞ and ⪯′
∞.

For every n ∈ N, using Proposition 14.3.9 we find a preorder ≤n that dominates both ⪯n and
⪯′
n. As LPO(G) is compact, upon passing to a subsequence, we can suppose that ≤n has a limit

≤∞. We shall prove that ≤∞ dominates both ⪯∞ and ⪯′
∞, and by Lemma 14.3.4 this amounts

to show that P≤∞ ⊆ (P⪯∞ ∩ P⪯′
∞

). For this, note that by definition of the product topology, if
g ∈ P≤∞ then g ∈ P≤n

for n large enough, which by Lemma 14.3.4 implies that g ∈ P⪯n
∩ P⪯′

n

for n large enough. This implies that g ∈ P⪯∞ ∩ P⪯′
∞

, as desired.

Lemma 14.3.15. — Consider left-invariant preorders (≤n)n∈N and ≤ on a finitely generated
group G. Assume that for every finite subset F ⊂ P≤ there exists n0 ∈ N such that F ⊂ P≤n for
every n ≥ n0. Then [≤n] → [≤] in [LPO](G) as n → ∞.

In particular, if φn, φ : G → Homeo0(R) are representations such that φn → φ in the compact-
open topology, then we get [≤φn

] → [≤φ] in [LPO](G), as n → ∞.

Proof. — By hypothesis, we have that the limit of every convergent subsequence ≤kn
→≤∞

satisfies P≤ ⊆ P≤∞ . This implies that ≤ dominates ≤∞ and therefore, by Proposition 14.3.9,
we get [≤] = [≤∞]. Since every convergent subsequence of (≤n)n∈N converges to a preorder
equivalent to ≤, we conclude that [<n] → [<] in [LPO](G), as desired.

14.3.4. Identification with the space of normalized harmonic actions and harmonic
retraction. — As in Assumption 14.1.1, we fix a finitely generated group G and a symmetric
probability measure µ on G whose support is finite and generates G. We will show that [LPO](G)
with the quotient topology is homeomorphic to Harmµ(G;R). In particular, this will show that
the topology of the space of normalized harmonic actions does not depend on the choice of the
probability measure µ.

Theorem 14.3.16. — Under Assumption 14.1.1, the space Harmµ(G;R) is homeomorphic to
[LPO](G). In particular, the homeomorphism type of Harmµ(G;R) does not depend on µ.

Proof. — Consider the map
I : Harmµ(G;R) → [LPO](G)

φ 7→ [≤φ].
We will show that I is a homeomorphism. By Proposition 14.3.11 we know that if ⪯∈ LPO(G) is
a minimal model, then φ⪯ is a canonical model. On the other hand, by Proposition 14.1.3, we
can choose φ⪯ to be µ-harmonic. We introduce the map

(14.3.1) J : [LPO](G) → Harmµ(G;R),

where J assigns to [⪯] the µ-harmonic dynamical realization of ⪯∗, whose associated good
embedding satisfies ι⪯∗([1]⪯∗) = 0. We will show that J is the inverse of I. The equality I ◦J = id
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is given by the fact that ≤φ≤ coincides with ≤ for every preorder ≤∈ LPO(G), which is a direct
consequence of the definitions.

To verify that J ◦ I = id, fix φ ∈ Harmµ(G;R). Since φ is a canonical model (Proposition
14.1.3), Proposition 14.3.10 implies that ≤φ is a minimal model. Therefore, J([≤φ]) is a dynamical
realization of ≤φ. Set Ω = φ(G)(0), and notice that there exists an order-preserving map
j0 : Ω → R which is equivariant for the actions φ and J([≤φ]). Since both actions are canonical
models, it follows from Lemma 2.1.8 and Corollary 2.1.15 that j0 can be extended to a positive
conjugacy. Moreover, since j0(0) = 0, this conjugacy fixes 0 and therefore, by (i) in Corollary
14.1.7, we conclude that φ = J([≤φ]), as desired.

The continuity of I follows directly from Lemma 14.3.15. Finally, since Harmµ(G;R) is compact
(Theorem 14.1.6) and [LPO](G) is a Hausdorff topological space (Lemma 14.3.14), we conclude
that I is a homeomorphism.

We can now prove the main result of this section.

Proof of Theorem 14.2.1. — We consider the map

r : Homirr(G,Homeo0(R)) → Harmµ(G;R)
φ 7→ J([≤φ]),

where J is the map introduced in (14.3.1) and ≤φ is the preorder induced by 0. It follows directly
from the definitions that r is the identity in restriction to Harmµ(G;R). Also, by Lemma 14.3.15
and Theorem 14.3.16 we conclude that r is continuous. Finally, to check that r preserves positive
semi-conjugacy classes note that φ is positively semi-conjugate to the dynamical realization of
≤φ and that, by Corollary 14.3.13, the dynamical realizations of ≤φ and ≤∗

φ are also positively
semi-conjugate.

14.4. Application to the Borel complexity of the semi-conjugacy relation

For a given group G it is natural to try to determine how difficult is to distinguish actions
in Homirr(G,Homeo0(R)) up to semi-conjugacy, and whether it is possible to classify them. To
conclude this chapter, we highlight that Theorem 14.2.1 sheds light on this question, and suggests
a line of research for group actions on the line. An appropriate framework to formalize the
question is the theory of Borel reducibility of equivalence relations. Most notions of isomorphisms
can be naturally interpreted as equivalence relations on some standard Borel space, so that
this theory offers tools to study various classification problems and compare the difficulty of
one with respect to another. Let us recall some basic notions from this setting following the
exposition of Kechris [Kec24] (to which we refer for more details). Recall that a standard Borel
space Z is a measurable space isomorphic to a complete separable metric space endowed with
its Borel σ-algebra. A subset of such a space is analytic if it is the image of a Borel set under
a Borel map from a standard Borel space. An analytic equivalence relation on Z (henceforth
just equivalence relation) is an equivalence relation R which is an analytic subset R ⊂ Z × Z.
This standing assumption is convenient to develop the theory, and general enough to model most
natural isomorphism problems. It includes in particular the class of Borel equivalence relations
(those which are Borel subsets of Z × Z), which is much better behaved, but too restricted for
some purposes (see below). We write xRy when (x, y) ∈ R
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For i ∈ {1, 2}, let Ri be an equivalence relation on a standard Borel space Zi. We say that R1
is reducible to R2, and write R1 ≤B R2, if there exists a Borel map q : Z1 → Z2 such that xR1y

occurs if and only if q(x)R2q(y). This means that distinguishing classes of R1 is “easier” than
for R1. If R1 ≤B R2 and R2 ≤B R1, we say that R1 and R2 are bireducible.

The simplest type of equivalence relations from the perspective of reducibility are the smooth
ones. An equivalence relation R on Z is said to be smooth if there exist a standard Borel space
W and a Borel map q : Z → W which is a complete invariant for the equivalence classes of R, in
the sense that xRy if and only if q(x) = q(y).

The next class of equivalence relations are the hyperfinite ones. An equivalence relation R is
hyperfinite if it is a countable union R =

⋃
Rn of equivalence relations whose classes are finite,

and essentially hyperfinite if it is bireducible to a hyperfinite one. An example of a hyperfinite
equivalence relation which is not smooth, denoted as E0, is the equivalence relation on the set of
one-sided binary sequence {0, 1}N, where (xn) and (yn) are equivalent if xn = yn for large enough
n. In fact (after Harrington, Kechris, and Louveau [HKL90]), up to bireducibility, the relation E0
is the unique essentially hyperfinite equivalent relation which is not smooth, and moreover every
Borel equivalence relation R is either smooth, or satisfies E0 ≤B R, so that E0 can be thought of
as the simplest non-smooth Borel equivalence relation. The essentially hyperfinite equivalence
relations form a strict subset of the essentially countable ones (those that are bireducible to a
relation whose classes are countable). These are precisely those induced by orbits of actions of
countable groups, and the poset of bireducibility types of such relations is quite complicated (see
Adams ans Kechris [AK00]). Essentially countable relations are themselves a strict subset of
Borel equivalence relations, after which we find general (analytic) equivalence relations.

The bireducibility type of the conjugacy relation of various classes of dynamical systems
and group actions has been extensively studied. For many classes of topological or measurable
dynamical systems, the conjugacy relations is known or conjectured to be quite complicated from
the perspective of bireducibility; see for instance the works of Foreman, Rudolph, and Weiss
[FRW11], Gao, Jackson, and Seward [GJS16], Sabok and Tsankov [ST17], and Le Roux [LR01].
As an example, the conjugacy relation of elements of Homeo0(R) is bireducible to the isomorphism
relation of all countable (but not necessarily locally finite) graphs, which is analytic but not Borel
(see Hjorth [Hjo00, Theorem 4.9]), and the conjugacy relation of homeomorphisms of the plane is
strictly more complicated by a result of Hjorth [Hjo00, Theorem 4.17]. As a consequence, one
may expect that the semi-conjugacy relation on the space of irreducible action of a given group G
should also be complicated and might not even be Borel. In contrast, the existence of the space
of normalized harmonic actions and Theorem 14.2.1 imply the following.

Corollary 14.4.1. — Let G be a finitely generated group. Then the semi-conjugacy relation on
the space Homirr(G,Homeo0(R)) is essentially hyperfinite (in particular, it is Borel).

Proof. — Theorem 14.2.1 shows that this relation is bireducible to the orbit equivalence relation
on the space Harmµ(G;R) induced by the translation flow Φ. On the other hand, the orbit
equivalence relation of any Borel flow on a standard Borel space is essentially hyperfinite (see
Kechris [Kec24, Theorem 8.33]).

After Corollary 14.4.1 and the previous discussion, we may further distinguish two cases: either
the semi-conjugacy relation on Homirr(G,Homeo0(R)) is smooth, or it is not, in which case it is
bireducible to E0. As mentioned above, the first case corresponds to groups for which actions up
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to semi-conjugacy can be completely classified by a Borel invariant, so that it is natural to ask
which groups have this property. This can be characterized in terms of a very restricted behavior
for the dynamics of the flow Φ on Harmµ(G;R). Recall that given a flow (Ψ, Y ) on a topological
space, a point y ∈ Y is said to be recurrent if for every neighborhood U of y, the set of times
{t ∈ R : Ψt(y) ∈ U} is unbounded (above or below), and periodic if Ψt(y) = y for some t ̸= 0.

Corollary 14.4.2. — Under Assumption 14.1.1, the semi-conjugacy relation on the space of
irreducible actions Homirr(G,Homeo0(R)) of a finitely generated group G is smooth if, and only
if, every recurrent point of the flow (Harmµ(G;R),Φ) is periodic.

Proof. — By Theorem 14.2.1, the semi-conjugacy relation on Homirr(G,Homeo0(R)) is smooth if
and only if so is the orbit equivalence relation of the flow (Harmµ(G;R),Φ). A result of Effros
implies that the orbit equivalence relation induced by a flow Φ on a Polish space is smooth if and
only if every recurrent point of Φ is periodic, see the book of Becker and Kechris [BK96, Theorem
3.4.2].

Corollary 14.4.2 suggests the following general question on groups acting on the line.

Question 14.4.3. — Which finitely generated groups satisfy the properties in Corollary 14.4.2?

We will present some results in this direction in §16.2.1.

Remark 14.4.4. — There do exist finitely generated groups G for which the semi-conjugacy
relation on Homirr(G,Homeo0(R)) is not smooth (and in particular, the space of semi-conjugacy
classes is not a standard measurable space). For example, it is not difficult to show this for the free
group F2 as follows. Fix a ping-pong pair of homeomorphisms g, h of R/Z, with Fix(g) = {0, 1/2}
and Fix(h) = {1/4, 3/4}, where both g, h have one attracting and one repelling fixed point, and
such that ⟨g, h⟩ acts minimally on R/Z. Let g̃, h̃ ∈ Homeo0(R) be two lifts, with Fix(g̃) = 1

2Z and
Fix(h̃) = 1

2Z + 1
4 . Given a sequence ω = (ωn) ∈ {+1,−1}Z, define an element g̃ω ∈ Homeo0(R)

by g̃ω(x) = g̃ωn(x) if x ∈ [ 1
2n,

1
2n+ 1], and if F2 is the free group with free generators a, b, define

a representation φω : F2 → Homeo0(R) by φω(a) = g̃ω and φω(b) = h̃. It is not difficult to check
that the map ω 7→ φω is Borel (actually continuous). Since φω(F2) = ⟨g̃ω, h̃⟩ acts on R with the
same orbits as ⟨g̃, h̃⟩, every action φω is minimal, and this implies that for ω, ω′ ∈ {±1}Z, the
actions φω and φω′ are positively semi-conjugate if and only if they are positively conjugate, and
this happens if and only if ω and ω′ belong to the same orbit of the bilateral shift. Since the
orbit equivalence relation of the shift is not smooth, the conclusion follows.

Remark 14.4.5. — In contrast, for every countable group G the semi-conjugacy relation on the
space Homirr(G,Homeo0(S1)) of irreducible actions on the circle is always smooth. One way to
prove this is to repeat the above argument by fixing a generating probability measure µ on G, and
note that every action is semi-conjugate to an action for which the Lebesgue measure is stationary
(unlike for the case of the real line, this is a straightforward consequence of compactness). This
can be used to construct an analogue of the space of normalized harmonic actions, where the
translation flow should be replaced by an action of the group S1, and since this is a compact
group, the action must always admit a Borel cross section. Another route would be to prove
that the bounded Euler class is a Borel complete invariant under semi-conjugacy. This difference
can be seen as a formalization of the observation, mentioned in the introduction, that studying
actions on the circle up to semi-conjugacy is easier than for the real line thanks to compactness.



CHAPTER 15

SPACES OF HARMONIC ACTIONS AND LAMINAR ACTIONS

In this chapter, we develop some technical tools that relate the framework of laminar actions
and horograding, developed in Part II, with the space of normalized harmonic actions

15.1. Horogradings as partial semi-conjugacies

We have already seen, in Chapter 8, that if a laminar action φ : G → Homeo0(R) admits a
horograding by another action ρ : G → Homeo+(R), then various properties of φ are governed
by ρ, especially as far as the behavior near ∞ is concerned (see for instance Proposition 8.2.10,
or Lemma 8.2.12). Here we explain that when G is finitely generated, a horograding can be
thought of as a partially-defined semi-conjugacy between φ and ρ. Namely, the choice of a finite
symmetric generating set S determines canonically a decomposition of the line into a bounded
interval IS (the central leaf ), and two half-lines J±

S (the outer rays) on which the horograding
defines a semi-conjugacy with the horograding action ρ, except that the equivariance is lost when
orbits visit IS . We first explain how to canonically select such a leaf IS .

Lemma 15.1.1 (Central leaf). — Let G be a group generated by a finite symmetric set S,
and consider a focal laminar action φ : G → Homeo0(R) with invariant lamination L. Let LS be
the set of leaves I ∈ L such that:

(CL1) the φ-orbit of I is cofinal in L;
(CL2) we have s.I ∩ I ̸= ∅ for every s ∈ S.

Then, there exists a leaf IS ∈ LS such that LS = {I ∈ L : IS ⊆ I}.

Definition 15.1.2. — With notation and assumptions as in Lemma 15.1.1, the leaf IS ∈ L will
be called the central leaf associated with the generating set S.

Proof of Lemma 15.1.1. — As φ is focal, we can find a cofinal orbit in L, thus the collection of
leaves satisfying (CL1) is non-empty. Now, both conditions (CL1) and (CL2) are stable under
passing to a larger leaf, and clearly any sufficiently large element of (L,⊆) satisfies (CL2) (it is
enough to choose an element which contains a given point ξ and its φ-images under elements of
S). We conclude that LS is non-empty.

Observe next that for every I ∈ LS , there must exists s ∈ S such that s.I ̸= I, since the action
is irreducible. Upon replacing s by s−1, there exist s ∈ S with s.I ⊋ I. It follows that we can
find a sequence (sn) of elements of S such that In := sn · · · s1.I is an increasing exhaustion of
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R. Such a sequence can be constructed by induction, by choosing at each step sn ∈ S such that
sn.In−1 is maximal. If (In) does not exhaust R, then it must converge to some J ∈ L such that
there exists no s ∈ S with s.J ⊋ J , contradicting what was argued before.

We now show that LS is a totally ordered subset of L. Suppose by contradiction that I0, J ∈ LS
are disjoint, and let In := sn · · · s1.I0 be an increasing exhaustion as above. There is a smallest
m ≥ 1 such that Im ⊇ J . Then Im−1 ∩ J = ∅, and it follows that sm.J ∩ J = ∅, contradicting
that J ∈ LS . Thus LS is totally ordered.

It follows that K =
⋂
I∈LS

I is non-empty. Note that K cannot be reduced to a point {ξ}, for
if this was the case, by irreducibility of φ, there would exist s ∈ S such that s.ξ ̸= ξ, and thus
s.I ∩ I = ∅ for any sufficiently small I ∈ LS , violating (CL2). Hence K = IS for some IS ∈ L.
To conclude, we need to check that IS ∈ LS , i.e. that it satisfies (CL1) and (CL2). It is easy to
see that (CL2) is a closed condition (or more precisely that its negation, namely that s.I ∩ I = ∅
for some s ∈ S, is an open condition), and thus is satisfied by IS . As for (CL2), arguing as above
we can choose s ∈ S such that s.IS ⊋ IS , and thus s.IS ∈ LS . In particular s.IS has a cofinal
orbit (condition (CL2)), and thus so does IS .

We now explain how the additional data of a horograding determines a partially defined
semi-conjugacy on each connected component of R∖ IS .

Proposition 15.1.3 (Partial semi-conjugacies). — Let G be a group generated by a finite
symmetric set S, and consider a focal laminar action φ : G → Homeo0(R) with a positive
horograding (L, h) by an irreducible action ρ : G → Homeo0(R). Let IS ∈ L be the central
leaf associated with S, and denote by J−

S and J+
S the connected components of R∖ IS adjacent,

respectively, to −∞ and +∞. Then there exist maps

h±
S : J±

S → [h(IS),+∞),

satisfying the following properties:
(i) h+

S is non-decreasing, h−
S is non-increasing, and

lim
ξ→+∞

h+
S (ξ) = lim

ξ→−∞
h−
S (ξ) = ∞.

(ii) For any m ≥ 1 and s1, . . . , sm ∈ S, if ξ ∈ J+
S is such that

sj · · · s1.h
+
S (ξ) > h(IS) for every j ∈ {1, . . . ,m},

then sm · · · s1.ξ ∈ J+
S and

h+
S (sm · · · s1.ξ) = sm · · · s1.h

+
S (ξ).

The analogous statement holds for h−
S .

Remark 15.1.4. — The analogous statement for negative horogradings also holds. In this case,
the map h+

S is non-increasing while the map h−
S is non-decreasing.

Proposition 15.1.3 is a useful technical tool to work with horograded actions, so that it is again
worth to give a specific name to the objects appearing in the statement.

Definition 15.1.5. — With notation and assumptions as in Proposition 15.1.3, the two
connected components J−

S and J+
S of R∖ IS will be called the outer rays associated with S. The

maps h±
S are called the partial semi-conjugacies associated with S. The point cS = h(IS) will be

called the central value of the horograding h (associated with S).
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Roughly speaking, Proposition 15.1.3 states that, as a point ξ gets further away from the
central leaf, the action φ around ξ resembles more and more to an action semi-conjugate to the
action ρ, in the sense that the difference is undetectable on longer and longer elements of G (in
the word metric determined by S). Moreover one has a control on the “good” group elements in
terms of the action ρ only (and the point cS).

Proof of Proposition 15.1.3. — Assume that (L, h) is a positive horograding of φ : G →
Homeo0(R) by an irreducible action ρ : G → Homeo0(R). Let J−

S and J+
S be the outer rays.

Similarly to what we have done in the proof of Lemma 8.2.12, for each ξ ∈ J±
S , let Iξ ∈ LS be

the smallest leaf such that ξ ∈ Iξ. Then we consider the maps

h±
S : J±

S → R
ξ 7→ h(Iξ).

By construction, both maps take values in the half-line [h(IS),+∞). The map h+
S is non-decreasing,

h−
S is non-increasing, and by Lemma 8.2.7, we have

lim
ξ→+∞

h+
S (ξ) = lim

ξ→−∞
h−
S (ξ) = +∞,

so that (i) is verified. We next discuss (ii). By induction, it is enough to establish the property
for m = 1. Fix ξ ∈ J+

S and s ∈ S such that cS < s.h+
S (ξ) = h (s.Iξ). We need to justify that

this implies that s.ξ ∈ J+
S . It cannot be the case that s.ξ ∈ J−

S , as this would imply that
s.IS ∩ IS = ∅, contradicting (CL2). Thus the only possibility is that s.ξ ∈ IS , i.e. ξ ∈ s−1.IS .
Note that J := s−1.IS and IS must be related by inclusion, by (CL2), and since J contains
ξ /∈ IS , we deduce that IS ⊂ J ∈ LS . This implies that Iξ ⊆ J , by definition of Iξ, and s.Iξ ⊂ IS .
We deduce that cs < h(s.Iξ) ≤ h(IS) = cS , a contradiction; hence ξ ∈ J+

S . It follows immediately
that Is.ξ = s.Iξ, and thus h+

S (s.ξ) = s.h+
S (ξ).

15.2. Laminar actions in harmonic coordinates

Starting from now, we discuss properties of central leaves and partial semi-conjugacies when
working with normalized harmonic actions.

Assumption 15.2.1. — Throughout the section, we fix a finitely generated group G together
with a finite symmetric generating set S, and a symmetric probability measure µ on G whose
support is finite and generates G.

15.2.1. Uniformity of central leaves. — The following lemma says that central leaves of
laminar actions in Harmµ(G;R) have uniformly controlled diameter. Given an interval J = (a, b),
we denote by |J | = b− a its length, as customary.

Lemma 15.2.2. — Under Assumption 15.2.1, there exist constants 0 < C1 < C2 such that for
every laminar action φ ∈ Harmµ(G;R) and φ-invariant lamination L, the central leaf IS ∈ L
satisfies C1 < |IS | < C2.

Proof. — For any irreducible action φ : G → Homeo0(R), define

δ(φ) = max{φ(s)(0) : s ∈ S},
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which is non-zero (by irreducibility of φ), and actually positive (since S is symmetric). On the
one hand, δ defines a continuous function on Homirr(G,Homeo0(R)), so that by compactness of
Harmµ(G;R), we can set

(15.2.1) δ+ = min
φ∈Harmµ(G;R)

δ(φ),

which is therefore positive. On the other hand, for any ξ ∈ R and φ ∈ Homirr(G,Homeo0(R)),
the relation Φξ(φ)(g)(0) = φ(g)(ξ) − ξ, gives

δ(Φξ(φ)) = max{φ(s)(ξ) − ξ : s ∈ S}.

By Φ-invariance of Harmµ(G;R), we deduce that

min
φ∈Harmµ(G;R), ξ∈R

max{φ(s)(ξ) − ξ : s ∈ S} = min
φ∈Harmµ(G;R)

δ(φ) = δ+.

Similarly, we can introduce the well-defined positive constant

∆ = max{|φ(s)(ξ) − ξ| : φ ∈ Harmµ(G), s ∈ S, ξ ∈ R}(15.2.2)
= max{|φ(s)(0)| : φ ∈ Harmµ(G), s ∈ S} > 0.

Fix now a laminar action φ ∈ Harmµ(G;R) together with a φ-invariant lamination L, and let
IS = (I−

S , I
+
S ) be its associated central leaf. After the previous discussion, we can take s ∈ S with

s.I−
S − I−

S ≥ δ+. By definition of IS , we get s.I+
S ⊂ I+

S , and we conclude that |IS | ≥ δ+. For the
other inequality, we claim that |IS | ≤ 3∆. Indeed, since S is symmetric, we can take s ∈ S so
that s.I+

S < I+
S . In this case, by definition of IS , we have that s.IS ⊂ IS . On the one hand, this

gives |s.IS | ≥ |IS | − 2∆. On the other hand, recalling the properties of IS (see Lemma 15.1.1),
this also gives that for some s′ ∈ S we must have s′s.IS ∩ s.IS = ∅, and consequently |s.IS | ≤ ∆.
Putting both inequalities together, we get that |IS | ≤ 3∆.

15.2.2. Limits of centered laminar actions. — In general, a limit point of laminar actions
in the space Harmµ(G;R) need not be laminar. The next result provides a sufficient condition
under which this is the case.

Lemma 15.2.3. — Under Assumption 15.2.1, for any K > 0, the subset of focal laminar actions
in Harmµ(G;R) admitting an invariant lamination whose central leaf is contained in the interval
(−K,K), is closed.

Proof. — Given an action φ : G → Homeo0(R) and a φ-invariant lamination L, we will write IS,φ
for the central leaf. Consider a sequence of laminar actions φn ∈ Harmµ(G;R), with φn-invariant
laminations Ln, such that IS,φn

⊂ (−K,K) for every n ∈ N, and assume that it converges, as
n → ∞, to an action φ ∈ Harmµ(G;R). By Lemma 15.2.2, we have that there exists a positive
constant C1 > 0 so that |IS,φn

| > C1 for every n ∈ N. Since IS,φn
⊂ (−K,K) for every n ∈ N,

upon passing to a subsequence, we can assume that IS,φn converges to an interval J ⊂ [−K,K]
with non-empty interior. Moreover, since crossing is an open condition, we have that the φ-orbit
of the interior of J is cross free and therefore gives a φ-invariant prelamination. Furthermore,
since IS,φn

is related by inclusion with φn(s)(IS,φn
) for every s ∈ S, the same happens with J

and φ(s)(J). On the one hand, this implies that φ is not a cyclic action, and since it belongs to
Harmµ(G;R), it is minimal, so that it is a focal laminar action (Proposition 8.1.15). On the other
hand, it gives that IS,φ ⊂ J ⊂ [−K,K], concluding the proof.



15.2. LAMINAR ACTIONS IN HARMONIC COORDINATES 179

15.2.3. Horogradings in harmonic coordinates. —

Lemma 15.2.4. — Under Assumption 15.2.1, there exists C > 0 such that if φ ∈ Harmµ(G,R)
is laminar, and (L, h) a horograding of φ by an action ρ ∈ Harmµ(G,R), then the associated
partial semi-conjugacies h±

S : J±
S → R satisfy

1
C

|ξ − η| − C ≤ |h±
S (ξ) − h±

S (η)| ≤ C|ξ − η| + C,

for every ξ, η ∈ J±
S .

Proof. — Let us prove the statement for h+
S . Let δ+ and ∆ be the constants defined in the

proof of Lemma 15.2.2, and assume that ξ, η ∈ J+
S , with ξ < η. Choose inductively a sequence

of generators (si) such that si+1 · · · s1.ξ − si · · · s1.ξ is maximal for every i (and hence bounded
from below by δ+, but still bounded from above by ∆). Then Proposition 15.1.3 implies that
si+1 . . . s1.h

+
S (ξ) − si . . . s1.h

+
S (ξ) is also maximal (and hence also bounded from below by δ+, and

from above by ∆). Let n be such that sn · · · s1.ξ < η ≤ sn+1 · · · s1.ξ. Then

sn · · · s1.h
+
S (ξ) ≤ h+

S (η) ≤ sn+1 · · · s1.h
+
S (ξ),

so that η− ξ and h+
S (η) − h+

S (ξ) are both bounded from below by δ+n and from above by ∆n+ ∆.
The conclusion follows easily.

We conclude this chapter with an important technical statement which relates horograded
actions and their horograding actions in the space Harmµ(G;R). By Proposition 15.1.3, if a
laminar action φ has a horograding by ρ, then φ and ρ look semi-conjugate far away from the
central leaf (up to the orientation). In the space Harmµ(G;R), this implies that the Φ-orbits of φ
and ρ are eventually close (with a uniform control on constants).

Lemma 15.2.5. — Under Assumption 15.2.1, let dist be any distance inducing the topology of
Harmµ(G,R). Then for every ε > 0, there exists T > 0 such that the following hold. Suppose
that φ ∈ Harmµ(G,R) is laminar, and that (L, h) is a positive horograding of φ by an action
ρ ∈ Harmµ(G,R), with central leaf IS and partial semi-conjugacies h± : J±

S → R. Then, the
following hold.

(i) If t ∈ J+
S is such that t− sup IS > T , then dist(Φt(φ),Φh+(t)(ρ)) < ε.

(ii) If t ∈ J−
S is such that t−inf IS < −T , then dist(Φt(φ),Φh−

S
(t)(ρ̂)) < ε, where ρ̂ is the conjugate

of ρ by the map x 7→ −x.

Remark 15.2.6. — Note that any negative horograding (L, h) of φ by ρ is a positive horograding
of φ by ρ̂, so the same result holds for negative horogradings, upon exchanging the roles of ρ and
ρ̂.

Proof of Lemma 15.2.5. — We will prove (i), the proof of (ii) being analogous. Suppose by
contradiction that the conclusion does not hold. Then we can find sequences of laminar actions
(φn) in Harmµ(G,R), with horograding (Ln, hn) of φn by an action ρn ∈ Harmµ(G,R), with
central leaves In and partial semi-conjugacies h±

n : J±
n → R, and a sequence of real numbers

tn ∈ J+
n , such that tn − sup In → ∞, but dist(Φtn(φn),Φun(ρn)) is bounded away from 0, where
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un := h+
n (tn). After extracting a subsequence, we can suppose that Φtn(φn) and Φun(ρn) converge

to different limits in Harmµ(G;R). We will work with the homeomorphism

I : Harmµ(G;R) → [LPO](G)
φ 7→ [≤φ],

defined in the proof of Theorem 14.3.16 (recall that ≤φ is the preorder induced by the φ-orbit of
0). Denote by ≤n the preorder induced by the φn-orbit of tn, which equals the preorder induced
by the Φtn(φn)-orbit of 0, and let ⪯n be the preorder induced by the ρn-orbit of un, which equals
the preorder induced by the Φun(ρn)-orbit of 0.

Assume now that Φun(ρn) converges to an action ρ∞; then, this is equivalent to saying that
[⪯n] → [⪯∞], where ⪯∞ is the preorder induced by the ρ∞-orbit of 0. To obtain a contradiction,
we will prove that in this case Φtn(φn) also converges to ρ∞, by proving that [≤n] → [⪯∞]. Note
that by Lemma 14.3.15, in order to prove that [≤n] → [⪯∞], it is enough to show that for every
g ∈ P⪯∞ , there exists n0 ∈ N such that g ∈ P≤n

for every n ≥ n0. So, let us fix an element
g ∈ P⪯∞ , and let us first show that g ∈ P⪯n

for any n big enough. If it were not the case, by
compactness of LPO(G) we could find a convergent subsequence ⪯nk

→⪯∗ with g /∈ P⪯∗ . Then,
on the one hand, since [⪯n] → [⪯∞], we must have that ⪯∗∈ [⪯∞]. On the other hand, since
ρ∞ ∈ Harmµ(G;R) is a canonical model, Proposition 14.3.10 implies that ⪯∞ is a minimal model
of [⪯∞]. These two facts together give that P⪯∞ ⊂ P⪯∗ , contradicting that g /∈ P⪯∗ . Conversely,
we show the following.

Claim. — There exists n0 ∈ N such that if n ≥ n0 and g ∈ P⪯n
, then g ∈ P≤n

.

Proof of claim. — We want to prove that for any sufficiently large n, if ρ(g)(un) > un, then
φn(g)(tn) > tn. Assume that g satisfies so, and let cn := hn(In) be the central value of
the horograding. Since tn − sup In tends to +∞, Lemma 15.2.4 implies that un − cn tends
to +∞. Consider the constant ∆ defined as in (15.2.2), and write g = sk · · · s1, for some
k ∈ N and s1, . . . , sk ∈ S. Then for n large enough, we have un − cn > k∆, and hence
ρn(si · · · s1)(un) ≥ un − i∆ > cn for any i ∈ {1, . . . , k}. For such an n, Proposition 15.1.3 implies
that φn(g)(tn) ∈ J+

n and

h+
n (φn(g)(tn)) = ρn(g)(h+(tn)) = ρn(g)(un) > un.

Since h+
n is non-decreasing, this gives φn(g)(tn) ≥ tn, as desired.

Thus, since g ∈ P⪯n for any n large enough, the claim gives that g ∈ P≤n for any n large enough.
This finishes the proof that Φtn(φn) converges to ρ∞, and thus the proof of the lemma.



CHAPTER 16

SPACES OF HARMONIC ACTIONS FOR LOCALLY MOVING
GROUPS

In this chapter we prove our main results in the setting of locally moving groups. In particular,
we prove a criterion for the local rigidity of the standard action.

16.1. Preliminary considerations

Let X ⊆ R be an open interval, and suppose that G ⊂ Homeo0(X) is a finitely generated
micro-supported subgroup acting minimally on X. Fix a symmetric probability measure µ on G

with finite generating support, and consider the space Harmµ(G;R) of normalized µ-harmonic
actions. The latter admits a decomposition

(16.1.1) Harmµ(G;R) = Q ⊔ I ⊔ Î ⊔ E ,

where the subsets in this partition are defined by what follows:
— we let Q ⊂ Harmµ(G;R) be the subset consisting of actions φ that are not faithful, or
equivalently factor through G/[Gc, Gc] (by Proposition 3.2.1);
— we fix a harmonic representative ι ∈ Harmµ(G;R) of the standard action on X, and let
I = {Φt(ι) : t ∈ R} be its Φ-orbit, and Î the Φ-orbit of ι̂, the conjugate of ι under the reflection
x 7→ −x;
— we let E be the subset of Harmµ(G;R) of exotic actions, that is, all actions that are faithful,
minimal, and not conjugate to the standard action. Recall that these are all laminar by Theorem
9.1.1.
The notation introduced above will be used throughout the chapter. The following proposition
states some elementary properties of the decomposition in (16.1.1) (which do not rely on any
of our main results). Recall that for a micro-supported subgroup G ⊆ Homeo0(X) acting on
X = (a, b), we denote by G− (respectively, G+) the subgroups of elements with trivial germ at a
(respectively, b).

Lemma 16.1.1. — Let G ⊂ Homeo0(X), be a finitely generated micro-supported subgroup acting
minimally on X, and fix a symmetric probability measure with finite generating support µ on
G. Consider the decomposition (16.1.1) of Harmµ(G;R). Then all sets in the decompositions are
invariant under the translation flow Φ, and the following hold:
(i) The set Q is closed.
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(ii) All accumulation points of the Φ-orbits I, Î are contained in Q. More precisely:

— if ψ belongs to the ω-limit set of I, or to the α-limit set of Î, then kerψ ⊃ G+;
— if ψ belongs to the α-limit set of I, or to the ω-limit set of Î, then kerψ ⊃ G−.

(iii) The set E is open.

Proof. — By Proposition 3.2.1, an action φ ∈ Harmµ(G,R) belongs to Q if and only if
φ([Gc, Gc]) = {id}; the latter is a closed condition, showing (i). To show (ii), consider, for
instance, the case where ψ is an accumulation point of Φt(ι), for t → +∞ (the other cases being
analogous). For simplicity, we assume that ι is the defining action of G on X = R. For every
finite subset Σ ⊂ G+, we can find x ∈ X such that Σ ⊂ G(−∞,x). Since Φt(ι) is the conjugate
of ι by the translation x 7→ x− t, it follows that for any arbitrary compact subset K ⊂ R and
t > x − minK, the image Φt(ι)(Σ) acts trivially on K, so that ψ(Σ) = {id}. Since Σ is an
arbitrary finite subset of G+, we deduce that G+ ⊂ kerψ (in particular ψ is not faithful, i.e. it
belongs to Q). Finally, (i) and (ii) together imply that Q ∪ I ∪ Î is closed, i.e. that E is open,
showing (iii).

16.2. Main result

16.2.1. Statement and main corollaries. — The main result of Part III is Theorem 16.2.3
below. It shows that for a class of locally moving subgroups G ⊂ Homeo0(X), the dynamics of the
flow (Harmµ(G;R),Φ) satisfies some strong restrictions, leading in particular to the local rigidity
of the standard action. This result relies on a technical but important assumption on G, related
to the generating sets of the subgroups GI for I ⊊ X. We will use the following terminology (in
the lack of a better one).

Definition 16.2.1. — Let X = (a, b). We say that a subgroup G ⊆ Homeo0(X) satisfies
condition (F) if

(F) there exists x, y ∈ X such that the subgroup G(a,x) is contained in a finitely generated
subgroup of G+, and G(y,b) is contained in a finitely generated subgroup of G−.

Remark 16.2.2. — Condition (F) is satisfied provided there exists x, y such that G(a,x), G(y,b)
are themselves finitely generated. For example, this condition is satisfied by Thompson’s group
F , and many relatives. Various sources of examples of locally moving groups with (F) will be
discussed in §16.3. In §16.4, we will construct an example showing that the main results in this
section become false if (F) is dropped.

Recall that a flow Ψ on a locally compact space Z is proper if for every compact subset K ⊆ Z,
the set {t ∈ R : Ψt(K) ∩K ̸= ∅} is compact.

Theorem 16.2.3. — Let G ⊂ Homeo0(X) be a finitely generated locally moving subgroup
satisfying (F), and fix a symmetric probability measure µ with finite generating support on G.
Consider the decomposition of the space Harmµ(G;R) as in (16.1.1). Then the following hold:

(i) The orbits I and Î are open subsets of Harmµ(G).
(ii) The translation flow restricted to the open subset Harmµ(G,R) ∖ Q of faithful actions is
proper.
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Theorem 16.2.3 has the following immediate corollary, which implies Theorem D from the
introduction.

Corollary 16.2.4 (Local rigidity of the standard action). — For X = (a, b), let G ⊂
Homeo0(X) be a finitely generated locally moving subgroup satisfying (F). Then, the subset of
actions in Homirr(G,Homeo0(R)) which are positively semi-conjugate to the standard action of G
on X is open. In particular, the standard action of G on X is locally rigid.

Proof. — The retraction

r : Homirr(G,Homeo0(R)) → Harmµ(G;R)

from Theorem 14.2.1 preserves the positive semi-conjugacy classes; hence, the subset of actions
positively semi-conjugate to the standard action coincides with the preimage r−1(I). As by
Theorem 16.2.3, we have that the subset I is open, the result follows.

Remark 16.2.5. — Notice that the reversed standard action is also locally rigid. We point out
that in the setting of Corollary 16.2.4, these actions are not always the unique locally rigid actions
of G: the analysis of actions of Bieri–Strebel groups in Chapter 10 provides examples of groups
satisfying Corollary 16.2.4 (see §16.3.2), that admit finitely many conjugacy classes of faithful
minimal laminar actions. These actions correspond to finitely many Φ-orbits in Harmµ(G;R),
and are therefore locally rigid as well.

Another consequence of Theorem 16.2.3 is that the structure of the space of semi-conjugacy
classes in Homirr(G,Homeo0(R)) is particularly well behaved from a topological and Borel per-
spective. In particular, faithful minimal actions of G, considered up to conjugacy, give rise to a
well-behaved topological space. (Recall the discussion in §14.4 for the notion of smoothness of an
equivalence relation in the Borel setting, and its significance to classification problems).

Corollary 16.2.6 (Tameness of the space of semi-conjugacy classes)
For X = (a, b), let G ⊂ Homeo0(X) be a finitely generated locally moving subgroup satisfying

(F). Let M be the subset of Homirr(G,Homeo0(R)) consisting of actions that are faithful and
minimal, and denote by ∼ the equivalence relation on M of positive conjugacy. Then the following
hold:

(i) The quotient space M/ ∼ is a locally compact metrizable space, in which the conjugacy class
of the the standard action is an isolated point.
(ii) The equivalence relation ∼ on M is smooth. The semi-conjugacy relation on the
space Homirr(G,Homeo0(R)) is smooth if and only if the same holds true for the space
Homirr(G/[Gc, Gc],Homeo0(R)) of irreducible actions of the largest quotient.

Proof. — Let ∼ be the conjugacy relation on M, and let

U := M ∩ Harmµ(G;R) = Harmµ(G;R) ∖ Q.

The harmonic retraction

r : Homirr(G,Homeo0(R)) → Harmµ(G;R)

defined in Theorem 14.2.1 satisfies that r(M) = U , and two actions φ1, φ2 ∈ M are conjugate
if and only if r(φ1) and r(φ2) are in the same Φ-orbit. From this it follows that the quotient
space M/ ∼ is naturally homeomorphic to the quotient space U/Φ. Note that U is a locally
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compact metrizable space (as it is an open subset in a compact metrizable space). Theorem
16.2.3 implies that I/Φ and Î/Φ are isolated points in the quotient, and that the flow Φ on U is
proper. This implies that U/Φ is Hausdorff, locally compact (Abels [Abe78, Corollary 1.15]), and
regular (Palais [Pal61, Proposition 1.2.8]), hence metrizable by the Urysohn lemma, showing (i).
For (ii), first note that (i) implies in particular that M/ ∼ is a standard Borel space, so ∼ is
smooth on M. For the remaining statement, we apply Corollary 14.4.2. Theorem 16.2.3, implies
E does not contain any recurrent point for the flow Φ, and the same conclusion holds for I, Î by
Lemma 16.1.1. Hence all recurrent points of (Harmµ(G;R),Φ) are contained in Q. To conclude,
note that Q naturally identifies with the space of harmonic actions Harmµ(G/[Gc, Gc];R), where
µ is the push-forward of µ by the quotient map.

16.2.2. The proof. — The main tool for proving Theorem 16.2.3 is Theorem 9.2.1. It is
applicable thanks to the following lemma.

Lemma 16.2.7. — For X = (a, b), let G ⊂ Homeo0(X) be a locally moving subgroup satisfying
(F). Then the fragmentable subgroup Gfrag is finitely generated.

Proof. — Since G satisfies condition (F), there exist x1, x2 ∈ X and finite subsets S1 ⊂ G− and
S2 ⊂ G+, such that G(a,x2) ⊂ ⟨S2⟩ and G(x1,b) ⊂ ⟨S1⟩, and upon conjugating G(a,x2) by some
g ∈ G, we can assume that x1 < x2. We set H = ⟨S1, S2⟩, and we want to prove that H = Gfrag.
The inclusion H ⊆ Gfrag is clear. To show the other inclusion, first notice that since x1 < x2, the
subgroup ⟨G(a,x2), G(x1,b)⟩ ⊆ H acts on X without fixed points. Thus, the union⋃

h∈H

hG(a,x2)h
−1 =

⋃
h∈H

G(a,h(x2)),

contained in H, coincides with the subgroup G+ =
⋃
x∈X G(a,x). A similar argument shows that

G− is also contained in H. Since Gfrag = G−G+, we get the desired conclusion.

Through the rest of this subsection, let G be as in Theorem 16.2.3, and fix a finite symmetric
generating subset S ⊂ G. As before, we choose a representative ι ∈ Harmµ(G;R) of the standard
action of G. For simplicity, we will assume that X = R and identify the standard action with
ι (although we keep the notation X, to avoid confusion with actions φ ∈ E). We consider the
decomposition Harmµ(G;R) = Q ⊔ I ⊔ Î ⊔ E given by (16.1.1). By Theorem 9.2.1, every φ ∈ E is
(positively or negatively) horograded by ι. Thus we may further decompose E as E = E+ ∪ E−,
where E+ (respectively, E−) is the subset of actions that are positively (respectively, negatively)
horograded by ι.

For every action φ ∈ E+, the proof of Theorem 9.2.1 provides an explicit prehorograding
(Lφ, hφ) of φ by ι, described in Remark 9.2.9, that we recall now. The subgroups G(a,x) are
totally bounded for every φ ∈ E+ (recall that this means that each connected component of
Suppφ(G(a,x)) is bounded). This allows to define a φ-invariant prelamination given by Lφ =
{Iφ(x, ξ) : x ∈ X, ξ ∈ Ξφ} where
— Ξφ =

⋂
x∈X Suppφ(G(a,x)) (which is a Gδ-dense subset of R), and

— Iφ(x, ξ) is the connected component of Suppφ(G(a,x)) containing ξ.
The prehorograding hφ is then given by Iφ(x, ξ) 7→ x, and it extends to a horograding defined on
the closure Lφ. These objects can be introduced in an analogous way when φ ∈ E− is negatively
horograded by the standard action, by replacing the instances of G(a,x) by G(x,b). We will discuss
the case of positive horograding below.
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As we have fixed the generating subset S, we can consider the associated central leaf IS,φ ∈ Lφ,
the outer rays J±

S,φ, and the partial semi-conjugacies h±
S,φ : J±

S,φ → [cS,φ,+∞), where cS,φ =
hφ(IS,φ) is the central value (see Definition 15.1.5).

With this notation at disposal, the main idea in the proof of Theorem 16.2.3 is to control the
accumulation points of E by discussing separately the case where the central leaf is at bounded
distance from the origin, that can be settled using Lemma 15.2.3, and the case where the central
leaf is far from the origin, which can be studied using Lemma 15.2.5. For this, the crucial missing
argument is contained in the following lemma. Its proof uses condition (F) in an essential way.

Lemma 16.2.8 (Key lemma). — Retain the assumptions of Theorem 16.2.3, and the notation
above. Then, there exist c+, c− ∈ X such that cS,φ ≥ c+ for every φ ∈ E+, and cS,φ ≤ c− for
every φ ∈ E−

Proof. — We first see that µ-harmonicity of actions provides a uniform control on the size of the
intervals Iφ(x, ξ).

Claim. — For every x ∈ X, there exists a constant C > 0 such that | Iφ(x, ξ)| < C for every
laminar action φ ∈ E and ξ ∈ Ξφ.

Proof of claim. — We only detail the case where φ ∈ E+ is positively horograded by the standard
action (working with E− is totally analogous). Fix x ∈ X. Since G satisfies condition (F), we
can find a finitely generated subgroup H = ⟨h1, . . . , hn⟩ ⊂ G and a point y ∈ [x, b) such that
G(y,b) ⊆ H ⊆ G(x,b). We will show that the constant

C = max {|φ(hi)(ξ) − ξ| : φ ∈ Harmµ(G;R), ξ ∈ R, and i ∈ {1, . . . , n}} ,

which is well defined and positive (by compactness and Φ-invariance of Harmµ(G;R), see the
argument in the proof of Lemma 15.2.2), gives the desired uniform control, and we will do
this by way of contradiction. For this, assume there exist φ ∈ Harmµ(G;R) and ξ ∈ Ξφ with
| Iφ(x, ξ)| > C.

On the one hand, for any h ∈ H, we have either h. Iφ(x, ξ) = Iφ(x, ξ), or h. Iφ(x, ξ) ∩ Iφ(x, ξ) =
∅: indeed, since H ⊆ G(x,b), we have that h. Iφ(x, ξ) = Iφ(x, h.ξ) for every h ∈ H; as Iφ(x, ξ)
and Iφ(x, h.ξ) are components of the support of G(a,x), they are either equal or disjoint. On the
other hand, by definition of C and the assumption | Iφ(x, ξ)| > C, generators of H cannot move
Iφ(x, ξ) disjoint from itself.

These two remarks together give that hi.Iφ(x, ξ) = Iφ(x, ξ) for every i ∈ {1, . . . , n}, and
therefore H. Iφ(x, ξ) = Iφ(x, ξ). In particular, we must have Fixφ(G(y,b)) ̸= ∅. This gives the
desired contradiction since, by Proposition 9.2.5, the subgroups G(y,b) must act without fixed
points.

Now to prove the lemma, consider the positive constant δ+ as in (15.2.1), and take a laminar
action φ ∈ E . For any leaf I ∈ Lφ containing the central leaf IS,φ, the intersection s.I ∩ I is
non-empty for every s ∈ S (see Lemma 15.1.1). By the choice of δ+, we can choose sI ∈ S so that
|sI .I| ≥ |I|+δ+. Let us apply this inductively to the sequence of intervals I0 = IS,φ, In+1 = sn.In,
where sn = sIn

∈ S. Writing gn = sn · · · s0, we thus have |gn.IS,φ| ≥ |IS,φ| + nδ+ > nδ+.
Fix now a point x ∈ X, and the constant C > 0 from the claim. We can then choose N ∈ N

such that Nδ+ > C. Next, we take a point ξ ∈ Ξφ ∩ gN .IS,φ. On the one hand, we have
| Iφ(x, ξ)| < C, while on the other hand we have |gN .IS,φ| > Nδ+ > C. As both intervals contain
ξ, we must have Iφ(x, ξ) ⊂ gN .IS,φ.
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When φ ∈ E+, the horograding hφ is non-decreasing, and we conclude that hφ(gN .IS,φ) ≥ x.
By equivariance of hφ, we obtain that hφ(IS,φ) = cS,φ ≥ g−1

N (x). Since x and N are fixed and
φ was arbitrary, c = g−1

N (x) gives the desired uniform lower bound. When φ ∈ E−, a similar
reasoning gives cS,φ ≤ g−1

N (x), leading to the desired conclusion.

Proof of Theorem 16.2.3. — We first show that E ⊂ E ∪ Q. For this, consider a convergent
sequence φn → φ with φn ∈ E for every n ∈ N. Write φn = Φtn(φ′

n) with φ′
n such that 0 ∈ IS,φ′

n
.

Then, up to considering a subsequence we can assume that we are in one of the following cases:

(1) either tn is bounded, or

(2) tn → ±∞.

Assume first that we are in case (1). Consider K ∈ R such that |tn| < K for every n ∈ N, and
take the constant C2 from Lemma 15.2.2, so that |IS,φn

| < C2 for every n ∈ N. Then we have
IS,φn ⊂ (−K −C2,K +C2) for every n ∈ N, and Lemma 15.2.3 gives that φ is laminar, and thus
φ ∈ E ∪ Q. In case (2), Lemma 15.2.5 implies that φ = lim Φtn(φ′

n) = Φh+
S,φn

(tn)(ι). On the other
hand, Lemma 15.2.4 implies that h+

S,φn
(tn) − cS,φn

→ +∞, and thus, by Lemma 16.2.8, we have
h+
S,φn

(tn) → ∞. Then, by Lemma 16.1.1, we have φ = lim Φh+
S,φn

(tn)(ι) ∈ Q. This shows that
E ⊆ Q ∪ E . The fact that I and Î are open now follows from this and from Lemma 16.1.1, since

I = Harmµ(G;R) ∖ (Î ∪ Q ∪ E) and Î = Harmµ(G;R) ∖ (I ∪ Q ∪ E).

This shows (i). To show (ii), by (i), it is enough to show that the restriction of the translation flow
to E is proper. For this, fix a compact subset K ⊂ E , and a distance dist on Harmµ(G;R) inducing
the topology. Since K ∩ I = ∅, the distance between points in K and I is uniformly bounded
from below by some ε > 0. By Lemma 15.2.5, we can fix t0 > 0 such that dist(Φt(φ), I) < ε

for every φ ∈ E with 0 ∈ IS,φ, and every |t| > t0. In particular, every φ ∈ K can be written as
φ = Φt(φ′), for some |t| ≤ t0 and φ′ ∈ Harmµ(G;R) such that 0 ∈ IS,φ′ . Thus, for every |t| > 2t0,
Φt(K) is contained in the ε-neighborhood of I, so that Φt(K) ∩ K = ∅. This concludes the proof
of the theorem.

16.3. Examples

16.3.1. Thompson’s group F . — As already mentioned, Thompson’s group F ⊂
Homeo0((0, 1)) satisfies condition (F); namely, the subgroups F(0,x) and F(x,1) are isomor-
phic to F (hence finitely generated) whenever x is a dyadic number. Therefore all the discussion
in this chapter applies to F . In particular Corollary 16.2.4 implies the following.

Theorem 16.3.1 (Local rigidity of the standard action). — The standard piecewise linear
action of F on (0, 1) is locally rigid.

Moreover, Corollary 16.2.6 implies that actions of F on the line can be distinguished by a
Borel complete invariant up to semi-conjugacy.

Theorem 16.3.2 (Smoothness of the semi-conjugacy relation)
The semi-conjugacy relation on the space Homirr(F,Homeo0(R)) is smooth. In particular,

the conjugacy relation on the subspace of minimal actions of F on R is smooth.
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Proof. — After Corollary 16.2.6, the semi-conjugacy relation on Homirr(F,Homeo0(R)) is smooth
if and only if the same is true for the quotient F/[Fc, Fc] ∼= Z2. Now, every irreducible action
of Z2 is semi-conjugate to an action by translations, thus any µ-harmonic action of Z2 (for any
appropriate measure µ on Z2) is actually an action by translations. Since the translation flow
on Harmµ(Z2;R) corresponds to conjugating actions by translations, it is actually trivial. We
conclude using Corollary 14.4.2.

In fact, the proof of Theorem 16.2.3 can be specialized to the case of F to obtain a more precise
description of the space Harmµ(F ;R). A cartoon of this space Harmµ(F ;R) appears in Figure
16.3.1; the purpose of the rest of this subsection is to give a detailed description of this picture.

E0
+ τ1

τ0

τ̂1

τ̂0

ατ1 + βτ0

Nι̂

Î

ι

I

E
−

E+

Figure 16.3.1. The space of normalized µ-harmonic actions of Thompson’s group F .
See §16.3.1 for a detailed explanation.

From now on, we fix a symmetric probability measure µ on F supported on a finite generating
set S of F , and consider the associated space of normalized µ-harmonic actions Harmµ(F ;R),
with its translation flow Φ. We will follow the discussion in the previous chapter, and refine it
when possible to obtain more precise information in this special case. As in (16.1.1), we have a
decomposition of Harmµ(F ;R) into Φ-invariant subspaces

Harmµ(F ;R) = Q ⊔ I ⊔ Î ⊔ E ,

defined as follows:
— we let Q ⊂ Harmµ(F ;R) is the set of non-faithful actions, induced from actions of F ab ∼= Z2;
— we fix a representative ι ∈ Harmµ(F ;R) of the standard action on (0, 1), and let I = {Φt(ι) :
t ∈ R} denote its Φ-orbit, whilst Î denotes the Φ-orbit of the reversed action ι̂;
— we let E = E+ ⊔ E− be the subset of Harmµ(F ;R) of laminar actions, where E+ (respectively,
E−) is the subset of laminar actions which are positively (respectively, negatively) horograded by
the standard action on (0, 1).

Let τ0, τ1 : F → Z be the two homomorphisms defined as in (13.1.1):

τ0(g) = − log2 D
+g(0) and τ1(g) = − log2 D

−g(1).
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Note that these induce identifications of the groups of germs Germ(F, 0) and Germ(F, 1) with Z.
We may identify τ0 and τ1 with two points of Q given by their corresponding cyclic actions. As
usual, we denote by τ̂0, τ̂1 ∈ Q their conjugate by the map x 7→ −x.

We begin by observing that Lemma 16.1.1 can be refined in this case to obtain the following
description of the sets Q and I, Î inside Harmµ(F ;R).

Lemma 16.3.3. — The subset Q ⊂ Harmµ(F ;R) is homeomorphic to the circle S1 and is fixed
by the flow Φ. The actions ι and ι̂ satisfy the following:

lim
t→+∞

Φt(ι) = τ1, lim
t→−∞

Φt(ι) = τ̂0, lim
t→+∞

Φt(ι̂) = τ0, lim
t→−∞

Φt(ι̂) = τ̂1.

The set Q corresponds to the circle shown in red in Figure 16.3.1. The orbit I is therefore a
copy of R inside Harmµ(F ;R) which connects the points τ̂0 and τ1, while Î connects τ0 to τ̂1 as
shown in Figure 16.3.1.

Proof of Lemma 16.3.3. — The set Q is homeomorphic to Harmµ̄(Z2;R), where µ̄ is the projection
of µ to F ab ∼= Z2. Every element of Harmµ̄(Z2;R) corresponds to a Z2-action by translations
given by a non-trivial homomorphism φ : Z2 → (R,+) up to rescaling by a positive real, so that
Harmµ̄(Z2;R) is homeomorphic to the circle S1, and it consists of points which are fixed by the
translation flow Φ. We deduce that Q is a closed subset of Harmµ(F ;R), homeomorphic to a
circle, and it consists of points which are fixed by the translation flow Φ. Let us show, for instance,
that limt→+∞ Φt(ι) = τ1 (the other cases are analogous). By Lemma 16.1.1, if ψ is a limit point
of Φt(ι) for t → ∞, then ψ factors through F/F+ ∼= Z, so ψ is necessarily a cyclic action, and
we only need to determine its sign. This is done by noting that the homomorphism τ1 has been
defined in such a way that τ1(g) > 0 if and only if g(x) > x for every x close enough to 1 (in the
standard action of F on X = (0, 1)).

To complete the explanation of Figure 16.3.1, we give a description of the dynamics of the flow
Φ on the set E . For this it is convenient to fix an element f ∈ F which in the standard action
satisfies f(x) > x for every x ∈ (0, 1). For definiteness, we can choose as f the element of the
standard generating pair of F defined in (13.1.2).

By Proposition 8.2.10, for every φ ∈ E , the element φ(f) must be a homothety, which is
expanding if φ ∈ E+, and contracting if φ ∈ E−. For φ ∈ E , we let ξφ be the unique fixed point
of φ(f). We say that φ ∈ E is f -centered if ξφ = 0, and let E0 ⊂ E be the subset of f -centered
laminar actions. Finally we set E0

± = E0 ∩ E±. With this notation, we have the following more
precise version of Theorem 16.2.3.

Proposition 16.3.4. — Retain all notation as above. Then both sets E+ and E− are open. Each
subset E0

± ⊂ E± is closed in Harmµ(F ;R) (hence compact), and it is a cross section for the flow
Φ to E± (namely it intersects every orbit in exactly one point). Moreover, for every φ ∈ E± the
limits limt→±∞ Φt(φ) exist and the following hold:
— if φ ∈ E+, then

lim
t→+∞

Φt(φ) = τ1 and lim
t→−∞

Φt(φ) = τ̂1,

where the convergence is uniform over φ in the cross section E0
+;

— if φ ∈ E−, then
lim

t→+∞
Φt(φ) = τ0 and lim

t→−∞
Φt(φ) = τ̂0,

where the convergence is uniform over φ in the cross section E0
−.
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As a consequence E+ = E+ ∪ {τ1, τ̂1} and E− = E− ∪ {τ0, τ̂0}.

Proof. — We already know that E is open, by Lemma 16.1.1. Moreover, for φ ∈ E+ (respectively,
φ ∈ E−) we have that φ(f) is an expanding (respectively, contracting) homothety. This clearly
implies that the sets E± are both open. For every φ ∈ E±, we have Φξφ(φ) ∈ E0

±, so each set E0
±

is a cross section of the flow Φ on E±.
Choose a generating set S of F containing f . Then for every φ ∈ E and φ-invariant lamination

Lφ, the central leaf IS,φ ∈ Lφ contains ξφ (the fixed point of f), since otherwise φ(f)(IS,φ) cannot
be related by inclusion with IS,φ (see Lemma 15.1.1). Hence, Lemmas 15.2.2 and 15.2.3 imply
that if ψ is any action in the closure of E0

±, then it is laminar and thus belongs to E (since the
complement of E does not contain any laminar action). Moreover, ψ(f) fixes 0. This implies that
E0

± ⊆ E0
±, and thus the subsets E0

± are closed. The statements on convergence now follow from
Lemmas 15.2.5 and 16.2.8, by the same argument as in the proof of Theorem 16.2.3.

To conclude this discussion, we observe that it is a tantalizing problem to obtain further
results on the topology of the compact cross sections E0

+ and E0
−, which is at the moment quite

mysterious. Note that each section E0
± is homeomorphic to the quotient space E±/Φ, and thus

it is independent, up to homeomorphism, on the choice of the generator f ∈ F made above,
and by symmetry the two sections are homeomorphic one to the other. The constructions of
laminar actions in Chapter 13 show that the spaces E0

+ and E0
− are uncountable, and contain

homeomorphic copies of a Cantor set. However we were not able to construct any non-trivial
connected subset of E0

+, and we do not know whether they are totally disconnected. We also do
not know the answer to the following question.

Question 16.3.5. — Do the cross sections E0
+ and E0

− admit isolated points?

By Corollary 14.2.4, this is equivalent to the question of whether F admits minimal laminar
actions which are locally rigid.

16.3.2. Other groups of piecewise linear and projective homeomorphisms. — Beyond
Thompson’s group F , some other examples of finitely generated locally moving groups which satisfy
(F) are provided by other well-studied groups of piecewise linear and projective homomorphisms.
Let us mention a few.

— The Thompson–Brown–Stein groups G = Fn1,...,nk
. Indeed, they satisfy that the subgroups

G(0,a) and G(a,1) are finitely generated for any a ∈ Z[1/n1, . . . , 1/nk]. This follows from [BS16,
Corollary B9.10].

— All Bieri–Strebel groups of the form G := G(R;A,Λ) with finitely generated fragmentable
subgroup. Recall that this is equivalent to the conditions that A is a finitely generated Z[Λ]-
module, Λ ⊂ R>0 a finitely generated subgroup, and the quotient A/IΛ · A is finite (compare
with Lemma 10.2.1). In this case condition (F) follows from [BS16, Theorem B.8.2], which shows
that the subgroups G−(∞,x) and G(x,+∞) are finitely generated for x ∈ A.

— Similar examples satisfying all assumptions of Theorem 16.2.3 arise as subgroups of the group
of piecewise projective homeomorphisms of the real line. For instance, the group introduced by
Lodha and Moore in [LM16] (condition (F) can be shown using the symbolic description derived
in [LM16]).
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16.3.3. Groups with cyclic germs. — The following criterion provides many examples of
groups satisfying Theorem 16.2.3, outside the realm of piecewise linear and piecewise projective
homeomorphisms. For example, it applies to the class of (pre-)chain groups studied by Kim,
Koberda, and Lodha [KKL19].

Proposition 16.3.6. — Let G ⊂ Homeo(X) be a group acting minimally on X = (a, b). Suppose
that G has a finite generating set S = {s1, . . . , sk} such that s1 is supported on an interval of
the form (a, x) with x ∈ X, the supports of s2, . . . , sk−1 are relatively compact in X, and sk is
supported on an interval of the form (y, b) with y ∈ X. Then G is locally moving and satisfies
(F).

Thus any group G as in Proposition 16.3.6 satisfies Theorem 16.2.3 and its consequences. In
particular, Corollary 16.2.4 implies the following.

Corollary 16.3.7. — For any group G as in Proposition 16.3.6, the standard action of G on
X is locally rigid.

Proof of Proposition 16.3.6. — Since elements of S are contained in G− ∪ G+, the group G is
fragmentable, and since it is finitely generated and acts minimally on X, it is locally moving (by
Lemma 9.2.7). We need to check condition (F). We will find z ∈ X such that G(a,z) is contained
in a finitely generated subgroup of G+ (the symmetric case is analogous). For this, choose z ∈ X

such that s1, · · · , sk−1 ∈ G(a,z). Note that necessarily sk(z) ̸= z (else z would be fixed by G).
Let y ∈ X be as in the statement, and choose g ∈ Gc such that g(y) > max{sk(z), s−1

k (z)}. Let
s̃k = [sk, g] = sk(gskg−1)−1. Note that gskg−1 coincides with sk on a neighborhood of b (since
g ∈ Gc), and is supported on G(g(y),b). The former remark gives that s̃k ∈ G+, and the latter
that s̃±1

k ↾(a,z]= s±1
k ↾(a,z]. Set H = ⟨s1, · · · , sk−1, s̃k⟩, and note that H ⊂ G+. We will show

that H contains G(a,z). Since H is finitely generated, this will give the desired conclusion. Let
I = (c, d) be the component of Supp(s̃k) containing z. Since s̃k and sk and their inverses agree
on (a, z), we have that J := (c, b) is a component of the support of sk (indeed sk cannot have
any fixed points in (z, b), as these would be fixed by the whole group G). Thus we can find a
homeomorphism f : J → I, equal to the identity on (c, z), such that fskf−1 = s̃k ↾I (it is enough
to define f to be the identity on any fundamental domain of sk contained in (c, z), and extend
it by equivariance). We extend f to a homeomorphism f : X → (a, d), equal to the identity on
(a, z).

Take now g ∈ G(a,z), and write g = tn · · · t1, with ti ∈ S ∪ S−1. Let g̃ = t̃n · · · t̃1 ∈ H, where
t̃i = s̃±1

k if ti = s±1
k , and t̃i = ti otherwise. We claim that g̃ = g. First of all note that all the

elements s1, . . . , sk−1, s̃k fix c, and only s̃k acts non-trivially on (c, b). Since g ∈ G(a,z) has trivial
germ at b, and the group of germs of G at b is generated by the image of sk, we have that the
total sum of exponents of occurrences of sk in the word tn · · · t1 is 0. Hence the same is true for
occurrences of s̃k in t̃n · · · t̃1, and thus

(16.3.1) g̃ ↾(c,b)= id ↾(c,b)= g ↾(c,b) .

To determine g̃ ↾(a,c) note that, since f = id on (a, z), and each si is supported on (a, z) for
i ≤ k − 1, we have t̃i ↾(a,c)= ftif

−1 for every i. Thus

(16.3.2) g̃ ↾(a,c)=
∏
i(t̃i ↾(a,c)) =

∏
i(ftif−1) = f(

∏
i ti)f−1 = fgf−1 = g ↾(a,c) .
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The last equality uses that g ∈ G(a,z) and that f is the identity on (a, z). Now (16.3.1) and
(16.3.2) together imply that g = g̃ ∈ H. Since g ∈ G(a,z) was arbitrary, we have G(a,z) ⊂ H, as
desired.

16.3.4. Extending arbitrary actions to locally rigid ones. — The proof of the following
proposition is based on an idea similar to that for the proof of Proposition 16.3.6.

Proposition 16.3.8. — For X = (a, b), let H ⊂ Homeo0(X) be a countable subgroup. Then
H ⊆ G for some finitely generated locally moving subgroup G ⊂ Homeo0(X) satisfying (F).

Proof. — We can assume without loss of generality that H is finitely generated, because every
countable subgroup of Homeo0(X) is contained in a finitely generated one, by a result of Le Roux
and Mann [LRM18]. Assume also for simplicity that X = (0, 1). Let bℓ : (0, 1) → (0, 3/4) and
br : (0, 1) → (1/4, 1) be the homeomorphisms defined respectively by

bℓ(x) =
{

x if x ∈ (0, 1/2),
1
2x+ 1

4 if x ∈ [1/2, 1),
br(x) =

{ 1
2x+ 1

4 if x ∈ (0, 1/2),

x if x ∈ [1/2, 1).
Set also b0 = bℓbr. That is, b0 is the homothety of slope 1/2 centered at the point 1/2, while each
of bℓ and br fixes half of the interval (0, 1) and coincides with b0 on the other half. See Figure
16.3.2.

1/4

1/2

0

3/4

1

11/2

br

b`

Figure 16.3.2. The maps br (red) and bℓ (blue).

Set H0 = b0Hb
−1
0 , Hℓ = bℓHb

−1
ℓ , and Hr = brHb

−1
r . Note that each of these groups is a group

of homeomorphisms of a subinterval of (0, 1), and we see them as groups of homeomorphisms
of (0, 1) by extending them to the identity outside their support. Set G = ⟨H,Hℓ, Hr, H0, F ⟩,
where F is the standard copy of Thompson’s group F acting on (0, 1). As F and H are finitely
generated, so is G; moreover, G is locally moving because F is so. It remains to prove that G
satisfies (F).

Let us show that G(0,1/2) is contained in a finitely generated subgroup of G+. To this end,
consider the group Γ = bℓGb

−1
ℓ . Then Γ is a finitely generated subgroup of Homeo0((0, 1))

supported in (0, 3/4) (we again extend it as the identity on (3/4, 1)). Moreover, Γ contains
G(0,1/2): indeed since bℓ acts trivially on (0, 1/2), for g ∈ G(0,1/2) we have g = bℓgb

−1
ℓ ∈ Γ. Thus

the desired conclusion follows if we show that Γ is contained in G (hence in G+).
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For this, note that bℓFb−1
ℓ = F(0,3/4) ⊂ F ⊂ G and bℓHb

−1
ℓ = Hℓ ⊂ G; we also easily observe

bℓHrb
−1
ℓ = bℓbrH(bℓbr)−1 = b0Hb

−1
0 = H0 ⊂ G.

Choose an element f ∈ F which coincides with bℓ in restriction to (0, 3/4). Then the conjugation
action of f on the subgroups Hℓ, H0 coincides with the conjugation by bℓ, thus bℓHℓb

−1
ℓ = fHℓf

−1

and bℓH0b
−1
ℓ = fH0f

−1 are also contained in G. Since

Γ = bℓ⟨H,H0, Hℓ, Hr, F ⟩b−1
ℓ ,

we conclude that Γ is contained in G. Thus Γ ⊂ G+ is a finitely generated subgroup that contains
G(0,1/2). Since for every x ∈ (0, 1) the group G(0,x) is conjugate to a subgroup of G(0,1/2), we
have that G(0,x) is contained in a finitely generated subgroup of G+ for every x. The case of the
subgroups G(x,1) is analogous.

We point out the following consequence, which shows that it is not possible in general to
perturb non-trivially a group action on the line, by looking only at its restriction to a subgroup.

Corollary 16.3.9. — Let H ⊂ Homeo0(R) be a countable group. Then, there exists a finitely
generated subgroup G ⊂ Homeo0(R) containing H such that the action of G on R is locally rigid.

Proof. — By Proposition 16.3.8 there exists a finitely generated group G ⊂ Homeo0(R) that
contains H and satisfies all assumptions in Corollary 16.2.4, so that its standard action is locally
rigid.

16.4. A non-locally rigid example

The assumption (F) in Theorem 16.2.3 might seem just a technical requirement. However, this
assumption is substantial and cannot be dropped. Here we construct an example of a subgroup of
subgroup of Homeo0(R) which finitely generated, locally moving, and fragmentable (in particular,
it satisfies Theorem 9.2.1), but does not satisfy the main consequences of Theorem 16.2.3 (due to
the failure of (F)).

Proposition 16.4.1. — There exists a finitely generated, fragmentable locally moving subgroup
H ⊂ Homeo0(R) satisfying the following.
(i) The standard action of H is not locally rigid.

(ii) Let M ⊂ Homirr(H,Homeo0(R)) be the subspace of faithful minimal actions. Then the quotient
of M by the equivalence relation of positive conjugacy is not Hausdorff.

Proof. — The example is based on a variation of the jump preorder construction for groups
of piecewise linear homeomorphisms, introduced in §6.2. Recall that for a piecewise linear
map f : R → R, with a discrete (but possibly infinite) set BP(f) of discontinuity points for the
derivative, we define the associated jump cocycle as the map

jg : R → R

x 7→ D+g−1(x)
D−g−1(x) .

The desired example is given by the subgroup H = ⟨G, f⟩ of Homeo0(R) generated by the Bieri–
Strebel group G = G(R;Z[1/2], ⟨2⟩∗) and one extra element f defined as the piecewise linear map,
with an infinite set of breakpoints BP(f), satisfying the following conditions (see Figure 16.4.1):
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— f(x) = x for x ≥ 0,

— BP(f) = 1
2Z≤0, and f(x) = x for x ∈ BP(f).

— jf (−n) = pn and jf (−n− 1
2 ) = 1/pn for every integer n ≥ 0, where (pn)n≥0 ⊂ N denotes the

increasing enumeration of primes (we keep this convention for the rest of the proof).

0

−1

−2

−3

−1−2−3−4−5−6

f

Figure 16.4.1. The piecewise linear map f for the non-locally rigid example.

Let us first check that H is finitely generated and fragmentable. On the one hand, finite
generation of G, and therefore of H, follows from [BS16, Theorem B7.1]. On the other hand, as
f ∈ H+, to show that H is fragmentable, it is enough to show that G is. To see this, recall from
Lemma 10.2.1 that we have G/Gfrag ∼= A/IΛ ·A, where Λ = ⟨2⟩∗ and A = Z[ 1

2 ], and then notice
that IΛ ·A = A (see Example 10.2.2). This gives the desired conclusion.

For the rest of the proof, we need to define a sequence of minimal laminar actions, that
accumulate on the standard action of H. To start with, we remark that from the definition of the
subgroup H, for every g ∈ H, the jump cocycle jg can take only rational values, and is a function
whose support is discrete, and can only accumulate at −∞. The multiplicative abelian group
Q>0 is free abelian, with basis given by the primes pn. We denote by jng the jump cocycle jg
post-composed with the projection homomorphism Q>0 → ⟨pn⟩, for fixed n ≥ 0. We will denote
by Sn = {jng : g ∈ H} the collection of the (reduced) jump cocycles. Note that any element of
Sn is a function on R whose support is discrete, and can only accumulate on −∞, so that when
g, h ∈ H are such that jng ̸= jnh , the point

xng,h = max{x ∈ R : jg(x) ̸≡n jh(x)}

is well defined, and we can declare jng ≺n j
n
h if jng (xng,h) < jnh (xng,h). As in Lemma 6.2.2, one

checks that the action of H on Sn defined by g · jnh = jngh preserves the order ≺n. Let us denote
by Ψn : H → Aut(Sn,≺n) this order-preserving action. We proceed to define a Ψn-invariant
prelamination Ln on (Sn,≺n), analogous to the one appearing in the proof of Proposition 10.1.5.
For this, given g ∈ H and x ∈ R, consider the subset

Lng,x = {jnh ∈ Sn : jnh (y) = jng (x) for any y > x}
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and define Ln0 = {Lg,x : g ∈ H, x ∈ R}. As in the proof of Proposition 10.1.5, one can check that
Ln0 is a Ψn-invariant covering prelamination with action of H given by Ψn(g)(Lnh,x) = Lngh,g(x).
Moreover, the map hn : Ln0 → R so that hn(Lng,x) = x, gives a positive prehorograding of Ψn by
the standard action of H. We will need the following.

Claim 1. — For every x ∈ R and g ∈ H, there exists n0 ∈ N such that Ψn(g)(Lnid,x) ∩Lnid,x ̸= ∅
for every n ≥ n0.

Proof of claim. — On the one hand, we have Ψn(g)(Lnid,x) = Lng,g(x). On the other hand, since
the support of jg ↾[g(x),+∞) is finite, there are only finitely many n ∈ N such that jng ↾[g(x),+∞)
is non-trivial. As the action Ψn is given by g · jnh = jng j

n
h ◦ g−1, one can easily deduce that

Lng,g(x) = Lnid,g(x) for every n ≥ n0, as wanted.

With a similar argument, we have that if n ≥ 1 (equivalently, if pn ≥ 3), then jng (x) = 1
for every g ∈ G and x ∈ R. Then, for such choices, we have Ψn(g)(Lnid,x) = Lnid,g(x). Then,
with a routine argument, one checks that the conditions in Proposition 2.2.17 are satisfied, and
therefore the dynamical realization φn of Ψn is minimal. Thus, after conjugating, we can assume
that φn ∈ Harmµ(H;R), for a fixed symmetric probability measure µ on H with finite support,
and n ≥ 1. Also, denote by ι a representative of the standard action of H in Harmµ(H;R).
Consider the φn-invariant prelamination Ln defined from Ln0 , as described in Remark 8.1.7.
Namely, considering an equivariant good embedding in : (Sn,≺n) → (R, <) associated with φn,
one considers the collections of intervals lng,x ⊂ R, obtained as the interior of the convex hull of
in(Lng,x), for g ∈ H and x ∈ R. By abuse of notation, denote its closure by Ln, and by hn : Ln → R
the horograding extending the map lng,x 7→ x. Then, (Ln, hn) is a positive horograding of φn by ι.

Consider now a finite symmetric generating set S0 of G, and the finite symmetric generating
set of H defined as S = S0 ∪ {f, f−1}. Denote by In the central leaf of Ln associated with S,
and J±

n its associated outer rays (see Definition 15.1.5).

Claim 2. — We have hn(In) → −∞ as n goes to +∞.

Proof of claim. — To see this, notice that by Claim 1, for every x ∈ R, there exists n1 ∈ N such
that φn(s)(ln1,x) ∩ ln1,x ≠ ∅ for every n ≥ n1 and s ∈ S. This implies that for n ≥ n1 we must have
In ⊂ ln1,x. Since hn is a positive horograding, we conclude that hn(In) ≤ x for every n ≥ n1.

Denote by h+
n : J+

n → [cn,+∞) the partial semi-conjugacy (see Definition 15.1.5), where
cn = hn(In) is the central value, and set tn := sup ln1,0. Notice that for sufficiently large n, we
have that In ⊂ ln1,0, so tn ∈ J+

n , and moreover h+
n (tn) = 0. Then, by Lemma 15.2.5 and Claim 2,

we have that the limit of the sequence Φtn(φn) is Φ0(ι) = ι. This shows (i). On the other hand,
setting un := inf ln1,0, then the same reasoning shows (by Lemma 15.2.5) that Φun(φn) converges
to ι̂. It follows that for any neighborhoods U of ι and V of ι̂, both U and V intersect the positive
conjugacy class of φn for sufficiently large n. This shows (ii).
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