
HAL Id: hal-03365076
https://hal.science/hal-03365076

Preprint submitted on 5 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Locally moving groups acting on the line and R-focal
actions

Joaquín Brum, Nicolás Matte Bon, Cristóbal Rivas, Michele Triestino

To cite this version:
Joaquín Brum, Nicolás Matte Bon, Cristóbal Rivas, Michele Triestino. Locally moving groups acting
on the line and R-focal actions. 2021. �hal-03365076�

https://hal.science/hal-03365076
https://hal.archives-ouvertes.fr


LOCALLY MOVING GROUPS ACTING ON THE LINE AND R-FOCAL
ACTIONS

JOAQUÍN BRUM, NICOLÁS MATTE BON, CRISTÓBAL RIVAS, AND MICHELE TRIESTINO

Abstract. We prove various results that, given a sufficiently rich subgroup G of the group
of homeomorphisms on the real line, describe the structure of the other possible actions of G
on the real line, and address under which conditions such actions must be semi-conjugate to
the natural defining action of G. The main assumption is that G should be locally moving,
meaning that for every open interval the subgroup of elements whose support is contained
in such interval acts on it without fixed points. One example (among many others) is given
by Thompson’s group F . A first rigidity result implies that if G is a locally moving group,
every faithful minimal action of G on the real line by C1 diffeomorphisms is conjugate to its
standard action. It turns out that the situation is much wilder when considering actions by
homeomorphisms: for a large class of groups, including Thompson’s group F , we describe
uncountably many conjugacy classes of minimal faithful actions by homeomorphisms on the
real line. To gain insight on such exotic actions, we introduce and develop the notion of
R-focal action, a class of actions on the real line that can be encoded by certain actions
by homeomorphisms on planar real trees fixing an end. Under a suitable finite generation
condition on a locally moving group G, we prove that every minimal faithful action of G
on the line is either conjugate to the standard action, or it is R-focal and the action on the
associated real tree factors via a horofunction onto the standard action of G on the line. This
establishes a tight relation between all minimal actions of G on the line and its standard
action. Among the various applications of this result, we show that for a large class of locally
moving groups, the standard action is locally rigid, in the sense that every sufficiently small
perturbation in the compact-open topology gives a semi-conjugate action. This is based on
an analysis of the space of harmonic actions on the line for such groups. Along the way we
introduce and study several concrete examples.
MSC2020: Primary 37C85, 20E08, 20F60, 57M60. Secondary 37E05, 37B05.
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1. Introduction

1.1. Background and overview. The study of group actions on one-manifolds is a classical
topic at the interface of dynamical systems, topology, and group theory, which is still under
intense development and has been the object of several monographs in the recent years, such
as Ghys [44], Navas [91], Clay and Rolfsen [26], Deroin, Navas, and the third named author
[36], Kim, Koberda, and Mj [56]; see also the surveys by Mann [71] and Navas [92]. The
ultimate goal would be, given a group G, to be able to describe all possible actions of G on a
one-manifold M by homeomorphisms, and as the topology of the manifold is rather elementary
one expects that this is more tractable than in higher dimension. In this framework, there is
no much loss of generality of considering the following simplifying assumptions: the manifold
M is connected (that is, either the real line or the circle), and the action of the group is
irreducible, in the sense that it preserves the orientation and has no (global) fixed points. We
then let Homeo0(M) be the group of orientation-preserving homeomorphisms of M , and write
Homirr(G,Homeo0(M)) for the space of irreducible actions of G on M . Moreover, to avoid a
redundant description, we want to identify two actions if one is obtained from the other with a
change of variables (what is called a conjugacy); more precisely, from a dynamical perspective,
it is natural to study the space Homirr(G,Homeo0(M)) up to semi-conjugacy. The definition
of semi-conjugacy in this setting is recalled in Section 2; here let us simply remind that every
action ϕ ∈ Homirr(G,Homeo0(M)) of a finitely generated group is semi-conjugate either to
a minimal action (i.e. an action all whose orbits are dense) or ϕ(G) has a discrete orbit, in
which case ϕ is semi-conjugate to cyclic action (i.e. an action by integer translations in the
case of the real line or by rational rotations in the case of the circle); moreover this minimal or
cyclic model is unique up to conjugacy (see e.g. Ghys [44]). Thus studying actions of finitely
generated groups up to semi-conjugacy is essentially the same as to study its minimal actions
up to conjugacy.

The situation is particulary nice when M is a circle, for which more tools are available. In
particular the bounded Euler class is an complete algebraic invariant for classifying irreducible
actions up to semi-conjugacy (see Ghys [42, 44]), which generalizes to arbitrary groups the
rotation number for homeomorphisms. For instance, this has been successfully used to
understand the space Homirr(G,Homeo0(S1)) for various discrete subgroups of Lie groups (see
for instance Burger and Monod [20], Matsumoto [79], Mann [70], or Mann and Wolff [74]),
mapping class groups (Mann and Wolff [75]) or of Thompson’s group T [44, 45]. On the other
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hand there is no known complete invariant to understand semi-conjugacy classes of actions
on M = R (see the discussion in §1.6), and here there are fewer groups for which the space
Homirr(G,Homeo0(R)) is well understood (beyond deciding whether it is empty). Most results
concern rather small groups. For example, if G does not contain a free semigroup on two
generators (e.g. if G has subexponential growth), then every action in Homirr(G,Homeo0(R))
is semi-conjugate to an action taking values in the group of translations (R,+) (see Navas
[90]), and actions up to semi-conjugacy can be completely classified for some classes of solvable
groups such as polycyclic groups (Plante [97]) or the solvable Baumslag–Soliltar groups BS(1, n)
(see [98]). Some further classification results for actions on the line can also be obtained by
considering lifts of actions on the circle, but the scope of this method is rather limited: for
instance one can show that the central lifts of the actions of the whole group Homeo0(S1)
(Militon [85]), or of Thompson’s group T (see [81, Theorem 8.6]) are the unique actions of
such groups on the line up to semi-conjugacy.

The main goal of this work is to prove structure theorems for actions on the real line of various
classes of groups which arise as sufficiently rich subgroups of the group of homeomorphisms
of an interval. Throughout the introduction we fix an open interval X = (a, b) ⊆ R with
a ∈ R ∪ {−∞} and b ∈ R ∪ {+∞}. We are interested in studying actions on the real line
and intervals of groups G ⊂ Homeo0(X). The action of G on X will be referred to as the
standard action of G. Of course there would be no loss of generality in assuming X = R,
but since we will be dealing with more general actions of G on the real line it is convenient
to keep a separate notation for X. The precise assumptions we will make on G will depend
on the situation, but the most important one is that G is a locally moving group. To recall
this notion, given an open interval I ⊂ X, we denote by GI ⊂ G the subgroup consisting of
elements that fix X r I pointwise (called the rigid stabilizer of I).

Definition 1.1. Let X = (a, b) be an open interval. We say that a subgroup G ⊂ Homeo0(X)
is locally moving if for every I ⊂ X the subgroup GI acts on I without fixed points.

The most basic example of a locally moving group is Homeo0(X) itself. However there
are also many finitely generated (and even finitely presented) groups that admit a locally
moving action on an interval: a relevant example is Thompson’s group F , as well as many
other related groups studied in the literature.

The main question addressed in this work is the following.

Main Question. Let G ⊂ Homeo0(X) be a locally moving group of homeomorphisms of an
open interval X. What are the possible actions of G on the real line, and in particular under
which conditions an action ϕ ∈ Homirr(G,Homeo0(R)) must be semi-conjugate to its standard
action on X?

Evidence towards rigidity of actions of locally moving groups on the real line comes from
a general reconstruction theorem of Rubin [100,101] holding for groups of homeomorphisms
of locally compact spaces. In this (very special) case, Rubin’s theorem implies that any
group isomorphism between two locally moving groups of homeomorphisms of intervals
must be implemented by a topological conjugacy; equivalently for a locally moving group
G ⊂ Homeo0(X), the standard action on X is the unique faithful locally moving action of G.
This result does not allow to draw many conclusions on more general actions of G which may
fail to be locally moving (see Lodha [64] for some conditions ensuring this). Some further
evidence towards rigidity comes from the fact that the group Homeo0(R) is known to admit a
unique action on the real line up to conjugacy by a result of Militon [85] (see also Mann [69]),
and the same result was recently shown for the group of compactly supported diffeomorphisms
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of R by Chen and Mann [24]. However, for smaller (e.g. finitely generated) locally moving
groups very little appears to be known, even for well-studied cases such as Thompson’s group
F . In fact it turns out that smaller groups admit a much rich variety of actions on the line
than one might guess based on the previous results, and satisfy a combination of rigidity and
flexibility phenomena. In particular many of them (but not all!) admit a a vast class of “exotic”
actions on the real line.

Before proceeding to discuss our main results, let us clarify what we mean (or rather
what we don’t mean) by “exotic” action in this context. When G ⊂ Homeo0(X) is a locally
moving group acting on X = (a, b), it is often possible to obtain new actions of G on the real
line by considering actions induced from proper quotients of G. To explain this, we denote
by Gc ⊂ G the normal subgroup of G consisting of compactly supported elements (that is
those elements that act trivially on a neighborhood of a and b), then a well-known simplicity
argument shows that the commutator subgroup [Gc, Gc] of Gc is simple and contained in
every non-trivial normal subgroup of G (see Proposition 4.4). Thus, if G = [Gc, Gc] then G is
simple, and otherwise the group G/[Gc, Gc] is the largest proper quotient of G. In particular
whenever G is finitely generated the associated groups of germs Germ(G, a) and Germ(G, b)
are non-trivial quotients of G which moreover can be faithfully represented inside Homeo0(R)
(see [69]). Thus finitely generated locally moving groups admit non-trivial, yet non-faithful,
actions on the real line factoring throughout its germs1. Non-faithful actions of G correspond
to actions of the largest quotient G/[Gc, Gc] and can be studied separately. For example the
largest quotient of Thompson’s group F coincides with its abelianization F = F/[F, F ] ∼= Z2,
whose actions on the real line are always semi-conjugate to an action by translations arising
from a homomorphism to (R,+). In view of this, when G ⊂ Homeo0(X) is locally moving,
we will reserve the term exotic action for actions ϕ ∈ Homirr(G,Homeo0(R)) which are not
semi-conjugate to the standard action of G on X, nor to any action induced from the quotient
G/[Gc, Gc].

1.2. Actions by C1 diffeomorphisms. We begin with a result for actions of locally moving
groups on the line by diffeomorphisms of class C1, which states that such actions are never
exotic in the sense clarified above.

Theorem 1.2 (C1 rigidity of locally moving groups). Let X be an open interval and let
G ⊂ Homeo0(X) be a locally moving group. Then every irreducible action ϕ : G→ Diff1

0(R) is
semi-conjugate either to the standard action of G on X, or to a non-faithful action (induced
from an action of the largest quotient G/[Gc, Gc]).

For actions on closed intervals one can rule out the non-faithful case under some mild
additional assumption on G. Given an interval X = (a, b), we say that a group G ⊂ Homeo0(X)
has independent groups of germs at the endpoints if for every g1, g2 ∈ G, there is g ∈ G which
coincides with g1 on a neighborhood of a and with g2 on a neighborhood of b.

Corollary 1.3. Let X be an open interval and let G ⊂ Homeo0(X) be a locally moving group
with independent groups of germs at the endpoints. Let ϕ : G→ Diff1([0, 1]) be a faithful action
with no fixed point in (0, 1). Then the ϕ-action of G on (0, 1) is semi-conjugate to its standard
action on X.

1Even if one restricts to study faithful actions, it should be kept in mind that a faithful action can be
semi-conjugate to an action arising from a proper quotient. Indeed, one can start from a non-faithful action
of a countable group and perform a “Denjoy’s blow up” by replacing each point of an orbit by an interval,
and then extend the action to these intervals in a faithful way by identifying them equivariantly with X. This
phenomenon can never happen for actions which are minimal and faithful, and we will often restrict to such.
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The condition in the previous corollary is satisfied by many locally moving groups. In
particular Corollary 1.3 applies to Thompson’s group F . However an interesting feature of
the proof of Theorem 1.2 is that the group F plays a key role in an intermediate step. In
fact this proof combines three ingredients. The first is a general trichotomy for C0 actions of
locally moving groups on the line (Theorem 5.3), which is the common building ground for
all the results in this paper. The second is the fact that every locally moving group over an
interval contains many copies of F (Proposition 4.8), as follows from an argument based on a
presentation of F going back to Brin [18] and extensively exploited and popularized by Kim,
Koberda, and Lodha [55] under the name “2-chain lemma”. These two results together imply
that if a locally moving group G admits an exotic C1 action on the line, then one can find an
embedding of F in the C1 centralizer of a diffeomorphism of a compact interval without fixed
points in the interior. The third and last step consists in showing that the group F cannot
admit such an embedding (this uses the C1 Sackseteder’s theorem from [34] and an elementary
version of Bonatti’s approximate linearization [12,16], together with algebraic properties of
F ). We note that, while the abundance of copies of F inside rich groups of homeomorphisms
of the line is a long-standing fact [18,55], this seems to have been rarely exploited to prove
general results about such groups.

1.3. On existence of exotic actions by homeomorphisms. The rigidity displayed in
Theorem 1.2 fails in the C0 setting. Perhaps the simplest way to give counterexamples is to
consider countable groups of compactly supported homeomorphisms. For such groups, one
can always obtain exotic actions via two general constructions presented in §5.3.1 and §5.3.2,
which yield two proofs of the following fact.
Fact 1.4. Let X be an open interval, and let G ⊂ Homeo0(X) be a countable group of
compactly supported homeomorphisms of X acting minimally on X. Then G admits irreducible
actions on R which are not semi-conjugate to its standard action on X, nor to any non-faithful
action of G.

While this observation is formally sufficient to rule out the C0 version of Theorem 1.2, it is
not fully satisfactory, for instance because a group G as in Fact 1.4 cannot be finitely generated.
In fact, the proofs from §5.3.1 and §5.3.2 yield actions which admit no non-empty closed
invariant set on which the group acts minimally (in particular, the action is not semi-conjugate
to any minimal action nor to any cyclic action); this phenomenon is somewhat degenerate, and
cannot arise for a finitely generated group (see [91, Proposition 2.1.12]). Much more interesting
is the fact that many (finitely generated) locally moving groups admit exotic actions which
are minimal and faithful. Various constructions of such actions of different nature will be
provided in Section 9, and more constructions can be found in Section 11 in the special case
of Thompson’s group F . Here we only mention the following existence criteria, based on a
construction in §9.2, which are satisfied by some well-studied groups.
Proposition 1.5 (Criteria for existence of minimal exotic actions). For X = (a, b), let
G ⊂ Homeo0(X) be a finitely generated subgroup. Assume that G acts minimally on X and
contains non-trivial elements of relatively compact support in X, and that at least one of the
following holds.

(a) The group G is a subgroup of the group of piecewise projective homeomorphisms of X.
(b) The groups of germs Germ(G, b) is abelian and its non-trivial elements have no fixed

points in a neighborhood of b.
Then there exists a faithful minimal action ϕ : G → Homeo0(R) which is not topologically
conjugate to the action of G on X (nor to any non-faithful action of G).
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1.4. Actions on planar real trees and R-focal actions. We now leave briefly aside locally
moving groups to introduce a concept that plays a central role in this paper: the notion of
R-focal action. This will be the main tool to understand exotic actions on the line of a vast
class of locally moving groups (see Theorem 1.13 below).

In order to define this notion, we say that a collection S of open bounded real intervals
is a cross-free cover if it covers R and every two intervals in S are either disjoint or one is
contained in the other.
Definition 1.6. Let G be a group. An action ϕ : G→ Homeo0(R) is R-focal if there exists a
bounded open interval I ⊂ R whose G-orbit is a cross-free cover.

The terminology comes from group actions on trees (and Gromov hyperbolic spaces). In
this classical setting, an isometric group action on a tree T is called focal if it fixes a unique
end ω ∈ ∂T and contains hyperbolic elements (which necessarily admit ω as an attracting or
repelling fixed point). The dynamics of an R-focal action on the line closely resembles the
dynamics of the action on the boundary of a focal action on a tree. In fact this is more than
an analogy: every R-focal action on the line can be encoded by an action on a tree, except
that we need to consider group actions on real trees (or R-trees) by homeomorphisms (not
necessarily isometric). Let us give an overview of this connection (for more precise definitions
and details we refer to Section 8).

Recall that a real tree is a metrizable space T where any two points can be joined by a
unique path, and which admits a compatible metric which makes it geodesic. By a directed
tree we mean a (separable) real tree T together with a preferred end ω ∈ ∂T, called the focus2.
If T is a directed tree with focus ω, we write ∂∗T := ∂T r {ω}. An action of a group G on a
directed tree T (by homeomorphisms) is always required to fix the focus. In this topological
setting we will say that such an action is focal if for every v ∈ T there exists a sequence
(gn) ⊂ G such that (gn.v) approaches ω along the ray [v, ω[.

By a planar directed tree we mean a directed tree T endowed with a planar order, which is
the choice of a linear order on the set of directions below every branching point of T (one can
think of T as embedded in the plane; see §8.2 for a formal definition). Note that in this case
the set ∂∗T inherits a linear order ≺ in a natural way. Assume that T is a planar directed tree,
and that Φ: G→ Homeo(T) is a focal action of a countable group which preserves the planar
order. Then Φ induces an order-preserving action of G on the ordered space (∂∗T,≺). From
this action one can obtain an action ϕ ∈ Homirr(G,Homeo0(R)) on the real line (for instance
by considering the Dedekind completion of any orbit in ∂∗T, see §2.3.3 and §8.2 for details),
which we call the dynamical realization of the action of Φ. It turns out that such an action is
always minimal and R-focal. In fact, we have the following equivalence, which can be taken as
an alternative definition of R-focal actions.
Proposition 1.7. Let G be a countable group. An action ϕ : G → Homeo0(R) is minimal
and R-focal if and only if it is conjugate to the dynamical realization of a focal action by
homeomorphisms of G on some planar directed tree.

We will say that an R-focal action ϕ can be represented by an action Φ: G→ Homeo(T) on
a planar directed tree if it is conjugate to the dynamical realization of Φ. Note that in general
such an action Φ representing ϕ is not unique.

Examples of R-focal actions appear naturally in the context of solvable groups. In fact,
the notion of R-focal action was largely inspired by an action on the line of the group Z o Z

2While this is not exactly the definition of directed tree which we will work with (see Definition 8.1), it can
be taken as equivalent definition for the purpose of this introduction (the connection is explained in §8.1.4).
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constructed by Plante [97] to give an example of action of a solvable group on the line which
is not semi-conjugate to any action by affine transformations (i.e. transformations of the form
x 7→ ax + b). See Example 7.10 for a generalization of Plante’s construction to arbitrary
wreath products. For finitely generated solvable groups we obtain the following dichotomy.

Theorem 1.8. Let G be a finitely generated solvable group. Then every irreducible action
ϕ : G→ Homeo0(R) is either semi-conjugate to an action by affine transformations, or to a
minimal R-focal action.

Remark 1.9. This should be compared with the result by Plante, which motivated the con-
struction of the action of Z o Z mentioned above, that every irreducible action of a solvable
group of finite (Prüfer) rank is semi-conjugate to an affine action (a weaker condition on the
group is actually sufficient, see [97, Theorem 4.4] for details).

A distinctive feature of R-focal actions is that the action of individual elements of the group
satisfy a dynamical classification which resembles the classification of isometries of trees into
elliptic and hyperbolic elements. Namely if G ⊂ Homeo0(R) is a subgroup whose action is
R-focal, then every element g ∈ G satisfies one of the following (see Corollary 8.27).

• Either g is totally bounded: its set of fixed points accumulates on both ±∞.
• Or g is a pseudohomothety: it has a non-empty compact set of fixed points K ⊂ R
and either every x /∈ [minK,maxK] satisfies |gn(x)| → ∞ as n→ +∞ (in which case
we say that g is an expanding pseudohomothety), or the same holds as n→ −∞ (in
which case we say that g is contracting). If K is reduced to a single point, we further
say that g is a homothety.

Moreover the dynamical type of each element can be explicitly determined from the G-action
on a planar directed tree T representing the R-focal action by looking at the local dynamics
near the focus ω ∈ ∂T.

We finally discuss another concept: the notion of horograding of an R-focal action of a
group G by another action of G. This will be crucial in the sequel, as it will allow us to
establish a relation between exotic actions of various locally moving groups and their standard
actions. Assume that T is a directed tree with focus ω. An increasing horograding of T by
a real interval X = (a, b) is a map π : T → X such that for every v ∈ T the ray [v, ω[ is
mapped homeomorphically onto the interval [π(v), b). This is a non-metric analogue of the
classical metric notion of horofunction associated with ω. A decreasing horograding is defined
analogously but maps [v, ω[ to (a, π(v)], and a horograding is an increasing or decreasing
horograding. If G is a group acting both on T and X we say that π is a G-horograding if its is
G-equivariant. This leads to the following definition.

Definition 1.10. Assume that ϕ : G → Homeo0(R) is a minimal R-focal action, and that
j : G→ Homeo0(X) is another action of G on some open interval X. We say that ϕ can be
(increasingly or decreasingly) horograded by j if ϕ can be represented by an action on a planar
directed tree Φ: G → Homeo(T) which admits an (increasing or decreasing) G-horograding
π : T→ X.

The existence of such a horograding is a tight relation between ϕ and j, which is nevertheless
quite different from the notion of semi-conjugacy: here the action of G on X plays the role of
a hidden “extra-dimensional direction” with respect to the real line on which ϕ is defined. For
instance, in the presence of an increasing G-horograding, the type of each element in ϕ can be
determined from its germ on the rightmost point of X as follows.
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Proposition 1.11. Let ϕ : G → Homeo0(R) be a minimal R-focal action, and assume that
ϕ can be increasingly horograded by an action j : G→ Homeo0(X) on an interval X = (a, b).
Then we have the following alternative.

(i) If the fixed points of j(g) accumulate on b then ϕ(g) is totally bounded.
(ii) Else ϕ(g) is a pseudohomothety, which is expanding if j(g)(x) > x for x in a neighbor-

hood of b, and contracting otherwise. Moreover if j(g) has no fixed points in X, then
ϕ(g) is a homothety.

1.5. A structure theorem for C0 actions. With the notion of R-focal action in hand, we
now go back to our original problem and state a structure theorem for actions on the line by
homeomorphisms of a vast class of locally moving group.

Definition 1.12 (The classes F and F0). For X = (a, b), let G ⊂ Homeo0(X) be a subgroup,
and recall that for an interval I = (x, y) ⊆ X we denote by G(x,y) the rigid stabilizer of I.
Write G+ :=

⋃
x<bG(a,x) and G− :=

⋃
x>aG(x,b) for the subgroups of elements with trivial

germ at a and b respectively. Consider the following conditions.
(i) G is locally moving.
(ii) There exist two finitely generated subgroups Γ± ⊂ G± and x, y ∈ X such that

G(a,x) ⊂ Γ+ and G(y,b) ⊂ Γ−.
(iii) There exists an element of G without fixed points in X.

We say that G belongs to the class F if it satisfies (i) and (ii), and that it belongs to the class
F0 if it satisfies (i), (ii), and (iii).

Note that condition (ii) trivially holds true provided there exist x, y ∈ X such that G(a,x)
and G(y,b) are finitely generated. In practice this weaker condition will be satisfied in many
examples, but (ii) is more flexible and more convenient to handle.

The class F0 contains many well-studied examples of finitely generated locally moving
groups, including Thompson’s group F , and all Thompson–Brown–Stein groups Fn1,...,nk [103],
the groups of piecewise projective homeomorphisms of Lodha–Moore [65], and several other
Bieri–Strebel groups [8]. It also contains various groups which are far from the setting of groups
of piecewise linear or projective homeomorphisms: for instance every countable subgroup of
Homeo0(X) is contained in a finitely generated group belonging to F0 (see Proposition 10.2).

Our main result is a qualitative description for the actions on the line of groups in the class
F , stating that such actions can be classified into three types of behavior.

Theorem 1.13 (Main structure theorem for actions of groups in F). Let X be an open
interval and let G ⊂ Homeo0(X) be a group in the class F . Then every irreducible action
ϕ : G→ Homeo0(R) is semi-conjugate to an action in one of the following families.

(1) (Non-faithful) An action which factors through the largest quotient G/[Gc, Gc].
(2) (Standard) An action which is conjugate to the standard action of G on X.
(3) (Exotic) A minimal faithful R-focal action which can be horograded by the standard

action of G on X.

Note that many finitely generated groups which belong to the class F , or even to the more
restricted class F0, do indeed admit exotic actions falling in (3), for instance as a consequence
of Proposition 1.5 (but not all groups in F0 do, see Theorem 1.20 below). Moreover in some
cases there are uncountably many non-semi-conjugate such actions (see for instance Theorem
1.18 below for the case of Thompson’s group F ), and the variety and flexibility of constructions
suggest that in general it is too complicated to obtain a reasonably explicit description of
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all semi-conjugacy classes of exotic actions (however the word explicit is crucial here, as we
shall see in Theorem 1.14 that such a description exists in principle). Nevertheless, the main
content of Theorem 1.13 is that every exotic action of a group in F must be tightly related
to the standard action of G, although not via a semi-conjugacy but at the level of a planar
directed tree encoding the exotic (R-focal) action. This relation can be effectively exploited to
study such exotic actions (in particular the way in which every individual element of G acts
oi an exotic action is determined by its standard action, see Proposition 1.11). This leads to
various applications that we describe now.

1.6. Space of semi-conjugacy classes and local rigidity for groups in F0. The main
structure theorem (Theorem 1.13) can be used to get an insight on the structure of semi-
conjugacy classes inside the space of irreducible actions Homirr(G,Homeo0(R)) whenever G
is a group in F0. Recall that the space Homirr(G,Homeo0(R)) can be endowed with the
natural compact-open topology, which means that a neighborhood basis of a given action
ϕ ∈ Homirr(G,Homeo0(R)) is defined by considering for every ε > 0, finite subset S ⊂ G, and
compact subset K ⊂ R, the subset of actions{

ψ ∈ Homirr(G,Homeo0(R)) : max
g∈S

max
x∈K
|ϕ(g)(x)− ψ(g)(x)| < ε

}
.

A natural way to understand actions of a group G up to semi-conjugacy would be to study
the quotient of the space Homirr(G,Homeo0(R)) by the semi-conjugacy equivalence relation.
Unfortunately this quotient space is rather bad, for instance it is in general not Hausdorff and
may even fail to have the structure of a standard measurable space (see Remark 3.23). In fact
the semi-conjugacy equivalence relation need not be smooth, that is it need not be possible to
classify the semi-conjugacy classes of actions in Homirr(G,Homeo0(R)) by a Borel complete
invariant (see the discussion in §3.5).

However, for groups in the class F0, Theorem 1.13 can be used to show that a large part of
the set of semi-conjugacy classes in Homirr(G,Homeo0(G)) can in fact be parametrized by a
well behaved space and it is possible to select a system of representatives of each semi-conjugacy
class with nice properties. Under this identification, it turns out that the semi-conjugacy class
of the standard action of G on X corresponds to an isolated point in this space. This is the
content of the following result.
Theorem 1.14 (The space of semi-conjugacy classes for groups in F0). Let X be an open
interval and let G ⊂ Homeo0(X) be a finitely generated group in the class F0. Denote by ∼
the equivalence relation on Homirr(G,Homeo0(R)) given by positive semi-conjugacy, and let
U ⊂ Homirr(G,Homeo0(R)) be the ∼-invariant set of irreducible actions that are not semi-
conjugate to any action induced from the largest quotient G/[Gc, Gc]. Then U is open and the
following hold.

(i) The quotient space U/∼, with the quotient topology, is Polish and locally compact.
(ii) There exists a continuous section σ : U/∼ → U which is a homeomorphism onto its

image, whose image is closed in U and consists of faithful minimal actions.
(iii) The semi-conjugacy class of the standard action of G on X is an isolated point in U/∼.

Remark 1.15. In the previous theorem, ruling out the actions induced from the largest quotient
G/[Gc, Gc] is necessary, as in this generality it may happen that the semi-conjugacy equivalence
relation on irreducible actions of G/[Gc, Gc] might not be smooth, and a fortiori this may not
be true for G. However the theorem implies that the semi-conjugacy equivalence relation on
the set Homirr(G,Homeo0(R)) is smooth provided the same holds for irreducible actions of
G/[Gc, Gc] (see Corollary 10.24, or Theorem 11.6 in the case of Thompson’s group F ).
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The main dynamical significance of the previous result is that it implies a local rigidity
result. We say that an irreducible action ϕ ∈ Homirr(G,Homeo0(R)) of a group G is locally
rigid if there exists a neighborhood U ⊂ Homirr(G,Homeo0(R)) of ϕ such that every ψ ∈ U is
semi-conjugate to ϕ. Otherwise, we say that the action of ϕ is flexible. Theorem 1.14 has the
following direct consequence.

Corollary 1.16 (Local rigidity of the standard action for groups in F0). Let X be an open
interval and let G ⊂ Homeo0(X) be a finitely generated group in the class F0. Then the natural
action of G on X is locally rigid.

Corollary 1.16 provides a vast class of locally rigid actions on the real line. For instance, by
Proposition 10.2, it implies that every action on the real line of a countable group G can be
extended to a locally rigid action of some finitely generated overgroup.

A well-developed approach to local rigidity of group actions on the line is through the space
LO(G) of left-invariant orders on G, which is a totally disconnected compact space. Every such
order gives rise to an action in Homirr(G,Homeo0(R)), and isolated points in LO(G) produce
locally rigid actions (see Mann and the third author [73, Theorem 3.11]). This can be used to
show that some groups, for instance braid groups (see Dubrovin and Dubrovina [37], or the
monograph by Dehornoy, Dynnikov, Rolfsen, and Wiest [31]), do have locally rigid actions.
However the converse to this criterion does not hold, and this approach has been more fruitful
in the opposite direction, namely for showing that a group has no isolated order from flexibility
of the dynamical realization (see for instance the works by Navas [90], or by Alonso, and the
first and third named authors [2, 3], as well as by Malicet, Mann, and the last two authors
[66]). One difficulty underlying this approach is that it is usually not easy to determine when
two orders in LO(G) give rise to semi-conjugate actions.

To prove Theorem 1.14, we take a different approach to local rigidity, based on a compact
space suggested by Deroin [32] as a dynamical substitute of the space of left-orders. One way
to construct this space is based on work by Deroin, Kleptsyn, Navas, and Parwani [35] on
symmetric random walks on Homeo0(R). Given a probability measure µ on G whose support
is finite, symmetric, and generates G, one defines the Deroin space Derµ(G) as the subspace of
Homirr(G,Homeo0(R)) of (normalized) harmonic actions, that is, actions of G for which the
Lebesgue measure is µ-stationary (see §2.2 for details). The space Derµ(G) is compact and
Hausdorff, with a natural topological flow Φ : R× Derµ(G)→ Derµ(G) defined on it by the
conjugation action of the group of translations (R,+), and has the property that two actions
in Derµ(G) are (positively semi-)conjugate if and only if the are on the same Φ-orbit. It was
shown in [35] that every action in Homirr(G,Homeo0(R)) can be semi-conjugated to one inside
Derµ(G) by a probabilistic argument. In fact, we shall show in Section 3 that this can be done
in such a way that the new action depends continuously on the original one (see Theorem 3.2).
This continuous dependence implies a criterion for local rigidity of minimal actions within the
space Derµ(G) (see Corollary 3.4). The proof is based on an alternative description of Derµ(G)
a quotient of the space of left-invariant preorders on G (Theorem 3.20), which also implies that
Derµ(G) does not depend on the choice of the probability measure µ up to homeomorphism.

With these tools in hand, to prove Theorem 1.14 we study the shape of orbits of the
translation flow Φ on Derµ(G) when G is a group in F0. Faithful actions correspond to an
open Φ-invariant subset of Derµ(G). Using Theorem 1.13 and the properties of R-focal actions
we show that the restriction of the flow Φ to this open subset has the simplest possible type of
orbit structure: there is a closed transversal S intersecting every Φ-orbit, and Φ is conjugate
to the vertical translation on S × R, so that its space of orbits can be identified with S. This
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analysis yields Theorem 1.14. (See Figure 1 for a schematic representation for Thompson’s
group F .)

Figure 1. The Deroin space of Thompson’s group F . The outer red circle
parametrizes the non-faithful actions (of F ab ∼= Z2) and it is pointwise fixed by
the flow Φ. The remaining Φ-orbits are the faithful actions. The purple and blue
orbits correspond to the standard action and to its conjugate by the reflection, and
are transversely isolated (this gives local rigidity). The pencils of green and yellow
orbits are the R-focal actions: both pencils contain uncountably many orbits, admit a
compact transversal to the flow, and the shown convergence to limit points is uniform.
See Figure 10 and §11.2 for details.

1.7. A criterion for non-orientation-preserving groups. We also observe that the situ-
ation is quite different if we leave the setting of orientation-preserving actions. Indeed, in this
case we have the following result which follows from Corollary 1.16 (or can be more directly
obtained in the course of its proof). The proof is given in §10.3. We denote by Homeo(X) the
group of all (not necessarily orientation-preserving) homeomorphisms of an interval X.

Corollary 1.17 (Global rigidity in the non-orientation-preserving case). Let X = (a, b) and
let G ⊂ Homeo(X) be a subgroup such that G ( Homeo0(X) and G ∩ Homeo0(X) is in the
class F . Then every faithful minimal action ϕ : G→ Homeo(R) is conjugate to the standard
action on X.

1.8. Some concrete groups in the class F0. We have seen how Theorem 1.14 yields a
global picture of actions on the line for groups in the class F0. Nevertheless when G is a group
in the class F the rigidity or abundance of its exotic actions turns out to depend subtly on G.
This difference is visible already among groups of piecewise linear homeomorphisms.

Given an open interval X = (a, b) we denote by PL(X) the group of orientation-preserving
PL homeomorphisms of X, with finitely many discontinuity points for the derivatives. It turns
out that this class of groups exhibits a surprising mixture of rigidity and flexibility properties
and many illustrative examples of applications of our results arise as subgroups of PL(X). Note
that Proposition 1.5 implies that every finitely generated locally moving group G ⊂ PL(X)
admits a minimal faithful exotic action on the real line.

The most famous example of group of PL homeomorphisms is Thompson’s group F . Recall
that F is defined as the subgroup of PL((0, 1)) whose slopes are powers of 2 and whose constant
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terms and breakpoints are in the ring Z[1/2] of dyadic rationals. The group F belongs to the
class F0 and satisfies the assumptions of most of the results in this paper. The reader can find
in Section 11 a detailed account of our results in this case. In particular every faithful action
ϕ : F → Diff1

0([0, 1]) without fixed points in (0, 1) is semi-conjugate to the standard action
(Corollary 1.3), every irreducible exotic action ϕ : F → Homeo0(R) is R-focal and horograded
by the standard action of F on (0, 1) (Theorem 1.13), and the standard action of F on (0, 1)
is locally rigid (Corollary 1.16).

Despite these rigidity results, it turns out that the group F admits a rich and complicated
universe of minimal exotic actions, and our work leaves some interesting questions open: in
particular we do not know whether F admits exotic actions that are locally rigid. In Section
11 we will discuss several different constructions of minimal R-focal actions of F , which for
instance leads to the following.
Theorem 1.18. Thompson’s group F admits uncountably many actions on the line which are
faithful, minimal, R-focal and pairwise non-semi-conjugate. Moreover, there are uncountably
many such actions whose restrictions to the commutator subgroup [F, F ] remain minimal and
are pairwise non-semi-conjugate.

This abundance of R-focal actions can be explained in part by the fact that the group F
admits many focal actions on simplicial trees by simplicial automorphisms (the Bass–Serre
tree associated with any non-trivial splitting as an ascending HNN extension [41, Proposition
9.2.5]). Some of these actions preserve a planar order on the tree, and many R-focal actions
of F arise in this way (a characterization will be given in §11.3). However, we show in §11.6
that the group F also admits minimal R-focal actions for which an associated planar directed
tree cannot be chosen to be simplicial, or even to carry an invariant R-tree metric. In fact the
second claim in Theorem 1.18 is directly related to this phenomenon. We refer to Section 11
for further discussion on R-focal actions of F .

In contrast, this abundance of exotic actions of the group F already fails for some tightly
related groups of PL homeomorphisms. Given a real number λ > 1, we denote by G(X;λ)
the group of all PL homeomorphisms of X where all derivatives are integers powers of λ and
all constant terms and breakpoints belong to Z[λ, λ−1]. Note that the group F is equal to
G((0, 1); 2). When X = R, the group G(R;λ) belongs to F0 provided λ is algebraic, thus
satisfies Theorem 1.13. However, in striking difference with the case of F , we have the following.
Theorem 1.19 (PL groups with finitely many exotic actions). Let λ > 1 be an algebraic
real number. Then the group G = G(R;λ) admits exactly three minimal faithful actions
ϕ : G→ Homeo0(R) on the real line up to (semi-)conjugacy, namely its standard action and
two minimal R-focal actions (which can be horograded by its standard action).

Note that this shows that the two minimal exotic actions of G(R;λ) are locally rigid as well;
in particular the standard action need not be the unique locally rigid action for a group in F0.

Theorem 1.19 is in fact a special case of Theorem 12.3 which applies to a more general
class of Bieri–Strebel groups of the form G(R;A,Λ), which are groups of PL homeomorphisms
defined by restricting derivatives to belong to a multiplicative subgroup Λ ⊂ R∗+ and constant
terms and breakpoints to belong to a Z[Λ]-submodule A ⊂ R (see §2.4). The two exotic actions
of the group G(R;λ) arise as a special case of a construction of exotic actions of Bieri–Strebel
groups explained in §9.3.

Building on the proof of Theorem 1.19, in §12.2 we also construct a finitely generated locally
moving group G having no exotic actions at all. This group is obtained by perturbing the
group G(R; 2) locally in a controlled manner.
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Theorem 1.20 (A finitely generated locally moving group with no exotic actions). There
exists a finitely generated subgroup G ⊂ Homeo0(R) in the class F0, such that every faithful
minimal action ϕ : G→ Homeo0(R) is conjugate to the standard action.

1.9. Further consequences. We conclude this introduction by mentioning some additional
results obtained along the way, which allow to recover and strenghten some previously known
results in the unified setting developed here.

1.9.1. Very large locally moving groups. As mentioned at the beginning of the introduction,
two rigidity results were known for some very large locally moving groups: namely a result
of Militon shows that the group Homeoc(R) of compactly supported homeomorphisms of R
admits a unique irreducible action on R up to conjugacy, and a recent result of Chen and Mann
implies the same property for the group Diffrc(R) of compactly supported diffeomorphisms
in regularity r 6= 2. While the main focus of this paper is on countable groups, our method
also allows to obtain a criterion for uniqueness of the action of a family of uncountable locally
moving groups, which recovers and generalizes those results. In order to do this, we need the
following relative version of a group property first considered by Schreier (see [83, Problem
111]).

Definition 1.21. Let G be a group and let H be a subgroup of G. We say that the pair
(G,H) has relative Schreier property if every countable subset of H is contained in a finitely
generated subgroup of G.3

The following result is a special case of what we show in Section 13.

Theorem 1.22 (Uniqueness of action for some uncountable locally moving groups). Let
G ⊂ Homeoc(R) be a perfect subgroup of compactly supported homeomorphisms. Suppose that
for every bounded open interval I ⊂ R the following hold:

(1) the GI-orbit of every x ∈ I is uncountable;
(2) the pair (G,GI) has relative Schreier property.

Then every action ϕ : G→ Homeo0(R) without fixed points is conjugate to the natural action
of G.

1.9.2. Comparison with the case of groups acting on the circle. One may wonder whether a
similar theory can be developed for locally moving groups acting on the circle rather than the
real line. However this problem turns out to be considerably simpler and less rich, as in this
setting locally moving groups essentially do not admit exotic actions at all. This phenomenon
is already well-known in some cases. In particular a result of Matsumoto states that the group
Homeo0(S1) admits only one action on S1 up to conjugacy, and an unpublished result of Ghys
(announced in [44]) shows that every action of Thompson’s group T on S1 is semi-conjugate to
its standard action. The original proofs of these results are both based on the computation of
the second bounded cohomology of these groups, and on its relation with actions on the circle
established by Ghys [42] (a tool that does not have an analogue for actions on real line). For
Thompson’s group T another proof is provided in [60], which does not use the knowledge of
bounded cohomology of T , but relies in part on the nature of T as a group of piecewise linear
homeomorphisms.

3The choice of relative Schreier property is inspired by the work of Le Roux and Mann [63]. Apparently
there is no standard name in the literature, and such choice may be ambiguous, as in other works Schreier
property is used for different properties.
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In fact, in Section 14 we observe that elementary considerations based on commutations
suffice to obtain a more general criterion (Theorem 14.2), stating that if G is a group of
homeomorphisms of an arbitrary compact space X satisfying suitable assumptions, then every
minimal faithful action of G on the circle must factor onto its action on X. A special case of
Theorem 14.2 (with X = S1) yields the following.

Theorem 1.23. Let G ⊂ Homeo0(S1) be a locally moving subgroup. Then every faithful
minimal action ϕ : G→ Homeo0(S1) factors onto the standard action of G on S1.

In fact, under some mild additional assumption on G one obtains that the action ϕ is
conjugate to (possibly a lift of) the standard action on S1 via a self-cover of S1. We refer to
Section 14 for more precise results and further discussion.

1.9.3. An application to non-smoothability. One possible direction of application of Theorem
1.2 is to use it as a tool to show that certain locally moving group acting on the line cannot
be isomorphic to groups of diffeomorphisms (of suitable regularity). Results in this spirit were
obtained by Bonatti, Lodha, and the fourth named author in [15] for various groups of piecewise
linear and projective homeomorphisms. Here we consider the Thompson–Brown–Stein groups
Fn1,··· ,nk , which are a natural generalization of Thompson’s group F associated with any choice
of integers n1, . . . , nk whose logarithms are linearly independent over Q (see Definition 2.45).
It was shown in [15] that if k ≥ 2, then the standard action of Fn1,...,nk on (0, 1) cannot be
conjugate to an action by C2 diffeomorphisms. With our methods we obtain the following
strengthening of that result.

Theorem 1.24. When k ≥ 2, any Thompson–Brown–Stein group of the form Fn1,...,nk admits
no faithful action on the real line by diffeomorphisms of class C1+α for any α > 0.

In this direction we also mention a recent result of Kim, Koberda, and third named author
[57], who used our Theorem 1.2 to show that the free product F ∗ Z of Thompson’s group and
the integers admits no faithful action on [0, 1] by C1 diffeomorphisms.

1.10. Outline of the paper. This paper is structured as follows. Sections 2 and 3 contain
the required general theory on group actions on the line. After recalling some elementary
preliminaries and notations in Section 2, we focus in Section 3 on the Deroin space Derµ(G)
of µ-harmonic actions on the line of a finitely generated group G. The main purpose of that
section is to prove that there exists a continuous retraction from Homirr(G,Homeo0(R)) to the
space Derµ(G) and a related local rigidity criterion (Corollary 3.4), which will be used in the
proofs of Theorem 1.14 and Corollary 1.16 (see the discussion in §1.6). These results appear
to be new, although the arguments in the section are mostly based on elementary facts on
left-invariant preorders.

The remaining sections can be roughly divided into four parts. Part I contains the central
skeleton of the study locally moving groups on which the remaining parts are built, while
Parts II–IV are essentially independent from each other and can be read after reading Part
I (modulo some minor dependence between them, mostly limited to examples or secondary
results).

Part I (Sections 4–5). General theory on locally moving groups acting on the line.
After introducing notations and terminology on locally moving groups of homeomor-
phisms of intervals and proving some of their basic properties in Section 4, we begin in
Section 5 the study of their actions on the real line. The main result of this part is
Theorem 5.3, which establishes a dynamical trichotomy for actions on the line of a
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locally moving group G of homeomorphisms, a crucial common ingredient for all the
other results in this paper. This result imposes a restrictive technical condition on all
exotic actions of G, which roughly speaking says that in every exotic action of G there
is “domination” of certain subgroups of G over other. After proving this, we give in
§5.2 some of its simpler applications, such as a rigidity result for actions with nice
combinatorial properties (including actions by piecewise analytic transformations). We
conclude the section by giving some first examples of exotic actions of locally moving
groups in §5.3 (which allow to prove Fact 1.4).

Part II (Section 6). Actions by C1 diffeomorphisms. This part consists of Section 6 alone,
where we study C1 actions of locally moving group and complete the proofs of Theorem
1.2 and Corollary 1.3.

Part III (Sections 7–12). R-focal actions and topological dynamics of exotic actions.
Here we develop the notion of R-focal action and apply it to prove our main results
for actions by homeomorphisms of locally moving groups in the class F . In Section 7
we introduce R-focal actions of groups on the line and establish their main properties.
In Section 8 we illustrate the connection of R-focal action with focal actions on trees.
(Note that Sections 7–8 are not directly concerned with locally moving groups, and
could also be read directly after reading Section 2.) In Section 9 we give various
constructions and existence criteria for exotic minimal R-focal actions of locally moving
groups. Section 10 contains our main results on groups in the classes F0⊂F . We begin
by proving our main structure theorem (Theorem 1.13) for actions of groups in F , and
then use it to study the Deroin space Derµ(G) of a group in F0. As a corollary of this
analysis and of the results in Section 3 we obtain Theorem 1.14 and the local rigidity
of the standard action for groups in F0 (Corollary 1.16). In Section 11 we focus on
the example of Thompson’s group F : we illustrate our main rigidity results in this
special case, and use them to analyze its Deroin space Derµ(F ) (see Figure 10); then
we proceed to give various constructions of minimal exotic actions of the group F and
discuss some of their properties. In Section 12 we provide examples of groups in the
class F0 whose R-focal actions are much more rigid: we classify the R-focal actions of a
class of Bieri–Strebel groups of PL homeomorphisms (in particular we prove Theorem
1.19) and construct a finitely generated locally moving group without exotic actions
(Theorem 1.20).

Part IV (Sections 13–14) Additional results. In this part we prove some additional results
which allow to recover and generalize some previously known results from the literature
in the framework of this paper. In Section 13 we prove results on actions of some very
large (uncountable) locally moving groups and prove Theorem 1.22. In Section 14 we
prove a result for actions on the circle, which implies Theorem 1.23: this section is
essentially self-contained and independent on the other results in this paper (it only
relies on Proposition 5.4).
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2. Notation and preliminaries

2.1. Actions on the line. In this work we are mainly concerned with orientation-preserving
actions on the real line, that is, homomorphisms ϕ : G→ Homeo0(R). We will almost always
be interested in actions without (global) fixed points, which will sometimes be called irreducible
for short. Note that every action ϕ : G→ Homeo0(R) can be described in terms of irreducible
actions, just considering all restrictions

ϕJ : G→ Homeo0(J) ∼= Homeo0(R)
g 7→ ϕ(g) �J

,

of the action ϕ to minimal ϕ(G)-invariant open intervals J ⊂ R. We write Hom(G,Homeo0(R))
for the space of order-preserving actions of the group G, endowed with the compact open topol-
ogy, and Homirr(G,Homeo0(R)) ⊆ Hom(G,Homeo0(R)) for the subspace of actions without
fixed points.

2.1.1. Some notation on actions. Given f ∈ Homeo(R), we write Fix(f) = {x ∈ R : f(x) = x}
for the set of fixed points and Supp(f) = Rr Fix(f) for its support. Note that by definition
Supp(f) is an open set (we do not take its closure unless specified). For G ⊂ Homeo0(R)
and x ∈ R we write StabG(x) for the stabilizer of x. We denote by Homeoc(R) the group of
homeomorphisms whose support is relatively compact. Given an action ϕ : G → Homeo(R)
and g ∈ G we set Fixϕ(g) = Fix(ϕ(g)) and Suppϕ(g) = Supp(ϕ(g)), and StabϕG(x) for the
stabilizer. When there is no confusion we write g.x instead of ϕ(g)(x). The notation g(x) will
be reserved to the case when G is naturally given as a subgroup G ⊂ Homeo0(R) to refer to
its standard action (but never to another action ϕ : G→ Homeo0(R)).

For x ∈ R ∪ {±∞} we denote by Germ(x) the group of germs of homeomorphisms that
fix x. Recall that this is defined as the group of equivalence classes of homeomorphisms
f ∈ Homeo0(R) that fix x, where two such homeomorphisms are identified if they coincide on a
neighborhood of x. By considering only one-sided neighborhoods, one gets two groups Germ−(x)
and Germ+(x), the groups of right germs and the group of left germs respectively, such that
Germ(x) = Germ−(x)×Germ+(x). If G is a group of homeomorphisms that fixes x, we denote
by Germ(G, x) the group of germs induced by elements of G, and by Gx : G→ Germ(G, x) the
associated homomorphism. Similarly we have groups of one-sided germs Germ±(G, x). Note
however that when G acts non-trivially only on one side of G (e.g. if x is an endpoint of its
support, or if x = ±∞), we omit the sign ± as this is clear from the context.

2.1.2. Commuting actions. A particular case of what said above is that every homeomorphism
g ∈ Homeo0(R) is basically determined by its set of fixed points Fix(g) and by how it
acts on every connected component of its support Supp(g) = R r Fix(g). Therefore, it is
fundamental to understand the set of fixed points of a given element, or at least to be able
to say whether it is empty or not. For this, a very useful relation is that for an element
g ∈ Homeo0(R) and a subgroup H ⊆ Homeo0(R), one has g(Fix(H)) = Fix(gHg−1). In
particular, when G ⊆ Homeo0(R) and H CG is a normal subgroup, then for every g ∈ G one
has g(Fix(H)) = Fix(H). This holds in particular for commuting subgroups, for which we have
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the following observation, which is easily obtained using that the set of fixed point is a closed
subset.
Lemma 2.1. Consider two commuting subgroups H1 and H2 of G ⊆ Homeo0(R) (that is,
[h1, h2] = id for every h1 ∈ H1 and h2 ∈ H2). Suppose that both Fix(H1) and Fix(H2) are
non-empty. Then H1 and H2 admit a common fixed point.

This lemma will be used in the text without explicit reference.

2.1.3. Semi-conjugacy. It is customary in the field to consider actions up to semi-conjugacy.
This means that not only we do not really take care of the choice of coordinate on R (which
corresponds to the classical notion of conjugacy), but we want to consider only the interesting
part of the dynamics of the action. This was first formalized by Ghys in his work on bounded
Euler class, but the definition has been unanimously fixed only recently. We follow here
[56, Definition 2.1], although we allow order-reversing semi-conjugacies. For the statement we
will say that a map h : R→ R is proper if its image h(R) is unbounded in both directions of
the line.
Definition 2.2. Let ϕ,ψ : G→ Homeo(R) be two actions of a group G on the real line. We
say that ϕ and ψ are semi-conjugate if there exists a proper monotone map h : R→ R such
that
(2.1) hϕ(g) = ψ(g)h for every g ∈ G.
Such a map h is called a semi-conjugacy between ϕ and ψ. Note that if ϕ and ψ are irreducible,
the requirement that the map h be proper follows automatically from the equivariance (2.1)
and thus can be dropped. When h ∈ Homeo(R), we say that h is a conjugacy between ϕ and
ψ, in which case we say that h is a conjugacy. When h is nondecreasing, we say that ϕ and ψ
are positively semi-conjugate.
Remark 2.3. Both conjugacy and semi-conjugacy are equivalence relations (for conjugacies
this is obvious, for semi-conjugacies the reader can check [56, Lemma 2.2] or [36, Proposition
1.1.16]). Notice that in the semi-conjugacy case, we do not require that h be continuous;
indeed, being continuously semi-conjugate is not even a symmetric relation.

Rarely (essentially only in Section 14) we will need the analogous notion of semi-conjugacy
for actions on the circle, which is defined as follows.
Definition 2.4. Let ϕ,ψ : G → Homeo0(S1) be two actions on the circle. They are semi-
conjugate if and only if there exists a group G̃ which is a central extension of G of the form
1 → C → G̃ → G → 1, with C ∼= Z, and two semi-conjugate actions ϕ̃, ψ̃ : G̃ → Homeo0(R)
which both map C to the group Z of integer translations, and which descend to the quotient
respectively to the actions ϕ and ψ of G = G̃/C on S1 = R/Z.

Given an action ϕ : G→ Homeo(R), one can consider the reversed action ϕ̂ : G→ Homeo(R),
defined by conjugating ϕ by the order-reversing isometry x 7→ −x. After our definition, the
actions ϕ and ϕ̂ are conjugate.

Given a monotone map h : R→ R, we denote by Gap(h) ⊂ R the open subset of points at
which h is locally constant. We also write Core(h) = Rr Gap(h). Note that when h : R→ R
is a semi-conjugacy between two actions ϕ,ψ : G→ Homeo(R) without fixed points (in the
sense that the equivariance (2.1) holds), then Core(h) is a closed ϕ(G)-invariant subset and
h(Core(h)) = h(R). The following folklore result is a sort of converse to this observation,
and it describes the inverse operation of Denjoy’s blow up of orbits (compare for instance
[56, Theorem 2.2]).
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Theorem 2.5. Let ϕ : G→ Homeo0(R) be an action without fixed points and let F ⊂ R be a
non-empty closed ϕ(G)-invariant subset. Then there exists an action ϕF : G → Homeo0(R)
and a continuous positive semi-conjugacy h : R→ R between ϕ and ϕF such that Core(h) = F .

We follow with an easy application of Theorem 2.5 that will be repeatedly used in the article
when discussing actions coming from quotients.

Corollary 2.6. Let ϕ : G→ Homeo0(R) be an action without fixed points, and let N CG be
a normal subgroup. Then ϕ is semi-conjugate to an action of the quotient G/N if and only if
Fixϕ(N) 6= ∅.

Proof. Notice that, since N is normal, the subset F = Fixϕ(N) is closed and ϕ(G)-invariant.
Assume that F 6= ∅; we consider the action ϕF given by Theorem 2.5. Clearly we have
N ⊆ kerϕF . The other implication is trivial. �

The following lemma basically states that the semi-conjugacy class is determined by the
action on one orbit.

Lemma 2.7. Consider two actions ϕ,ψ : G→ Homeo0(R) without fixed points. Let Ω ⊂ R be
a non-empty ϕ(G)-invariant subset and j0 : Ω→ R a monotone map which is equivariant in
the sense that it satisfies

ψ(g)j0 = j0ϕ(g) �Ω for every g ∈ G.

Then, j0 can be extended to a semi-conjugacy j : R→ R between ϕ and ψ.

Proof. Consider the map j : R→ R defined by

j(x) = sup{j0(y) : y ∈ Ω and y ≤ x}.

Since j0 is monotone, we get that j is an extension of j0. Also note, it is direct from the
definition of j that it is monotone and equivariant and therefore it defines a semi-conjugacy as
desired. �

2.1.4. Canonical model. We next introduce a family of canonical representatives for the semi-
conjugacy relation when G is finitely generated. Such representatives are well defined up to
conjugacy. Later, in §2.2, we will define a (much less redundant) family of representatives for
the semi-conjugacy relation consisting on normalized µ-harmonic actions.

Definition 2.8. Let ϕ : G→ Homeo0(R) be an action, we say that a non-empty subset Λ ⊂ R
is a minimal invariant set for ϕ(G) if it is closed, ϕ(G)-invariant and contains no proper,
closed and ϕ(G)-invariant subsets. When Λ = R, we say that the action ϕ is minimal. When
Λ is a proper perfect subset we say that Λ is an exceptional minimal invariant set. On the
other hand, when the image of an action ϕ(G) is generated by a homeomorphism without
fixed points, we say that the action ϕ is cyclic.

Remark 2.9. Note that minimal invariant sets may not exist for general group actions. An
archetypical example is given by an action of the group Z∞ =

⊕
Z Z in which each canonical

generator has fixed points but there is no fixed point for the action (this happens, for instance,
in the dynamical realization of the lexicographic ordering of Z∞). However, when the acting
group is finitely generated there is always a minimal invariant set for the action; see e.g.
[91, Proposition 2.1.12].



20 BRUM, MATTE BON, RIVAS, AND TRIESTINO

Remark 2.10. Let h : R→ R be a semi-conjugacy between two actions ϕ,ψ : G→ Homeo0(R),
in the sense that (2.1) holds. It is immediate to show that when ψ is minimal, the semi-
conjugacy h is continuous, and that when ϕ is also minimal, then h is a conjugacy. Indeed, the
subsets Core(h) and h(R) are closed subsets which are respectively ϕ(G)- and ψ(G)-invariant.

The following notion corresponds to the minimalization considered in [56, Definition 2.3].

Definition 2.11. An action ϕ : G→ Homeo0(R) is a canonical model if either it is a minimal
action or it is a cyclic action.

We have the following consequence of Theorem 2.5.

Corollary 2.12. Let ϕ : G → Homeo0(R) be an action without fixed points that admits a
non-empty minimal invariant set (this is automatic if G is finitely generated). Then, ϕ is
semi-conjugate to a canonical model. Moreover, the canonical model is unique up to conjugacy.

A similar discussion holds for actions on the circle. In this case we say that an action
ϕ : G → Homeo0(S1) is in canonical model if it is either minimal or conjugate to an action
whose image is a finite cyclic group of rotations (in which case we say that it is cyclic). However
a crucial simplifying difference is that in this case, by compactness, every group action on the
circle admits a non-empty minimal invariant set (regardless on whether G is finitely generated
or not). This yields the following well-known fact (see e.g. [44]).

Proposition 2.13. Let G be a group, then every action ϕ : G → Homeo0(S1) without fixed
points is semi-conjugate to a canonical model.

After Corollary 2.12, semi-conjugacy classes of finitely generated group actions can be
divided into two very different families: cyclic actions and minimal actions. However, for
practical purposes, it is preferable to split further the case of minimal action. In this work the
following classical notion will be important.

Definition 2.14. For M ∈ {R, S1}, we say that a minimal action ϕ : G → Homeo0(M) is
proximal if for every non-empty open intervals I, J ( M with I bounded, there exists an
element g ∈ G such that g.I ⊂ J .

Remark 2.15. Note that if a subgroup G ⊆ Homeo0(M) commutes with a non-trivial element
h ∈ Homeo0(M), then the G-action cannot be proximal. In fact this is a well-known observation
for group actions on arbitrary compact spaces.

A crucial feature of minimal actions on the circle and the line is that a converse also holds.
In the case of the circle this goes back to Antonov [6] and was rediscovered by Margulis [77],
and an analogous result for the real line is provided by Malyutin [67]. Given a subgroup
G ⊆ Homeo0(M) with M ∈ {R, S1}, its centralizer (in Homeo0(M)) is the subgroup

C(G) := {h ∈ Homeo0(M) : gh = hg for every g ∈ G} .
We will write Cϕ := C(ϕ(G)) when ϕ : G → Homeo0(M) is an action. Then we have the
following two results.

Theorem 2.16 (Antonov [6], see [44]). Let ϕ : G→ Homeo0(S1) be a minimal action. Then
we have the following alternative:

• either Cϕ is trivial, in which case ϕ is proximal, or
• Cϕ is a finite cyclic subgroup without fixed points, and the action on the topological
circle S1/Cϕ is proximal, or
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• Cϕ is conjugate to the group of rotations R/Z and G is conjugate to a subgroup of it.

Theorem 2.17 (Malyutin [67], see also [36]). Let ϕ : G→ Homeo0(R) be a minimal action.
Then we have the following alternative:

• either Cϕ is trivial, in which case ϕ is proximal, or
• Cϕ is a cyclic subgroup without fixed points, and the action on the topological circle
R/Cϕ is proximal, or
• Cϕ is conjugate to the group of translations (R,+) and G is conjugate to a subgroup
of it.

2.2. Harmonic actions and Deroin spaces. In this subsection we recall the definition of
the Deroin space. For that, we fix a finitely generated group G, a probability measure µ on G
whose support is finite, generates G, and satisfies the symmetry property

µ(g) = µ(g−1) for every g ∈ G.
We will denote by S ⊂ G the support of µ.

Definition 2.18. Given a nontrivial action ϕ : G→ Homeo0(R), we say that a Radon measure
ν on R is stationary for the action ϕ if for every Borel subset A ⊂ R one has

ν(A) =
∑
g∈S

ν(g−1.A)µ(g).

When the Lebesgue measure Leb on R is stationary, we say that the action ϕ is µ-harnomic.

Properties of µ-harmonic actions are discussed in [36, §4.4], and strongly rely on results of
Deroin, Kleptsyn, Navas, and Parwani [35] on symmetric random walks in Homeo0(R). As
remarked by Deroin, the space of µ-harmonic actions of G has several remarkable properties.
To describe this, we need first to discuss two fundamental results.

Proposition 2.19 ([35]). With notation as above, the following properties hold.
(1) Every non-trivial µ-harmonic action ϕ : G→ Homeo0(R) is a canonical model.
(2) Conversely, every canonical model ϕ : G→ Homeo0(R) is conjugate to a µ-harmonic

action ψ : G→ Homeo0(R).
(3) Moreover, any two µ-harmonic actions ψ1 and ψ2 of a group G are conjugate by an

affine homeomorphism.

After a careful reading of the proof of [35, Proposition 8.1], there is a natural way to reduce
the symmetries in part (3) of the statement above, to the group of translations. For this, given
a homeomorphism h ∈ Homeo0(R) consider the following area function:

Ah(ξ) =


∫ ξ
h−1(ξ)(h(η)− ξ) dη if h(ξ) ≥ ξ,∫ ξ
h(ξ)(h

−1(η)− ξ) dη if h(ξ) ≤ ξ.

Note that Ah(ξ) ≥ 0 for every ξ ∈ R, and Ah(ξ) = 0 if and only if ξ ∈ Fix(h). In the case
h(ξ) ≥ ξ, the quantity Ah(ξ) represents indeed the area of the bounded planar region delimited
by the segments [h−1(ξ), ξ] × {ξ}, {ξ} × [ξ, h(ξ)] and the graph of h (when h(ξ) ≤ ξ, one
has to switch the endpoints of the segments, and the same interpretation is valid). Being a
two-dimensional area, it should be clear that when considering the map h̃ = aha−1, obtained
by conjugating h by an affine map a(ξ) = λx+ b, one has the following relation:

(2.2) λ2Ah(ξ) = Ah̃(a(ξ)) for every ξ ∈ R.
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Lemma 2.20 ([35]). With notation as above, let ϕ : G→ Homeo0(R) be a µ-harmonic action.
Then the expected area function Aϕ : R→ R defined by

Aϕ(ξ) =
∑
g∈S

Aϕ(g)(ξ)µ(g),

is constant and positive.

Definition 2.21. With notation as above, we introduce the Deroin space Derµ(G) of normal-
ized µ-harmonic actions as the subset of µ-harmonic actions ϕ ∈ Hom(G,Homeo0(R)) such
that Aϕ = 1, endowed with the induced compact-open topology.

Note that as the group G is finitely generated by the subset S, the compact-open topology of
Hom(G,Homeo0(R)) is simply given by the product topology of Homeo0(R)S , where Homeo0(R)
is considered with the topology of uniform convergence on compact subsets.

Theorem 2.22 ([35,36]). With notation as above, the following properties hold.

(1) The Deroin space Derµ(G) is compact.
(2) Every action ϕ : G→ Homeo0(G) without fixed points is positively semi-conjugate to

a normalized µ-harmonic action ψ ∈ Derµ(G), which is unique up to conjugacy by a
translation.

(3) Conjugacy by translations defines a topological flow Φ : R×Derµ(G)→ Derµ(G), called
the translation flow. Explicitly, this is given by

Φt(ϕ)(g) = Ttϕ(g)T−t,

where Tt : ξ → ξ + t denotes the translation by t ∈ R.

Sketch of proof. After the identity (2.2) and Lemma 2.20, if ϕ is a normalized µ-harmonic
action, then also Φt(ϕ) is normalized for every t ∈ R. So the translation flow is well-defined.

After Corollary 2.12 and Proposition 2.19, we know that every action ϕ : G→ Homeo0(R)
without fixed points, is semi-conjugate to a µ-harmonic action, which is unique up to affine
rescaling. Moreover, the identity (2.2) and Lemma 2.20 give that after an affine rescaling, we
can assume that the µ-harmonic action is normalized. This gives (2).

Details for the fact that Derµ(G) is compact can be found in [33, Proof of Theorem 5.4]. �

Although this will not be used, note that the group G acts on the Deroin space Derµ(G) by
the formula g.ϕ = Φϕ(g)(0)(ϕ) (see [36, (4.5)]). In other words, the action on the parameterized
Φ-orbit of ϕ is basically the action ϕ.

Let us point out the following consequences of Theorem 2.22.

Corollary 2.23. With notation as above, let ϕ1 and ϕ2 be two normalized µ-harmonic actions
in Derµ(G), which are positively conjugate by a homeomorphism h : R→ R that fixes 0. Then
ϕ1 = ϕ2.

Corollary 2.24. With notation as above, let ϕ1 and ϕ2 be two normalized µ-harmonic actions
in Derµ(G). Then ϕ1 and ϕ2 are positively conjugate if and only if they belong to the same
Φ-orbit.

2.3. Preorders and group actions.
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2.3.1. Preordered sets. In this work, by a preorder on a set X we mean a transitive binary
relation ≤ which is total, in the sense that for every x, y ∈ X we have x ≤ y or y ≤ x (possibly
both relations can hold).

We write x � y whenever x ≤ y but it does not hold that y ≤ x. On the other hand, when
x ≤ y and y ≤ x we say that x and y are equivalent and denote by [x]≤ the equivalence class
of x (we will simply write [x] when there is no risk of confusion).

Remark 2.25. A preorder ≤ on X induces a total order on the set of equivalence classes
{[x]≤ : x ∈ X}, by declaring [x] < [y] whenever x � y.

Definition 2.26. We say that a map between preordered sets f : (X1,≤1) → (X2,≤2) is
(pre)order-preserving if x ≤1 y implies f(x) ≤2 f(y).

On the other hand, given a map f : X1 → (X2,≤) we define the pull-back of ≤ by f as the
preorder f∗(≤) on X1, denoted by � here, so that x1 � x2 if and only if f(x1) ≤ f(x2).

Definition 2.27. Let (X,≤) be a preordered set. An automorphism of (X,≤) is an order-
preserving bijection f : (X,≤)→ (X,≤), whose inverse is also order-preserving. We denote by
Aut(X,≤) the group of all automorphisms of (X,≤).

An order-preserving action of a group G on a preordered set (X,≤) is a homomorphism
ψ : G→ Aut(X,≤).

Remark 2.28. Let G be a group with actions ψ1 : G → Sym(X1) and ψ2 : G → Aut(X2,≤).
Let f : X1 → (X2,≤) be an equivariant map. Then the preorder f∗(≤) is preserved by ψ1(G).

Definition 2.29. Let (X,≤) be a preordered set and let A ⊂ X be a subset. We say that A
is ≤-convex if whenever x ≤ y ≤ z and x, z ∈ A it holds that y ∈ A.

Remark 2.30. It is a direct consequence of the definitions that when f : (X1,≤1)→ (X2,≤2)
is order-preserving and A ⊂ (X2,≤2) is ≤2-convex, then the preimage f−1(A) is ≤1-convex.
This fact will be used several times without direct reference.

Definition 2.31. Given a partition P of X, denote by P(x) the atom of P containing the
point x ∈ X. We say that a partition P of a preordered set (X,≤) is ≤-convex is every atom
of P is a ≤-convex subset of (X,≤). Compare this with Remark 2.25.

Remark 2.32. When P is a ≤-convex partition of a preordered set (X,≤), there exists a total
order <P on P defined by the condition that P(x) <P P(y) if and only if P(x) 6= P(y) and
x � y (it is immediate to verify that this does not depend on the choice of points x and y).

2.3.2. Preorders on groups. A preorder on a group G is left-invariant if h ≤ k implies gh ≤ gk
for all g, h, k ∈ G. In other words, the left-multiplication gives an action by automorphisms
G → Aut(G,≤). Recall also that a preorder on G is bi-invariant if it preserved by left and
right multiplications.

By invariance and Remark 2.25, given a left-invariant preorder ≤ on G, the equivalence
class [1]≤ is a subgroup of G and that ≤ is a left-invariant order on G if and only if [1]≤ = {1}.
The subgroup [1]≤ is called the residue. We say that a left-invariant preorder ≤ on G is trivial
whenever [1]≤ = G and non-trivial otherwise. We denote by LPO(G) the set of all non-trivial
left-invariant preorders on G.

From now on, by a preorder on a group, we always mean a non-trivial left-invariant preorder.
We endow LPO(G) with the product topology induced by the realization of preorders as
subsets of {≤,}G×G. It turns out that with this topology, LPO(G) is a metrizable and totally
disconnected topological space, which is moreover compact whenever G is finitely generated
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(see Antolín and the third author [5], where preorders are called relative orders). For a modern
treatment of left-orders and left-preorders see [36] and [4, 30].

Definition 2.33. Let G be a group and let ≤∈ LPO(G) be a preorder. The positive cone of
≤ is the subset P≤ = {g ∈ G : g  1}. Similarly, the subset N≤ = {g ∈ G : g � 1} defines the
negative cone of ≤.

Remark 2.34. A preorder ≤∈ LPO(G) induces a partition G = P≤ t [1]≤ tN≤. Also note that
P≤ and N≤ are semigroups and satisfy P−1

≤ = N≤ where P−1
≤ := {g−1 : g ∈ P≤}. Reciprocally,

given a partition G = P tH tN such that
(1) P is a semigroup,
(2) N = P−1,
(3) H is a proper (possibly trivial) subgroup and
(4) HPH ⊆ P ,

there exists a preorder ≤∈ LPO(G) such that P = P≤, H = [1]≤ and N = N≤. See [30] for
details.

When H is a ≤-convex subgroup, the left coset space G/H = {gH : g ∈ G} defines a
≤-convex partition of G. The total order <G/H induced on G/H by ≤ (see Remark 2.32) is
preserved by left-multiplication of G on G/H. Given a ≤-convex subgroup H ⊆ G, we define
the quotient preorder of ≤ under H as the preorder ≤H∈ LPO(G) given by the pull-back
≤H := p∗(<G/H), where p : G→ G/H is the coset projection. Equivalently we can define ≤H
by setting P≤H = P≤ rH.

Remark 2.35. After Remark 2.28, the identity map id : (G,≤)→ (G,≤H) is order-preserving
and equivariant with respect to the actions of G by left-multiplication.

2.3.3. Dynamical realizations of actions on totally ordered sets. One general principle that we
often use is that for building actions of a group G on the line by homeomorphisms, one may
start by finding a totally ordered space (X,<) and an action by order-preserving bijections
ψ : G→ Aut(X,<). Then if the order topology on X is nice enough, for instance when X is
countable, then the action ψ can be “completed” to an action ϕ : G → Homeo0(R) so that,
there exists an order-preserving map i : X → R satisfying that ϕ(g)(i(x)) = i(ψ(g)(x)) for all
g ∈ G. Under some mild extra conditions, we call such ϕ a dynamical realization of ψ. See
Definition 2.39.

Remark 2.36. It is a classical fact that a countable group is left-orderable if and only if it
embeds into Homeo0(R) (a fact that we trace back to Conrad [27] in the abelian setting, see
[36, 44] for a proof of the general case). In fact, one side of the proof consist in building a
dynamical realization of the left-regular representation of a countable left-ordered group on
itself. Analogously, one can show that a countable group admits a left-invariant preorder if and
only if it admits a (possibly not faithful) non-trivial action by order-preserving homeomorphisms
of the real line [5].

We now proceed to formally define what we mean by dynamical realization.

Definition 2.37. Let (X,<) be a countable totally ordered set. We say that an injective
order-preserving map i : X → R is a good embedding if its image is unbounded in both
directions and every connected component I of the complement of i(X) satisfies ∂I ⊂ i(X).

Remark 2.38. Following the classical construction of the dynamical realization of a countable
left-ordered group (see [36,44]), it follows that any countable and totally ordered set (X,<)
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has a good embedding and that, given two different good embeddings i1, i2 : X → R, there
exists h ∈ Homeo0(R) so that i2 = h ◦ i1.

Definition 2.39. Assume that ψ : G → Aut(X,<) is a group action. An action ϕ : G →
Homeo0(R) is said to be a dynamical realization of ψ if there exists a good embedding ι : X → R
such that the following hold:

(1) i is equivariant for ϕ and ψ;
(2) for every connected component I of the complement of i(X) the (setwise) stabilizer

StabϕG(I) of I in G acts trivially on I.

Lemma 2.40. Consider an action ψ : G → Aut(X,<) where (X,<) is a countable totally
ordered set. Then a dynamical realization of ψ exists and is unique up to positive conjugacy.

Sketch of proof. Consider a good embedding i : X → R. Then, by transporting the action
ψ through i on i(X) and extending it by continuity to the closure we obtain an action
ϕ0 : G→ Homeo0(i(X)). For every g ∈ G denote by ϕ(g) the extension of ϕ0(g) which is affine
on every connected component I of i(X). It is direct to check that g 7→ ϕ(g) is a dynamical
realization of ψ.

Now, consider two actions ϕ1, ϕ2 : G→ Homeo0(R) which are dynamical realizations of ψ
with associated good embeddings i1, i2 : X → R respectively. Note that by Remark 2.38 there
exists h ∈ Homeo0(R) with i2 = h ◦ i1 and after conjugating ϕ1 by h we can suppose that
i1 = i1 =: i. By equivariance ϕ1 and ϕ2 must coincide on i(X). Let Ω be the set of connected
components of Rr i(X) and note that the G-actions on Ω induced by ϕ1 and ϕ2 coincide, so
that the set of orbits Ω/G does not depend on the action. For J ∈ Ω we denote by α(J) ∈ Ω/G
its G-orbit. Pick a system of representatives {Iα}α∈Ω/G of orbits. For J ∈ Ω choose gJ ∈ G
such that gJ(J) = Iα(J), and for i ∈ {1, 2} set fi,J = ϕi(gJ) �J . Note that each fi,J is a
homeomorphism from J to Iα(J) which does not depend on the choice of gJ by the assumption
(2) in the definition of dynamical realization. Thus f−1

2,Jf1,J is a self-homeomorphism of J .
Define a map q : R → R which is the identity on i(X) and satisfies q �J= f−1

2,Jf1,J for every
J ∈ Ω. Then one readily checks that q conjugates ϕ2 to ϕ1. �

We proceed to give a sufficient condition for minimality of dynamical realizations of actions
on totally ordered sets. For this, we need the following definition.

Definition 2.41. Let (X,<) be a totally ordered set. We say that a subgroup H ⊆ Aut(X,<)
is of homothetic type if the following conditions are satisfied.

(1) There exists x0 ∈ Fix(H).
(2) For every x ∈ X r {x0}, there exists a sequence of elements (hn) ⊂ H such that

hn(x)→ +∞ if x > x0, and hn(x)→ −∞ if x < x0.
When the cyclic subgroup 〈g〉 is of homothetic type we say that g is a homothety.

Lemma 2.42 (Minimality criterion). Let (X,<) be a countable totally ordered set and consider
an action ψ : G→ Aut(X,<). Assume that for every four points x1, x2, y1, y2 of X with

x1 < y1 < y2 < x2,

there exists g ∈ G such that
g.y1 < x1 < x2 < g.y2.

Then the dynamical realization of ψ is minimal.
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Proof. Let ϕ : G → Homeo0(R) be a dynamical realization of ψ with its associated good
embedding i : X → R (Lemma 2.40). We first claim that i has dense image. Suppose by
contradiction that it is not the case and take a connected component (η1, η2) of the complement
of i(X). Since i is a good embedding we have that {η1, η2} ⊂ i(X). Choose two points ξ1
and ξ2 in i(X) such that (η1, η2) ( (ξ1, ξ2); by our assumption, we can find an element g ∈ G
such that (η1, η2) ) g.(ξ1, ξ2), contradicting the ϕ(g)-invariance of i(X). This shows that i
has dense image.

Suppose again by contradiction that there exists a proper closed ϕ(G)-invariant subset
Λ ⊂ R. Take a connected component (η1, η2) of Rr Λ. By density of i(R), we can find four
points ξ1, ξ2, ζ1, ζ2 in i(X) such that

ζ1 < η1 < ξ1 < ξ2 < η2 < ζ2.

After our assumption, we can find an element g ∈ G such that (η1, η2) ) g.(ζ1, ζ2). This
contradicts the ϕ(g)-invariance of Λ showing that ϕ is minimal, as desired. �

The condition in Lemma 2.42 is met in the following situation.
Proposition 2.43. Let (X,<) be a countable totally ordered set and consider an action
ψ : G → Aut(X,<). If for every x ∈ X there exists a subgroup H ⊆ G such that ψ(H) is a
subgroup of homothetic type fixing x, the dynamical realization of ψ is minimal.

Proof. Consider four points x1, x2, y1, y2 of X with x1 < y1 < y2 < x2. By assumption, we
can find an element h1 ∈ Hy1 such that y1 < h1.y2 < y2. Consider the point x∗ = h1.y2, so
that there exists h∗ ∈ Hx∗ such that h∗.y1 < x1 < x2 < h∗.y2. Thus Lemma 2.42 applies. �

2.4. Bieri–Strebel groups. To illustrate our results we will often consider examples of locally
moving groups arising as groups of piecewise linear (PL) homeomorphisms of the line. Let us
briefly fix the terminology and recall a large family of such groups, following Bieri and Strebel
[8].

We say that a homeomorphism f : X → X of an interval X ⊂ R (bounded or unbounded) is
piecewise linear (PL, for short) if there exists a discrete subset Σ ⊂ X such that in restriction
to X r Σ, the map f is locally affine, that is, of the form x 7→ λx+ a, with λ > 0 and a ∈ R.
We denote by BP(f) the minimal subset Σ satisfying such condition, and points of BP(f) will
be the breakpoints of f . When BP(f) is finite, we say that f is finitary PL. Note that with
this definition, a PL homeomorphism always preserves the orientation.
Definition 2.44. Given a non-trivial multiplicative subgroup Λ ⊆ R∗+, and a non-trivial
Z[Λ]-submodule A ⊂ R, the Bieri–Strebel group G(X;A,Λ) is the group of finitary PL
homeomorphisms f : X → X with the following properties:

(1) breakpoints of f are in A,
(2) in restriction to X r BP(f), the map f is locally of the form λx+ a, with λ ∈ Λ and

a ∈ A.

For example, Thompson’s F is G([0, 1];Z[1/2], 〈2〉∗). Other interesting examples are provided
by the so-called Thompson–Brown–Stein groups.
Definition 2.45. Let 1 < n1 < · · · < nk be natural numbers such that the multiplicative
subgroup Λ = 〈ni〉 ⊆ R∗+ is an abelian group of rank k. Denote by A the ring Z [1/m], where
m is the least common multiple of the ni. The group

Fn1,...,nk := G([0, 1];A,Λ)
is the corresponding Thompson–Brown–Stein group.



LOCALLY MOVING GROUPS ACTING ON THE LINE AND R-FOCAL ACTIONS 27

The group F2 is simply Thompson’s group F . For every n ≥ 2, the group Fn is isomorphic
to a subgroup of F , and these groups were first considered by Brown in [19], inspired by
the so-called Higman–Thompson groups. Later Stein [103] started the investigation of the
more general class of groups Fn1,...,nk . She proved that every Thompson–Brown–Stein group is
finitely generated and even finitely presented. Moreover, given any m-adic interval I ⊂ [0, 1]
(that is, an interval with endpoints in Z[1/m]), the subgroup (Fn1,...,nk)I is isomorphic to
Fn1,...,nk .

We refer to the classical monograph by Bieri and Strebel [8] for an extensive investigation
of the groups G(X;A,Λ).

Remark 2.46. It would be interesting to see how the results of this text apply to other groups
of piecewise projective homeomorphisms, such as Monod’s groups H(A) [86] (we will not
pursue this task).

3. Deroin spaces and preorders

Recall that we denote by Homirr(G,Homeo0(R)) the space of representations of G without
fixed points. The following notion is classical in dynamical systems.

Definition 3.1. An action ϕ : G → Homeo0(R) without fixed points is locally rigid if
there exists a neighborhood U of ϕ in Homirr(G,Homeo0(R)) consisting of representations all
positively semi-conjugate to ϕ.

In other terms, every sufficiently small perturbation of the action ϕ gives a positively
semi-conjugate action. The main goal of this section is to characterize local rigidity in terms
of the topology of the orbits along the translation flow in the Deroin space (see §2.2 for a
definition of this space). This will be a consequence of the following result.

Theorem 3.2. Let G be a finitely generated group, and consider a symmetric probability
measure µ whose support is finite and generates G. There exists a continuous retraction

r : Homirr(G,Homeo0(R))→ Derµ(G)
which preserves positive semi-conjugacy classes.

Definition 3.3. The map r : Homirr(G,Homeo0(R))→ Derµ(G) from Theorem 3.2 is called
the harmonic retraction of the representation space Homirr(G,Homeo0(R)).

Corollary 3.4 (Local rigidity criterion). Let G be a finitely generated group, and con-
sider a symmetric probability measure µ whose support is finite and generates G. For
ϕ ∈ Homirr(G,Homeo0(R)), let ψ ∈ Derµ(G) be a normalized µ-harmonic action which is
positively semi-conjugate to ϕ. If the orbit along the translation flow of ψ is open in Derµ(G),
then ϕ is locally rigid. The converse hold provided ϕ is minimal.

Proof. Let I = {Φt(ψ) : t ∈ R} be the orbit of ψ in Derµ(G) and let r : Homirr(G,Homeo0(R))→
Derµ(G) be the harmonic retraction (Theorem 3.2). Then r(ϕ) is an element of Derµ(G) which
is positively semi-conjugate to ψ and thus belongs to I, i.e. ϕ ∈ r−1(I). If I is open, then
r−1(I) is an open neighborhood of ϕ consisting only of actions positively semi-conjugate to ψ,
so the claim follows. Conversely, assume that ϕ is minimal. Since local rigidity is preserved
under conjugacy we can assume that ϕ = ψ. Thus if I is not open, using the translation flow
we find that ϕ can be approximated by µ-harmonic actions in different Φ-orbits. Since actions
in Derµ(G) belonging to different Φ-orbits are not positively semi-conjugate (Corollary 2.24),
this implies that ϕ is not locally rigid. �
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Remark 3.5. The requirement that ϕ be minimal in the second part of Corollary 3.4 is essential.
To see this consider the action ϕ : F2 × Z→ Homeo0(R) obtained as the lift of the ping-pong
action ϕ0 : F2 → PSL(2,R) ⊂ Homeo0(S1), given by the action of the fundamental group of a
hyperbolic one-holed torus on the boundary at infinity of the hyperbolic plane; to make this
more concrete, one can consider the subgroup of PSL(2,R) generated by the two homographies[
5 3
3 2

]
and

[
1 1
1 2

]
. The action ϕ0 is then non-minimal and locally rigid so the same holds

for ϕ. However, the canonical model of ϕ0 corresponds to the action of the fundamental
group of a hyperbolic one-punctured torus on the boundary at infinity of the hyperbolic plane,
and so this canonical model has a parabolic element (the commutator of the generators). In
particular, this minimal action and its corresponding lift to the line are not locally rigid. Thus
the representative of ϕ in Derµ(F2 × Z) has non-isolated orbit along the translation flow.

In order to prove Theorem 3.2, we obtain an order-theoretic description of the Deroin
space. Note that not every group action is the dynamical realization of some order, so we are
forced to consider the much more flexible notion of preorder. However, different preorders may
correspond to the same conjugacy class of a minimal action, and we have to translate this
into an equivalence relation on preorders. The appropriate equivalence relation on preorders is
introduced in §3.1. In §3.2, we make explicit the relations between properties of preorders and
their dynamical realizations. In §3.3 we investigate the topology of the corresponding quotient
space. Finally, in §3.4 we identify such quotient space with the Deroin space and provide the
proof of Theorem 3.2. As a by-product of this, we will get that the topology of Derµ(G) does
not depend on the choice of the probability measure µ.

3.1. Equivalence of preorders. We start with the following definition which gives an
order-theoretic analogue of continuous positive semi-conjugacies between representations in
Homeo0(R). Part of our discussion is close to the exposition of Decaup and Rond [30].
Definition 3.6. Let G be a group and let ≤,�∈ LPO(G) be two preorders. We say that ≤
dominates � if the identity map id : (G,�)→ (G,≤) is order-preserving.
Remark 3.7. The direction in the definition of domination could appear counterintuitive, but in
fact it is justified when thinking in terms of preorders (it is even clearer in terms of dynamical
realization). Indeed, take an element g ∈ G, and suppose that we want to know whether g ŋ 1.
Then we first check whether g  1 (or g � 1), and only in the case g ∈ [1]≤, we take the
preorder � into consideration.

Note that when ≤ dominates �, the subgroup H = [1]≤ is �-convex, thus the quotient
preorder �H is well-defined. The following lemma characterizes domination in terms of positive
cones.
Lemma 3.8. Let G be a group and let ≤,�∈ LPO(G) be two preoders. Then, the following
are equivalent.

(1) ≤ dominates �.
(2) P≤ ⊆ P�.
(3) The subgroup H = [1]≤ is �-convex, and P≤ = P� rH (so that ≤ coincides with the

quotient preorder �H).

Proof. We prove that (1) implies (3). As id : (G,�)→ (G,≤) is order-preserving, the subgroup
H = [1]≤, which coincides with its preimage, is �-convex. Moreover, we have the following
inclusions:

P� ⊆ P≤ t [1]≤, [1]� ⊆ [1]≤, N� ⊆ [1]≤ tN≤.
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As G = P� t [1]� t N�, we deduce P� = P≤ r [1]≤. Clearly (3) implies (2). Finally, by
left-invariance, we have g � h if and only if h−1g ∈ Gr P�, and clearly the same holds for
the preorder ≤. This gives that (1) and (2) are equivalent. �

Let G be a group. For a given a preorder ≤∈ LPO(G), the collection of proper ≤-convex
subgroups is totally ordered by inclusion. The subgroup [1]≤ is always the least such subgroup,
however a maximal proper ≤-convex subgroup may not exist. This issue is the order-theoretic
analogue of the problem of existence of a minimal invariant set (Remark 2.9). To simplify the
discussion, we will systematically assume finite generation in the rest of the section, in which
case there exists a maximal proper ≤-convex subset, that we will denote by H≤. This leads to
the notion of minimal model of a preorder which is an order-theoretic analogue of canonical
models for actions on the line.

Definition 3.9. Let G be a finitely generated group. The minimal model of a preorder
≤∈ LPO(G) is the quotient preorder ≤H , where H = H≤ is the maximal proper ≤-convex
subgroup. The minimal model will be denoted by ≤∗. When the preorder ≤ coincides with
≤∗, we say that ≤∈ LPO(G) is a minimal model.

Remark 3.10. Minimal preorders are exactly those whose structure of convex subgroups is
the simplest possible. Indeed, after Lemma 3.8, the minimal model dominates the original
preorder. Therefore, H≤ is the unique proper ≤∗-subgroup of (G,≤∗), and thus H≤ = [1]≤∗ .
Reversely, if [1]≤ = H≤ is the unique proper ≤-convex subgroup, then ≤ is a minimal model.

It should be not surprising that the minimal model is unique, in the following sense.

Lemma 3.11. Let G be a finitely generated group and consider preorders ≤,�∈ LPO(G) such
that ≤ is a minimal model and dominates �. Then, ≤ is the minimal model of �.

Proof. As ≤ dominates �, the subgroup H = [1]≤ is �-convex, so H ⊆ H�. This gives
P≤ ⊇ P�∗ , so by Lemma 3.8, the map

id : (G,≤)→ (G,�∗)

is order-preserving. Using Remark 3.10, as H� = [1]�∗ , we deduce that H� is ≤-convex, and
thus that H� = H. �

We next introduce the following equivalence relation on preorders.

Definition 3.12. Let G be a finitely generated group. We say two preorders are equivalent if
they have the same minimal model. We denote by [≤] the equivalence class of ≤∈ LPO(G)
and we write [LPO](G) = {[≤] :≤∈ LPO(G)} for the corresponding quotient.

It is immediate to verify that this is indeed an equivalence relation. We have the following
result.

Proposition 3.13. Let G be a finitely generated group and consider preorders ≤1,≤2∈ LPO(G).
Then, there exists a preorder ≤ that dominates ≤1 and ≤2, if and only if the equivalence classes
[≤1] and [≤2] are the same.

Proof. We have that the minimal order ≤∗ dominates ≤ and thus both ≤1 and ≤2. From
Lemma 3.11, we conclude that ≤∗ is the minimal model of both ≤1 and ≤2. The converse
statement follows directly from Remark 3.10. �
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3.2. Relations between preorders and actions on the real line. We can now make
explicit the relation between minimal models and their dynamical counterpart. For this, note
that if G is a countable group and ≤∈ LPO(G) is a preorder, we can consider a dynamical
realization ϕ≤ for the action of G on the totally ordered set (G/H,<G/H), which exists by
Lemma 2.40. Conversely, given an action ϕ : G→ Homeo0(R) without fixed points, we denote
by ≤ϕ∈ LPO(G) the preorder induced by the ϕ(G)-orbit of 0.

Proposition 3.14. Let G be a finitely generated group and let ϕ : G → Homeo0(R) be a
canonical model. Then the preorder ≤ϕ is a minimal model.

Proof. Suppose by way of contradiction that there exists a proper ≤ϕ-convex subgroup
H 6= [1]≤ϕ . Then, for each gH ∈ G/H, denote by IgH ⊂ R the interior of the convex hull of
ϕ(gH)(0). Since H is ≤ϕ-convex, we get that Rr

⋃
g∈G IgH is a proper closed ϕ(G)-invariant

subset. On the other hand, since H strictly contains [1]≤ϕ the ϕ(G)-stabilizer of each Ig acts
non-trivially on Ig, and this implies that the action ϕ is not cyclic, a contradiction. �

Proposition 3.15. Let G be a finitely generated group and consider a preorder ≤∈ LPO(G).
Then the dynamical realization ϕ≤ is a canonical model if and only if ≤ is a minimal model.

Moreover, the dynamical realization ϕ≤∗ is a canonical model for ϕ≤.

The rest of the subsection is devoted to the proof of Proposition 3.15. We will need a
preliminary result.

Lemma 3.16. Let G be a group. Consider preorders ≤1,≤2∈ LPO(G) so that ≤2 dominates
≤1. Then the dynamical realizations ϕ≤1 and ϕ≤2 are positively semi-conjugate.

Proof. For i ∈ {1, 2} write Hi := [1]≤i and ιi : G/Hi → R for the corresponding good
embeddings. As id : (G,≤1)→ (G,≤2) is order-preserving, we have H1 ⊆ H2 and the quotient
map

i0 : (G/H1, <1)→ (G/H2, <2)
is order-preserving and equivariant (here <i denotes the total ordered induced by ≤i for
i ∈ {1, 2}). Write X = ι1(G/H1) and define j0 : X → R as

j0(ι1(gH1)) = ι2(i0(gH1)) = ι2(gH2).
It follows directly from the definitions thatX if ϕ≤1(G)-invariant and that j0 is order-preserving
and equivariant. We conclude using Lemma 2.7. �

Let us immediately point out the following conclusion.

Corollary 3.17. For finitely generated groups, equivalent preorders have positively semi-
conjugate dynamical realizations.

Proof. After Lemma 3.16, the dynamical realizations of equivalent preorders are positively
semi-conjugate to the dynamical realization of their minimal model. As positive semi-conjugacy
is an equivalence relation, the conclusion follows. �

Proof of Proposition 3.15. Suppose first that ϕ≤ is not a canonical model. Then ϕ≤ is neither
minimal nor cyclic and so ϕ≤ has an exceptional minimal invariant set Λ ⊂ R or ϕ≤ has a
closed discrete orbit but its image is not cyclic. We write X = ι(G/[1]≤) for the image of the
good embedding ι : G/[1]≤ → R associated with ϕ≤, and remark that X consists of a single
ϕ≤(G)-orbit.

Case I. ϕ≤ has an exceptional minimal invariant set.
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We first show the following.

Claim. X is contained in Rr Λ.

Proof of claim. We assume by contradiction that X ∩ Λ 6= ∅. As X consists of a single orbit,
by invariance of Λ we get that X ⊂ Λ and thus Λ = X by minimality of Λ. Consider a
connected component I = (ξ, η) of RrΛ and note that, by Definition 2.37 of good embedding,
we have {ξ, η} ⊆ X and thus the points ξ and η are in the same orbit. This shows that Λ is
discrete, which is a contradiction. �

Consider now the connected component U of R r Λ that contains ξ0 = ι([1]≤) and write
H = Stabϕ≤G (U). Note that H = ι−1(U) is a ≤-convex subgroup. We will show that H strictly
contains [1]≤, which by Remark 3.10, implies that ≤ is not a minimal model. Equivalently,
we need to show that U ∩X strictly contains ξ0. Assume that ξ0 is an isolated point of X,
otherwise there is nothing to prove. Let λ ∈ Λ be the rightmost point of U . Note that X is
ϕ≤(G)-invariant, so we must have X ⊇ Λ. Thus λ ∈ X. If X ∩ (ξ0, λ) = ∅, then (ξ0, λ) is a
connected component of R rX. As ι is a good embedding, this gives λ ∈ X, contradicting
the claim.

Case II. ϕ≤ has a closed discrete orbit but its image is not cyclic.

Take a point ξ ∈ R with closed discrete orbit and write H = Stabϕ≤G (ξ) and F = Fix(H).
Note that H is the kernel of the morphism G→ Z, induced from the orbit of ξ. Since ϕ≤ is
assumed to be non-cyclic we have that F is a proper closed subset, and it is ϕ≤(G)-invariant, for
H is normal. If X∩F 6= ∅, then the fact that X is a single ϕ≤(G)-orbit gives X ⊆ F = Fix(H),
and as ϕ≤ is a dynamical realization of ≤, this implies H = ϕ≤([1]≤), so the image ϕ≤(G) is
cyclic. A contradiction. Thus X ⊆ Rr F . More precisely, we have the following.

Claim. F = Fix(H) is contained in X rX.

Proof of claim. Assume for contradiction that there is a point of F in the complement of
X, and let I be corresponding connected component of I. As the action ϕ≤ is a dynamical
realization (Definition 2.39) and F = Fix(H), this gives that the closure I is fixed by H, so
that I ⊆ F . However, ι is a good embedding, so ∂I ∈ X, which contradicts the fact that
X ∩ F = ∅. �

We can now argue analogously as in Case I to find a proper ≤-convex subgroup strictly
containing [1]≤.

For the converse, assume that ≤ is not a minimal model and take a proper ≤-convex
subgroup H 6= [1]≤. Denote by U the interior of the convex hull of ι(H) ⊂ R and notice that
the orbit ϕ≤(G)(U) is a proper open ϕ≤(G)-invariant subset. Also notice that the stabilizer
Stabϕ≤G (U) acts non-trivially on U which implies that ϕ≤ is not a cyclic action. The last two
facts together imply that ϕ≤ is not a canonical model.

It remains to prove that ϕ≤∗ is a canonical model for ϕ≤. After Remark 3.10 and Lemma
3.16, the actions ϕ≤∗ and ϕ≤ are positively semi-conjugate. On the other hand, by the first
part of this proposition, the action ϕ≤∗ is a canonical model. �

3.3. Topology of the space of equivalence classes of preorders. Recall that we consider
LPO(G) as a subspace of {≤,}G×G endowed with the product topology, and that this makes
LPO(G) a metrizable and totally disconnected topological space, which is compact when G is
finitely generated.
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Lemma 3.18. Let G be a finitely generated group. The subset
E = {(≤1,≤2) ∈ LPO(G)× LPO(G) : [≤1] = [≤2]}

is closed in LPO(G)× LPO(G). Therefore, [LPO](G) considered with the quotient topology is a
Hausdorff topological space.

Proof. Consider a convergent sequence (�n,�′n)→ (�∞,�′∞) so that (�n,�′n) ∈ E for every
n ∈ N. We want to show that [�∞] = [�′∞] and this amounts to show, after Proposition 3.13,
that there exists a preorder that dominates both �∞ and �′∞.

For every n ∈ N, using Proposition 3.13 we find a preorder ≤n that dominates both �n
and �′n. As LPO(G) is compact, upon passing to a subsequence, we can suppose that ≤n
has a limit ≤∞. We shall prove that ≤∞ dominates both �∞ and �′∞, and by Lemma 3.8
this amounts to show that P≤∞ ⊆ (P�∞ ∩ P�′∞). For this, note that by definition of product
topology, if g ∈ P≤∞ then g ∈ P≤n for n large enough, which by Lemma 3.8, implies that
g ∈ P�n ∩ P�′n for n large enough. This implies that g ∈ P�∞ ∩ P�′∞ as desired. �

Lemma 3.19. Let G be a finitely generated group. Consider preorders (≤n)n∈N and ≤ in
LPO(G). Assume that for every finite subset F ⊆ P≤ there exists k0 ∈ N such that F ⊆ P≤k
for every k ≥ k0. Then [≤k]→ [≤] in [LPO](G).

In particular, if ϕn, ϕ : G → Homeo0(R) are representations such that ϕn → ϕ in the
compact open topology we get [≤ϕn ]→ [≤ϕ] in [LPO](G).

Proof. By hypothesis, we have that the limit of every convergent subsequence ≤kn→≤∞
satisfies P≤ ⊆ P≤∞ . This implies that ≤ dominates ≤∞ and therefore, by Proposition 3.13,
we get [≤] = [≤∞]. Since every convergent subsequence of (≤n)n∈N converges to a preorder
equivalent to ≤, we conclude that [<n]→ [<] in [LPO](G) as desired. �

3.4. Retraction to the Deroin space. As in §2.2, we fix a finitely generated group G, a
symmetric probability measure µ on G whose support is finite, and generates G. We will show
that [LPO](G) with the quotient topology is homeomorphic to Derµ(G). In particular, this will
show that the topology of the Deroin space does not depend on the choice of the probability
measure µ.

Theorem 3.20. With notation as above, the Deroin space Derµ(G) is homeomorphic to
[LPO](G). In particular, the homeomorphism type of Derµ(G) does not depend on µ.

Proof. Consider the map
I : Derµ(G)→ [LPO](G)

ϕ 7→ [≤ϕ] .

We will show that I is a homeomorphism. By Proposition 3.15 we know that if �∈ LPO(G) is
a minimal model, then ϕ� is a canonical model. On the other hand, by Proposition 2.19, we
can choose ϕ� to be µ-harmonic. We introduce the map
(3.1) J : [LPO](G)→ Derµ(G),
where J assigns to [�] the µ-harmonic dynamical realization of �∗, whose associated good
embedding satisfies ι�∗([1]�∗) = 0. We will show that J is the inverse of I. The equality
I ◦J = id is given by the fact that ≤ϕ≤ coincides with ≤ for every preorder ≤∈ LPO(G), which
is a direct consequence of the definitions.

To verify that J ◦ I = id, fix ϕ ∈ Derµ(G). Since ϕ is a canonical model (Proposition
2.19), Proposition 3.14 implies that ≤ϕ is a minimal model. Therefore, J([≤ϕ]) is a dynamical
realization of ≤ϕ. Set X = ϕ(G)(0) and notice that there exists an order-preserving map
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j0 : X → R which is equivariant for the actions ϕ and J([≤ϕ]). Since both actions are canonical
models, it follows from Lemma 2.7 and Corollary 2.12 that j0 can be extended to a positive
conjugacy. Moreover, since j0(0) = 0, this conjugacy fixes 0 and therefore, by Corollary 2.23,
we conclude that ϕ = J([≤ϕ]) as desired.

The continuity of I follows directly from Lemma 3.19. Finally, since Derµ(G) is compact
(Theorem 2.22) and [LPO](G) is a Hausdorff topological space (Lemma 3.18), we conclude
that I is a homeomorphism. �

We can now prove the main result of this section.

Proof of Theorem 3.2. We consider the map
r : Homirr(G,Homeo0(R))→ Derµ(G)

ϕ 7→ J([≤ϕ]) ,

where J is the map introduced in (3.1) and ≤ϕ is the preorder induced by 0. It follows
directly from the definitions that r is the identity in restriction to Derµ(G). Also, by Lemma
3.19 and Theorem 3.20 we conclude that r is continuous. Finally, to check that r preserves
positive semi-conjugacy classes first note that ϕ is positively semi-conjugate to the dynamical
realization of ≤ϕ and that, by Corollary 3.17, the dynamical realizations of ≤ϕ and ≤∗ϕ are
also positively semi-conjugate. �

3.5. Application to the Borel reducibility of the semi-conjugacy relation. For a
given group G it is natural to try to determine how difficult it is to distinguish actions in
Homirr(G,Homeo0(R)) up to semi-conjugacy, and whether it is possible to classify them. To
conclude this section, we highlight that the Deroin space and of Theorem 3.2 shed light on
this question, and suggest a line of research for group actions on the line. An appropriate
framework to formalize the question is the theory of Borel reducibility of equivalence relations.
Most notions of isomorphisms can be naturally interpreted as equivalence relations on some
standard Borel space, so that this theory offers tools to study various classification problems
and compare the difficulty of one with respect to another. Let us recall some basic notions
from this setting following the exposition of Kechris [54] (to which we refer for more details).
Recall that a standard Borel space Z is a measurable space isomorphic to a complete separable
metric space endowed with its Borel σ-algebra. A subset of such a space is analytic if it is the
image of a Borel set under a Borel map from a standard Borel space. An analytic equivalence
relation on Z (henceforth just equivalence relation) is an equivalence relation R which is an
analytic subset R ⊂ Z × Z. This standing assumption is convenient to develop the theory,
and general enough to model most natural isomorphism problems. It includes in particular the
class of Borel equivalence relations (those which are Borel subsets of Z × Z), which is much
better behaved but too restricted for some purposes (see below). We write xRy if (x, y) ∈ R

For i ∈ {1, 2} let Ri be an equivalence relation on a standard Borel space Zi. We say that
R1 is reducible to R2, and write R1 ≤B R2, if there exists a Borel map q : Z1 → Z2 such that
xR1y occurs if and only if q(x)R2q(y). This means that distinguishing classes of R1 is “easier”
than for R1. If R1 ≤B R2 and R2 ≤B R1, we say that R1 and R2 are bireducible.

The simplest type of equivalence relations from the perspective of reducibility are the smooth
ones. An equivalence relation R on Z is said smooth if there exist a standard Borel space W
and a Borel map q : Z → W which is a complete invariant for the equivalence classes of R, in
the sense that xRy if and only if q(x) = q(y).

The next class of equivalence relations are the hyperfinite ones. An equivalence relation R
is called hyperfinite if it is a countable union R =

⋃
Rn of equivalence relations whose classes
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are finite, and essentially hyperfinite if it is bireducible to a hyperfinite one. An example of
hyperfinite equivalence relation which is not smooth, denoted E0, is the equivalence relation
on the set of one-sided binary sequence {0, 1}N, where (xn) and (yn) are equivalent if xn = yn
for large enough n. In fact, up to bireducibility the relation E0 is the unique essentially
hyperfinite equivalent relation which is not smooth, and moreover every Borel equivalence
relation R is either smooth or satisfies E0 ≤B R [47], so that E0 can be thought of as the
simplest non-smooth Borel equivalence relation.

The essentially hyperfinite equivalence relations form a strict subset of the essentially
countable ones (those that are bireducible to a relation whose classes are countable). These are
precisely those induced by orbits of actions of countable groups, and the poset of bireducibility
types of such relations is quite complicated (see [1]). Essentially countable relations are
themselves a strict subset of Borel equivalence relations, after which we find general (analytic)
equivalence relations.

The bireducibility type of the conjugacy relation of various classes of dynamical systems
and group actions has been extensively studied. For many classes of topological or measurable
dynamical systems, the conjugacy relations is known or conjectured to be quite complicated
from the perspective of bireducibility [39,40,62,102]. As an example, the conjugacy relation
of elements of Homeo0(R) is bireducible to the isomorphism relation of all countable (but not
necessarily locally finite) graphs, which is analytic but not Borel (see [48, Theorem 4.9]), and
the conjugacy of homeomorphisms of the plane is strictly more complicated by a result of
Hjorth [48, Theorem 4.17]. As a consequence, one may expect that the semi-conjugacy relation
on the space of irreducible action of a given group G should also be complicated and might not
even be Borel. In contrast, the existence of Deroin space and Theorem 3.2 imply the following.

Corollary 3.21. Let G be a finitely generated group. Then the semi-conjugacy relation on
the space Homirr(G,Homeo0(R)) is essentially hyperfinite (in particular, it is Borel).

Proof. Theorem 3.2 shows that this relation is bireducible to the orbit equivalence relation on
the Deroin space Derµ(G) induced by the translation flow Φ. On the other hand, the orbit
equivalence relation of any Borel flow on a standard Borel space is essentially hyperfinite
[54, Theorem 8.32]. �

After Corollary 3.21 and the previous discussion we may further distinguish two cases: either
the semi-conjugacy relation on Homirr(G,Homeo0(R)) is smooth, or it is not, in which case it
is bireducible to E0. As mentioned above, the first case corresponds to groups for which actions
up to semi-conjugacy can be completely classified by a Borel invariant, so that it is natural to
ask which groups have this property. This can be rephrased using the Deroin space as follows.

Corollary 3.22. Let G be a finitely generated group endowed with a symmetric finitely
supported probability measure µ. Then the semi-conjugacy relation on Homirr(G,Homeo0(R))
is smooth if and only if the translation flow Φ on the Deroin space Derµ(G) admits a Borel
cross section (that is a Borel subset which intersects every Φ-orbit in exactly one point).

Proof. Given a flow Φ on a Borel space Z, the orbit equivalence relation induced by Φ is
smooth if and only if Φ admits a Borel cross section [54, Proposition 3.12]. �

We propose to keep Corollary 3.22 in mind as a goal when studying Deroin space of groups.
We will present some applications in §10.4.3.

Remark 3.23. There exist finitely generated groups G for which the semi-conjugacy relation on
Homirr(G,Homeo0(R)) is not smooth (and in particular, the space of semi-conjugacy classes is
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not a standard measurable space). For example it is not difficult to show this for the free group
F2 as follows. Fix a ping-pong pair of homeomorphisms g, h of R/Z, with Fix(g) = {0, 1/2} and
Fix(h) = {1/4, 3/4}, where both g, h have one attracting and one repelling fixed point and such
that 〈g, h〉 acts minimally on R/Z. Let g̃, h̃ ∈ Homeo0(R) be two lifts, with Fix(g̃) = 1

2Z and
Fix(h̃) = 1

2Z+ 1
4 . Given a sequence ω = (ωn) ∈ {+1,−1}Z, define an element g̃ω ∈ Homeo0(R)

by g̃ω(x) = g̃ωn(x) if x ∈ [1
2n,

1
2n + 1], and if F2 is the free group with free generators a, b,

define a representation ϕω : F2 → Homeo0(R) by ϕω(a) = g̃ω and ϕω(b) = h̃. It is not difficult
to check that the map ω 7→ ϕω is Borel (actually continuous). since ϕω(F2) = 〈g̃ω, h̃〉 acts on R
with the same orbits as 〈g̃, h̃〉, every action ϕω is minimal, and this implies for ω, ω′ ∈ {±1}Z
the actions ϕω and ϕω′ are positively semi-conjugate if and only if they are positively conjugate,
and this happens if and only if ω and ω′ belong to the same orbit of the Z-shift. Since the
orbit equivalence relation of the shift is not smooth, the conclusion follows.

Remark 3.24. In contrast, for every countable group G the semi-conjugacy relation on the
space Homirr(G,Homeo0(S1)) of irreducible actions on the circle is always smooth. One way
to prove this is to repeat the above argument by fixing a generating probability measure
µ on G and recall that every action is semi-conjugate to an action for which the Lebesgue
measure is stationary (unlike for the case of the real line, this is a straightforward consequence
of compactness). This can be used to construct an analogue of the Deroin space, where
the translation flow should be replaced by an action of the group S1, and since this is a
compact group the action must always admit a Borel cross section. Another route would be to
prove that the bounded Euler class is a Borel complete invariant under semi-conjugacy. This
difference can be seen as a formalization of the observation, mentioned in the introduction,
that studying actions on the circle up to semi-conjugacy is easier than for the real line thanks
to compactness.

4. Micro-supported and locally moving groups

4.1. Definitions. Throughout this section (and mostly in the rest of the paper), we let
X = (a, b) be an open interval, with endpoints a, b ∈ R ∪ {±∞}. Recall that for a subgroup
G ⊆ Homeo0(X) and a subinterval I ⊂ X, we denote by GI the subgroup of G consisting of
elements that fix pointwise X r I.

Definition 4.1. A subgroup G ⊆ Homeo0(X) is micro-supported if for every non-empty
subinterval I ⊂ X the subgroup GI is non-trivial. We also say that G is locally moving if for
every open subinterval I ⊂ X the subgroup GI acts on I without fixed points.

Given open subintervals I and J we write I b J if I is relatively compact in J . For
G ⊆ Homeo0(X), we denote by Gc the normal subgroup of elements with relatively compact
support in X, that is, Gc =

⋃
IbX GI . We also let Germ(G, a) and Germ(G, b) be the groups

of germs of elements of G at the endpoints of X. Recall that the germ of an element g ∈ G
at a is the equivalence class of g under the equivalence relation that identifies two elements
g1, g2 ∈ G if they coincide on some interval of the form (a, x), with x ∈ X. The germ of g at
b is defined similarly. We denote by Ga : G → Germ(G, a) and Gb : G → Germ(G, b) the two
natural germ homomorphisms and their kernels by G− and G+, respectively. Note that

G− =
⋃
x∈X

G(x,b) and G+ =
⋃
x∈X

G(a,x).

When G acts minimally, the micro-supported condition is equivalent to the non-triviality of
the subgroup Gc:
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Proposition 4.2. For X = (a, b), assume that the subgroup G ⊆ Homeo0(X) acts minimally
on X. Then G is micro-supported if and only if it contains a non-trivial element with relatively
compact support.

Proof. The forward implication is obvious. Conversely, assume that there exists a relatively
compact subinterval I b X for which GI 6= {id}. If follows that the centralizer of GI in
Homeo0(X) must fix the infimum of the support of every non-trivial element of GI . Then
by Theorem 2.17, the action of G on X is proximal. Therefore for every non-empty open
subinterval J ⊂ X there exists g ∈ G such that g(I) ⊂ J , which implies that the group GJ is
non-trivial. �

Let us summarize some basic observations on the locally moving condition in the following
lemma.

Lemma 4.3. For X = (a, b), let G ⊆ Homeo0(X) be locally moving. Then the following hold
for every non-empty open subinterval I ⊂ X.

(1) The subgroup GI acts minimally on I. In particular G acts minimally on X.
(2) The derived subgroup [GI , GI ] also acts without fixed points on I.

Proof. Write I = (c, d) for a non-empty open subinterval. Fix x, y ∈ I and assume, say, that
x < y. Since the subgroup G(c,y) ⊆ GI has no fixed point in (c, y), there exist elements
g ∈ G(c,y) such that g(x) is arbitrarily close to y. Thus the GI -orbit of x accumulates at y.
By a symmetric argument, the same holds if y < x. Since x and y are arbitrary, this shows
that every GI -orbit in I is dense in I. Finally if [GI , GI ] admits fixed points, its set of fixed
points is closed and GI -invariant and thus by minimality of the action of GI we deduce that
[GI , GI ] is trivial, and therefore that GI is abelian and conjugate to a group of translations.
This is not possible since the action of GI on I is micro-supported. �

4.2. Structure of normal subgroups. The following proposition shows that locally moving
groups are close to be simple. This follows from well-known arguments, that we repeat here
for completeness.

Proposition 4.4 (Structure of normal subgroups). For X = (a, b), let G ⊆ Homeo0(X) be a
micro-supported subgroup whose action is minimal. Then every non-trivial normal subgroup of
G contains [Gc, Gc]. Moreover, if [Gc, Gc] acts minimally, then it is simple.

In particular, when G is locally moving, then [Gc, Gc] is simple and contained in every
non-trivial normal subgroup of G.

The proof uses the following classical observation on normal subgroups of homeomorphisms,
sometimes known as the “double-commutator lemma”. With this formulation it is [95, Lemma
4.1]

Lemma 4.5. Let H be a group of homeomorphisms of a Hausdorff space Z, and N be a
non-trivial group of homeomorphisms of Z normalized by H. Then there exists a non-empty
open subset U ⊂ Z such that N contains [HU , HU ], where HU is the pointwise fixator of ZrU .

Proof of Proposition 4.4. Suppose that N is a non-trivial normal subgroup of G. Then by
Lemma 4.5, N contains [GI , GI ] for some non-empty open subinterval I ⊂ X. Take now
g ∈ [Gc, Gc]. Then g ∈ [GJ , GJ ] for some non-empty open subinterval J b X. Note that the
centralizer of G in Homeo0(X) is trivial, for the action is micro-supported (see the proof of
Proposition 4.2). Then by Theorem 2.17, the action is proximal, so that we can find h ∈ G
such that h(J) ⊂ I, so that hgh−1 ∈ [GI , GI ] ⊆ N and since N is normal we have g ∈ N .
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Since g is arbitrary, we have [Gc, Gc] ⊆ N . Note that this implies in particular that [Gc, Gc] is
perfect, since its commutator subgroup is normal in G and thus must coincide with [Gc, Gc].

Assume now that [Gc, Gc] acts minimally on X. Then it is micro-supported (Proposition
4.2), and by the previous part every non-trivial normal subgroup of [Gc, Gc] must contain the
derived subgroup of [Gc, Gc]. Since [Gc, Gc] is perfect, this implies that it is simple. �

It follows that when G ⊆ Homeo0(X) is micro-supported and acts minimally (in particular,
when G is locally moving), the quotient group G := G/[Gc, Gc] is the largest proper quotient
of G, and thus plays an important role. Note that the (a priori smaller) quotient G/Gc has a
natural dynamical interpretation, namely it is naturally a subgroup of the product of groups of
germs Germ(G, a)× Germ(G, b). The largest quotient G is an extension of G/Gc with abelian
kernel:

1→ Gc/[Gc, Gc] −→ G −→ G/Gc −→ 1.
The abelian group Gc/[Gc, Gc] can be difficult to identify in general. However for some relevant
examples of locally moving groups it is known that the group Gc is perfect, so that G = G/Gc.

Example 4.6. Consider the Brin–Navas group, which was introduced independently by Brin
[18] and Navas [88], and further studied by Bleak [9] who showed that B is contained in any
non-solvable subgroup of PL([0, 1]). The group B has the following presentation (see [11] and
Proposition 9.33):

B =
〈
f, wn (n ∈ Z)

∣∣∣ fwnf−1 = wn+1 ∀n ∈ Z, [wi, wmn wjw−mn ] = 1∀n > i, j, ∀m ∈ Z r {0}
〉
.

That is, the group B is defined as an HNN extension of the group generated by the wn, n ∈ Z,
and this group is a bi-infinitely iterated wreath product of Z. Following the notation in [9], we
write (oZo)∞ for the subgroup generated by the wn in B, so that B = (oZo)∞ o Z. A minimal
micro-supported action on (0, 1) of B is realized in the group PL([0, 1]) of piecewise linear
homeomorphisms, choosing generators (see [9] and Figure 2)

f(x) =



1
4x x ∈ [0, 1

4 ],
x− 3

16 x ∈ [1
4 ,

7
16 ],

4x− 3
2 x ∈ [ 7

16 ,
9
16 ],

x+ 3
16 x ∈ [ 9

16 ,
3
4 ],

1
4x+ 3

4 x ∈ [3
4 , 1],

w0(x) =



x x ∈ [0, 7
16 ],

2x− 7
16 x ∈ [ 7

16 ,
15
32 ],

x+ 1
32 x ∈ [15

32 ,
1
2 ],

1
2x+ 9

32 x ∈ [1
2 ,

9
16 ],

x x ∈ [ 9
16 , 1].

In this case, the subgroup Bc is the normal subgroup (oZo)∞, and Bc/[Bc, Bc] ∼= Z∞, so that
the largest proper quotient B ∼= Z∞ o Z = Z o Z is the lamplighter group. Observe that the
bi-infinite wreath product Bc does not act minimally on (0, 1).

Example 4.7. A rich source of examples of micro-supported, and actually locally moving
groups, are the Bieri–Strebel groups introduced with the Definition 2.44. Recall that these
are defined as the groups of piecewise linear homeomorphisms of an interval with prescribed
breakpoints and slopes. For a quite simple class of examples, fix n ≥ 2 and consider the group
G = Fn of all piecewise linear homeomorphisms of [0, 1] such that all derivatives are powers of
n and the breakpoints are in the ring A = Z[1/n]. When n = 2, this is Thompson’s group F .
The subgroup Gc of compactly supported elements consists exactly of elements which have
derivative 1 at the endpoints of [0, 1], so that G/Gc ∼= Z2. However, the abelianization of G
is larger for n ≥ 3, as Gab ∼= Zn. This is determined by the “homomorphism into the slope
group” ν discussed in [8, §C11]. The homomorphism ν is obtained by gathering together the
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0 1

1

w0

f

w1 = fw0f
−1

Figure 2. PL realization of the Brin–Navas group with minimal micro-
supported action.

homomorphisms νΩ : G → Z, where Ω is a G-orbit of breakpoints (there are exactly n − 1
many of them), which are defined by considering the total jump of derivatives at points in the
orbit:

νΩ(f) = logn
∏
a∈Ω

D+f(a)
D−f(a) , f ∈ G.

4.3. Subgroups isomorphic to Thompson’s group. Thompson’s group F plays a special
role among locally moving groups, due to the following proposition, which will be crucial in
our proof of the C1 rigidity of locally moving groups (Theorem 6.9).

Proposition 4.8. For X = (a, b), let G ⊆ Homeo0(X) be locally moving. Then G contains a
subgroup isomorphic to Thompson’s group F .

Its proof is based on the following variant of the “2-chain lemma” of Kim, Koberda, and
Lodha [55]. The key idea can be traced to Brin [18], and has been also largely developed in
[10]. It is based on the following two properties: every non-trivial quotient of F is abelian,
and the finite presentation of F ,

(4.1) F =
〈
a, b

∣∣∣ [a, (ba)b(ba)−1] = [a, (ba)2b(ba)−2] = 1
〉
,

where the two relations have in fact an interesting dynamical interpretation.

Lemma 4.9 (Noisy 2-chain lemma). Take two homeomorphisms f, g ∈ Homeo0(R), write
d = sup Supp(f) and c = inf Supp(g), and assume the following:

(1) c < d;
(2) c /∈ Fix(f) and d /∈ Fix(g);
(3) d and f(c) are in the same connected component of Supp(g).

Then 〈f, g〉 contains a subgroup isomorphic to Thompson’s F
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f

supp(f)

supp(g)

f(supp(g))

gNf(supp(g))

d

c f(c)

Figure 3. Proof on the noisy 2-chain lemma (Lemma 4.9).

Proof. After the assumptions, there exists N ∈ Z such that gNf(c) > d. Thus we also have
(gNf)2(c) = g2Nf(c) > d. Hence, for i ∈ {1, 2}, we have that the subset

(gNf)i (Supp(g)) = Supp
(
(gNf)ig(gNf)−i

)
= Supp

(
(gNf)igN (gNf)−i

)
is disjoint from Supp(f) (see Figure 3). We deduce that the elements a = f and b = gN satisfy
the two relations in the presentation (4.1), and thus 〈f, gN 〉 is isomorphic to a quotient of
F . As the supports Supp(f) and Supp(gN ) = Supp(g) overlap, we deduce that the subgroup
〈f, gN 〉 is non-abelian and thus isomorphic to F . �

Proof of Proposition 4.8. Take f ∈ Gc. Using Lemma 4.3, it is not difficult to find an element
g, conjugate to f , such that conditions (1–2) in Lemma 4.9 are satisfied by f and g. Write
c = inf Supp(g) and d = sup Supp(f). Up to replace f by its inverse, we can assume f(c) > c.
If condition (3) in Lemma 4.9 is not satisfied, we use Lemma 4.3 again to find an element
h ∈ G(c,d) such that h(f(c)) belongs to the same connected component of Supp(g) as d. Replace
f by the conjugate hfh−1 and now property (3) is also satisfied. �

5. Dynamical trichotomy for actions of locally moving groups on the line

5.1. The trichotomy. Let X = (a, b) be an open interval. The goal of this section is to
establish a first result on the possible actions ϕ : G→ Homeo0(R), when G ⊆ Homeo0(X) is
locally moving, showing that such actions fall into one of three kinds. This trichotomy will be
the starting point of most of our results.

In the sequel we will often be dealing with two different actions of the same group G, namely
its standard action on X and different, given action of G on R. Recall that to avoid confusion
we fix the following notation throughout the paper.

Notation 5.1. Let G ⊆ Homeo0(X) be a subgroup and let ϕ : G→ Homeo0(R) be an action
on the real line. For g ∈ G and x ∈ X we use the notation g(x) to refer to the standard action
on X, while for ξ ∈ R we will write g.ξ := ϕ(g)(ξ). We also write Fixϕ(H) for the set of fixed
points of a subgroup H ⊆ G with respect to the action ϕ, and Suppϕ(H) = Rr Fixϕ(H).

Also, we will often write K = Gc and N = [Gc, Gc], although this will be systematically
recalled.

Let us also introduce the following terminology, which will simplify many statements.

Definition 5.2. Let G be a group and let ϕ : G→ Homeo0(R) be an action on the real line.
Let A,B ⊆ G be subgroups. We say that A is totally bounded if Fixϕ(A) accumulates at both
±∞ (equivalently, if the ϕ(A)-orbit of every ξ ∈ R is bounded).

We say that A is dominated by commuting elements if its ϕ-image has fixed points, while
the image of its centralizer ϕ(CG(A)) has none. If moreover B ⊆ G is a subgroup such
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that the ϕ-image of CB(A) has no fixed point, we say that A is dominated by commuting
elements within B. Note that since CB(A) preserves the subset Fixϕ(A) and acts without fixed
points, this implies that A is totally bounded. Finally we say that A is locally dominated
by commuting elements (within B) if all finitely generated subgroups of A are dominated by
commuting elements (within B).

Recall that given a subgroup G ⊆ Homeo0(X), with X = (a, b), we denote by G− and G+
the kernels of the two germs homomorphisms Ga : G→ Germ(G, a) and Gb : G→ Germ(G, b),
respectively. Recall also that we let Gc be the subgroup of compactly supported elements in
G, and that [Gc, Gc] is simple and is the smallest normal subgroup of G (Proposition 4.4).

The following theorem says that all “exotic” actions of G have an abundance of subgroups
dominated by commuting elements.

Theorem 5.3 (Dynamical trichotomy for locally moving groups). For X = (a, b), let G ⊆
Homeo0(X) be locally moving. Then every action ϕ : G → Homeo0(R) without fixed points
satisfies one of the following statements.

(i) (Induced from a quotient) It is semi-conjugate to an action that factors through the
largest quotient G/[Gc, Gc].

(ii) (Standard) It is semi-conjugate to the standard action of G on X.
(iii) (Exotic) One of the subgroups G+ and G− (possibly both) is locally dominated by

commuting elements within [Gc, Gc].

Theorem 5.3 leverages the abundance of commutation in a locally moving group. This is
quite natural to exploit, and can be compared with some rigidity results for actions of certain
large groups on one-manifolds, which take advantage of commutation for actions with some
regularity, for instance by diffeomorphisms in class C2 (see for example Ghys and Sergiescu
[45, Theorem K] for Thompson’s group T , or the results of Mann [68] and the alternative
proofs by Matsumoto [80]). Indeed recall that Kopell’s lemma states that if f, g are two C2

diffeomormisms of a compact interval and if f has no fixed point in the interior, then neither
does g. This gives a powerful tool to reconstruct the standard action by keeping track of
supports of elements. In contrast, for C0 homeomorphisms it is much easier to commute, so
that mere commutation is not sufficient to reconstruct support of elements and get rigidity
(and indeed exotic actions in the sense of Theorem 5.3 exist in abundance). The conclusion of
Theorem 5.3 describes precisely this failure of rigidity.

We now prove Theorem 5.3. We begin with a useful observation based on Theorem 2.17.

Proposition 5.4 (Actions of direct products). Let M ∈ {R, S1}. Let Γ1 and Γ2 be two groups,
and if M = R assume that Γ1 is finitely generated. Then for every action ϕ : Γ1 × Γ2 →
Homeo0(M), there exists i ∈ {1, 2} such that the image of [Γi,Γi] has fixed points.

Proof. Note that we identify here Γ1 with the subgroup Γ1×{1}, and similarly for Γ2. Suppose
that ϕ(Γ1) admits no fixed point (otherwise, the conclusion is true). If the action of Γ1 admits
a closed discrete orbit, then the action on this discrete orbit factors through a cyclic quotient
of Γ1 and so [Γ1,Γ1] fixes it pointwise, and the conclusion holds true. If not, let Λ ⊂ M be
the unique minimal invariant set for ϕ(Γ1), which exists when M = R since we assume Γ1
finitely generated. Then Λ is preserved by ϕ(Γ2) and the action of Γ1 is semi-conjugate to
a minimal action, obtained by collapsing the connected components of M r Λ. In the case
M = R, we apply Theorem 2.17 to this minimal action. If this action is by translations then
again [Γ1,Γ1] acts trivially on Λ. Otherwise its centralizer is trivial or cyclic, so that [Γ2,Γ2]
fixes Λ pointwise. When M = S1, we argue similarly using Theorem 2.16, which gives that
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either the action is conjugate to an action by rotations (in which case [Γ1,Γ1] acts trivially),
or the centralizer of ϕ(Γ1) is finite cyclic (in which case [Γ2,Γ2] fixes every point of Λ). �

Remark 5.5. Note that here we will only use this for M = R (but an application of the case
M = S1 will be given in Section 14). In this case, the assumption that Γ1 be finitely generated
cannot be dropped, as shown by the following example. Let (H,≺) be any left-ordered
non-abelian countable group. Let G =

⊕
n∈NH be the infinite restricted product, i.e. the

group of all sequences (hn) in H such that hn = 1 for all but finitely many n, with pointwise
multiplication. Consider on G the lexicographic order given by (hn) ≺ (h′n) if hm ≺ h′m for
m = max{n ∈ N : hn 6= h′n}, and let ϕ : G→ Homeo0(R) be the dynamical realization of this
order. Let Γ1 ⊆ G be the subgroup consisting of all sequences (hn) such that hn = 1 for n
even, and Γ2 be the subgroup of sequences such that hn = 1 for n odd, so that G = Γ1 × Γ2.
Then it is easy to see that neither the image of [Γ1,Γ1] nor of [Γ2,Γ2] have fixed points.

Remark 5.6. A special case of Proposition 5.4 appears in [80, Proposition 3.1] (for M = S1

and assuming Γi are simple).

Proposition 5.4 implies the following in the setting of micro-supported groups.

Corollary 5.7. For X = (a, b), let G ⊆ Homeo0(X) be a subgroup acting without fixed points
on X. Let Γ ⊆ Gc be a finitely generated subgroup. Then for every action ϕ : G→ Homeo0(R)
the image ϕ([Γ,Γ]) has fixed points.

Proof. Let I b X be a relatively compact subinterval such that Γ ⊆ GI . Since the action of G
has no fixed points, we can find g ∈ G such that g(I) ∩ I = ∅. Then gΓg1 ⊆ Gg(I) commutes
with Γ, so that Proposition 5.4 applied to the subgroups Γ1 := Γ and Γ2 := gΓg−1 implies in
either case that ϕ([Γ,Γ]) has fixed points. �

Remark 5.8. Again, finite generation is essential: it is not true that for every interval I ⊂ X,
the ϕ-image of [GI , GI ] must have fixed points. Counterexamples can be found in §5.3.3.

The next lemma is an improvement of the previous corollary, and will be used repeatedly.

Lemma 5.9. For X = (a, b), let G ⊆ Homeo0(X) be a subgroup acting without fixed points,
and set K = Gc. Let I and J be non-empty disjoint open subintervals of X. Let Γ ⊆ GI be
a finitely generated subgroup. Then for every action ϕ : G→ Homeo0(R), at least one of the
following holds.

(i) Γ is totally bounded (with respect to the action ϕ).
(ii) The image ϕ([KJ ,KJ ]) has fixed points.

Proof. We assume that (i) does not hold and prove that (ii) must hold. First of all we note
that if Fixϕ(Γ) is non-empty, but does not accumulate at both ±∞, then its supremum (or
infimum) must be fixed by ϕ(GJ) ⊇ ϕ([KJ ,KJ ]), since the two subgroups commute. Thus
we can suppose that Fixϕ(Γ) = ∅. In this case, since Γ is finitely generated, there exists a
compact interval L which intersects all ϕ(Γ)-orbits. Let S be the collection of finitely generated
subgroups of KJ . For ∆ ∈ S, the subset T∆ := Fixϕ([∆,∆]) is non-empty by Corollary 5.7,
and it is ϕ(Γ)-invariant. Thus, we have T∆ ∩ L 6= ∅. Moreover for ∆1, . . . ,∆n ∈ S we have
T∆1 ∩ · · · ∩ T∆n ⊃ T〈∆1,...,∆n〉 6= ∅, so that by compactness of L we have that the subset
T :=

⋂
∆∈S T∆ is non-empty. Since [KJ ,KJ ] =

⋃
∆∈S [∆,∆], every point of T is fixed by

ϕ([KJ ,KJ ]). This proves the lemma. �
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We now need to address a minor technical point. Let G ⊆ Homeo0(X) be locally moving,
and set K = Gc and N = [K,K]. Let I ⊂ X be a subinterval. We can then consider the two
subgroups NI and [KI ,KI ]. A little thinking gives that [KI ,KI ] ⊆ NI , but in general this
inclusion is strict. However the following lemma allows to think of it as an equality for some
practical purposes.

Lemma 5.10. For X = (a, b), let G ⊆ Homeo0(X) be locally moving. Let I ⊂ J ⊂ X be open
nested subintervals with no common endpoint in X r {a, b}. With the notation as above, we
have [KI ,KI ] ⊆ NI ⊆ [KJ ,KJ ].

Proof. Only the second inclusion needs to be justified. Let us give the proof in the case where
I = (a, x) and J = (a, y) for some y > x (the case where both endpoints of I are in the interior
of X is analogous). Take g ∈ NI and let us show that g ∈ [KJ ,KJ ]. Since g ∈ N , it can
be written as a product of commutators involving finitely many elements of Gc, which all
belong to K(a,z) for some z < b large enough. Thus we have g ∈ [K(a,z),K(a,z)] for some z < b
large enough, and we can suppose that z > y since otherwise g ∈ [KJ ,KJ ]. Since the group
G(x,b) acts without fixed points on (x, b), there exists h ∈ G(x,b) such that h(z) ∈ (z, y). But h
commutes with g, so we have g = hgh−1 ∈ [K(a,h(z)),K(a,h(z))] ⊆ [KJ ,KJ ]. �

We now give a criterion for an action ϕ : G→ Homeo0(R) to be semi-conjugate either to
the standard action, or to an action induced from a proper quotient.

Proposition 5.11. For X = (a, b), let G ⊆ Homeo0(X) be locally moving, and write N =
[Gc, Gc]. Let ϕ : G→ Homeo0(R) be an action without fixed points. Suppose that there exist
x, y ∈ X such that both images ϕ(N(a,x)) and ϕ(N(y,b)) admit fixed points. Then ϕ is semi-
conjugate either to the standard action on X, or to an action which factors through the quotient
G/N .

Proof. First of all, observe that if ϕ(N) admits fixed points, then Fixϕ(N) is a closed ϕ(G)-
invariant subset of R which accumulates at both ±∞, and the action on it factors through G/N .
In this case we deduce that ϕ is semi-conjugate to an action of G/N . Thus we will assume
that ϕ(N) has no fixed point, and show that in this case the action must be semi-conjugate to
the standard action of G on X.

Note that since there exists x such that N(a,x) has fixed points for ϕ then this is true
for every x ∈ X, since a subgroup N(a,x) is always conjugate into every other N(a,y), for
y ∈ X. The same holds true for the subgroups of the form N(x,b). In particular, for every
x ∈ X, the images ϕ(N(a,x)) and ϕ(N(x,b)) both admit fixed points, and since they commute
they admit common fixed points. Thus for every x ∈ X the ϕ-image of the subgroup
Hx := 〈N(a,x), N(x,b)〉 admits fixed points. The idea is to construct a semi-conjugacy q : X → R
by setting q(x) = inf Fixϕ(Hx). We need to check that such map q is well-defined (i.e. that the
subsets Fixϕ(Hx) are bounded) and monotone. Let us first prove the following claim.

Claim 1. Let x and y be two distinct points of X. Then we have either sup Fixϕ(Hx) <
inf Fixϕ(Hy) or viceversa.

Proof of claim. If the conclusion does not hold, then upon exchanging the roles of x and y if
needed, we can find two distinct points ξ, η ∈ Fixϕ(Hx) and δ ∈ Fixϕ(Hy) such that ξ ≤ δ ≤ η.
Assume first that x < y. Recall that we are supposing that ϕ(N) has no fixed point, so we
can choose g ∈ N such that g.ξ > η. Let z > x be a point of X such that g ∈ N(a,z). By
Lemma 4.3, the action of N(x,b) on (x, b) has no fixed point, so we can find h ∈ N(x,b) such
that h(z) ∈ (x, y). Note that h ∈ Hx, so that ϕ(h) fixes both ξ and η. On the other hand the
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element k = hgh−1 belongs to N(a,y), thus to Hy, and therefore ϕ(k) fixes δ. Thus, writing
g = h−1kh, we have

g.ξ = h−1k.ξ ≤ h−1k.δ = h−1.δ ≤ h−1.η = η,

contradicting that g.ξ > η by the choice of g. The case y < x is treated analogously. �

After Claim 1, the map q : X → R, x 7→ inf Fixϕ(Hx) is well-defined and injective. We next
have to verify that it is monotone.

Claim 2. Let x1 < x2 < x3 be point of X. Then either q(x1) < q(x2) < q(x3) or q(x1) >
q(x2) > q(x3).

Proof of claim. The arguments are similar to the proof of the previous claim. For i ∈ {1, 2, 3},
set ξi = q(xi) and note that by the previous claim the points ξ1, ξ2, ξ3 are pairwise distinct.
We divide the proof into cases according to their relative position. We will detail the case
ξ1 < ξ2 (the case ξ1 > ξ2 being totally analogous); for this, we will assume for contradiction
that ξ3 < ξ2 and we further split into two subcases depending on the position of ξ3.

Case I. We have ξ1 < ξ3 < ξ2.

In this case, we choose an element g ∈ N such that g.ξ1 > ξ2. Let y > x2 be a point of X such
that g ∈ N(a,y). Let h ∈ N(x2,b) be such that h(y) ∈ (x2, x3). Note that h ∈ Hx2 and since
(x2, b) ⊂ (x1, b) we also have h ∈ Hx1 , so that ϕ(h) fixes ξ2 and ξ1. On the other hand the
element k = hgh−1 belongs to N(a,h(y)), and since (a, h(y)) ⊂ (a, x3) we have k ∈ Hx3 so that
ϕ(k) fixes ξ3. Writing g = h−1kh, we have

g.ξ1 = h−1k.ξ1 < h−1k.ξ3 = h−1.ξ3 < h−1.ξ2 = ξ2,

contradicting that g.ξ3 > ξ2.

Case II. We have ξ3 < ξ1 < ξ2.

In this case, choose an element g ∈ N such that g.ξ2 < ξ3. Let y < x2 be a point of X such
that g ∈ N(y,b). Let h ∈ N(a,x2) be such that h(y) ∈ (x1, x2). Note that h ∈ Hx2 and since
(a, x2) ⊂ (a, x3) we also have h ∈ Hx3 , so that ϕ(h) fixes ξ2 and ξ3. On the other hand the
element k = hgh−1 belongs to N(h(y),b), and since (h(y), b) ⊂ (x1, b) we have k ∈ Hx1 so that
ϕ(k) fixes ξ1. Writing g = h−1kh, we have

g.ξ2 = h−1k.ξ2 > h−1k.ξ1 = h−1.ξ1 > h−1.ξ3 = ξ3,

contradicting that g.ξ2 < ξ3.
Thus the unique possibility is that ξ1 < ξ2 < ξ3, as desired. �

The claim implies that the map q : X → R is monotone (increasing or decreasing). Moreover,
it is clearly equivariant by construction:

g.q(x) = g. inf Fixϕ(Hx) = inf g.Fixϕ(Hx) = inf Fixϕ(Hg(x)) = q(g(x)).
Therefore the map q establishes a semi-conjugacy between ϕ and the standard action of G on
X. �

We get to the following statement, which is a more explicit, but slightly more technical,
version of Theorem 5.3. Here we keep the notation N = [Gc, Gc].

Proposition 5.12. For X = (a, b), let G ⊆ Homeo0(X) be locally moving. Then every action
ϕ : G→ Homeo0(R) without fixed points satisfies one of the following statements.
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(i) (Induced from a quotient) ϕ is semi-conjugate to an action that factors through the
largest quotient G/N .

(ii) (Standard) ϕ is semi-conjugate to the standard action of G on X.
(iii) (Exotic) One of the following holds for every point x ∈ X:

(iii.a) (Right-hand side domination) every finitely generated subgroup of G+ is totally
bounded, while N(x,b) acts without fixed points;

(iii.b) (Left-hand side domination) every finitely generated subgroup of G− is totally
bounded, while N(a,x) acts without fixed points.

Proof of Theorem 5.3 from Proposition 5.12. Let ϕ : G → Homeo0(R) and assume that it
corresponds to the exotic case in Proposition 5.12, say in case (iii.a). Since every finitely
generated subgroup of Γ ⊆ G+ is contained in G(a,x) for some x, and it commutes with
N(x,b) ⊆ N , it follows that G+ is locally dominated by commuting elements within N . Case
(iii.b) is analogous. �

Proof of Proposition 5.12. Let ϕ : G→ Homeo0(R) be an action without fixed points, which
is not semi-conjugate to the standard action, nor to any action of G/N . Then, by Proposition
5.11, there exists y ∈ X such that either ϕ(N(y,b)) or ϕ(N(a,y)) has no fixed point. Assume
that the first case holds. Note that this implies that ϕ(N(x,b)) has no fixed point for every
x ∈ X, since N(x,b) is conjugate into N(y,b). Moreover, by Lemma 5.10 this also implies that
the image ϕ

(
[K(x,b),K(x,b)]

)
has no fixed point for every x ∈ X, where K = Gc. Then Lemma

5.9 implies that every finitely generated subgroup Γ ⊆ G(a,x) is totally bounded. This shows
that ϕ falls in case (iii.a) of Proposition 5.12. The case where ϕ(N(a,y)) has no fixed point is
analogous and leads to case (iii.b). �

5.2. First consequences of the trichotomy. Let us describe some elementary consequences
of Theorem 5.3. First we record for later use the following observation.

Lemma 5.13. For X = (a, b), let G ⊆ Homeo0(X) be locally moving, and let ϕ : G →
Homeo0(R) be a minimal faithful action. Then the action ϕ is proximal.

Proof. The standard action is proximal (cf. the proof of Proposition 4.2). So we assume to be
in case (iii.a) of Proposition 5.12 (case (iii.b) being analogous). After Theorem 2.17, we assume
by contradiction that the action has a non-trivial centralizer, which is necessarily an infinite
cyclic group generated by an element without fixed points τ , which we can assume satisfies
τ(x) > x for every x ∈ X. Fix x ∈ X and write I = [x, τ(x)], which is a fundamental domain
for τ . Let Γ ⊂ G+ be a finitely generated subgroup, and note that as it admits fixed points, it
must admit fixed points in the fundamental domain I. As I is compact, the intersection of the
subsets Fixϕ(Γ) ∩ I, when Γ runs over the finitely generated subgroups of G+, is non-empty,
and actually coincides with Fixϕ(G+) ∩ I. In particular, this implies that G+, and thus Gc,
admits fixed points. As N(x,b) = [Gc, Gc](x,b) ⊂ Gc, we reach a contradiction. �

We next describe sets of fixed points for exotic actions.

Corollary 5.14. For X = (a, b), let G ⊆ Homeo0(X) be locally moving, and let ϕ : G →
Homeo0(R) be an action which is not semi-conjugate to the standard action of G on X, nor to
any action of a proper quotient. Then the following hold.

(i) For every g ∈ G the support Suppϕ(g) accumulates at both ±∞.
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(ii) Every finitely generated subgroup Γ ⊆ Gc is totally bounded with respect to ϕ and its
support accumulates at both ±∞, moreover the boundary ∂ Fixϕ(Γ) of its set of fixed
points is non-discrete.

Proof. Set again N = [Gc, Gc]. We first prove (i), which only requires Proposition 5.11. Assume
by contradiction that g ∈ G is such that Suppϕ(g) is upper-bounded (the case where it is
lower-bounded is analogous). Then the germ homomorphism G+∞ ◦ ϕ : G→ Germ(ϕ(G),+∞)
is not injective, and by Proposition 4.4 its kernel contains N . Thus for h ∈ N we have
that Suppϕ(h) is also upper-bounded, and the point ξ = sup Suppϕ(h) must be fixed by the
centralizer of h. Since the centralizer of h contains N(a,x) and N(y,b) for suitable x, y ∈ X,
Proposition 5.11 gives that ϕ must be semi-conjugate to the standard action on X or to an
action of G/N , which is a contradiction.

Let us now prove (ii). We apply Theorem 5.3, and ϕ must be in the exotic case. Since
Gc = G+ ∩ G−, in both subdivisions of such case, we have that every finitely generated
subgroup Γ ⊆ Gc is dominated by commuting elements (within N), and thus totally bounded.
The fact that its support accumulates at both ±∞ is a consequence of part (i), applied to any
element in a finite generating subset of Γ. It remains to prove that ∂ Fixϕ(Γ) is non-discrete.
For this, let I = (ξ1, ξ2) be a connected component of Suppϕ(Γ). Since the image of CN (Γ)
has no fixed point, we can choose h ∈ CN (Γ) such that h.ξ1 > ξ2. But since h ∈ N ⊆ Gc, the
element h is also totally bounded. Thus hn.ξ1 must converge as n→ +∞ towards a fixed point
ζ ∈ Fixϕ(h). Since ∂ Fixϕ(Γ) is a closed ϕ(h)-invariant set, we have that hn.ξ1 is a sequence in
∂ Fixϕ(Γ) which converges non-trivially to ζ ∈ ∂ Fixϕ(Γ), proving the statement. �

A relevant special case of the second part of Corollary 5.14 arises when Γ = 〈g〉 is generated
by a single element g ∈ Gc. Indeed it implies that if ϕ : G→ Homeo0(R) is an exotic action,
the set of fixed points of every element g ∈ Gc is unbounded, with unbounded complement,
and has non-discrete boundary. This can be seen as a first rigidity result of combinatorial
nature, saying that actions with particularly “nice” structure of fixed points are semi-conjugate
to the standard action or to an action of the largest quotient. For instance, recall from the
introduction that two locally moving actions on the line of the same group G must be conjugate
(this is customarily deduced from the much more general results of Rubin [100,101]). The first
statement in Corollary 5.14 recovers this result in the following slightly more general form.

Corollary 5.15. For X = (a, b), let G ⊆ Homeo0(R) be locally moving. Let ϕ : G →
Homeo0(R) be an action without fixed point whose image contain elements of relatively compact
support. Then ϕ is semi-conjugate to the standard action of G on X.

As another application, let us consider actions by piecewise real-analytic homeomorphisms,
in the following sense.

Definition 5.16. Let PDiffω0 ([0, 1]) be the group of all homeomorphisms f of [0, 1] such that
there exist finitely many points

0 = a0 < a1 < · · · < an < an+1 = 1
such that for every i ∈ {0, . . . , n}, the restriction f �[ai,ai+1] coincides with an analytic
diffeomorphism defined on some open neighborhood of [ai, ai+1] in the complex plane (in
particular f should be analytic on a neighborhood of the endpoints 0 and 1).

Given an open interval (α, β) (possibly unbounded) we also define the larger group
PDiffωloc((α, β)) of homeomorphisms f such that there exists an increasing sequence (an)n∈Z,
with limn→−∞ an = α and limn→+∞ an = β, such that for every i ∈ Z, the restriction f �[ai,ai+1]
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coincides with an orientation-preserving diffeomorphism which is analytic on a neighborhood of
[ai, ai+1] in the complex plane (with no condition at α and β). Note that this includes the more
classical setting of piecewise projective homeomorphisms with a discrete set of breakpoints.

Since the set of fixed points of any analytic diffeomorphism is isolated, for every element
g ∈ PDiffωloc((α, β)) the boundary ∂ Fix(g) is a discrete subset of (α, β). From Corollary 5.14
we deduce the following.

Corollary 5.17 (Rigidity of actions by piecewise analytic homeomorphisms). For X = (a, b),
let G ⊆ Homeo0(X) be locally moving. The following hold.

(a) For every faithful action ϕ : G → PDiffω0 ([0, 1]) without fixed points in the interior
(0, 1), the ϕ-action of G on (0, 1) is semi-conjugate to its standard action on X.

(b) For every interval (α, β) and faithful action ϕ : G → PDiffωloc((α, β)) without fixed
points, one of the following holds:
(b.1) either ϕ is semi-conjugate to the standard action of G on X,
(b.2) or ϕ(G) admits a closed discrete orbit O ⊂ (α, β), so that ϕ is semi-conjugate

to a cyclic action. Moreover, in this case the ϕ-image of N := [Gc, Gc] fixes
O pointwise, and its action on each connected component of Suppϕ(N) is semi-
conjugate to its standard action on X.

Proof. Let ϕ : G→ PDiffω0 ([0, 1]) be a faithful action, without fixed points in (0, 1). Since for
every element g ∈ PDiffω0 ([0, 1]) the set ∂ Fix(g) is discrete, Corollary 5.14 implies that the
ϕ-action on (0, 1) must be semi-conjugate either to the standard action of G on X or to an
action of G/N , with N = [Gc, Gc]. Assume by contradiction that the second case holds. Then
ϕ(N) admits fixed points in (0, 1) and since Fixϕ(N) is ϕ(G)-invariant it must accumulate at
both 0 and 1; moreover its complement Suppϕ(N) = (0, 1)r Fixϕ(N) is non-empty and also
accumulates at both 0 and 1 by G-invariance, so that every neighborhood of 0, respectively 1,
contains connected components of Suppϕ(N). Since N is a simple group (Proposition 4.4),
its action on each connected component of Suppϕ(N) must be faithful. Thus for every g ∈ N
the set ∂ Fixϕ(g) must accumulate at both 0 and 1, and thus cannot be discrete. This is the
desired contradiction, and it proves part (a).

Let now ϕ : G→ PDiffωloc((α, β)) be a faithful action. Again, by Corollary 5.14, ϕ is semi-
conjugate to the standard action or to an action of G/N , and we only need to analyze the
second case. A similar reasoning as in the compact case, relying on the simplicity of N , shows
that ∂ Fixϕ(N) must be discrete. Since the latter is a ϕ(G)-invariant set, the G-action on it
must factor through an epimorphism τ : G → Z, and ϕ is semi-conjugate to a cyclic action.
Finally, the action of N on each connected component of its support must be faithful and
semi-conjugate to its standard action on X, by part (a) for actions on compact intervals. �

Remark 5.18. Corollary 5.17 can be compared with the work of Lodha [64], who develops a
way to study embeddings between certain groups of PL transformations, such as Thompson–
Brown–Stein groups Fn1,··· ,nk , and proves non-embedding results between them. His approach
is based on Rubin’s theorem; namely he identifies a class of group actions that he calls coherent
and shows that such actions are automatically locally moving. The coherent condition is
simpler to check than the locally moving condition in some situations. In particular he shows
that certain embeddings between groups of PL homeomorphisms must give rise to coherent
actions (up to semi-conjugacy), and thus, by Rubin’s theorem, to a semi-conjugation to the
standard action.
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5.3. First examples of exotic actions. In this subsection we give some simple examples of
actions of locally moving groups which are exotic according to the classification in Proposition
5.12. The first two examples show two general mechanisms giving order-preserving actions
of the group Homeoc(R) of compactly supported homeomorphisms of R on ordered spaces.
Thus for countable subgroups G ⊆ Homeoc(R), we can consider the dynamical realization of
these actions and obtain actions on R, which turn to be exotic. The role of our third example
is to explain that it is crucial to consider finitely generated subgroups in the conclusion of
Proposition 5.12. Indeed we will construct a locally moving subgroup G ⊆ Homeo0(X) and an
exotic action ϕ : G→ Homeo0(R) such that, for every interval I b X, the group [GI , GI ] acts
without fixed points (recall that all its finitely generated subgroups must admit fixed points,
by Corollary 5.7).

The reader should be warned that all examples of exotic actions discussed in this subsection
admit no minimal invariant set. This is a somewhat degenerate phenomenon; for instance it
can never arise for finitely generated groups (indeed all groups that we consider here are not
finitely generated, and this is essential to the constructions). It is more interesting and less
clear how to construct examples of exotic minimal actions of locally moving groups. Various
such examples will be given later (see Section 9 and §§11.4–11.6).

5.3.1. Orders of germ type. In this paragraph we build exotic actions on the line that are
obtained as dynamical realizations of some left-invariant preorder on compactly supported
locally moving groups. Our preorders here are inspired by the well known construction of
bi-invariant orders on the group of orientation-preserving piecewise linear homeomorphisms of
an interval (see [23,94]).

Let G ⊂ Homeoc(R) be a countable locally moving group. Note that G = Gc, so that
N = [G,G] is the minimal proper normal subgroup of G. For x ∈ R, we denote by Germ(G, x)
the group of germs of StabG(x) at x, and for g ∈ G we let Gx(g) be its germ. With abuse of
notation, we will denote by id the trivial germ, without reference to the base point.

Recall that groups of germs of interval homeomorphisms are left-orderable (see [36]) and
therefore, for each x ∈ R there exists a left-invariant order <(x) on Germ

(
G(−∞,x), x

)
. Choose

a collection of such orders {<(x) : x ∈ R}. Therefore, we can define

P =
{
g ∈ G : Gpg(g) >(pg) id

}
where pg := sup{x ∈ X : g(x) 6= x}. It is straightforward to check that P is a semigroup
disjoint from P−1, and that it defines a partition G = P t {1} t P−1. Thus, P is the positive
cone of a left-invariant order ≺∈ LO(G) (see Remark 2.34). Denote by ϕ : G→ Homeo0(R)
its dynamical realization. We want to show that ϕ is an exotic action (according to the
classification in Proposition 5.12).

First we will show that ϕ is not semi-conjugate to any action induced from a quotient. For
this purpose, we claim that the group ϕ(N) acts on R without fixed points. Indeed to show
this it is enough to show that the orbit of id under the action of N is unbounded above and
below in the ordered space (G,≺). For this, fix an element h ∈ G with h � id. Since N is
normal in G, the subset {pg : g ∈ N} ⊆ X is G-invariant, so that by minimality there exists
g ∈ N with pg > ph. Upon replacing g with g−1 suppose that Gpg(g) >(pg) id. Then, since
pgh−1 = pg and thus

Gpgh−1 (gh−1) = Gpg(g) >(pg) id,
we have g · id = g � h. Similarly, for every h ≺ id, we can find an element g′ ∈ N such that
g′ · id ≺ h. This shows that the N -orbit of id is unbounded in both directions, as desired. In
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particular, ϕ is not semi-conjugate to any action that factors through G/N . Finally, in order
to show that ϕ is not semi-conjugate to the action of G, note that the previous argument can
be improved to show that for every x ∈ R, the image ϕ(N(x,+∞)) acts without fixed points: it
is enough to take g ∈ N as above with pg > max{x, ph}, and as G is locally moving, we can
also assume that Supp(g) ⊆ (x, pg). From this construction we get the following.
Proposition 5.19. Every countable locally moving group G ⊆ Homeoc(R) of compactly
supported homeomorphisms admits a faithful exotic action on the line. �

By varying on the choice of orders on the groups of germs, one in fact gets an uncountable
family of non-semi-conjugate actions. In fact it is not difficult to show the following.
Lemma 5.20. Let G ⊂ Homeoc(R) be countable and locally moving. For i ∈ {1, 2}, let
Fi = {<(x)

i : x ∈ R} be a collection of left-orders on Germ
(
G(−∞,x), x

)
. Let ≺i be the

associated orders on G, and let ϕi be their dynamical realizations. Then ϕ1 and ϕ2 are
positively semi-conjugate if and only if there exists y ∈ R such that <(x)

1 =<(x)
2 for all x ≥ y.

Proof. First assume that there exists y ∈ R as in the statement. Note that the group G(−∞,y)
is convex with respect to both orders ≺1,≺2, and that both induce the same order on the
coset space G/G(∞,y). In other words, the quotient preorders of ≺1 and ≺2 with respect to
this convex subgroup coincide, and thus ≺1 and ≺2 admit a common dominating preorder.
It follows that ≺1 and ≺2 are equivalent preorders, so that their dynamical realizations are
positively semi-conjugate (see Lemma 3.16).

Conversely assume that ϕ1 and ϕ2 are positively semi-conjugate, and let h : R → R be a
monotone increasing semi-conjugacy from ϕ1 to ϕ2. For i ∈ {1, 2}, let ιi : G→ R be the good
embedding associated with ≺i (Definition 2.37), which we assume both to satisfy ιi(id) = 0.
Also, for x ∈ R, denote by Ii,x ⊂ R the interior of the convex hull of ιi(G(−∞,x)). Note that for
fixed i the intervals Ii,x define an increasing exhaustion of R as x→ +∞. Since the subgroup
G(−∞,x) is ≺i-convex, we have that for every g /∈ G(−∞,x), the element ϕi(g) must map Ii,x
disjointly from itself, and either to the right or to the left according to the sign of g with
respect to the order ≺i. Now choose y ∈ R large enough so that I2,y contains h(0). Then if
g ∈ G is such that pg > y and g �2 id, we have ϕ2(g)(h(0)) > h(0), so by equivariance of h
also ϕ1(g)(0) > 0, i.e. g �1 id. This implies that <(x)

1 =<(x)
2 for x > y. �

Recall from the discussion in §3.5 that one way to get insight on the variety of ac-
tions on the line of a given group is to study the semi-conjugacy equivalence relation on
Homirr(G,Homeo0(R)) up to Borel reducibility. The best case scenario would be when this
equivalence relation is smooth. However the previous statement implies that this is never the
case for locally moving groups of compactly supported homeomorphisms.
Corollary 5.21. Let G ⊂ Homeoc(R) be countable and locally moving. Then the semi-
conjugacy equivalence relation on Homirr(G,Homeo0(R)) is not smooth.

Proof. Recall from §3.5 that we denote by E0 the equivalence relation on one-sided binary
sequences {0, 1}N, where (xn) and (yn) are equivalent if xn = yn for all but finitely many n,
and that E0 is not smooth. From Lemma 5.20 it is easy to construct a family of actions of G
indexed by {0, 1}N (in a Borel way), which are positively semi-conjugate if and only if the two
sequences are E0 equivalent. For instance start from any collection of orders F = {<(x), x ∈ R}
on Germ(G(−∞,x), x). For every ω ∈ {0, 1}N, define a new family Fω, where for x ∈ [n, n+ 1)
we leave the order <(x) unchanged if ω(n) = 0 and consider the opposite order if ω(n) = 1.
This together with Lemma 5.20 shows the desired claim. �
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This applies for instance to the commutator [F, F ] of Thompson’s group F , and should be
compared with Theorem 1.14 for locally moving groups in the class F0 (see also Theorem
11.6 for Thompson’s group F ).

5.3.2. Escaping sequences. Let G ⊆ Homeoc(R) be a locally moving group of compactly
supported homeomorphisms. The action of G on R defines a diagonal action of G on the space
of sequences RN. For the second construction, we fix a sequence ω0 ∈ RN of distinct points in
R, where we write ω0(n) for the n-th term, and we suppose that ω0 is escaping, in the sense
that every compact subset of R contains only finitely many terms of the sequence (in other
terms, it has no accumulation point). Then we write S = G.ω0 for the G-orbit of the sequence
ω0. Since elements of G have compact support, and the sequence ω0 is escaping, it holds that
every ω ∈ S agrees with ω0 on all but finitely many entries. Thus, for ω, ω′ ∈ S, we can declare
that ω ≺ ω′ if for the largest entry on which they disagree (say n), we have that ω(n) < ω′(n).
Note as G is locally moving, the diagonal action of G on S is faithful. Moreover, it preserves
the total order ≺.

Now suppose that S is countable (this holds, for instance, when G is a countable group)
and consider the dynamical realization ϕ : G → Homeo0(R) of the diagonal action of G on
(S,≺). We claim that ϕ is an exotic action. To see this, consider two sequences ω ≺ ω′ in S
and let n ∈ N be such that the k-th entries of both ω and ω′ agree with the k-th entry of ω0
for all k ≥ n. So, if g ∈ G satisfies g(ω0(n)) 6= ω0(n), then we have

min{g.ω0, g
−1.ω0} ≺ ω ≺ ω′ ≺ max{g.ω0, g

−1.ω0}.

This implies, on the one hand, that the action of N = [G,G] = [Gc, Gc] (which is a subgroup
without fixed points) on S is cofinal (i.e. every N -orbit is unbounded in both directions), and
hence ϕ(N) acts without fixed points. In particular ϕ(G) is not semi-conjugate to any action
coming from a factor of G (see Proposition 4.4). On the other hand, since ω0 is escaping, for
any compact interval I ⊂ R, the action of GRrI = {g ∈ G : I ⊆ Fix(g)} on S is cofinal as well,
so ϕ(GRrI) has no fixed points. In particular, ϕ(G) is not semi-conjugate to the standard
action.

We also remark that this construction can be used to show the following (to be compared
with Corollary 1.16).

Proposition 5.22. Let G ⊂ Homeoc(R) be a locally moving group of compactly supported
homeomorphisms. Then the standard action of G on R is not locally rigid.

Proof. Given an escaping sequence ω, denote by �ω the preorder induced on G by the action
on the orbit Sω, with g �ω h if g.ω � h.ω. Denote also by ≺0 the preorder on G induced by
its standard action and the point 0 ∈ R, by g ≺0 h if g(0) ≤ h(0). Choose a sequence ωn ∈ RN
of escaping sequences such that ωn(0) = 0 and |ωn(j)| > n if j > 0. Then for every finite
subset S ⊂ G and n large enough we have that every s ∈ S satisfies s ≺ωn id if and only if
s ≺0 id. Thus the sequence of preorders (≺ωn) converges to ≺0 in LPO(G). Thus by an easy
adaptation to preorders of the argument in [73, Proposition 3.3], this implies that the sequence
of actions associated to ωn as above can be positively conjugated to a sequence (ϕn) which
converges to the standard action of G in the compact open topology. �

5.3.3. An example where the rigid stabilizers have no fixed points. We write PLQ((0, 1)) for
the Bieri–Strebel group G((0, 1);Q,Q>0) of piecewise linear homeomorphisms that preserve
Q ∩ (0, 1). For a prime number q ∈ N, consider the corresponding q-adic order νq : Q>0 → Z
(these are the functions such that r =

∏
q prime q

νq(r) for every r ∈ Q>0). We then write
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πq(r) = qνq(r), which corresponds to the power of the prime q appearing in the factorization of
r ∈ Q>0. Given an element f ∈ PLQ((0, 1)), we define D−q f := πq ◦D−f . Observe that the
chain rule works for D−q , namely

(5.1) D−q (fg)(x) = D−q f(g(x))D−q f(x) for every x ∈ (0, 1) and f, g ∈ PLQ((0, 1)).
Every prime number q ∈ N defines a preorder on PLQ((0, 1)) in the following way. We consider
the subset Hq ⊂ PLQ((0, 1)) defined by

Hq =
{
f ∈ PLQ((0, 1)) : D−q f(x) = 1 for every x ∈ (0, 1)

}
,

and then the subset
Pq =

{
f ∈ PLQ((0, 1))rHq : D−q f(xf ) > 1

}
,

where for f ∈ PLQ((0, 1)), we set xf = max{x ∈ (0, 1] : D−q f(x) 6= 1}. We have the following.

Proposition 5.23. For every prime q ∈ N, the subset Pq is the positive cone of a preorder
�q of PLQ((0, 1)).

Proof. The chain rule (5.1) easily gives that Pq is a semigroup, PLQ((0, 1)) = Pq tHq t P−1
q ,

Hq is a subgroup and HqPqHq ⊆ Pq. The result then follows from Remark 2.34. �

We are ready to construct our action. For this, given f ∈ PLQ((0, 1)) consider the subset
Ef = {q : f /∈ Hq}, which is the collection of primes appearing in the factorization of the left
derivative D−f(x), for some x ∈ (0, 1). Note that Ef is a finite set, so we can consider the
prime pf := maxEf (where we are considering the standard ordering of primes). Then, define

P := {f ∈ PLQ((0, 1)) : id ≺pf f},
where �pf is the preorder on PLQ((0, 1)) from Proposition 5.23.

Proposition 5.24. The subset P is the positive cone of an order ≺ on PLQ((0, 1)). Fur-
thermore, if ϕ : G→ Homeo0(R) is the dynamical realization of ≺, then for every non-empty
subinterval I ⊆ (0, 1) the ϕ-image of [GI , GI ] acts without fixed points.

Proof. Write G = PLQ((0, 1)). For a non-trivial element f ∈ G, the chain rule (5.1) applied to
the inverse function gives that Ef = Ef−1 and that f ∈ P if and only if f−1 /∈ P . Thus, we
have PLQ((0, 1)) = P t {1} t P−1. Also note that if f, g ∈ P , it holds that pfg = max{pf , pg}
and that id �pfg f and id �pfg g, one inequality being strict. Thus, fg ∈ P showing that P is
a positive cone. Now let I ⊆ (0, 1) be a non-empty subinterval, let GI be its rigid stabilizer
inside G and take f ∈ G. Since Ef is finite, there is g ∈ [GI , GI ] such that pg > maxEf , so in
particular min{g, g−1} � f � max{g, g−1}. This shows that the [GI , GI ]-orbit of id in (G,≺)
is unbounded in both directions, and thus Fixϕ([GI , GI ]) = ∅, as desired. �

Analogous constructions will be presented in §9.3 for general Bieri–Strebel groups.

6. Differentiable actions of locally moving groups

In this section we are interested in actions on a closed interval, or on the real line, which
are by diffeomorphisms of class C1. First, let us observe that a rather direct consequence
of Theorem 5.3 is a rigidity result for actions on the real line by diffeomorphisms of class
C2, namely every action ϕ : G → Diff2

0(R) of a locally moving group (without fixed points)
is semi-conjugate to the standard action or to an action of G/[Gc, Gc]. Indeed, recall that
Kopell’s lemma states that whenever f and g are non-trivial commuting C2 diffeomorphisms
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of a compact interval, and if f has no fixed point in its interior, then neither does g. If ϕ falls
into the exotic case of Theorem 5.3, it is easy to check (as in the proof of Corollary 5.14) that
the image of G must contain an abundance of commuting pairs of elements which preserve
a compact interval and do not satisfy the conclusion of Kopell’s lemma. However we do not
elaborate on this, because we will show in this section that this rigidity actually holds for C1

actions (for which Kopell’s lemma fails, see e.g. Bonatti and Farinelli [13]).
We start by recalling some classical results in this setting.

6.1. Conradian actions and C1 actions. Let G ⊆ Homeo0(R) be a subgroup. A pair of
successive fixed points for G is a pair a, b ∈ R∪{±∞} with a < b such that there is an element
g ∈ G for which (a, b) is a connected component of Supp(g). A linked pair of fixed points for
G consists of pairs a, b and c, d in R ∪ {±∞} such that:

(1) there are elements f, g ∈ G such that a, b is a pair of successive fixed points of f and
c, d is a pair of successive fixed points of g;

(2) either {a, b} ∩ (c, d) or (a, b) ∩ {c, d} is a point.
As pointed out by Navas [90], the previous notion is the dynamical counterpart of Conradian
orderings on groups. Following the terminology of [93], we will say that an action of a group
G on an interval is Conradian if it has no pair of linked fixed points and there is no (global)
fixed point. We have the following fundamental fact (see for instance [93, Theorem 2.14]).

Theorem 6.1. Any Conradian action ϕ : G → Homeo0(R) of a finitely generated group G
on the real line is semi-conjugate to an action by translations. In particular, there exists a
non-trivial morphism τ : G→ R (the Conrad homomorphism), unique up to positive rescaling,
such that if g ∈ G is such that τ(g) > 0 and f ∈ ker τ , then for every n ∈ Z and ξ ∈ R one
has fn.ξ ≤ g.ξ.

Moreover, assume that ϕ : G→ Homeo0(R) is Conradian, let H ⊆ G be a finitely generated
subgroup, and let I ⊂ R be a connected component of Suppϕ(H). Then the action of H
induced on I by restriction is still Conradian, therefore it is also semi-conjugate to an action
by translations.

The following result is the version of Sacksteder’s theorem for C1 pseudogroups, as established
by Deroin, Kleptsyn, and Navas in [34] (see also Bonatti and Farinelli [13] for a simplified
proof).

Theorem 6.2. Let G ⊆ Diff1
0([0, 1]) be a subgroup acting with a linked pair of fixed points.

Then there exists a point x ∈ (0, 1), and an element h ∈ G for which x is a hyperbolic fixed
point: h(x) = x and h′(x) < 1.

Remark 6.3. In fact, the proof of Theorem 6.2 gives a more precise statement, which we point
out as it will be useful for the sequel.

Write I = [0, 1]. It is not difficult to see that the existence of a linked pair of fixed points for
G, as in Theorem 6.2, gives a subinterval J ⊂ I and two elements f, g ∈ G such that the images
f(J) and g(J) are both contained in J , and are disjoint: f(J) ∩ g(J) = ∅. (This situation is
the analogue of a Smale’s horseshoe for one-dimensional actions.) It follows that every element
h ∈ 〈f, g〉+ in the (free) semigroup generated by f and g satisfies h(J) ⊂ J , and moreover the
images h(J), where h runs through the 2n elements of length n in the semigroup 〈f, g〉+ (with
respect to the generating system {f, g}), are pairwise disjoint. Clearly the inclusion h(J) ⊂ J
gives that every h admits a fixed point in h(J). Using a probabilistic argument, and uniform
continuity of f ′ and g′ on J , one proves that as n goes to infinity, most of the elements h of
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length n are uniform contractions on J . This implies that most elements h ∈ 〈f, g〉+ of length
n, when n is large enough, have a unique fixed point in J , which is hyperbolic.

We deduce that if Λ ⊂ J is an invariant Cantor set for f and g (and thus for 〈f, g〉+),
then the hyperbolic fixed point for a typical long element h ∈ 〈f, g〉+ will never belong to the
closure of a gap J0 of Λ: otherwise, h would fix the whole gap J0, and therefore there would
be a point y ∈ J0 for which h′(y) = 1, contradicting the fact that h is a uniform contraction.

We point out a straightforward consequence of Theorem 6.2 (largely investigated in [13]).

Corollary 6.4. Let G ⊆ Diff1
0([0, 1]) be a subgroup acting with a linked pair of fixed points,

then there is no non-trivial element f ∈ Diff1
0([0, 1]) without fixed points in (0, 1), centralizing

G.

6.2. Conradian C1 actions of Thompson’s group F . Before discussing C1 actions of
general locally moving groups, we first prove a preliminary result in the case of Thompson’s
group F , namely we rule out the existence of Conradian C1 faithful actions of F . In fact, this
will be used when studying general locally moving groups.

The first step is to analyze actions which are sufficiently close to the trivial action, in a spirit
similar to the works of Bonatti [12] and McCarthy [84] (see also the related works [14, 16]).
For the statement, we recall that the C1 topology on Diff1

0([0, 1]) is defined by the C1 distance

dC1(f, g) = sup
ξ∈[0,1]

|f(ξ)− g(ξ)|+ sup
ξ∈[0,1]

|f ′(ξ)− g′(ξ)|.

When G is a finitely generated group endowed with a finite symmetric generating set S, we
consider the induced topology on Hom

(
G,Diff1

0([0, 1])
)
, saying that two representations ϕ and

ψ are δ-close if dC1(ϕ(g), ψ(g)) ≤ δ for every g ∈ S. Moreover, given ϕ ∈ Hom
(
G,Diff1

0([0, 1])
)
,

an element g ∈ G, and a point ξ ∈ [0, 1], we write ∆ϕ
ξ (g) = g.ξ − ξ for the displacement of the

point ξ. Clearly ∆ϕ
ξ (g) = 0 for every ξ ∈ [0, 1] if and only if g ∈ kerϕ.

Lemma 6.5. There exists a neighborhood V of the trivial representation in Hom
(
F,Diff1

0([0, 1])
)

such that if ϕ ∈ V has no linked pair of fixed points, then [F, F ] ⊆ kerϕ.

Proof. Let ϕ ∈ Hom
(
F,Diff1

0([0, 1])
)
be an action with no linked pair of fixed points. Consider

two dyadic open subintervals I b J b X = (0, 1) (i.e. with dyadic rational endpoints). Let
h ∈ F be such that h(J) = I. We choose an element f ∈ FI ∼= F without fixed points in I,
and set g = h−1fh ∈ FJ for the conjugate element (which acts without fixed points on J).
Note that both f and g belong to the subgroup H := 〈g, [FJ , FJ ]〉. The group H is finitely
generated (it is generated by g and by the group FL for any dyadic subinterval L b J such
that g(L) ∩ L 6= ∅), and since [FJ , FJ ] is simple and normal in H, the abelianization of H is
infinite cyclic, generated by the image of g. By Theorem 6.1 (applied to every action obtained
by taking restriction of ϕ to a connected component of Suppϕ(H)), this implies that

(6.1)
∣∣∣∆ϕ

ξ (fn)
∣∣∣ ≤ max

{∣∣∣∆ϕ
ξ (g)

∣∣∣ , ∣∣∣∆ϕ
ξ (g−1)

∣∣∣} for every ξ ∈ [0, 1] and n ∈ Z.

Claim. Fix γ > 0. If ϕ(f) and ϕ(g) are sufficiently close to the identity in the C1 topology,
for all ξ ∈ [0, 1] we have

(2− γ)
∣∣∣∆ϕ

ξ (f)
∣∣∣ ≤ (1 + γ)

∣∣∣∆ϕ
ξ (g)

∣∣∣ .
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Proof of claim. Fix γ > 0. Using the mean value theorem (in more general form, this is
Bonatti’s approximate linearization estimate [12]; see also [14]), we get that if ϕ(f) and ϕ(g)
are sufficiently C1 close to the identity, for all ξ ∈ [0, 1] we have∣∣∣∆ϕ

ξ (f2)− 2∆ϕ
ξ (f)

∣∣∣ ≤ γ ∣∣∣∆ϕ
ξ (f)

∣∣∣
and ∣∣∣|∆ϕ

ξ (g−1)| − |∆ϕ
ξ (g)|

∣∣∣ =
∣∣∣∆ϕ

ξ (g−1) + ∆ϕ
ξ (g)

∣∣∣ ≤ γ ∣∣∣∆ϕ
ξ (g)

∣∣∣ .
From (6.1) and the two estimates above, we obtain the inequalities

(2− γ)
∣∣∣∆ϕ

ξ (f)
∣∣∣ ≤ ∣∣∣∆ϕ

ξ (f2)
∣∣∣ ≤ (1 + γ)

∣∣∣∆ϕ
ξ (g)

∣∣∣ . �

Claim. Fix γ > 0. If ϕ(g) and ϕ(h) are sufficiently close to the identity in the C1 topology,
for all ξ ∈ [0, 1] we have

(1− γ)
∣∣∣∆ϕ

ξ (g)
∣∣∣ ≤ ∣∣∣∆ϕ

h.ξ(f)
∣∣∣ .

Proof of claim. We have
∆ϕ
h.ξ(f) = fh.ξ − h.ξ = hg.ξ − h.ξ

= ϕ(h)′(ξ) ·∆ϕ
ξ (g) + o

(
∆ϕ
ξ (g)

)
.

Assume that o
(
|∆ϕ

ξ (g)|
)
≤ γ

2

∣∣∣∆ϕ
ξ (g)

∣∣∣ and |ϕ(h)′(ξ)− 1| ≤ γ
2 . Then by the triangle inequality

we get ∣∣∣∆ϕ
h.ξ(f)−∆ϕ

ξ (g)
∣∣∣ ≤ ∣∣ϕ(h)′(ξ)− 1

∣∣ · ∣∣∣∆ϕ
ξ (g)

∣∣∣+ o
(
|∆ϕ

ξ (g)|
)
≤ γ

∣∣∣∆ϕ
ξ (g)

∣∣∣ . �

Choose now γ > 0 small enough, so that (2−γ)(1−γ)
1+γ = λ > 1, and consider the appropriate

neighborhood V of the trivial representation in Hom
(
F,Diff1

0([0, 1])
)
, so that the conditions in

the claims are satisfied for every Conradian action ϕ ∈ V. Fix ϕ ∈ V Conradian. Combining
the claims, we conclude that for every ξ ∈ [0, 1], one has λ

∣∣∣∆ϕ
ξ (f)

∣∣∣ ≤ ∣∣∣∆ϕ
h.ξ(f)

∣∣∣. As this holds
for any ξ ∈ [0, 1], we get that for any n ∈ N and ξ ∈ [0, 1] one has λn

∣∣∣∆ϕ
ξ (f)

∣∣∣ ≤ ∣∣∣∆ϕ
hn.ξ(f)

∣∣∣. As∣∣∣∆ϕ
hn.ξ(f)

∣∣∣ is bounded by 1 (the length of [0, 1]), we deduce that the element f belongs to the
kernel of ϕ, as desired. In particular kerϕ is a non-trivial normal subgroup of F , and thus it
contains [F, F ]. �

The previous statement, which is of local nature (perturbations of the trivial actions), is used
to obtain a global result. For this, we recall a trick attributed to Muller [87] and Tsuboi [106]
(see also [16]) after which, given any C1 action ϕ : G→ Diff1

0([0, 1]) of a group G on [0, 1] and
a finite subset S ⊂ G, for any ε > 0 there exists δ > 0 and a C1 action ψ : G→ Diff1

0([0, 1]),
which is C0 conjugate to the original one, such that

|ψ(g)(ξ)− ξ|+ |ψ(g)′(ξ)− 1| ≤ ε for every ξ ∈ [0, δ] and g ∈ S.

Lemma 6.6. Every Conradian C1 action of F on the closed interval [0, 1] has abelian image.

Proof. Let ϕ ∈ Hom
(
F,Diff1

0([0, 1])
)
be a Conradian action. We want to prove that kerϕ

contains [F, F ], and for this it is enough to show that kerϕ is non-trivial.
Let us fix a dyadic subinterval I b X = (0, 1). After Theorem 6.1, ϕ is semi-conjugate to

an action by translations, and this is given by the Conrad homomorphism τ : F → R. We can
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find a minimal non-empty closed ϕ(F )-invariant subset Λ ⊂ (0, 1) such that ker τ pointwise
fixes Λ. We write J for the collection of connected components of (0, 1)r Λ.

Note that FI ⊆ ker τ and therefore, given an interval J ∈J , we have an induced action
ϕJ ∈ Hom

(
FI ,Diff1

0(J)
)
obtained by restriction of ϕ. Note that as ϕ is Conradian, then ϕJ has

no linked pair of fixed points. We also remark that if J and J ′ are in the same ϕ(F )-orbit, then
ϕJ and ϕJ ′ are conjugate. Let V be the neighborhood of the trivial representation provided by
Lemma 6.5, and denote by VJ ⊂ Hom

(
FI ,Diff1

0(J)
)
the corresponding neighborhood obtained

after considering an identification Hom
(
FI ,Diff1

0(J)
)
∼= Hom

(
F,Diff1

0([0, 1])
)
. Using the trick

of Muller and Tsuboi to the action ϕ, we can assume that there exists δ > 0 such that if
J ⊂ (0, δ), then ϕJ ∈ VJ . In particular for such intervals J ∈J , we have [FI , FI ] ⊆ kerϕJ .
As the ϕ(F )-orbit of every J ∈J has an element contained in (0, δ), and two intervals in the
same ϕ(F )-orbit lead to conjugate actions, we deduce that [FI , FI ] ⊆ kerϕJ for every J ∈J .
As ϕ(FI) pointwise fixes Λ, which is the complement of

⋃
J∈J J in (0, 1), we deduce that

[FI , FI ] ⊆ kerϕ, as desired. �

With similar proof, we can extend the previous result to C1 actions on the real line.

Proposition 6.7. Every Conradian C1 action of F on the real line has abelian image.

Proof. We proceed as in the proof of Lemma 6.6, and for this reason we skip some detail. We
start with a Conradian action ϕ ∈ Hom

(
F,Diff1

0(R)
)
, and consider the Conradian homomor-

phism τ : F → R, and a minimal invariant subset Λ ⊂ R, pointwise fixed by ker τ . We denote
by J the collection of connected components of RrΛ. For a given dyadic subinterval I b X,
this gives rise to actions ϕJ ∈ Hom

(
FI ,Diff1

0(J)
)
without linked pairs of fixed points (J ∈J ).

After Lemma 6.6 (applied to the restriction of ϕJ to the closure of every connected component
of SuppϕJ (FI)), we deduce that [FI , FI ] ⊆ kerϕJ and therefore [FI , FI ] ⊆ kerϕ. �

6.3. C1 actions of general locally moving groups. Using that any locally moving group
contains a copy of F (Proposition 4.8), we get the following consequence of Proposition 6.7.

Proposition 6.8. Locally moving groups admit no faithful Conradian C1 actions on the real
line.

We actually have the following alternative, which is a more precise formulation of Theorem
1.2 from the introduction.

Theorem 6.9. For X = (a, b), let G ⊆ Homeo0(X) be locally moving. Then every action
ϕ : G→ Diff1

0(R) without fixed points, satisfies one of the following:
i) either ϕ is semi-conjugate to the standard action of G on X;
ii) or ϕ is semi-conjugate to an action that factors through the quotient G/[Gc, Gc].

Moreover the second case occurs if and only if ϕ([Gc, Gc]) has fixed points, in which case the
action of [Gc, Gc] on each connected component of its support is semi-conjugate to its standard
action on X.

Proof of Theorem 6.9. Assume by contradiction that ϕ : G→ Diff1
0(R) is an action which is

not semi-conjugate to the standard action on X, nor to any action of the quotient G/[Gc, Gc].
In particular ϕ must be faithful.

Note that Gc is locally moving, so that by Proposition 4.8 we can find a subgroup Γ ⊆ Gc
isomorphic to F . In particular, Γ is finitely generated, and we can apply Corollary 5.14. Let
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I ⊂ Suppϕ(Γ) be a connected component, and take an element f ∈ [Gc, Gc] centralizing Γ,
such that f.I ∩ I = ∅ (this always exists, as pointed out in the proof of Corollary 5.14.(ii)).
Let J be the connected component of Suppϕ(f) containing I, which is bounded after Corollary
5.14.(i). Applying Corollary 6.4 to the induced action of Γ on J obtained by restriction of ϕ,
we deduce from Lemma 6.6 that the restriction of ϕ(Γ) to I is abelian. As I ⊂ Suppϕ(Γ) was
arbitrary, we get that ϕ(Γ) is abelian, and therefore ϕ : G→ Diff1

0(R) is not faithful, which is
an absurd.

The last statement is a consequence of the fact that the group [Gc, Gc] is still locally moving
(by Lemma 4.3), thus we can apply the first part of the theorem to its action on the connected
components of the support, and since it is simple (Proposition 4.4) only the first case can
occur. �

The last result of this section corresponds to Corollary 1.3, with a more precise statement.

Definition 6.10. For X = (a, b), let G ⊆ Homeo0(X) be locally moving. We say that G has
independent groups of germs at the endpoints if for every pair of elements γ1 ∈ Germ(G, a) and
γ2 ∈ Germ(G, b), there exists g ∈ G such that Ga(g) = γ1 and Gb(g) = γ2.

Note that this is equivalent to the condition that the natural injective homomorphism
G/Gc ↪→ Germ(G, a)× Germ(G, b) be onto.

Corollary 6.11. For X = (a, b), let G ⊆ Homeo0(X) be locally moving with independent
groups of germs at the endpoints. Then the following hold.

i) Every faithful action ϕ : G→ Diff1
0([0, 1]) without fixed points is semi-conjugate to the

standard action on X.
ii) Every faithful action ϕ : G→ Diff1

0(R) without fixed points is either semi-conjugate to
the standard action on X, or to a cyclic action.

In the latter case, if τ : G → Z is the homomorphism giving the semi-conjugate
action, then the action of ker τ on each connected component of its support is semi-
conjugate to its standard action on X.

To prove Corollary 6.11 we need the following lemma.

Lemma 6.12. For X = (a, b), let G ⊆ Homeo0(X) be locally moving with independent groups
of germs at the endpoints. Then for every pair of points c < d in X, the subgroup 〈G(a,c), G(d,b)〉
projects onto the largest quotient G/[Gc, Gc].

Proof. Given γ ∈ Germ(G, a) the assumption implies that there exists g ∈ G with Ga(g) = γ
and Gb(g) = id. Thus, we have g ∈ G(a,x) for some x ∈ X. If we choose h ∈ Gc such that
h(x) < c the element g′ = hgh−1 belongs to G(a,c) and satisfies Ga(g′) = γ. We conclude
that the group G(a,c) projects onto Germ(G, a) and similarly G(d,b) projects onto Germ(G, b).
Therefore the subgroup 〈G(a,c), G(d,b)〉 projects onto Germ(G, a) × Germ(G, b) ' G/Gc. It is
therefore enough to show that its image in G/[Gc, Gc] contains Gc/[Gc, Gc]. This is the case
because every g ∈ Gc is conjugate inside Gc to an element of 〈G(a,c), G(d,b)〉, which has the
same image in the abelianisation Gc/[Gc, Gc]. �

Proof of Corollary 6.11. In the proof we set N = [Gc, Gc]. Let Y = [0, 1] or Y = R according
to the case in the statement. By Theorem 6.9 the ϕ-action of G on Y is either semi-conjugate
to the standard action on X or to an action that factors through G/N . Assume that the
second condition holds: after Theorem 6.9, we know more precisely that if I is a connected
component of Suppϕ(N), then the induced action of N on I is semi-conjugate to the standard



56 BRUM, MATTE BON, RIVAS, AND TRIESTINO

action on X. In particular, it admits linked pairs of fixed points and by Theorem 6.2 we can
find h ∈ N with a hyperbolic fixed point ξ ∈ I. We make a slightly more elaborate argument
than the one that is needed for Corollary 6.4. Let (c, d) b X be such that h ∈ N(c,d). Then
the subgroup H = 〈G(a,c), G(d,b)〉 centralizes h and thus every point in the orbit H.ξ is fixed
by h, with derivative always equal to ϕ(h)′(ξ) 6= 1. As the derivative ϕ(h)′ is continuous, it
must be that the orbit H.ξ is discrete in Y . In the case Y = [0, 1], the only possibility is that
ξ is fixed by ϕ(H), and thus after Lemma 6.12, the quotient action of G/N would have a fixed
point as well. Similarly, in the case Y = R, ϕ(H) cannot fix ξ, so that the orbit H.ξ is infinite
and discrete. Using Lemma 6.12 again, we deduce that the quotient action of G/N has an
infinite discrete orbit, which means that it is semi-conjugate to a cyclic action.

For the last statement, apply the case Y = [0, 1] to the action of ker τ . �

6.4. An application to non-smoothability. In Theorem 6.9 it may happen that the
standard action of G is not semi-conjugate to an action of a given regularity, so that the first
possibility is not realizable for actions in that regularity. Here we discuss two applications
of this to certain groups of piecewise linear homeomorphisms, which improve results on
non-smoothability of such groups of Bonatti, Lodha and the fourth author [15].

6.4.1. Thompson–Brown–Stein groups. Here we discuss an application to differentiable actions
of Thompson–Brown–Stein groups Fn1,...,nk introduced in Definition 2.45, which are natural
generalizations of Thompson’s group F . Such groups are clearly locally moving. It was shown
in [15] that when k ≥ 2 the standard action of Fn1,...,nk cannot be conjugate to any C2 action.
Here we show the following.

Theorem 6.13. Let r > 1. For any k ≥ 2 and choice of n1, . . . , nk as in Definition 2.45, the
Thompson–Brown–Stein group Fn1,...,nk admits no faithful Cr action on the real line.

We first need a lemma for the usual Higman–Thompson groups Fn. Corollary 6.11 applies
to them, so every faithful action of Fn of class C1 is semi-conjugate to its standard action on
the interval [0, 1]. However, as pointed out by Ghys and Sergiescu [45], the group F (and every
Fn) actually admits C1 (even C∞) actions which are not conjugate to the standard action
(see Remark 11.2). In these examples, the action is obtained by blowing up the orbit of dyadic
rationals. The next lemma, which is a consequence of Sacksteder’s theorem (Theorem 6.2) and
the structure of the group, gives a restriction on possible semi-conjugate but not conjugate C1

actions.

Lemma 6.14. For n ≥ 2, let ϕ : Fn → Diff1
0(R) be a faithful action which is semi-conjugate

to the standard action ϕ0 : Fn → PL([0, 1]), but not conjugate. Let h : R → (0, 1) be the
corresponding continuous monotone map such that hϕ = ϕ0h. Then there exists a rational
point p ∈ [0, 1] which is not n-adic (i.e. p ∈ (Q r Z[1/n]) ∩ [0, 1]), such that the preimage
ξ = h−1(p) is a singleton, and an element g ∈ F for which ξ is a hyperbolic fixed point.

Proof. The proof is a tricky refinement of arguments in [15, §5.1]. In the following, we write
G = Fn. Given an action ϕ as in the statement, denote by Λ ⊂ R the corresponding minimal
invariant Cantor set. Fix an open n-adic subinterval I b (0, 1), then ϕ(GI) preserves the
interval h−1(I) and ΛI := Λ ∩ h−1(I) is the minimal invariant subset for the restriction
ϕI : GI → Diff1

0

(
h−1(I)

)
induced by ϕ.

After Proposition 6.2 and subsequent Remark 6.3 applied to ϕI , there exists an element
g ∈ GI and a point ξ ∈ ΛI such that g.ξ = ξ and ϕ(g)′(ξ) < 1. Moreover, such a point ξ cannot
belong to the closure of a gap of ΛI (see Remark 6.3), or in other terms the semi-conjugacy h
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must be injective at ξ. It is well known that if a point p ∈ I is an isolated fixed point for some
element of GI in the standard action, then p is rational (the point p must satisfy a rational
equation nkp+ a

nb
= p; see Lemma 6.19 below). From this we deduce that the point p = h(ξ)

is rational. Moreover, the point p cannot be n-adic: take any element f ∈ GI such that ϕ0(f)
coincides with ϕ0(g) in restriction to [p, 1] and is the identity in restriction to [0, p]. Then the
right derivative of ϕ(f) at ξ must be equal to ϕ(g)′(ξ) < 1 and the left derivative of ϕ(f) at ξ
must be equal to 1, contradicting the fact that ϕ is a C1 action. This concludes the proof. �

As a consequence of Lemma 6.14, we get a strong improvement of [15, Theorem 3.4], on
regularity of actions of Thompson–Brown–Stein groups.

The idea is to replace the use of the Szekeres vector field (which requires C2 regularity),
with Sternberg’s linearization theorem, which works in Cr regularity (r > 1), but requires
hyperbolicity (granted from Lemma 6.14). In this form, these results can be found in
[108, Appendice 4] or [91, Theorems 3.6.2 and 4.1.11] (a detailed proof when r < 2 appears in
[105, §6.2.1]). A similar approach, although less technical, appears in [76] to exhibit examples
of groups at “critical regularity”.

Theorem 6.15 (Sternberg). Fix r > 1 and let f be a Cr diffeomorphism of the half-open
interval [0, 1) with no fixed point in (0, 1) and such that f ′(0) 6= 1. Then there exists a
diffeomorphism h : [0, 1)→ [0,+∞) of class Cr such that

(1) h′(0) = 1,
(2) the conjugate map hfh−1 is the scalar multiplication by f ′(0).

Theorem 6.16 (Szekeres). Fix r > 1 and let f be a Cr diffeomorphism of the half-open
interval [0, 1) with no fixed point in (0, 1) and such that f ′(0) 6= 1. Then there exists a unique
Cr−1 vector field X on [0, 1) with no singularities on (0, 1) such that

(1) f is the time-1 map of the flow {φsX } generated by X ,
(2) the flow {φsX } coincides with the C1 centralizer of f in Diff1

0([0, 1)).

The following statement is the analogue of [15, Proposition 7.2].

Proposition 6.17. Take a ∈ (0, 1) and r > 1. Assume that two homeomorphisms f, g ∈
Homeo0([0, 1]) satisfy the following properties.

(1) The restrictions of f and g to [0, a] are C2 contractions, namely the restrictions are
C2 diffeomorphisms onto their images such that

f(x) < x and g(x) < x for every x ∈ (0, a].
(2) f and g commute in restriction to [0, a], that is,

fg(x) = gf(x) for every x ∈ [0, a].
(3) The C2 germs of f and g at 0 generate an abelian free group of rank 2.

Then, for every homeomorphism ψ ∈ Homeo0([0, 1]) such that:
(1) ψfψ−1 and ψgψ−1 are Cr in restriction to [0, ψ(a)],
(2) (ψfψ−1)′(0) < 1,

one has that the restriction of ψ to (0, a] is Cr.

Sketch of proof. The proof is basically the same as in [15], and we only give a sketch. As f
and g are C2 contractions near 0 and commute, they can be simultaneously linearized by
considering the Szekeres vector field X for f . As their germs generate a rank 2 abelian group,
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we can find a dense subset of times A ⊂ R, such that for every α ∈ A, there exists an element
hα ∈ 〈f, g〉 such that the restriction of hα to [0, a] coincides with the time-α map of the flow
φαX . Given a map ψ as in the statement, we can also simultaneously linearize ψfψ−1 and
ψgψ−1, using Sternberg’s linearization theorem (Theorem 6.15). If Y is the corresponding
vector field from Theorem 6.16, we deduce that the restriction of ψ to (0, a] is C1 and sends
one vector field to the other:

(
ψ[0,p]

)
∗
X = Y. Writing this relation more explicitly, we get

ψ′(x) = Y(ψ(x))
X (x) for every x ∈ (0, a],

whence we deduce that ψ is Cr in restriction to (0, a]. �

The next technical result is an adaptation of classical arguments in one-dimensional dynamics,
which can be traced back to Hector and Ilyashenko (see specifically [89, Proposition 3.5] and
[52, Lemma 3]).

Proposition 6.18. For r ∈ (1, 2], let f, g ∈ Diffr0(R) be two diffeomorphisms fixing 0 with the
following properties:

(1) f ′(0) = λ < 1 and g′(0) = µ ≥ 1,
(2) for every (l,m) ∈ N2 r {(0, 0)}, there exists ε > 0 such that gmf l(x) 6= x for every

x ∈ (0, ε).
Then there exists δ > 0 such that the 〈f, g〉-orbit of every point x ∈ (0, δ) is dense in (0, δ).

Proof. By Sternberg’s linearization theorem (Theorem 6.15), we can take a Cr coordinate
h : U → R on a neighborhood U of 0 so that the map f becomes the scalar multiplication by λ
on R (more precisely, we take as U the maximal open interval containing no other fixed points
for f). Write V = h(U ∩ g−1(U)), f = hfh−1 and g = hgh−1 �V . Note that g′(0) = g′(0) = µ.

We first rule out the case where log λ and logµ are rationally dependent. So take (l,m) ∈
N2 r {(0, 0)} such that λlµm = 1 and consider the composition γ := gm ◦ f l, which satisfies
γ′(0) = 1, and write γ = gm ◦ f l for the corresponding map defined on an appropriate
open subinterval V ′ ⊂ V containing 0. Then, for every x ∈ V ′ and n ∈ N, we have
f
−n
γf

n(x) = γ(λnx)
λn , from which we deduce that f−nγfn → id uniformly on compact subsets

of V ′, as n → ∞. Going back to the original coordinates, we get that there exists δ > 0
such that f−nγfn → id uniformly on [0, δ] as n→∞. Take now x ∈ (0, δ) and let K be the
closure of the 〈f, g〉-orbit of x, which clearly contains the point 0. Assume by contradiction
that K ∩ [0, δ] 6= [0, δ], and let I be a connected component of [0, δ]rK. By 〈f, g〉-invariance
of K and the established uniform convergence to the identity, there exists n0 ∈ N such that
f−nγfn(I) = I for every n ≥ n0. This gives that the element γ = gm ◦ f l preserves all the
intervals of the form fn(I), for n ≥ n0, and in particular it admits infinitely many fixed points
accumulating on 0, which contradicts the assumption (2).

We assume next that log λ and logµ are rationally independent, and in particular that
µ > 1. Applying Sternberg’s linearization theorem again, take a Cr coordinate k : W → R
on a neighborhood W of 0 so that the map g becomes the scalar multiplication by µ on R;
more precisely, upon exchanging the roles of f and g, we take as W the maximal open interval
containing no other fixed points for g, and assume that W ⊂ U . Note that after Theorem 6.15,
we can take k such that k′(0) = 1, so that k(x) = x + O(xr) as x → 0. Given ν > 0, there
exist two increasing sequences (ln)n∈N, (mn)n∈N ⊂ N, such that λlnµmn → ν as n→∞. For
n ∈ N, the composition gn = gmn ◦ f ln is defined on W , as f contracts W and g preserves it.
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Fix x ∈W , so that

gn(x) = k−1
(
µmnk(λlnx)

)
= k−1

(
µmn(λlnx+O(λrlnxr))

)
= k−1

(
µmnλlnx+O(λ(r−1)lnxr)

)
as n→∞.

We deduce the convergence gn(x)→ k−1(νx) as n→∞. As ν > 0 was arbitrary, this gives
that the orbit of every x ∈W ∩ (0,+∞) is dense in W ∩ (0,+∞), as desired. �

Finally, we also need a basic fact.

Lemma 6.19. Let ` ∈ N be an integer, and p ∈ Q any rational. Then there exists a non-trivial
`-adic affine map g ∈ Aff(Z[1/`], 〈`〉∗) ⊆ Aff(R) such that g(p) = p.

Proof. Write g(x) = `kx+ a
`b
, with a ∈ Z and b, k ∈ N, for a generic `-adic affine map. Note

that the condition g(p) = `kp+ a
`b

= p gives p = a
`b(`k−1) , which can be any rational number

(choosing appropriate a ∈ Z and b, k ∈ N). �

We can now prove the main result of this section.

Proof of Theorem 6.13. We argue by way of contradiction. Write G = Fn1,...,nk and let
ϕ : G→ Diffr0(R) be a faithful action (r > 1) without fixed points. After Corollary 6.11, ϕ is
either semi-conjugate to the standard action on X, or to a cyclic action. Assume first that
the former occurs and write h : R→ X = (0, 1) for the semi-conjugacy. Using Lemma 6.14
applied to the action of Fn1 ⊆ G, we find a rational point p ∈ X and an element f ∈ Fn1 ,
such that ξ = h−1(p) is a hyperbolic fixed point for ϕ(f). Using Lemma 6.19, we can find an
element g ∈ Fn2 for which p ∈ X is an isolated fixed point. In particular, f and g commute in
restriction to a right neighborhood [p, q] of p, and their right germs at p generate an abelian
free group of rank 2 (they are scalar multiplications by powers of n1 and n2 respectively).
Thus, up to considering inverse powers, the assumptions of Proposition 6.18 are satisfied by
the maps ϕ(f) and ϕ(g), from which we deduce that the action of 〈ϕ(f), ϕ(g)〉 is minimal
in restriction to an interval of the form (ξ, ξ + δ), with δ > 0. Hence, the semi-conjugacy
h : R→ X considered above is a conjugacy (that is, h is a homeomorphism). On the other
hand, up to considering inverse powers, the elements f and g satisfy the assumptions of
Proposition 6.17. We deduce that h is Cr in restriction to [p, q].

We conclude as in [15, Proof of Theorem 7.3]. Take an element γ ∈ G with a discontinuity
point r ∈ [p, q] for its derivative; then also the derivative ϕ(γ)′ has a discontinuity point at
h−1(r). This gives the desired contradiction.

In the case of cyclic action, considering the corresponding homomorphism τ : G→ Z, we
have after Corollary 6.11 that ker τ acts on every connected component of its support semi-
conjugate to the standard action. Thus one can reproduce the previous argument, adapted
to ker τ . This is a little tricky, as the abelianization Fni/[Fni , Fni ] ∼= Zni is larger than the
quotient Fni/(Fni)c ∼= Z2. Start with an element f ∈ Fn1 ∩ ker τ with a hyperbolic fixed point
ξ, as in the previous case, and then choose g1 ∈ (Fn2)c fixing p = h−1(ξ) playing the role of g
in the previous case. However, it could be that g1 /∈ ker τ , so for this, take an element g2 ∈ G
such that g2 (Supp(g1)) ∩ Supp(g1) = ∅. Then the commutator g = [g1, g2] coincides with g1
on Supp(g1), and belongs to ker τ . �

The method presented here cannot be improved further to go down to exclude C1 smootha-
bility. We believe however this can be achieved with a different approach. Let us point out that
all known examples of C1 smoothable groups of PL homeomorphisms embed in Thompson’s
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F . It would be tempting to conjecture that this is also a necessary condition. However, we
estimate that little is known about other groups of PL homeomorphisms, such as those defined
by irrational slopes (see however the very recent work [51], where it is proved that several such
groups do not embed in F ). So, let us highlight the following concrete problem.

Question 6.20. Fix an irrational τ ∈ RrQ, and write Λ = 〈τ〉∗ and A = Z[Λ] (as an explicit
case, one can take the golden ratio τ =

√
5−1
2 ). Consider the irrational slope Thompson’s group

Fτ = G([0, 1];A,Λ). Is the action of Fτ on the interval C1 smoothable?

6.4.2. An application to Bieri–Strebel groups on the line. Given a real number λ > 1, we
consider the Bieri–Strebel groups acting on the line G(λ) = G(R;Z[λ, λ−1], 〈λ〉∗). It was
remarked in [15] that the standard action of G(λ) cannot be conjugate to any C1 action. One
of the main results of [15] states that for certain choices of λ the group G(λ) does not admit
any faithful C1 action on the line. Here we generalize this result by removing all restrictions
on λ.

Corollary 6.21. For λ > 1, there is no faithful C1 action of the Bieri–Strebel group G(λ) on
the closed interval.

Proof. Indeed, it is proved in [15, Theorem 6.10] that the standard action of G(λ) on the line
cannot be conjugate to any C1 action on the closed interval, but a closer look at the proof
(notably using the results from [16, §4.2]) shows that even a semi-conjugacy is impossible, as
the action of the affine subgroup of G(λ) must be minimal. Hence the result follows from
Theorem 6.9. �

In Section 12 we will classify C0 actions of G(λ) up to semi-conjugacy whenever λ is
algebraic.

7. R-focal actions

In this section and the next we leave temporary aside the study of locally moving groups to
introduce and study the notion of R-focal action. In this section we give the definition and
some first properties of R-focal actions and, as initial motivation, we show that they arise
naturally in some situations, for instance for actions of solvable groups. The meaning of this
notion will be further clarified in Section 8, where we will reinterpret R-focal actions in terms
of actions on planar directed trees, and study their dynamical properties more in details.

7.1. Cross-free covers and R-focal actions.

Definition 7.1. Let Ω be a set and let I, J ⊂ Ω be two subsets. We say that I and J do not
cross if either I ⊂ J or J ⊂ I, or I ∩ J = ∅. A collection of subsets S is cross-free if I and J
do not cross for every I, J ∈ S.

When (Ω,≺) is a totally ordered space, we say that a cross-free collection S is a cross-free
cover (CF-cover for short) if the following conditions are satisfied:
(C1) every element of S is ≺-convex, open and bounded (with respect to the order topology),
(C2) there exists a subcollection of S which is totally ordered by inclusion and covers Ω.

Remark 7.2. When (Ω,≺) is the real line R with its standard order, condition (C1) for a
CF-cover S means that every element of S is a bounded open interval, whilst condition (C2)
amounts to requiring that S be a cover of R, justifying the terminology. Indeed if this holds,
then if C1 and C2 are maximal totally ordered subcollections of S (with respect to inclusion),
then the cross-free property implies that the unions

⋃
I∈C1 I and

⋃
J∈C2 J are either equal or
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disjoint, and hence R can be written as a disjoint union of open subsets of this form. By
connectedness of R, there can be only one such maximal subcollection (and there is at least
one by Zorn’s lemma).

Definition 7.3. An action ϕ : G→ Homeo0(R) is said to be R-focal if it has no fixed points
and there exists a bounded open interval I ⊂ R whose ϕ(G)-images form a CF-cover of R.

Remark 7.4. Note that equivalently an action ϕ : G→ Homeo0(R) is R-focal if and only if it
admits an invariant CF-cover S and an interval J ∈ S whose ϕ(G)-orbit is cofinal in S with
respect to inclusion, meaning that for every J ′ ∈ S there exists g ∈ G such that J ′ ⊂ g.J .
Indeed the latter condition clearly implies that the orbit of J is a CF-cover. Conversely if I is
a bounded open interval whose orbit is a CF-cover, then condition (C2) implies that the orbit
of I is cofinal.

We now study some basic properties of R-focal actions.

Lemma 7.5. Let ϕ : G→ Homeo0(R) be an action admitting an invariant CF-cover. Then
for every element g ∈ G, the image ϕ(g) has fixed points.

A more precise analysis of the dynamics of individual elements in an R-focal action will be
given in §8.3.

Proof of Lemma 7.5. Let S be an invariant CF-cover and fix g ∈ G. For every ξ ∈ R, from
condition (C2) we can find an interval J ∈ S which contains ξ and g.ξ, so that g.J ∩ J 6= ∅.
Then the cross-free property implies that either g or g−1 must map J into itself. By the
intermediate value theorem, ϕ(g) has fixed points inside J . �

Proposition 7.6. Let G be a group, and let ϕ : G→ Homeo0(R) be an R-focal action. Then
the following holds.

(i) If ψ : G→ Homeo0(R) is an action semi-conjugate to ϕ then ψ is R-focal.
(ii) ϕ(G) has a unique minimal invariant set Λ ⊆ R, which is not discrete.

In particular, every R-focal action is semi-conjugate to a minimal R-focal action.

Proof. Let I ⊂ R be a bounded open interval such that S = {ϕ(g)(I) : g ∈ G} is a CF-cover.
To prove (i), let h : R→ R be a semi-conjugacy from ϕ to ψ (in the sense that (2.1) holds).
After condition (C2), S contains an increasing sequence of intervals that exhaust R, thus,
as h is proper, we can find g ∈ G such that h(ϕ(g)(I)) = ψ(g)(h(I)) is not a singleton, so
that actually J = h(I) is a bounded open interval. The equivariance of h implies that the
ψ(G)-orbit of J is a CF-cover.

To prove (ii), observe first that ϕ(G) has no closed discrete orbit. If this was the case, then
the number of points of such an orbit inside intervals in S must be finite and constant, which
is clearly in contradiction with condition (C2). Thus ϕ(G) has at most one non-empty closed
minimal subset, and it is enough to show that such a set exists. By condition (C2), every
non-empty closed G-invariant subset of R intersects an element of S, so by ϕ(G)-invariance it
intersects I. By compactness of I, a standard application of Zorn’s lemma gives a non-empty
minimal invariant set. Finally note that since ϕ admits a non-discrete minimal invariant set,
it is semi-conjugate to a minimal action (Corollary 2.12), which must be R-focal by (i). �

After the previous proposition there is little loss of generality if we restrict to the study of
R-focal minimal actions, and we will systematically do so. Note that in this case the notion
of R-focal action can be reformulated by simply requiring the existence of a CF-cover. More
precisely, we have the following result.
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Proposition 7.7. Let ϕ : G → Homeo0(R) be a minimal action. Then ϕ is R-focal if and
only if it preserves a non-empty cross-free family of intervals. Moreover if this is the case,
then ϕ is proximal.

Proof. The forward implication is obvious from the definition of R-focal action, by taking
the family consisting of ϕ(G)-images of I. Conversely assume ϕ is minimal and that S is an
invariant cross-free family of intervals. Then, for every I ∈ S, the family S0 = {ϕ(g)(I) : g ∈ G}
is also cross-free. The union of elements of S0 is an invariant open subset which is non-trivial,
so that by minimality of the action, it has to coincide with the whole real line. In particular
we have that S0 is a CF-cover, so ϕ is an R-focal action.

Let us now show that ϕ must be proximal. By Theorem 2.17 if this is not the case then
there exists an element τ ∈ Homeo0(R) without fixed points which centralizes ϕ(G). Upon
conjugating the action, we can assume that τ(x) = x + 1. Now, given a bounded interval
I ⊂ R denote by nI the largest n ≥ 0 such that τn(I) ∩ I 6= ∅. Since τ commutes with ϕ(G),
we must have that nϕ(g)(I) = nI holds for every g. We deduce that the orbit of every bounded
interval I must consist of intervals whose length is bounded by nI + 1, and thus ϕ cannot be
R-focal. �

We conclude with a simple lemma, which says that minimal R-focal actions are determined,
uniquely up to conjugacy, by the combinatorics of the CF-cover. This will be used in the next
section.
Lemma 7.8. Let G be a group and for i ∈ {1, 2}, let ϕi : G→ Homeo0(R) be a minimal R-focal
action with invariant CF-cover Si. Assume there exists a G-equivariant map f : S1 → S2 such
that for every I, J ∈ S1 with sup I ≤ sup J , one has sup f(I) ≤ sup f(J). Then the actions ϕ1
and ϕ2 are positively conjugate.
Remark 7.9. After Proposition 7.7, the actions in the statement of Lemma 7.8 are proximal,
so by Remark 2.15 the positive conjugacy h : S1 → S1 between ϕ1 and ϕ2 is unique. One can
actually prove that the conjugacy induces the map f , in the sense that h(I) = f(I) for every
I ∈ S1.

Proof of Lemma 7.8. Given a bounded interval I, we write I+ = sup I for simplicity. Consider
the subset S+

1 = {I+ : I ∈ S1} ⊆ R of rightmost points of elements of S1, and introduce the
function j : S+

1 → R given by
j(ξ) = sup{f(I)+ : I ∈ S1, I+ = ξ}.

Note that j is a monotone non-decreasing equivariant map: monotonicity follows from the
assumption that I+ ≤ J+ implies f(I)+ ≤ f(J)+, and equivariance follows from equivariance
of f . By Lemma 2.7, the map j extends to a positive semi-conjugacy h between ϕ1 and ϕ2,
which is actually a conjugacy because ϕ1 and ϕ2 are minimal. �

Probably the first example of R-focal action appearing in the literature is an action of the
lamplighter group Z o Z studied by J. F. Plante [97]. The following example generalizes this
construction to arbitrary wreath products of countable groups. We give will use it repeteadly
along this section and the next to illustrate the notions discussed.
Example 7.10 (Plante actions of wreath products). Recall that for general groups G and H,
the wreath product H oG is defined by the semidirect product (

⊕
GH)oG, where G acts on

the direct sum by shift of indices. More explicitly, considering the direct sum
⊕
GH as the set

of functions s : G→ H which are trivial at all but finitely elements of G, the action of h ∈ G
is given by σ(g)(s)(x) = s(g−1x).
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Given left-invariant orders <G∈ LO(G) and <H∈ LO(H), we can consider an order ≺ of
lexicographic type on

⊕
GH, as follows. We denote by e the trivial element of

⊕
GH, that is

the function satisfying e(x) = 1H for every x ∈ G, and we define

P =
{

s ∈
⊕
G

H : s 6= e, s(xs) >H 1H

}
,

where for s 6= e we set xs = max<G{x ∈ G : s(x) 6= 1H}. It is not difficult to check
that P defines a positive cone, and thus a left-invariant order ≺ on the direct sum

⊕
GH,

which is also invariant under the shift action σ of H. This gives an order-preserving action
Ψ : H oG→ Aut (

⊕
GH,≺), that we call the Plante product of <G and <H . When G and H

are countable so is
⊕
GH, and thus we may consider the dynamical realization of Ψ, which we

call the Plante action associated with <G and <H . In this situation we let ι : (
⊕

GH,≺)→ R
be the associated good embedding and let ϕ : H oG→ Homeo0(R) be the dynamical realization.
When G = H = Z and <G and <H are the standard left orders of Z, this construction yields
the action of Z o Z considered by Plante (see [36, §3.3.2]), an illustration of which appears in
Figure 4.

We claim that the Plante action ϕ is minimal and R-focal. To prove minimality, note that
the stabilizer of the trivial element e ∈

⊕
GH coincides with G, and its orbit is the whole

subgroup
⊕
GH. Thus, after Proposition 2.43, it is enough to check that Ψ(G) is of homothetic

type. For this, consider four elements s1, s2, t1, t2 ∈
⊕

GH such that t1 ≺ s1 ≺ e ≺ s2 ≺ t2.
Set y∗ = max<G{xt1 , xt2} and x∗ = min<G{xs1 , xs2}, and consider an element g ∈ G such that
g−1x∗ >G y∗. Then it is immediate to check that

σ(g)(s1) ≺ t1 ≺ e ≺ t2 ≺ σ(g)(s2),
which gives the desired conclusion. To check that ϕ is R-focal it is enough to check that
(
⊕
GH,≺) admits a CF-cover S which is invariant under the Ψ-action of H o G. Indeed,

considering the collection of interiors of closures of images of elements of S by the good
embedding ι :

⊕
GH → R associated with ϕ, we obtain a CF-family which is invariant for

ϕ(H oG) (an argument analogous to that in Proposition 7.6 shows that this is non-trivial), so
that we can conclude by Proposition 7.7. For this, for s ∈

⊕
GH and g ∈ G, we set

Cs,g =
{

t ∈
⊕
G

H : t(x) = s(g) for every x >G g
}
.

Clearly every Cs,g is a convex and bounded subset of (
⊕
GH,≺) and

S0 =
{
Cs,g : s ∈

⊕
G

H, g ∈ G
}

defines a cover of
⊕
GH, which is Ψ(H o G)-invariant. It only remains to check that S0

is a cross-free family. For this, take two elements Cs,g and Cs′,g′ in S0 with g ≤G g′, and
assume there is some element t in their intersection. It follows that s, t, and s′ all agree on
{x ∈ G : x >G g′} and so Cs,g ⊆ Cs′,g′ . This shows that S0 is a CF-cover and thus the Plante
action is R-focal.

7.2. A condition for R-focality. The following criterion implies the R-focality of a vast
class of actions.

Proposition 7.11. Consider a minimal faithful action ϕ : G→ Homeo0(R) and let N / G be
a normal subgroup which is not a cyclic subgroup of the center of G. Assume that ϕ(N) does
not act minimally on R. Then ϕ is an R-focal action.
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g

h0
h1

h2

Figure 4. Plante action of Z o Z on the line. One factor is generated by g
which acts as a homothety. The generator of the other factor is h0, and we
have hn = gnh0g

−n for every n ∈ Z, where the hn commute and are a basis of
the lamp group ⊕ZZ.

First we recall the following lemma. Its proof is well-known but we include it for completeness.

Lemma 7.12. Let G be a group, and let N be a non-trivial normal subgroup which is not
a cyclic subgroup of the center of G. Assume that ϕ : G→ Homeo0(R) is a minimal faithful
action of G. Then either the image of N acts minimally, or it admits no minimal invariant
set.

Proof. Assume that there exists a non-empty minimal ϕ(N)-invariant set Λ ⊂ R, and let us
show that Λ = R. Note that Λ cannot be a fixed point otherwise we get a contradiction from
Corollary 2.6. Then either Λ is the unique minimal ϕ(N)-invariant set, or a closed orbit. In
the first case, we have that Λ is preserved by the whole group G and thus Λ = R by minimality.
In the second case we have that the action of N must be semi-conjugate to a cyclic action
coming from a homomorphism τ : N → Z, and that ker τ acts trivially on Λ. Since ker τ is
precisely the subset of N acting with fixed points, the subgroup ker τ is necessarily normal in
the whole group G, and so, as before, we must have ker τ = {1}. Thus N is infinite cyclic and
acts as a group of translations. Since N is normal in G, this implies that N is central in G,
contradicting the assumption. �
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Proof of Proposition 7.11. We first observe the following.

Claim. For every open interval I ⊂ R, there exists an element h ∈ N such that h.I ∩ I 6= ∅
and h �I 6= id.

Proof of claim. Consider the subset of points where the condition in the statement fails, namely
A := {ξ ∈ R : ∃neighborhood V 3 ξ s.t. ∀h ∈ N either h �V = id or h.V ∩ V = ∅} .

It is clear from the definition that A is open, and the fact that N is normal in G gives that it is
G-invariant. As we are assuming that the action is minimal, we conclude that A is either empty
or the whole real line. Assume for contradiction that A = R, and note that this implies that
every element h ∈ N either acts trivially or has no fixed point at all. The first possibility is
ruled out by the fact that the action ϕ is minimal, so that by Hölder theorem (see [44, Theorem
6.10]), we have that ϕ(N) is semi-conjugate to a group of translations and in particular ϕ(N)
admits a minimal invariant set. From Lemma 7.12 we get that this minimal set must be the
whole real line which contradicts our hypothesis that ϕ(N) does not act minimally. �

Now, for each interval I ⊂ R denote by StabϕN (I) the stabilizer of I in N , and by FixϕI (N)
the subset of fixed points of StabϕN (I) in I. Since ϕ(N) does not act minimally, there exists
a proper, closed and ϕ(N)-invariant subset of the line that we denote by Λ. Let U be a
connected component of Rr Λ. The claim implies that the stabilizer StabϕN (U) is non-trivial,
and moreover the subset FixϕU (N) has empty interior, so that it is strictly contained in U . Hence
the subset Λ1 := Λ ∪ (

⋃
U FixϕU (N)) (where the union runs over the connected components of

R r Λ) is a proper closed subset of R, which is ϕ(N)-invariant (indeed, for g ∈ N we have
g.FixϕU (N) = Fixϕg.U (N)) and moreover FixϕV (N) = ∅ for every connected component V of
Rr Λ1.

Consider now the collection S of all non-empty open bounded intervals I ⊂ R such that
• for every h ∈ N , either h.I = I or h.I ∩ I = ∅, and
• FixϕI (N) = ∅.

The collection S is non-empty since it contains each connected component of RrΛ1. Also note
that, since N is normal, the family S is ϕ(G)-invariant. We will show that S is cross-free. To
see this, suppose that I, J ∈ S are crossed, and let ξ and η be the points in the intersections
I ∩ ∂J and ∂I ∩ J , respectively. Since StabϕN (J) acts on J without fixed points and fixes ξ, we
can find an element h ∈ StabϕN (J) which moves η and thus satisfies h.I ∩ I 6= ∅, but h.I 6= I
(see Figure 5). This gives the desired contradiction, and we conclude that S is a ϕ(G)-invariant
cross-free family of intervals. As ϕ is minimal, Proposition 7.7 implies that it is R-focal. �

h ∈ StabϕN (J)

I

h.I

J
ξ = h.ξ η h.η

Figure 5. End of the proof of Proposition 7.11.

Remark 7.13. The converse to Proposition 7.11 is not true: there exist R-focal actions of groups
such that all non-trivial normal subgroups act minimally (see §9.3 for counterexamples), and
even simple groups which admit minimal R-focal actions (such as the commutator subgroup
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[F, F ] of Thompson’s group F , see §11.6). However a partial converse to Proposition 7.11 will
be given in §8.5

7.3. R-focal actions and alternatives. Here we discuss two situations where R-focal actions
appear naturally.

7.3.1. R-focal actions and micro-supported groups. In the next proposition we show that if a
micro-supported group acting minimally is not locally moving (see §4.1), then its action is
necessarily R-focal.

Proposition 7.14 (Alternative for micro-supported groups). A micro-supported subgroup
G ⊆ Homeo0(R) whose action is minimal, is either locally moving or R-focal.

For the proof, given a micro-supported group G ⊆ Homeo(R) and an interval I ⊂ R (not
necessarily bounded) we write FixI := Fix(GI) ∩ I for the set of fixed points inside I of the
rigid stabilizer of I. We first need the following observation.

Lemma 7.15. Let G ⊆ Homeo0(R) be a micro-supported subgroup whose action is minimal.
Suppose there exist ξ, η ∈ R such that Fix(−∞,ξ) = Fix(η,+∞) = ∅. Then G is locally moving.

Proof. Take a bounded open interval I = (α, β) and x ∈ I. We need to show that g(x) 6= x
for some g ∈ GI . From the minimality of the action of G, after possibly conjugating G(η,+∞)
and G(−∞,ξ), we can assume that ξ and η satisfy that

α < ξ < x < η < β.

Since G is micro-supported, the subgroup Gc of compactly supported elements is non-trivial.
Since the action of G is minimal and Gc is normal, we have that Gc has no fixed points, and
thus there exists h ∈ Gc such that h(x) 6= x. Consider the smallest interval (a, b) containing
Supp(h). From the assumption, we can find elements k1 ∈ G(−∞,ξ) and k2 ∈ G(η,+∞) such
that k1(a) ∈ (α, ξ) and k2(b) ∈ (η, b). Write k = k1k2. Then g = khk−1 ∈ GI and g(x) 6= x,
as desired. �

Proof of Proposition 7.14. Suppose that G is not locally moving. After Lemma 7.15, we can
assume that there exists ξ ∈ R such that Fix(ξ,+∞) 6= ∅ (the symmetric case Fix(−∞,ξ) 6= ∅
can be treated similarly). Therefore, the support of the subgroup G(ξ,+∞) has a bounded
connected component, let us call it U = (α, β) ⊆ (ξ,+∞). We claim that the G-orbit of U is
cross-free.

Looking for a contradiction, suppose that there is g ∈ G such that U and g(U) are crossed.
Clearly g(U) is a connected component of the support of gG(ξ,+∞)g

−1 = G(g(ξ),+∞). But,
up to changing g by its inverse, we can assume that ξ ≤ g(ξ), and hence that G(g(ξ),+∞) is
a subgroup of G(ξ,+∞). In particular we get that U is fixed by every element in G(g(ξ),+∞)
and therefore it is not possible that U is crossed with a component of support of G(g(ξ),+∞).
This contradicts our assumption that U and g(U) are crossed, and so the claim follows. From
Proposition 7.7, we get that the action of G is R-focal.

To conclude, we need to show that the action of G cannot be simultaneously locally moving
and R-focal. For this, note that when G is locally moving the diagonal action of G on the set
X2 := {(x, y) ∈ R2 : x < y} is minimal, while in the case when the action is R-focal this is
not the case. For instance, if U = (α, β) is an interval whose G-orbit has no crossed elements,
then (α, β) cannot accumulate on (α′, β′) for any α′ < α < β′ < β. �

We have the following straightforward application.
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Corollary 7.16. If G ⊆ Homeo0(R) is a group acting minimally on R and containing an
element of relatively compact support and an element without fixed points, then G is locally
moving.

Proof. The fact that G acts minimally on R and contains an element of compact support
implies that G is micro-supported by Proposition 4.2. The assumption that G contains an
element without fixed points excludes the case of R-focal action, as every element should have
with fixed points (Lemma 7.5). By Proposition 7.14, the action is locally moving. �

7.3.2. Actions of solvable groups. We conclude this section with the following application of
Proposition 7.11, which shows that R-focal actions appear naturally in the context of solvable
groups. Its derivation from Proposition 7.11 uses ideas of Rivas and Tessera in [99]. By an
affine action of G on R we mean an action by affine transformations, i.e. transformations of
the form x 7→ ax+ b with a > 0 and b ∈ R.

Theorem 7.17 (Alternative for solvable groups). Let G be a finitely generated solvable group
and let ϕ : G→ Homeo0(R) be an action without fixed points. Then either ϕ is semi-conjugate
to an affine action, or it is R-focal.

Proof. If ϕ is semi-conjugate to a cyclic action then the first case holds. So up to semi-
conjugacy we can assume that ϕ is minimal; moreover upon replacing G by a quotient we can
suppose that it is faithful. Let G(n) denote the derived series of G, and consider k ∈ N so that
G(k) 6= {1} and G(k+1) = {1}. Then H := G(k) is an abelian and normal subgroup of G. As
H is normal, we deduce that ϕ(H) cannot have fixed points (otherwise we would get a fixed
point for the action of G).

Assume first that H is cyclic contained in the center of G. Then ϕ(H) is conjugate to the
cyclic group generated by a translation and the action ϕ induces a minimal action on the
circle R/ϕ(H). As G is solvable and thus amenable, it preserves a Borel probability measure
on the circle, which must be of total support for the action is minimal; after [91, Proposition
1.1.1], we get that the action is conjugate to a minimal action by rotations (basically, this is
the action defined by the rotation number homomorphism rot : G→ S1). Therefore, ϕ(G) is
the lift of a group of rotations of the circle and thus conjugate to a group of translations, so
that we get that the action is affine in this case.

Assume next that ϕ(H) acts minimally. Take a non-trivial h ∈ H and note as before that
ϕ(h) has no fixed points (otherwise we would get a fixed point for ϕ(H)). Thus we obtain
a minimal action of H on the circle R/〈ϕ(h)〉, and the argument for the previous case leads
to the conclusion that ϕ(H) is conjugate to a minimal group of translations. Then the set
of invariant Radon measures for ϕ(H) corresponds to the one-parameter family of positive
multiples of the Lebesgue measure, and this family must be preserved by ϕ(G), for H is
normal in G. By a standard argument, we deduce that ϕ(G) is conjugate to a group of affine
transformations (see for instance [97]).

If neither of the previous cases hold, by Proposition 7.11 we get that ϕ is R-focal as
desired. �

Since in a minimal R-focal action every element has fixed points (Lemma 7.5), we deduce
the following result first obtained Guelman and Rivas in [46].

Corollary 7.18. Let G be a finitely generated solvable group, and let ϕ : G→ Homeo0(R) be
an action such that some element acts without fixed points. Then, the action ϕ is semi-conjugate
to an affine action.
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8. Planar trees and horograded R-focal actions

In this section we study in more detail R-focal actions and reinterpret them in terms of
actions on planar directed trees, which provides a visual formalism to study them. This
will allow to define a natural invariant associated to an R-focal action, called the focal germ
representation, which bears a lot of information about the action. It is also the natural setting
to introduce the tightly related notion of horograding of an R-focal action of a group G by
another action of G, which allows to compute its focal germ representation. This notion will
be important later to establish a relation between exotic actions of a class of a locally moving
groups to their standard action.

8.1. Preliminaries on trees. We first make a digression to set some terminology about
(real) trees.

8.1.1. Directed trees. Roughly speaking, a real tree is a space T obtained by gluing copies
of the real line in such a way that no closed loops appear. We are specifically interested in
directed real trees, which are trees together with a preferred direction to infinity (equivalently
a preferred end ω ∈ ∂T). Usually real trees are defined as metric spaces, but we adopt the
point of view of Favre and Johnson [38], and introduce the following definition which does not
refer to any metric or topology. (The equivalence with the more familiar metric notion will be
discussed in §8.1.4 below.)

Definition 8.1. A (non-metric) countably branching directed tree (hereinafter just directed
tree) is a partially ordered set (poset for short) (T, /) with the following properties.
(T1) For every v ∈ T the subset {u ∈ T : v E u} is totally ordered and order-isomorphic to

a half-line [0,+∞).
(T2) Every pair of points v, u ∈ T has a smallest common upper bound, denoted v ∧ u.
(T3) There exist a countable subset Σ ⊂ T such that for every distinct u, v ∈ T with u E v

there exists z ∈ Σ such that u E z E v.
We say that a point v is below u (or that u is above v) if v 6= u and v E u, and write v / u.

Condition (T3) is a technical separability assumption. A first consequence of it is that all
totally ordered subsets of T are isomorphic to subsets of the real line. More precisely we have
the following lemma. (Recall that every totally ordered subset of a poset is contained in a
maximal one, by Zorn’s lemma.)

Lemma 8.2. Let (T, /) be a directed tree. If ` ⊂ T is a maximal totally ordered subset, then it
is order-isomorphic to either [0,+∞) or to R. If `1, `2 are two maximal totally ordered subsets,
then either `1 = `2 or `1 ∩ `2 is order-isomorphic to [0,+∞).

Proof. First of all, observe that for every v ∈ ` we have {u : v E u} ⊂ `, or otherwise
` ∪ {u : v E u} would be a strictly larger totally ordered set contradicting maximality of `.
Thus if ` has a minimum v, then we must have ` = {v : v E u} ∼= [0,+∞) by (T1). If not,
then (T3) implies that for every maximal totally ordered subset ` ⊂ T contains a strictly
decreasing sequence (vn) such that ` =

⋃
n{u : vn E u}. Since by (T1), every element in the

union is isomorphic to [0,+∞) it follows that ` is isomorphic to R. Let `1 and `2 be two
maximal totally ordered subsets. If `1 6= `2 then there exist v1 ∈ `1 and v2 ∈ `2 which are
not comparable. Then v1 ∧ v2 (which exists by (T2)) is the smallest element in `1 ∩ `2 and it
follows from (T1) that `1 ∩ `2 = {w : v1 ∧ v2 E w} ∼= [0,+∞). �
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Figure 6. A directed tree (T, /) with focus ω, and the corresponding defined
objects: arc between two points (brown), directions (blue), smallest upper
bound (blue), shadow (green).

8.1.2. End-completion and boundary. From Lemma 8.2 we can introduce a notion of boundary
for a directed tree.

Definition 8.3. Given a directed tree (T, /), we define its end-completion (T, /) as the poset
obtained by adding points to T as follows. First we add a point ω, called the focus, which
is the unique maximal point of (T, /). In addition, for each maximal totally ordered subset
` ⊂ T without mininimum, we add a point ξ ∈ T which satisfies ξ / v for every v ∈ ` ∪ {ω}.
The subset ∂T = T r T is called the boundary of T. We will also write ∂∗T = ∂T r {ω}.

We next introduce further terminology associated to the end-completion. Note that any pair
of points x, y ∈ T still admits a unique smallest upper bound, which we continue to denote by
x ∧ y, and we have x ∧ y ∈ T unless x = ω or y = ω. Given distinct points u, v ∈ T we define
the arc between them as the subset

[u, v] =
{
z ∈ T : u E z E (v ∧ u) or v E z E (v ∧ u)

}
.

and set ]u, v[= [u, v] r {u, v}. The subsets [u, v[ and ]u, v] are defined similarly. A subset
Y ⊆ T is path-connected if [u, v] ⊆ Y for every u, v ∈ Y . Every subset of T is a disjoint union
of maximal path-connected subsets, called its path-components. Given v ∈ T, we define the set
Ev of directions at v as the set of path-components of T r {v}. The cardinal |Ev| is called
the degree of v. Points of degree 1 are called leaves; these are precisely the minimal elements
in (T, /). We say that v is regular if |Ev| = 2 and a branching point if |Ev| ≥ 3. The set of
branching points of T will be denoted by Br(T). For z ∈ Tr {v}, we let ev(z) ∈ Ev denote the
direction containing z. If ω is the focus, we let E−v = Ev r {ev(ω)} denote the set of directions
below v. Finally, we denote by Uv ⊂ T the subset of points below v. The corresponding subset
of the boundary ∂Uv ⊂ ∂∗T is called the shadow of v. See Figure 6 for an illustration of these
definitions.
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Remark 8.4. Note that condition (T3) implies that the subset Br(T) is at most countable, and
for every v ∈ Br(T) the set of directions Ev is also countable. Indeed if Σ ⊂ T is a countable
subset as in (T3) then every v ∈ Br(T) has a lower bound in Σ. It then follows that every
direction in E−v contains a point in Σ, and hence Ev is countable. In particular every branching
point v can be written as v = z1 ∧ z2 for some z1, z2 ∈ Σ, so that the subset Br(T) is at most
countable.
Remark 8.5. There is little loss of generality in assuming that T has no leaves. Indeed by
removing all leaves we obtain a directed tree T′ and the removed leaves now correspond to
points in ∂∗T′. For this reason we shall often restrict to directed trees without leaves (see also
Remark 8.15).

8.1.3. Horogradings.
Definition 8.6. Let (T, /) be a directed tree. An increasing (respectively, decreasing) horo-
grading of T is an increasing (respectively, decreasing) map π : T → R such that for every
u, v ∈ T with u / v the restriction of π to the arc [u, v] ⊂ T is an order-preserving bijection
onto the interval [π(u), π(v)] (respectively [π(v), π(u)]).
Remark 8.7. Assume that π is an increasing horograding. If we let ω ∈ ∂T denote the
focus of T, and set b = supπ(T) ∈ R ∪ {+∞}, then the definition implies that for every
v ∈ T the restriction of π to [v, ω[ is an increasing bijection onto [π(v), b). This is in fact an
equivalent formulation of the definition. There is an analogous characterization for decreasing
horogradings.
Definition 8.8. Assume that π : T → R is an increasing horograding and write X = π(T),
with a = inf X and b = supX. Notice that π naturally extends to the end-completion (T, /),
taking values in X = [a, b]. We denote by π this extension and define the π-complete boundary
as the subset

∂∗πT := {ξ ∈ ∂∗T : π(ξ) = a}.
The analogous definition can be given in the case of decreasing horograding.

The following proposition is yet another consequence of condition (T3).
Proposition 8.9. Every directed tree admits a horograding.

Proof. Assume first that T has no leaves (that is, the poset (T, /) has no minimal elements),
and let ω ∈ ∂T be its focus. Let Σ = {vn : n ∈ N} ⊂ T be a countable collection as in (T3),
and note that every element of T has a lower bound in Σ, so that T =

⋃
n∈N[vn, ω[. We define

π inductively on each ray [vn, ω[. We begin by choosing arbitrarily a bijection π : [v0, ω[→ [0, b)
for some b ∈ R ∪ {+∞}. Assume that π has already been defined on

⋃n−1
j=0 [vj , ω[. If vj / vn

for some j < n, then [vn, ω[⊂ [vj , ω[ so that π has already been defined on [vn, ω[. Otherwise
set wn = min/{vn ∧ vj : j < n}. Note that the points vn ∧ vj are all contained in the totally
ordered subset [vn, ω[ and thus the minimum is well defined; moreover the point wn satisfies
vj / wn for some j < n and thus π has already been defined on the ray [wn, ω[. We define π
on [vn, wn[ by choosing arbitrarily an order-preserving bijection of [vn, wn[ onto an interval of
the form [xn, π(wn)) for some xn < π(wn). Proceeding in this way for every n we obtain the
desired horograding π : T→ R.

Now if T has leaves, let T′ be the directed tree obtained by removing all leaves. By the
previous construction we can find a horograding π : T′ → R, and we can do the construction
so that its image is bounded below. Then we can extend π to T by setting π(v) = inf π(u)
where the infimum is taken over all u ∈ T′ such that v / u. �
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8.1.4. Metric and topologies on directed trees. A metric R-tree is a metric space (T, d) such
that every pair of points u, v ∈ T can be connected by a unique injective continuous arc
γ : [0, 1]→ T, and this arc can be chosen to be geodesic (i.e. an isometric embedding). This
notion is well-studied in geometric group theory (though not exclusively); see for instance the
survey of Bestvina [7]. Let us clarify the connection between R-trees and directed trees in the
sense of Definition 8.1.

A directed tree as in Definition 8.1 can always be endowed with a metric that makes it an
R-tree. Indeed assume that (T, /) is a directed tree, and choose a horograding π : T→ X (see
Proposition 8.9). We can then define a distance on T by the formula
(8.1) dπ(u, v) = |π(u ∧ v)− π(u)|+ |π(u ∧ v)− π(v)|.
This distance turns T into an R-tree; see [38]. We call a distance of this form a compatible
R-tree metric on (T, /), associated with the horograding π.

Conversely assume that (T, d) is a separable metric R-tree with no leaves. Let (T̂, d) be the
metric completion of T, and set ∂fT := T̂ r T (the set ∂fT consists of leaves of T̂). Further let
∂∞T be the Gromov (or visual) boundary of T̂, namely ∂∞T is the set of equivalence classes of
geodesic rays in T̂, where a geodesic ray is a subset ρ ⊂ T isometric to [0,+∞), and two rays
ρ1, ρ2 are equivalent if ρ1 ∩ ρ2 is a geodesic ray. We define the end-boundary of T as the set
∂T = ∂fTt∂∞T. The choice of a point ω ∈ ∂T defines naturally a partial order / on T, by the
condition that v / u when u ∈ [v, ω[, where [v, ω[ is the ray from v to ω. Moreover the choice
of a point z0 ∈ T allows to define a horofunction πω,z0 : T→ R centered at ω (normalized to
vanish on z0), by the formula

πω,z0(v) = d(z0, v ∧ z0)− d(v, v ∧ z0).
This function is a horograding in the sense of Definition 8.6, and commonly the subsets
{v ∈ T : πω,z0(v) = n} are called horospheres, see for instance [17, Chapter II.8].

One can readily check that these two constructions are inverse to each other. Note however
that the partition of the boundary ∂T = ∂fTt ∂∞T appearing above depends on the choice of
a compatible R-tree metric and cannot be reconstructed from the poset structure of (T, /).
Notice also that, in the case that ∂∞T is non-empty, it holds that ∂∞T ∩ ∂∗T = ∂∗πT. That is,
up to possibly the focus, the Gromov boundary of T and the π-complete boundary coincide.
Remark 8.10. We note that every directed tree (T, /) the set T can also be endowed with an
intrinsic topology (which does not depend on the choice of a horograding), called the weak
topology in [38] (or observers’ topology in Coulbois, Hilion, and Lustig [28]). A subbasis of
open subsets for the weak topology is given by the set of directions ev(w) for v ∈ T and w ∈ T.
This topology turns the end-completion T = T t ∂T into a compact space [28].

8.1.5. Case of simplicial trees. A simple special case of directed trees are directed simplicial
trees. A simplicial tree is a connected graph T without cycles. Its boundary ∂T is defined as
its set of ends (or equivalently as its Gromov boundary with respect to the simplicial metric).
Assume that T is a simplicial tree of countable degree (that is, the degree at every point is
at most countable) and infinite diameter. Then the choice of a point ω ∈ ∂T turns it into a
directed tree, with respect to the partial order u / v if v lies on the ray from u to ω in T. We
will say that a directed tree (T, /) is simplicial if it arises in this way from a simplicial tree.
Note that in this case the set of directions E−v below a vertex v can be identified with the set
of edges at v which are below v.
Remark 8.11. Note that simplicial trees, admit natural horogradings mapping vertices to
integers. Moreover, for such horogradings, the boundaries ∂∗T and ∂∗πT coincide.
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8.1.6. Planar directed trees.

Definition 8.12. Let (T, /) be a directed tree without leaves, and denote by ω ∈ ∂T its focus.
A planar order on (T, /) is a collection ≺= {<v : v ∈ Br(T)} of total orders defined on the set
E−v for each branching point v ∈ Br(T). The triple (T, /,≺) will be called a planar directed
tree.

A planar order induces a total order on ∂∗T = ∂T r {ω}, that we will still denote by ≺,
as follows. Given two distinct ends ξ1, ξ2 ∈ ∂∗T, write v = ξ1 ∧ ξ2, and note that this gives
ev(ξ1) 6= ev(ξ2) in E−v . We set ξ1 ≺ ξ2 if ev(ξ1) <v ev(ξ2). It is straightforward to check that
this defines an order on ∂∗T. Moreover, we say that the planar order ≺ is proper if for every
v ∈ T the shadow ∂Uv is bounded above and below in (∂∗T,≺).

Remark 8.13. Note that for every planar order ≺ on (T, /) and v ∈ T, the shadow ∂Uv is a
convex subset of (∂∗T,≺).

8.1.7. Automorphisms and focal actions. Given a directed tree (T, /) we denote by Aut(T, /)
the group of its order-preserving bijections. We will be particularly interested in the following
class of subgroups of automorphisms.

Definition 8.14. A subgroup G ⊆ Aut(T, /) is focal if for every u, v ∈ T there exists an
element g ∈ G such that v / g(u).

Remark 8.15. Note that if a directed tree (T, /) admits a focal action, then it has no leaves.
As an equivalent definition, a subgroup G ⊆ Aut(T, /) is focal if for every v ∈ T there exists a
sequence (gn) ⊂ G such that gn(v) tends to ω along the ray [v, ω[.

Given a planar order ≺ on (T, /), we denote by Aut(T, /,≺) the subgroup of Aut(T, /)
which preserves the planar order ≺, meaning that for every element g ∈ G the corresponding
bijections between E−v and E−g(v) induce isomorphisms between ≺v and ≺g(v). Note that the
induced action of Aut(T, /,≺) on ∂∗T preserves the total order ≺.

Remark 8.16. A subgroup G ⊆ Aut(T, /) of automorphisms of a directed tree admits an
invariant planar order if and only if for every v ∈ Br(T) there is an order on E−v which is
invariant under StabG(v). Indeed it is enough to choose such an order for v in a system
of representatives of G-orbits B ⊆ Br(T), and then extend this collection to all v ∈ Br(T)
uniquely in a G-invariant way.

The terminology extends to group actions Φ : G→ Aut(T, /). For instance, we say that the
action Φ is focal if the image Φ(G) is a focal subgroup. In the particular case when (T, /) is
simplicial (see §8.1.5), we say that an action Φ : G→ Aut(T, /) is simplicial if it arises from a
simplicial action of G on T preserving the end ω ∈ ∂T.

Assume now that G is a countable group and Φ: G→ Aut(T, /,≺) is an action on a planar
directed tree. For every end ξ ∈ ∂∗T let us denote by Oξ ⊂ ∂∗T its G-orbit, which is thus an
at most countable totally ordered set on which G acts by order-preserving bijections. We can
therefore consider the dynamical realization ϕξ : G→ Homeo0(R) of the action of G on (Oξ,≺)
(see §2.3.3 for details). We will see in the next subsection (Proposition 8.18) the dynamical
realization ϕξ does not depend on ξ, up to positive conjugacy. For this, we will need the
following result.

Lemma 8.17. Let (T, /,≺) be a planar directed tree with |∂∗T| ≥ 2, and Φ: G→ Aut(T, /,≺)
be a focal action of a group G. Then the following hold.
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(1) The planar order ≺ is proper.
(2) For every ξ ∈ ∂∗T, the orbit Oξ is cofinal (that is, unbounded in both directions) and

densely ordered (that is, for every η1, η2 ∈ Oξ with η1 ≺ η2, there exists ξ0 ∈ Oξ with
η1 ≺ ξ0 ≺ η2).

Proof. We first prove (1). Since |∂∗T| ≥ 2, we can find two points u, v ∈ T such that neither
is below the other, so that the shadows ∂Uu and ∂Uv are disjoint and ≺-convex (Remark
8.13). Therefore at least one of them is bounded below and at least one of them is bounded
above. As the action is focal, for every z ∈ T, there exist elements g, h ∈ G such that
g.∂Uu = ∂Ug.u ⊃ ∂Uz and h.∂Uv = ∂Uh.v ⊃ ∂Uz. It follows that the shadow ∂Uz is bounded
above and below, so that ≺ is proper.

We next prove (2). First of all, observe that by focality, we have Oξ ∩ ∂Uv 6= ∅ for every
v ∈ T. Indeed it is enough to choose u above ξ and g ∈ G such that u / g.v, so that ξ ∈ ∂Ug.v,
or equivalently g−1.ξ ∈ ∂Uv. This immediately gives that the orbit Oξ is cofinal in (∂∗T,≺).
Let us show that it is densely ordered. Assume by contradiction that there is a pair ξ1 ≺ ξ2
with no elements of Oξ between them, and let g ∈ G be such that ξ2 = g.ξ1. Since the action
is order-preserving, applying g−1 we deduce that the point ξ0 = g−1.ξ1 satisfies ξ0 ≺ ξ1 ≺ ξ2,
and there is no η ∈ Oξ satisfying ξ0 ≺ η ≺ ξ1 nor ξ1 ≺ η ≺ ξ2. Now choose v ∈ T such that
ξ1 ∈ ∂Uv and ξ0, ξ2 /∈ ∂Uv. Since ∂Uv is a ≺-convex subset, we deduce that ∂Uv ∩ Oξ = {ξ1}.
But clearly we can find u ∈ T such that |∂Uu ∩ Oξ| ≥ 2 (just take u = ξ1 ∧ ξ2). This gives
a contradiction since, by focality, there exists h ∈ G so that h.∂Uu ⊂ ∂Uv, and therefore
{h.ξ1, h.ξ2} ⊂ ∂Uv. See Figure 7. �

ξ0 ξ1 ξ2h.ξ1 h.ξ2

u

v

h.u

ω

∂∗T∂Uv

Figure 7. Proof of (2) in Lemma 8.17.

A more detailed description of the dynamics of a focal action will be given in §8.3.

8.2. Planar directed trees and R-focal actions. The connection between focal and R-
focal actions is clarified by Propositions 8.18 and 8.19 below, which allow to make a transition
from one to the other.
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Proposition 8.18 (From planar directed trees to R-focal actions). Let Φ: G→ Aut(T, /,≺)
be a focal action of a countable group G on a planar directed tree (T, /,≺) with |∂∗T| ≥ 2.
Then, for ξ ∈ ∂∗T, the dynamical realization ϕξ : G→ Homeo0(R) is a minimal R-focal action,
which does not depend on the choice of ξ up to positive conjugacy.

Proof. Consider points ζ1 ≺ ξ1 ≺ ξ2 ≺ ζ2 of Oξ. By Lemma 8.17 we can choose η ∈ Oξ
such that ξ1 ≺ η ≺ ξ2. Let v, w ∈ T be such that ∂Uv contains {ζ1, ξ1, η, ζ2, ξ2} and ∂Uw
separates η from {ζ1, ξ1, ζ2, ξ2} (one can take for instance v = ζ1 ∧ ζ2 and w ∈]η, ξ1 ∧ ξ2[). By
focality, there exists g ∈ G such that g.∂Uv ⊂ ∂Uw. Since ∂Uw is convex, this implies that
ξ1 ≺ g(ζ1) ≺ g(ζ2) ≺ ξ2. It follows that ϕξ is minimal from Lemma 2.42. To prove that the
action ϕξ is R-focal, we observe that the collection S = {∂Uv ∩ Oξ : v ∈ T} is a CF-cover of
(Oξ,≺) which is Ψ(G)-invariant. As in Example 7.10, we get a CF-cover Sξ of R which is
ϕξ(G)-invariant, by taking the interior of the closures of elements in S under a good embedding
ιξ : Oξ → R. Now, given ξ, ξ′ ∈ ∂∗T, the map f : Sξ → Sξ′ given by

Int ιξ(∂Uv ∩ Oξ) 7→ Int ιξ′(∂Uv ∩ Oξ′)

satisfies all conditions in Lemma 7.8, whence we deduce that ϕξ and ϕξ′ are positively
conjugate. �

After Proposition 8.18, there is no much ambiguity when saying that the action ϕξ : G→
Homeo0(R) is the dynamical realization of the focal action Φ: G → Aut(T, /,≺). Given an
action ϕ : G → Homeo0(R), we will say that ϕ is represented by a focal action Φ: G →
Aut(T, /,≺) if ϕ is positively conjugate to the dynamical realization of Φ. Conversely to
Proposition 8.18, we have the following.

Proposition 8.19 (From R-focal actions to planar directed trees). Let G be a countable group
and let ϕ : G→ Homeo0(R) be a minimal R-focal action. Then there exists a planar directed
tree (T, /,≺) and a focal action Φ: G→ Aut(T, /,≺) representing ϕ.

Proof. Let S be an invariant CF-cover for the R-focal action ϕ : G→ Homeo0(R). We want
to define a planar directed tree starting from the poset (S,⊂). However, for general S, none
of the properties (T1)–(T3) for a directed tree is satisfied, and we will need to consider a
completion of (S,⊂).

Let us start with some preliminary considerations on the structure of (S,⊂). Firstly, from
the cross-free property we have that for every I ∈ S, the subset {J ∈ S : J ⊇ I} is totally
ordered, while from condition (C2), we see that the collection S cannot have a maximal element.
This is in the direction of condition (T1), although we cannot guarantee that {J ∈ S : J ⊇ I}
is order-isomorphic to [0,+∞).

To ensure a property analogue to (T2), we will assume that S is closed, in the sense that
the set of pairs of points defined by intervals in S is a closed subset of R2 r diag. There is no
loss of generality in assuming this, as the closure of S in the above sense is still an invariant
CF-cover. In particular, this implies that any I, J ∈ S have a smallest common upper bound
in S.

We next observe that minimality of the action ensures that (S,⊂) basically has no leaves
(and this is a necessary condition to define a planar order). Namely, we have that every maximal
totally ordered subset C ⊂ S must contain intervals of arbitrarily small length. Indeed, if
the length of every interval in C is uniformly lower-bounded, the intersection L =

⋂
I∈C I is

an interval of non-empty interior. However, as we are assuming that ϕ is minimal, then it is
proximal (Proposition 7.7), so any interval of S can be mapped by some element g ∈ G into
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L, and this contradicts maximality of C, because of the invariance of S. In particular, every
maximal totally ordered set C defines a point xC ∈ R, as the unique point in the intersection:
(8.2) {xC} :=

⋂
I∈C

I.

Note that an element I ∈ S belongs to C if and only if xC ∈ I. In particular if we choose a
countable collection (Cn) of maximal totally ordered subsets such that the sequence (xCn) is
dense in R then S =

⋃
n Cn (by minimality of the G-action on R, we may for instance choose

the G-orbit of some given C). This observation will guarantee condition (T3).
Let us now proceed to introduce a good completion. Consider the map π : S → (0,+∞),

that associates to an interval I its length |I|. Then π is clearly increasing, and maps every
maximal totally ordered subset bijectively onto a closed subset of (0,+∞) (the fact that the
image is closed follows from the fact that we are assuming the collection S closed). Call a
pair of distinct intervals (I, J) ∈ S2 r diag a gap if I ⊂ J and there exists no L ∈ S r {I, J}
such that I ⊂ L ⊂ J . Let G ⊂ S2 r diag be the set of gaps. For each (I, J) ∈ G let L(I,J) be a
homeomorphic copy of the interval (π(I), π(J)). As a set, we define a directed tree T as the
disjoint union

T = S t

 ⊔
(I,J)∈G

L(I,J)

 .
The partial order ⊂ on S extends in a natural way to a partial order / on T, by declaring each
LI,J to be an order-isomorphic copy of (π(I), π(J)) lying between I and J , and extend the
map π : S → (0,+∞) to T by in the obvious way. After our preliminary discussion, we are
sure that the poset (T, /) is a directed tree.

The action of G on S extends to T by letting each g ∈ G map LI,J affinely onto Lg(I),g(J),
and this action is order-preserving. The fact that it is focal follows from the assumption that
the action of G on R is minimal and thus proximal (Proposition 7.7).

We next introduce a planar order ≺ on (T, /) which is preserved by the action of G. Note
first that by construction all v ∈ T r S have degree 2. Thus every branching point v ∈ T is of
the form v = J ∈ S, and the set E−v of components below v is in one-to-one correspondence
with gaps of the form (I, J). Let e1, e2 ∈ E−v be two distinct components below v = J and let
I1, I2 ∈ S be the intervals defining the corresponding gaps with J . Note that I1 and I2 are
necessarily disjoint, so we can declare e1 <

v e2 if sup I1 ≤ inf I2. The family {<v : v ∈ Br(T)}
defines a G-invariant planar order ≺ on (T, /).

Finally note that every maximal totally ordered subset C ⊂ T defines a point ξC ∈ ∂∗T,
represented by any decreasing proper ray taking values in C. By construction, the G-orbit of ξC
can be identified with the orbit of the point xC ∈ R defined by (8.2), in an order-preserving way.
Thus ϕ is conjugate to the dynamical realization of the action on (OξC ,≺). This concludes the
proof. �

Remark 8.20. The proof of Proposition 8.19 provides a simple canonical way to associate a
planar directed tree with every invariant CF-cover S of R. However we point out that the
planar directed tree satisfying the conclusion of the proposition is not unique, and this general
construction yields a tree which is often “too large”. In practice it is useful to find smaller tree
encoding the action having some additional structure (such as a G-equivariant horograding,
or a G-invariant compatible R-tree metric, etc.) In most cases of our interest, a more direct
construction having such additional structure will be available.

Let us just observe here that the action of G on the planar directed tree T constructed in
the proof is continuous with respect to a compatible R-tree metric on T, which can be chosen
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to be complete. Indeed, the map π : T→ (0,+∞) appearing in the proof is a horograding of
(T, /). In particular it defines a compatible R-tree metric dπ on T by the expression (8.1), and
one can check the action of G on T is continuous with respect to the topology defined by this
metric. Moreover if we reparametrize π by post-composing it by an orientation-preserving
homeomorphism H : (0,+∞)→ R, then R-tree metric associated with the new horograding is
complete and induces the same topology (so that the G-action remains continuous).
Example 8.21 (Planar directed trees for Plante actions). Let us illustrate how to get a focal
action on a planar directed tree in the case of a Plante action of a wreath product. As
in Example 7.10, we consider two countable groups G and H and fix left-invariant orders
<G∈ LO(G) and <H∈ LO(H). We also take a good embedding ι : G→ R. For every x ∈ R,
consider the collection of functions

Sx = {s : (x,+∞)→ H : s(y) = 1H for all but finitely many y, in ι(G)} .
As a set, we define T as the disjoint union

⊔
x∈R Sx. We declare that s E t if s ∈ Sx, t ∈ Sy, with

x ≤ y and s �(y,+∞)= t. With this definition it is immediate to see that for every s ∈ Sx, the
subset {u : s E u} = {s �(y,+∞): y ≥ x} is order-isomorphic to [x,+∞), giving (T1). To verify
(T2), given s ∈ Sx and t ∈ Sy, the restriction s �(−∞,x∗) with x∗ = max{z : s(z) 6= t(z)} gives
the desired smallest common upper bound. Finally, we have that the collection Σ =

⊔
x∈ι(G) Sx

is countable, as G and H are countable, and this gives (T3). Note that Σ coincides with the
collection of branching points Br(T). For x ∈ ι(G) and s ∈ Sx ⊂ Br(T), we note that E−s is in
one-to-one correspondence with H, the identification being given by the value of s at x; this
allows to put on E−s the total order coming from <H . This defines a planar order ≺ on (T, /).
A horograding π : T→ R is simply given by π(s) = x, where x ∈ R is such that s ∈ Sx.

In order to describe the boundaries ∂∗T and ∂∗πT, set
S = {s : (x,+∞)→ H : s �(y,+∞)∈ Sy for every y > x}

and notice that the partial order / naturally extends to S. Denote by S∗ ⊆ S the subset of
the functions which are minimal for the relation /. That is, an element s ∈ S is in S∗ if and
only if, either s is defined over R or the support of s is infinite. There is a correspondence
between S∗ and ∂∗T so that, the function s : (x,+∞) → H corresponds to the equivalence
class of the ray y 7→ s �(y,+∞). Under this correspondence, the π-complete boundary ∂∗πT is
identified with those functions in S∗ whose domain is R. In particular, we can see

⊕
GH as

a subset of ∂∗πT (a function s : G→ H can be seen as a function s : R→ H with support in
ι(G)). Notice that the order induced on

⊕
GH by ≺ under this identification coincides with

that introduced in Example 7.10.
The wreath product H oG acts on (T, /,≺). Indeed, every g ∈ G sends Sx to Sg.x by pre-

composition with g−1, where the action on R is the dynamical realization of <G corresponding
to the good embedding ι. If s ∈

⊕
GH, then we can see it as a function defined on R as before,

and thus s acts on T by pointwise multiplication of functions. It is direct to check that this
action preserves the poset structure / and the planar order ≺.

Note that this action naturally extends to S∗, giving the action of H oG on ∂∗T through the
correspondence between S∗ and ∂∗T. Moreover, the π-complete boundary ∂∗πT and (the copy
of)

⊕
GH are invariant subsets for this action. Indeed, the restriction to

⊕
GH coincides with

the action Ψ (discussed in Example 7.10). In other terms, we constructed an order-preserving
and equivariant “embedding” of the Plante product Ψ : H o G → Aut (

⊕
GH,≺) defined in

Example 7.10, into the restriction to the boundary of an action on a planar directed tree.
Finally, note that the horograding π satisfies π(g.s) = g.π(s) for every g ∈ G and s ∈ T,

while it is constant on
⊕
GH-orbits. In the terminology that will be introduced later in §8.4,
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the action of H oG on (T, /) is increasingly horograded by the action j : H oG→ Homeo0(R)
defined as j = j0 ◦ prG, where j0 is the dynamical realization of <G and prG : H oG→ G is
the projection to the factor G. See Figure 8.

π

ω +∞
R x j

−∞⊆ S∗∂∗πT

t ∈ S∗

Sx 3 s
π(s) = x

g.t ∈ S∗

g.s ∈ Sg.x
π(g.s) = g.x

g g

Figure 8. The directed tree for the Plante action (Example 8.21).

8.3. Focal germ representation and dynamical classification of elements. In this
section we will show that R-focal actions admit a dynamical classification of elements which
closely resembles that of isometries of trees into hyperbolic and elliptic elements. Moreover the
type of every element can be determined by an invariant called the focal germ representation.
Let us begin by defining this invariant.

Definition 8.22. Let (T, /) be a directed tree with focus ω ∈ ∂T. Choose also an increasing
horograding π : T → R, and set b = supπ(T). Then for every v ∈ T the ray [v, ω[ can be
identified with the interval [π(v), b). Let g ∈ Aut(T, /) be an automorphism. Since g maps
[v, ω[ to [g(v), ω[, it induces a homeomorphism between the intervals [π(v), b) and [π(g.v), b).
Since for any other v′ the element v ∧ v′ belongs to [v, ω[, we have that the left germ at b of
the homeomorphism induced by g does not depend on the choice of v ∈ T. In this way we
obtain a homomorphism from Aut(T, /) to the group of (left) germs at b:

τ : Aut(T, /)→ Germ(b).
We call this homomorphism the focal germ representation of Aut(T, /). When Φ : G→ Aut(T, /)
is a group action, we can consider the composition of Φ with the focal germ representation.
We will still denote by τ : G→ Germ(b) such composition.

Remark 8.23. Note that the focal germ representation τ : Aut(T, /)→ Germ(b) does not depend
on the choice of the horograding π, up to conjugacy of germs.

When ϕ : G → Homeo0(R) is a minimal R-focal action, we say that τ : G → Germ(b) is a
focal germ representation associated to ϕ if it is conjugate to the focal germ representation of
a focal action Φ: G → Aut(T, /) which represents ϕ. As discussed in Remark 8.20, a given
R-focal action can be represented ϕ by a focal action on a planar directed tree in several ways,
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and this may lead to different (i.e. non-conjugate) focal germ representations associated to ϕ.
However, we can introduce the following notion of semi-conjugacy of germs so that the focal
germ representation of an R-focal actions is well defined up to it.

Definition 8.24. For i ∈ {1, 2}, let τi : G→ Germ(bi) be two germ representations of a group
G. We say that τ1 and τ2 are semi-conjugate if there exist ε1, ε2 > 0 and a non-decreasing
map h : (b1 − ε1, b1)→ (b2 − ε2, b2) with limt→b1 h(t) = b2 such that for every g ∈ G one has
hτ1(g) = τ2(g)h at the level of germs.

Lemma 8.25. Let ϕ : G → Homeo0(R) be a minimal R-focal actions, and for i ∈ {1, 2},
let τi : G → Germ(bi) be a focal germ representation associated to ϕ. Then τ1 and τ2 are
semi-conjugate.

Proof. Suppose for simplicity that b1 = b2 =: b. Consider focal actions on planar directed trees
Φ1 : G→ Aut(T1, /1,≺1) and Φ2 : G→ Aut(T2, /2,≺2) representing ϕ. For i ∈ {1, 2}, choose
an increasing horograding πi : Ti → (ai, b) so that the focal germ representation associated to
πi is τi. Let us see how to construct the desired semi-conjugacy. For i ∈ {1, 2}, fix ξi ∈ ∂∗Ti
and let ιi : Oξi → R be an order-preserving embedding such that the corresponding dynamical
realization is exactly the action ϕ. We first introduce a G-equivariant map H : T1 → T2, as
follows: for v ∈ T1, the image H(v) is the smallest w ∈ T2 such that ι2(∂Uw ∩ Oξ2) contains
ι1(∂Uv ∩Oξ1). The map H is clearly G-equivariant and monotone on maximal totally ordered
subsets of (T1, /1). When restricted to a ray converging to the focus ω1 of T1, it gives a
semi-conjugacy h between τ1 and τ2. �

The focal germ representation carries a huge amount of information about the dynamics of
R-focal actions and actions of planar trees. We now proceed to give a dictionary between the
two.

We say that a germ γ ∈ Germ(b) has fixed points near b if there is an increasing sequence
(zn) converging to b such that every representative of γ fixes zn for n large enough. A subgroup
Γ of Germ(b) has fixed points near b if there is such a sequence which works simultaneously
for every element of Γ. Note that if γ ∈ Germ(b) has no fixed points near b, then every
representative h of γ satisfies that either h(x) > x or h(x) < x for all x close enough to b.
In that case we say that γ is positive or negative respectively. Note that if τ : G→ Germ(b)
is a germ representation, then for g ∈ G the type of τ(g) according to this classification is
invariant under semi-conjugacy of τ .

By extension to the case of the real line, we say that a group Γ of automorphisms of an
ordered set (Ω,≺) is totally bounded if all of its orbits are bounded above and below with
respect to the order ≺. Similarly an automorphism g is totally bounded if 〈g〉 is. We say that
g is an expanding (respectively contracting) pseudohomothety of (Ω,≺) if there exists α ≺ β
such that gn(α) → −∞ and gn(β) → +∞ in (Ω,≺) as n → +∞ (respectively as n → −∞).
Finally we say that g is an (expanding or contracting) homothety if it has a unique fixed point
ξ ∈ Ω and the previous conclusion holds for every α ≺ ξ ≺ β.

Proposition 8.26 (Dynamical classification of automorphisms of planar directed trees). Let
(T, /,≺) be a planar directed tree with |∂∗T| ≥ 2. Let τ : Aut(T, /,≺) → Germ(b) be the
associated focal germ representation. Then the following hold.

(1) if Γ ⊆ Aut(T, /,≺) is a finitely generated subgroup such that τ(Γ) has fixed points
near b, then the image of Γ in Aut(∂∗T,≺) is totally bounded. In particular every
element g ∈ Aut(T, /,≺) such that τ(g) has fixed points near b, gives a totally bounded
automorphism of (∂∗T,≺).
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(2) If g ∈ Aut(T, /,≺) is such that τ(b) has no fixed points near b, then g defines a
pseudohomothety of (∂∗T,≺), which is expanding if τ(b) is positive, and contracting
otherwise. If moreover g has no fixed points inside T, then it is a homothety of (∂∗T,≺).

Proof. Note that by Lemma 8.17, the planar order ≺ is proper. Let π : T→ R be the increasing
horograding used to define the focal germ representation. Assume that (zn) is an increasing
sequence converging to b such that every germ in τ(Γ) eventually fixes zn. Fix v0 ∈ T such that
π(v0) = z0. Then we can choose an increasing sequence (vn) ⊂ [v0, ω[ such that π(vn) = zn.
Since Γ is finitely generated, the assumption implies that it fixes vn for all n large enough.
Thus it preserves the sequence of shadows ∂Uvn which form an increasing exhaustion of ∂∗T
by ≺-bounded subsets (because ≺ is proper). It follows that every Γ-orbit in ∂∗T is contained
in of these subsets, and thus Γ is totally bounded. This proves (1).

Assume now that g is such that τ(g) has no fixed points near b. Without loss of generality
we can suppose that τ(g) is positive. This implies that we can find a point v ∈ T such that gn.v
approaches ω along the ray [v, ω[ as n→∞. Thus the sequence of shadows ∂Ugn(v) = gn.∂Uv
is an increasing exhaustion of (∂∗T,≺) by ≺-convex subsets, which are bounded because ≺
is proper. This implies that g is an expanding pseudohomothety. Assume now that g has
no fixed point inside T. Consider the sequence {gn.v : n ∈ Z}, where v is as above. This is a
totally ordered subset of T, and thus it has an infimum ξ ∈ T∪ ∂∗T, which must be fixed by g
and so ξ ∈ ∂∗T. Since gn.v must approach ξ along the ray ]ξ, ω[ as n→ −∞, the intersection
of the subsets gn.∂Uv for n ∈ Z is reduced to {ξ}. This implies that g is a homothety with
fixed point ξ. �

From Proposition 8.26, we get the analogous result for R-focal actions.

Corollary 8.27 (Dynamical classification of elements for R-focal actions). Let ϕ : G →
Homeo0(R) be a minimal R-focal action, with associated focal germ representation τ : G →
Germ(b). Then the following hold.

(1) If Γ ⊆ G is a finitely generated subgroup such that τ(Γ) has fixed points near b, then
ϕ(Γ) is totally bounded. In particular if g ∈ G is an element such that τ(g) has fixed
points near b, then ϕ(g) is totally bounded.

(2) If g ∈ G is an element such that τ(g) has no fixed points near b, then ϕ(g) is a
pseudohomothety, which is expanding if τ(g) is positive, and contracting otherwise.

Proof. Assume that ϕ is represented by a focal action Φ : G→ Homeo(T, /,≺). Note that if Φ
represents ϕ, we necessarily have |∂∗T| ≥ 2. Take ξ ∈ ∂∗T, and up to conjugating ϕ, assume
that ϕ is the dynamical realization of the action induced by Φ on (Oξ,≺), and let ι : Oξ → R
be the associated good embedding. Observe that as ϕ is minimal, the image ι(Oξ) is dense.
Moreover, Lemma 8.17 guarantees that Oξ is cofinal in (∂∗T,≺), whence (1) and the first part
of (2) readily follow from Proposition 8.26. �

8.4. Horograded R-focal actions. After Proposition 8.9, every directed tree (T, /) admits
a horograding π : T → R (which, moreover, can be taken to be continuous with respect to
some metric, see §8.1.4). When in addition we have a group action Φ : G→ Aut(T, /), then
the compatibility between the horograding and the action becomes relevant. For instance,
if Φ(G) preserves the horospheres defined by π (in the sense that π(u) = π(v) implies that
π(Φ(g)(u)) = π(Φ(g)(v)) for all g ∈ G), then G naturally acts on the image of π simply by
g.π(v) = π(Φ(g)(v)). This motivates the following definition, which will play a crucial role in
the sequel (see for instance Theorem 10.3).
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Definition 8.28. Let X = (a, b) be an interval, and let j : G → Homeo0(X) be an action
of a group G. We say that an action Φ: G → Aut(T, /) on a directed tree is increasingly
(respectively, decreasingly) horograded by j if there exists an increasing (respectively, decreasing)
G-equivariant surjective horograding π : T→ X.

In addition, we say that a minimal R-focal action ϕ : G→ Homeo0(R) is horograded by j if
ϕ can be represented by a focal action Φ: G→ Aut(T, /,≺) on a planar directed tree which is
horograded by j.

The following remark serves as an easy example of the above definition.

Remark 8.29. One can consider the more restrictive assumption that a group action Φ: G→
Aut(T, /) on a directed tree preserves a compatible R-tree metric on T, in the sense of §8.1.4.
From the discussion in §8.1.4, the reader may realize that this occurs if and only if the Φ-action
is horograded by an action by translations of G on the line (the horograding is in this case
a metric horofunction). Thus the existence of an equivariant horograding to a more general
action can be seen as a relaxation of the existence of such an invariant metric.

Remark 8.30. A first class of examples of horograded R-focal actions are the Plante actions of
wreath products H o G (Example 8.21) where the horograding was given by the dynamical
realization of the order <G chosen on G. We will also see later with Theorem 10.3, that for
a large class of locally moving groups, every exotic action can be horograded by its locally
moving action.

Remark 8.31. Notice that every action Φ: G→ Aut(T, /) can be extended to an action on the
end-completion (T, /). If in addition π : T→ X is a G-equivariant horograding, the π-complete
boundary ∂∗πT is always G-invariant.

If a minimal R-focal action ϕ : G → Homeo0(R) is increasingly horograded by an action
j : G→ Homeo0((a, b)), then its associated focal germ representation can be identified by the
representation τ : G → Germ(b) induced by the action j. In particular, in this situation we
have the following.

Proposition 8.32 (Dynamical classification of elements in the horograded case). For X =
(a, b), let ϕ : G→ Homeo0(R) be a minimal R-focal action which is increasingly horograded by
an action j : G→ Homeo0(X). Then the following hold.

(i) If Γ ⊆ G is a finitely generated subgroup such that j(Γ) has fixed points arbitrarily
close to b, then ϕ(Γ) is totally bounded.

(ii) If g ∈ G is an element without fixed points in a neighborhood of b then ϕ(g) is a
pseudohomothety which is expanding if g(x) > x for every x sufficiently close to b, and
contracting otherwise. Moreover if g has no fixed points in X then ϕ(g) is a homothety.

Proof. Choose an action on a planar directed tree Φ: G → Aut(T, /,≺) which represents
ϕ and is increasingly horograded by j, with horograding π : T → X. Then the focal germ
representation associated to Φ is conjugate to the germ representation Gb : G→ Germ(G, b).
So (i) and the first sentence in (ii) are direct consequences of Corollary 8.27. Assume now
that g has no fixed point in X. Then g has no fixed point in T (as the image of a fixed point
under π would be fixed in X). Thus by Proposition 8.26 Φ(g) is a homothety of (∂∗T,≺); let
η ∈ ∂∗T be its unique fixed point. Since ϕ is conjugate to the dynamical realisation of the
G-action on the orbit (Oη,≺) (Proposition 8.18), there is an order-preserving equivariant map
ι : Oη → R with dense image. Since φ(g) is a homothety on (Oη,≺), this implies that ϕ(g) is
a homothety with unique fixed point ι(η). �
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8.5. R-focal actions arising from simplicial trees. In view of the correspondence between
R-focal action and actions on planar directed trees, perhaps the simplest type of R-focal actions
are those that can be represented by an action on a simplicial planar directed tree (of countable
degree) by simplicial automorphisms (see §8.1.5). This is characterised by the following result,
which is a partial converse to Proposition 7.11. This result will be invoked in §11.3 when
studying R-focal actions of Thompson’s group F .

Proposition 8.33. Let G be a group not isomorphic to Z2 and let ϕ : G→ Homeo0(R) be a
faithful minimal action. Then the following are equivalent.

(i) ϕ is R-focal and can be represented by a focal action on a planar directed tree (T, /,≺),
such that T is a simplicial tree of countable degree and the action of G on T is by
simplicial automorphisms.

(ii) There exists a non-trivial normal subgroup N EG such that G/N ∼= Z and ϕ(N) does
not act minimally.

Proof. Let us prove that (i) implies (ii). Assume that ϕ is the dynamical realization of an
action on a planar directed simplicial tree (T, /,≺) by simplicial automorphisms. Let T0 ⊂ T
be the vertex set of T, as simplicial complex. The focal germ representation associated with
this action (see §8.3) provides a homomorphism τ : G→ Z, which does not vanish precisely
on the elements which act as hyperbolic isometries on T and it is given by the translation
length along their axes. Let N be its kernel. Fix also v0 ∈ T0 and consider the horofunction
π : T0 → Z given by π(v) = dT(v ∧ v0, v0)− dT(v ∧ v0, v) where dT is the simplicial distance.
This function is G-equivariant (with respect to the action on Z given by τ), so that the action
of N on T must preserve each horosphere Sn := π−1(n), for n ∈ Z. For u, v ∈ Sn, the shadows
∂Uu, ∂Uv ⊂ ∂∗T span two disjoint intervals Iv, Iw ⊂ R. It follows that for every n ∈ Z, ϕ(N)
preserves the open subset

⋃
v∈Sn Iv and thus it does not act minimally.

Let us now proceed to prove the converse statement. The assumption that G 6= Z2 rules out
that N is a cyclic subgroup of the center of G. Hence by Proposition 7.11 the action is R-focal.
Let Λ ⊂ R be a proper closed ϕ(N)-invariant subset, and as in the proof of Proposition 7.11
we assume that for every connected component U of Rr Λ we have FixϕU (H) = ∅. Fix such a
component U . The argument in the proof of Proposition 7.11 shows that the G-orbit of U
under G defines a CF-cover S invariant under ϕ(G).

Choose f ∈ G which projects to a generator of G/N ∼= Z, so that g = N o 〈f〉. Since ϕ is
R-focal the image of f must have a fixed point ξ (Lemma 7.5). Since moreover the action is
minimal, we can choose g ∈ G such that g.ξ ∈ U , so that upon replacing f by gfg−1 we can
assume that f has a fixed point in U , so that f.U ∩U 6= ∅. Note also that f fixes no endpoint
η of U ; indeed since η ∈ Λ this would imply that for every g ∈ G, writing g = hfn with h ∈ N ,
we would have g.η = h.η ∈ Λ, contradicting that the G-orbit of η is dense. Thus since the
intervals U and f.U intersect non-trivially and cannot cross, we must either have or U b f.U
or f.U b U , and upon replacing f by its inverse we assume that U b f.U .

For n ∈ Z write Sn = {hfn.U : h ∈ N}, so that S =
⋃
n∈Z Sn. Note that every V ∈ Sn is a

connected component of Rr Λn, with Λn := fn.Λ, so that in particular every V1, V2 ∈ Sn are
either equal or disjoint. Moreover, every V ∈ Sn is contained in a unique W ∈ Sn+1, indeed
V = hfn.U b hfn+1.U . It follows that the set S is naturally the vertex set of a directed
simplicial tree (T, /). The group G acts on T by simplicial automorphisms. Moreover the
G-action preserves the natural planar order ≺= {≺W : W ∈ S} on T, where two edges (V1,W )
and (V2,W ) with V1, V2 bW are ordered according to the order in which V1 and V2 appear in
W . By construction ϕ is conjugate to the dynamical realization of the action on (T, /,≺). �
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8.6. Constructing R-focal actions from actions on ultrametric spaces. We conclude
this section by explaining a way to construct horograded R-focal actions based on the a
well-known correspondence between trees and ultrametric spaces (see for instance [25, 49]),
which will be usfeul for certain examples. Recall that an ultrametric spaces is a metric space
(Z, δ) which satisfies the ultrametric inequality, that is, for every ξ1, ξ2, ξ3 ∈ Z it holds that

δ(ξ1, ξ2) ≤ max{δ(ξ1, ξ3), δ(ξ3, ξ2)}.

The next definition is slightly more general:

Definition 8.34. Let X = (a, b) be an interval, and let Z be a set. A function δ : Z × Z →
X∪{a} is an ultrametric kernel if it is symmetric, it satisfies the ultrametric inequality and one
has δ(ξ1, ξ2) = a if and only if ξ1 = ξ2. We say that it is unbounded if supξ1,ξ2∈Z δ(ξ1, ξ2) = b.

Given an ultrametric kernel, for ξ ∈ Z and t ∈ X, we write Bδ(ξ, t) = {ξ′ ∈ Z : δ(ξ, ξ′) ≤ t}.
We refer to the sets of this form as δ-balls.

Equivalently, δ is an ultrametric kernel if and only if H ◦ δ is an ultrametric distance on Z
for whenever H is a homeomorphism H : [a, b)→ [0,+∞).

Note that the ultrametric inequality implies that if (Z, δ) is a set with a ultrametric kernel,
then the δ-balls form a cross-free family of subsets of Z in the sense of Definition 7.1.

Remark 8.35. Consider a directed tree (T, /) endowed with a horograding map π : T → X,
where X = (a, b). Recall that we write ∂∗πT for the set of π-complete ends, i.e. the subset
of ends ξ ∈ ∂∗T such that π(]ξ, ω[) = X. Then the set ∂∗πT admits an ultrametric kernel
δ : ∂∗πT× ∂∗πT→ [a, b) defined as δ(ξ1, ξ2) = π(ξ1 ∧ ξ2) if ξ1 6= ξ2, and δ(ξ1, ξ2) = a if ξ1 = ξ2.
It is straightforward to check that δ is an ultrametric kernel. Moreover if G is a group endowed
with actions Φ: G→ Aut(T, /) and j : G→ Homeo0(X) such that π is equivariant, then the
map δ is equivariant in the sense that δ(Φ(g)(ξ1),Φ(g)(ξ2)) = j(g)(δ(ξ1, ξ2)). This remark
motivates our previous and next definitions.

The following construction is a special case of the well-known correspondence between real
trees and ultrametric spaces.

Definition 8.36. Assume that (Z, δ) be a space with an unbounded ultrametric kernel
δ : Z ×Z → X. We define a directed tree (T, /), called the directed tree associated with (Z, δ),
endowed with a horograding π : T→ X and an injective map ι : Z → ∂∗T identifying Z with
a subset of ∂∗πT, as follows.

As a set, the tree T is the quotient T = Z ×X/ ∼ with respect to the equivalence relation

(ξ1, t) ∼ (ξ2, s) if and only if t = s and t ≥ δ(ξ1, ξ2).

Note that by the ultrametric inequality, the condition t ≥ δ(ξ1, ξ2) is equivalent to Bδ(ξ1, t) =
Bδ(ξ2, t), and from this one immediately sees that the above relation is an equivalence relation.
Denote by p : Z ×X → T the quotient map. The partial order / on T is defined by declaring
u E v if for some (equivalently, for every) representatives of u and v, say u = p(ξ1, s) and
v = p(ξ2, t), it holds that s ≤ t and Bδ(ξ1, s) ⊂ Bδ(ξ2, t) (equivalently that s ≤ t and
δ(ξ1, ξ2) ≤ t). With these definitions (T, /) is a directed tree [38, §3.1.6]. The map π : T→ X,
defined by π(p(ξ1, t)) = t is an increasing horograding of (T, /). Finally the set Z can be
naturally identified with a subset of ∂∗πT, by the map i : Z → ∂∗T, mapping each ξ ∈ Z to the
unique infimum in ∂∗T of the ray {p(ξ, t) : t ∈ X}.

We now consider the previous situation in the presence of a group G acting.
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When G is a group acting on both Z and X, by actions ϕ : G → Sym(Z) and j : G →
Homeo0(X) respectively, we say that an ultrametric kernel δ : Z×Z → X∪{a} is G-equivariant
if for every ξ1, ξ2 ∈ Z and g ∈ G one has
(8.3) δ (ϕ(g)(ξ1), ϕ(g)(ξ2)) = j(g) (δ(ξ1, ξ2)) .
In what follows, to simplify notation, we will write as usual g.ξ and g.t instead of ϕ(g)(ξ) and
j(g)(t), respectively. We place ourselves in the following setting.
Assumption 8.37. Let G be a group, and consider actions ϕ : G→ Sym(Z) on a countable
set, and j : G→ Homeo0(X) on an open interval X = (a, b). We let δ : Z × Z → X ∪ {a} be
an unbounded G-equivariant ultrametric kernel.

The equivariance relation (8.3) implies that for every g ∈ G, ξ ∈ Z, and t ∈ X one has
(8.4) g.Bδ(ξ, t) = Bδ(g.ξ, g.t).
In particular, the set of δ-balls is G-invariant.

Under Assumption 8.37, we will say that the action of G on Z expands δ-balls if for every
ball Bδ(ξ, t) there exists a sequence of elements (gn) ⊂ G such that the sequence of balls
gn.Bδ(ξ, t) is an increasing exhaustion of Z.
Proposition 8.38. Under Assumption 8.37, let (T, /) be the directed tree associated with
(Z, δ). Then there exists an action Φ : G→ Aut(T, /) increasingly horograded by j, and such
that the map ι : Z → ∂∗T is G-equivariant. Moreover, the action Φ is focal if and only if the
action of G on Z expands δ-balls.

Proof. The diagonal action (induced by ϕ and j) of G on Z × X descends to the quotient
to an action on the directed tree (T, /). Thus, we get an action Φ : G→ Aut(T, /), given by
Φ(g)(p(ξ, t)) = p(g.ξ, g.t). It is evident from the definition of the tree T and from (8.4) that
the horograding π : T→ X from Definition 8.36 is G-equivariant and thus, Φ is increasingly
horograded by j. Moreover, notice that the natural map i : Z → ∂∗T defined previously is also
G-equivariant with respect to the actions ϕ and Φ. Finally if the action of G on Z expands
δ-balls then it follows from the construction of the tree T that for every v ∈ T there exists
a sequence of elements (gn) such that gn.v tends to the focus ω along the ray [v, ω[, which
implies that Φ is a focal action. �

The next step is to introduce an invariant planar order on the tree T, whenever the set Z is
endowed with an appropriate total order.
Definition 8.39. Given an ultrametric kernel δ : Z ×Z → X ∪ {a}, we say that a total order
< on Z is δ-convex if all δ-balls are <-convex subsets.
Proposition 8.40. Under Assumption 8.37, consider the action Φ : G → Aut(T, /) on the
directed tree associated with (Z, δ). Consider also a ϕ-invariant total order < on Z.

Then, the order < is induced by a Φ-invariant planar order ≺ (via the map i : Z → ∂∗T
defined in Proposition 8.38) if and only if < is δ-convex.

Proof. Recall that we denote by p : Z ×X → T the quotient projection. Also, we denote by
∂Uv the shadow in ∂∗T of a point v ∈ T. Then, for every ξ ∈ Z and t ∈ X, we have
(8.5) i(Bδ(ξ, t)) = ∂Up(ξ,t) ∩ i(Z).
Assume first that < is induced by a Φ-invariant planar order ≺ on (T, /) and take a δ-ball
Bδ(ξ, t) in Z. Since shadows of vertices are ≺-convex and < is induced by ≺, the equality
(8.5) ensures that Bδ(ξ, t) is <-convex, as desired.
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Conversely, assume that < is δ-convex. Let v ∈ Br(T), and let us define an order ≺v on
E−v . For this, let e1, e2 ∈ E−v be distinct directions in E−v . By construction of (T, /) there
exist ξ1, ξ2 ∈ i(Z) ⊆ ∂∗T with ev(ξi) = ek for k ∈ {1, 2} (according to the notation in §8.2).
Notice that in this case ξ1 ∧ ξ2 = v. We define ≺v on E−v by setting e1 ≺v e2 if and only
if ξ1 < ξ2. To show that ≺v is well defined, consider different choices of representatives ξ′1
and ξ′2 for the corresponding directions. By definition, for k ∈ {1, 2} we have that {ξk, ξ′k} is
contained in the δ-ball Bδ(ξk, δ(ξk, ξ′k)), which is <-convex by hypothesis. Thus, in order to
show that ≺v is well defined, it is enough to show that Bδ(ξ1, δ(ξ1, ξ

′
1)) ∩Bδ(ξ2, δ(ξ2, ξ

′
2)) = ∅.

For this, for k ∈ {1, 2} write vk = ξk ∧ ξ′k and notice that, since vk ∈ ek and e1 6= e2, we
have ∂Uv1 ∩ ∂Uv2 = ∅. Finally, since for k ∈ {1, 2} one has p(ξk, δ(ξk, ξ′k)) = vk, the equality
(8.5) implies that i(Bδ(ξk, δ(ξk, ξ′k))) = ∂Uvk ∩ i(Z). This shows that ≺v is well defined. The
fact that < is induced by ≺ and that ≺ is Φ-invariant is clear from the construction and the
ϕ-invariance of <. �

We record the following consequence of the previous discussion.

Corollary 8.41. Let X = (a, b) be an interval, (Z, <) a totally ordered countable set, and
G be a group together with two actions actions ϕ : G→ Aut(Z, <) and j : G→ Homeo0(X).
Assume further that δ : Z ×Z → X ∪ {a} is a G-equivariant ultrametric kernel such that the
order < is δ-convex and the action of G on Z expands δ-balls. Let ψ : G→ Homeo0(R) be the
dynamical realization of ϕ. Then ψ is a minimal R-focal action, increasingly horograded by j.

Proof. Applying Proposition 8.38 we get an action of G on a directed tree (T, /) and a G-
equivariant map i : Z → ∂∗T. On the other hand, since < is ϕ-invariant and δ-convex,
Proposition 8.40 implies the existence of a Φ-invariant planar order ≺ inducing < on i(Z).
Thus, by the definition of dynamical realization of a focal action (notice that Φ is focal
by hypothesis) we get that the dynamical realization of ϕ and that of Φ coincide. Then,
Proposition 8.18 implies that the dynamical realization of ϕ (and also of Φ) is a minimal
R-focal action. Finally, since Φ is increasingly horograded by j we conclude that the dynamical
realization of ϕ is increasingly horograded by j. �

Example 8.42 (Ultrametric kernels for Plante actions). We revisit the example of the Plante
product of two left-orders, already treated in Examples 7.10 and 8.21, but now with the
perspective of ultrametric kernels. Recall that for given countable left-ordered groups (G,<G)
and (H,<H), we defined their Plante product as an action on the ordered space ϕ : H oG→
Aut(

⊕
GH,≺) of the wreath product H oG =

⊕
GH oG, where

⊕
GH is the set of functions

s : G → H which are trival at all but finitely many elements of G. In the action ϕ, the
subgroup G acts by pre-composing with left translations, whilst

⊕
GH acts by pointwise

left-multiplication. We already explained in Example 8.21 how to get a focal action on a
planar directed tree (T, /,≺) representing the dynamical realization of the Plante product,
and we observed at the end that the focal action is increasingly horograded by the dynamical
realization of <G. Here we will get the same conclusion, by simply introducing an ultrametric
kernel (which actually corresponds to the ultrametric kernel for a horograded focal action
defined in Remark 8.35).

Consider a good embedding ι : G→ R associated with the total order <G. We define an
ultrametric kernel

δ :
⊕
G

H ×
⊕
G

H → R ∪ {−∞}

as follows: when s 6= t, we define δ(s, t) = ι(x∗) where x∗ = max<G{x ∈ G : s(x) 6= t(x)}, while
in the remaining case, we set δ(s, s) = −∞ for every s ∈

⊕
GH. It is direct to check that δ is an
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ultrametric kernel. On the other hand, with arguments similar to those in Example 7.10 we get
that < is a δ-convex total order. This ultrametric kernel δ is H oG-equivariant if we consider
the action ϕ and j : H oG→ Homeo0(R) defined as j = j0 ◦ prG where prG : H oG→ G is the
projection and j0 is the dynamical realization of <G corresponding to the good embedding ι.

We next verify that the action of H oG on
⊕
GH expands δ-balls. By transitivity of the

action, it is enough to consider δ-balls centered at the trivial element e ∈
⊕
GH, and we can

simply consider the action of G, which is exactly the stabilizer of e. Thus for every x ∈ R
and g ∈ G, we have that g.Bδ(e, x) = Bδ(e, g.x). As the action of G on R is given by the
dynamical realization of <G, for every x ∈ R we can find a sequence of elements (gn) ⊂ G
such that gn.x→∞ as n→∞. This proves that the action expands δ-balls.

Finally, applying Corollary 8.41 we get that the Plante action of H oG associated with <G
and <H is R-focal, increasingly horograded by j.

9. Some minimal R-focal actions

The goal of this section is to present some general constructions of exotic actions on R.
The first three examples describe R-focal actions of locally moving groups. As in Section 4,
given X = (a, b) and a locally moving subgroup G ⊆ Homeo0(X), we say that an action
ϕ : G→ Homeo0(R) is exotic if it is not semi-conjugate to the standard action on X, nor to
any action of the largest quotient G/[Gc, Gc]. Some basic examples of exotic actions have
already been provided in §5.3; those examples are not satisfactory because they yield actions
which are not minimal (and that do not admit any non-empty closed minimal invariant subset),
and they essentially rely on the fact that the groups considered there are not finitely generated.
On the contrary, here we will construct examples of exotic minimal actions for some classes of
locally moving groups, including finitely generated ones. Along the way we will observe that
these constructions share the property to produce R-focal actions.

Finally, the last example is a generalization of the Brin–Navas group defined in Example 4.6.
The new examples, called generalized Brin–Navas groups, serve to show that some results
in this article concerning locally moving groups do not generalize to the general context of
micro-supported groups (notably Corollary 5.15 and Theorem 6.9 fail).

9.1. Locally moving groups with cyclic group of germs. Throughout the subsection
we let X = (a, b), and we let G ⊆ Homeo0(X) be a locally moving group such that Germ(G, b)
is infinite cyclic and acts freely near b (that is, for every g ∈ G whose projection to Germ(G, b)
is non-trivial, there is an interval (x, b) on which g has no fixed points). We will say for short
that G has cyclic germs at b.
Example 9.1. One example of group with cyclic germs is Thompson’s group F ⊆ Homeo0((0, 1)),
and more generally any Higman–Thompson’s group Fn (see §2.4). A much wider class of
examples with this property is given by chain groups in the sense of Kim, Koberda, and Lodha
[55].
9.1.1. Actions from escaping orbits. For G ⊆ Homeo0(X) with cyclic germs, we present a
mechanism build a continuum of pairwise non-conjugate minimal exotic actions, which is a
modification of the escaping sequence construction from §5.3. For this, we identify Germ(G, b)
with Z in such a way that a germ for which b is an attractive fixed point is sent to the positive
generator of Z. We denote by τ : G→ Z, the homomorphism obtained via this identification.
Then we fix an element f0 ∈ G such that τ(f0) = 1 (that is, the germ of f0 generates Germ(G, b)
and we have f0(x) > x near b). Choose next a bi-infinite sequence s = (sn)n∈Z ⊂ X with
(9.1) sn+1 = f0(sn) for n ∈ Z, and.
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Consider the action of the group G on the set of sequences (0, 1)Z, where the action of g ∈ G
on a sequence t = (tn)n∈Z is given by

(9.2) g · t =
(
g(tn−τ(g))

)
n∈Z

.

It is straightforward to check that this defines an action of G on XZ, using that τ is a
homomorphism. We let S ⊂ XZ be the orbit of s under this action. Note that s is fixed by f0.

Lemma 9.2. With notation as above, for every sequence t = (tn)n∈Z ∈ S, there exists n0 ∈ Z
such that tn = sn for every n ≥ n0.

Proof. Let g ∈ G be such that t = g · s. Then tn = g(sn−τ(g)). As we required limn→+∞ sn = b

in (9.1), and g coincides with f τ(g)
0 on a neighborhood of b, the conclusion follows. �

It follows from the lemma that for every two distinct sequences t = (tn) and t′ = (t′n) in S,
the integer
(9.3) m(t, t′) = max

{
n ∈ Z : tn 6= t′n

}
is well-defined and finite. Thus we can introduce the total order relation ≺ on S, given by
t ≺ t′ if and only if tm < t′m, with m = m(t, t′)

Lemma 9.3. With notation as above, the total order ≺ on S is preserved by the action of G
on S defined by (9.2). Moreover, the element f0 acts as a homothety on (S,≺) (in the sense of
Definition 2.41) with fixed point s.

Proof. It is routine verification that the order ≺ is G-invariant. Let us check that f0 is a
homothety. We have already noticed that the sequence s is a fixed point for f0. Fix sequences
t, t′ ∈ S such that
(9.4) s ≺ t ≺ t′.
We need to show that there exists n ∈ Z such that fn0 · t � t′ (in fact, we will find some n ≥ 1,
showing that f0 acts as an expanding homothety). Write m0 = m(t, s) and m1 = m(t′, s) and
note that the condition (9.4) gives m0 ≤ m1 and tm0 > sm0 . We claim that n = m1 −m0 + 1
is fine for our purposes. For this, we compute directly:

(fn0 · t)m1+1 = fn0 (tm1+1−n) = fn0 (tm0)
> fn0 (sm0) = sm0+n = sm1+1 = t′m1+1,

while for every m > m1 + 1 = n+m0 we have
(fn0 · t)m = fn0 (tm−n) = fn0 (sm−n) = sm = t′m.

Thus m(t′′, t′) = m0 + 1 and fn0 · t � t′, as desired. Similarly one argues for t′ ≺ t ≺ s. �

Assume now that G is countable, so that the set S is countable as well. Then we can
consider the dynamical realization ϕs : G→ Homeo0(R) of the action of G on (S,≺).

Proposition 9.4. For X = (a, b), let G ⊆ Homeo0(X) be a countable locally moving group with
cyclic germs at b. For every sequence s = (sn)n∈Z as in (9.1), the action ϕs : G→ Homeo0(R)
constructed above is minimal and faithful. Moreover if s′ is another such sequence, whose
image is different from that of s (that is, if they are not the same after a shift of indices),
then ϕs and ϕs′ are not conjugate. In particular G has uncountably many minimal faithful
non-conjugate actions on the real line.
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Proof. The fact that ϕs is minimal follows from Lemma 9.3 and Proposition 2.43 (the action
on S is transitive, so it is enough to describe what happens at s). Let ι : (S,≺) → R be an
equivariant good embedding associated with ϕs. Since f0 is a homothety on (S,≺), it follows
that its image of ϕs is a homothety of R whose unique fixed point is ι(s). In particular the
stabilizer of this point inside G+ = ker τ , which after (9.2) coincides with the stabilizer of s for
the natural diagonal action of G+ on XZ, is a well-defined invariant of the conjugacy class
of ϕs. Now note that if s and s′ are sequences with distinct images, using that G is locally
moving it is not difficult to construct g ∈ G+ such that g · s = s and g · s′ 6= s′, showing that
ϕs and ϕs′ are not conjugate. �

9.1.2. A simplicial tree and R-focality. We keep the same standing assumption on G and the
same setting as above, with a fixed sequence s = (sn)n∈Z as in (9.1). We now want to observe
that the action ϕs constructed above is R-focal. What is more, we will interpret the action ϕs
as the dynamical realization of a G-action on a planar directed tree which is simplicial (of
infinite degree), by simplicial automorphisms. For n ∈ Z denote by Z≥n the set of integers
j ≥ n. We let S≥n ⊂ XZ≥n be the subset of sequences indexed by Z≥n obtained by restricting
sequences in S to Z≥n:

Sn = {(tj)j≥n : (tj)j∈Z ∈ S}.
We will call truncation this operation. Given a sequence (tj)j≥n ∈ Sn we say that (tj)j≥n+1 ∈
Sn+1 is its successor. The disjoint union

⊔
n∈Z Sn is naturally the vertex set of a simplicial

tree T, obtained by connecting each element to its successor. Indeed it is clear to see that
the graph obtained in this way has no cycles; moreover it is connected, because of the fact
that all elements of S eventually coincide with the sequence s (Lemma 9.2). Thus we obtain a
simplicial tree.4

If we endow all edges of T with the orientation from a point to its successor, then all edges
point to a common natural end ω ∈ ∂T, we get a directed tree (T, /) with focus ω. Note that
every t = (tj)j∈Z ∈ S defines a bi-infinite ray of T, whose vertices are the successive truncations
of t. For every t ∈ S, this sequence converges to ω as n → +∞. As n → −∞, it converges
to some end αt ∈ ∂∗T = ∂T r {ω}. The map t 7→ αt is clearly injective, and thus allows to
identify S with a subset of ∂∗T.

The group G has a natural action on (T, /), namely for every vertex v = (tj)j≥n of T and
g ∈ G we set

g · (tj)j≥n =
(
g(tj−τ(g))

)
j≥n+τ(g)

.

Note in particular that if v ∈ Sn then g ·v ∈ Sn+τ(g). This action is by simplicial automorphism
and fixes the end ω. Moreover if g ∈ G is such that τ(g) 6= 0, then g has no fixed point on T,
and thus acts as a hyperbolic isometry. If τ(g) = 0, then g preserves each of the sets Sn and
acts as an elliptic isometry (indeed since g acts trivially on some neighborhood of b in x, it
must fix all vertices (sj)j≥n for n large enough).

Let us now define a planar order on (T, /). In this case, this just means an order <v for every
v = (tj)j≥n ∈ T on the set of edges E−v which lie below v (i.e. opposite to ω). Fix v = (tj)j≥n,
and consider two distinct edges e1, e2 ∈ E−v . Then for i ∈ {1, 2} we have ei = (w, v) for some
w =

(
t
(i)
j

)
j≥n−1

with t(i)j = t
(2)
j = tj for j ≥ n, and t(1)

n−1 6= t
(2)
j . Thus we set e1 <

v e2 if and

4Note that by slight abuse of notation we do not distinguish between the tree T as a graph, which is the
pair (V, E) consisting of the set of vertices and of edges E ⊂ V 2, and its simplicial realization, which is the
topological space obtained by gluing a copy of the interval [0, 1] for each edge in the obvious way and with the
natural quotient topology.
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only if t(1)
j < t

(2)
j . Then the collection {<v : v ∈ T} defines a planar order ≺ on (T, ω) which is

invariant under the action of G.
Finally note that the map t 7→ αt is G-equivariant and increasing with respect to the order

on S and the order on ∂∗T induced from the planar order. Thus the G-action on (S,≺) can be
identified with an action on an orbit in ∂∗T. It follows that ϕs is conjugate to the dynamical
realization of the action on the planar directed tree (T,≺, ω).

Finally we note that the above discussion also shows that the action ϕs can be increasingly
horograded by the cyclic action of G on R by integer translations defined by the homomorphism
τ : G→ Z. Indeed it is enough to take the horofunction π : T→ R associated with ω, which
sends every vertex v ∈ S≥n to n ∈ R, and maps the edge from v to its successor to the
interval [n, n+ 1]. It follows from Proposition 8.32 that for every element g ∈ G the image
ϕs(g) is a homothety if τ(g) 6= 0, while it is totally bounded if τ(g) = 0. In particular every
pseudohomothety in the image of ϕs is actually a homothety.
Remark 9.5. When a bi-infinite sequence s = (sn)n∈Z as in (9.1) also satisfies limn→−∞ sn = a
(that is, when the defining element f0 has no fixed point on X), then the dynamical realization
ϕs can also be increasingly horograded by the action of G on X.

To see this, we proceed to define an ultrametric kernel δ : S× S→ X ∪ {a}. This is given,
for any distinct t, t′ ∈ S, by δ(t, t′) = tm+1 = t′m+1, where m = m(t, t′) + 1 is the integer
defined in (9.3), and declare δ(t, t) = a. It follows directly from the definitions that δ is an
ultrametric kernel, and that it is G-equivariant with respect to the actions of G on S and X.
Notice also that the δ-balls are convex with respect to the total order relation ≺ on S and thus
≺ is δ-convex. In order to apply Corollary 8.41 we need to show that the action of G on S
expands δ-balls. As the action on S is transitive, it is enough to consider δ-balls centered at s.
Fix x ∈ X, and consider the δ-ball B = Bδ(s, x). Since s converges to a as n→ −∞, we can
find n ∈ Z such that Bδ(s, sn) ⊆ B. On the other hand, we have f0.Bδ(s, sn) = Bδ(s, sn+1).
Since the δ-balls Bδ(s, sn) define an exhaustion of S, as n runs over the integers, we deduce
that the same holds for the collection of δ-balls fn0 .B, which proves that the action of G on S
expands δ-balls as desired. Thus, from Corollary 8.41 we get that ϕs is increasingly horograded
by the standard action of G on X.
9.2. Orders of germ type and semidirect products. Here we explain a framework to
construct minimal exotic actions of various classes of groups of homeomorphisms of intervals,
including most groups of piecewise linear or projective homeomorphisms.

Set X = (a, b) and let G ⊆ Homeo0(X) be a (countable) micro-supported group acting
minimally on X. In order to run our construction, we require G to satisfy the following
condition.
(G1) The group Germ(G, b) admits a section inside Homeo0(X), namely a subgroup Γ ⊆

Homeo0(X) such that Germ(Γ, b) = Germ(G, b) and which projects bijectively to
Germ(G, b).5

Under assumption (G1), let Γ ⊆ Homeo0(X) be a section of Germ(G, b), and consider the
overgroup Ĝ = 〈G,Γ〉. we will proceed by describing an action of Ĝ and then restricting it to
G. Note that Germ(Ĝ, b) = Germ(G, b) induces the same group of left-germs at b as G. The
advantage of passing to Ĝ is that it splits as a semidirect product

Ĝ = Ĝ+ o Γ.
5The problem of when a group of germs admits a section as a group of homeomorphisms is very interesting.

We refer the reader to [69] for an example of a finitely generated group of germs which does not admit any such
section.
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where as usual Ĝ+ ⊆ Ĝ is the subgroup of elements whose germ at b is trivial. Using this
splitting, we can let the group Ĝ act “affinely” on Ĝ+: the subgroup Ĝ+ acts on itself by
left-multiplication, and Γ acts on it by conjugation. Explicitly, if g ∈ Ĝ and h ∈ Ĝ+, writing
g = g+γg with g+ ∈ Ĝ+ and γg ∈ Γ, we set

(9.5) g · h = ghγ−1
g .

Note that we actually have g · h = g+(γghγ−1
g ), from which it is straightforward to check that

this defines indeed an action on Ĝ+. We want to find an order ≺ on Ĝ+ which is invariant
under the action of G, and then consider the dynamical realization of the action of Ĝ on
(Ĝ+,≺). For this we look for a left-invariant order ≺ on Ĝ+ which is also invariant under the
conjugation action of Γ. We will say for short that such an order is Γ-invariant.

Good candidates are the orders of germ type on Ĝ+ described in §5.3.1. Recall that an
order of germ type is determined by a family of left orders {<(x) : x ∈ X}, where for every
x ∈ X, <(x) is a left-order on the group of germs Germ

(
Ĝ(a,x), x

)
: the associated order of

germ type on Ĝ+ is the order ≺ whose positive cone is the subset

P =
{
g ∈ Ĝ+ : Gpg(g) �(pg) id

}
,

where pg = sup{x ∈ X : g(x) 6= x}. However, not every order of germ type is Γ-invariant, and
this is because for every x ∈ X the stabilizer Stab

Ĝ
(x) of x acts on Ĝ(a,x) by conjugation, and

this action descends to an action of Germ(Ĝ, x) on Germ
(
Ĝ(a,x), x

)
. In light of this, we are

able to produce a Γ-invariant order of germ type on Ĝ+ if and only if the following condition
is satisfied.
(G2) For every x ∈ X, the group Germ

(
Ĝ(a,x), x

)
admits a left-invariant order <(x) which

is invariant under conjugation by Germ(Γ, x).
Indeed, suppose that {<(x): x ∈ X} is a family such that the associated order of germ type
is Γ-invariant, then each ≺(x) is as in (G2). Conversely if we choose such an order <(x) as in
(G2) for x in a system of representatives of the Γ-orbits in X, then we can extend it uniquely
by Γ-equivariance to a family {<(x) : x ∈ X} which defines a Γ-invariant order of germ type.

Remark 9.6. Here are two simple sufficient conditions for (G2).
(G2i) The group Γ acts freely on X.
(G2ii) For every x ∈ X, every non-trivial germ in Germ

(
Ĝ(a,x), x

)
has no fixed point ac-

cumulating on x from the left (this does not depend on the choice of the element
representing the germ).

The fact that (G2i) implies (G2) is clear since in this case StabΓ(x) is trivial. In contrast
when (G2ii) holds, we can define an order <(x) on Germ

(
Ĝ(a,x), x

)
by setting Gx(g) >(x) id

if and only if g(y) > y for every y 6= x in some left-neighborhood of x. Then this is a
left-order on Germ

(
Ĝ(a,x), x

)
which is invariant under conjugation by the whole stabilizer of

x in Homeo0(X).

Summing up, under conditions (G1) and (G2) we can consider a Γ-invariant order of germ
type ≺ on Ĝ+ and let Ĝ act on (Ĝ,≺) by (9.5). By passing to the dynamical realization we
obtain an action of Ĝ, and thus of G, on the real line. This construction yields the following
criterion for the existence of exotic actions.
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Proposition 9.7. For X = (a, b), let G ⊆ Homeo0(X) be a finitely generated, micro-supported
group acting minimally on X. Assume that Germ(G, b) admits a section Γ ⊆ Homeo0(X) (that
is, condition (G1) holds) such that Ĝ = 〈G,Γ〉 satisfies (G2).

Then there exists a minimal faithful action ϕ : G → Homeo0(R) which is R-focal and not
conjugate to the standard action of G on X.

Proof. Choose a Γ-invariant order of germ type ≺ on Ĝ+, defined from the family of orders
{<(x) : x ∈ X}. We let ψ : G → Homeo0(R) be the dynamical realization of the action of G
on (Ĝ+,≺). Set N = [Gc, Gc], which by Proposition 4.4 is the smallest non-trivial normal
subgroup of G.

Claim. For every x ∈ X the group ψ(N(x,b)) acts on R without fixed points.

Proof of claim. Let ι : (Ĝ+,≺)→ (R,+) be an equivariant good embedding associated with ψ
(Definition 2.37). Observe that the subgroups Ĝ(a,y), for y ∈ X, are bounded convex subgroups
of (Ĝ+,≺) which form an increasing exhaustion of Ĝ+, thus the convex hull of every ι(Ĝ(a,y))
is a bounded interval Iy ⊂ R, giving an increasing exhaustion of R. Now given any x and
y in X, every g ∈ N(x,b) with pg > y satisfies gĜ(a,y) 6= Ĝ(a,y), which in turn implies that
ψ(g)(Iy) ∩ Iy = ∅. Since y is arbitrary, and the intervals Iy exhaust R, this implies that
Fixψ(N(x,b)) = ∅. �

As G is finitely generated, we can consider a canonical model ϕ : G → Homeo0(R) of
ψ, which is thus either minimal or cyclic. Since ϕ is semi-conjugate to ψ, the claim gives
Fixϕ(N(x,b)) = ∅. Using Proposition 4.4, we deduce that ϕ is faithful, and thus minimal.
Moreover we see that it cannot be conjugate to the standard action of X, since N(x,b) does
have fixed points on X.

Finally, as in the proof of the claim, it is not difficult to see that the collection

S := {ψ(g)(Iy) : g ∈ G, y ∈ X}

is an invariant CF-cover for ψ (thus ψ is R-focal). Since ϕ is semi-conjugate to ψ, Proposition
7.6 implies that ϕ is R-focal. �

Remark 9.8. With some additional work, one could show that ϕ can be increasingly horograded
by the natural action of G on X. In particular the dynamics of element in the image of ϕ can
be determined by their dynamics on X using Proposition 8.32. We do not elaborate on this,
as in Section 10 we will prove that this is the case for all exotic actions of a class of locally
moving groups (although this class does not include all groups covered by Proposition 9.7, the
arguments in its proof can be adapted to the action constructed here).

The criterion given by Proposition 9.7 applies to several classes of examples of micro-
supported groups. Let us give a first illustration. We say that the group of germs Germ(G, b)
acts freely near b if every non-trivial germ has no fixed point accumulating on b (this condition
does not depend on the choice of the representative; cf. (G2ii)).

Corollary 9.9. For X = (a, b), let G ⊆ Homeo0(X) be a finitely generated, micro-supported
group acting minimally on X. Assume that Germ(G, b) is abelian and acts freely near b. Then
there exists a faithful minimal action ϕ : G→ Homeo0(X) which is R-focal and not conjugate
to the standard action of G on X.
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Proof. We first check that if Germ(G, b) is abelian and acts freely near b, then it admits a
section Γ ⊂ Homeo0(X) which acts freely on X. To see this, using that G is finitely generated,
we can take finitely many elements g1, . . . , gr in G whose germs at b are non-trivial and
generate Germ(G, b). Up to taking inverses, the condition that Germ(G, b) acts freely near
b allows to find z ∈ X such that gi(x) > x and gigj(x) = gjgi(x) for every x ∈ (z, b) and
i, j ∈ {1, . . . , r}. Choose an element γ1 ∈ Homeo0(X) which coincides with g1 on (z, b) and has
no fixed points in X. Take x0 ∈ (z, b) and consider the fundamental domain I = [x0, γ1(x0)).
As the elements g2, . . . , gr commute with g1 = γ1 on I, they induce an action of Zr−1 on
the circle X/〈γ1〉 = [x0, γ1(x0))/x0∼γ1(x0), which can be lifted to an action of Zr−1 on X
commuting with γ1. In simpler terms, writing In = γn1 (I), so that X =

⊔
n∈Z In, for every

i ∈ {2, . . . , r} we can consider the homemorphism γi ∈ Homeo0(X) defined by

(9.6) γi(x) = γn1 giγ
−n
1 (x) for x ∈ In and n ∈ Z.

The elements γ2, . . . , γr define exactly the action of Zr−1 on X which commutes with γ1, as
discussed above. From the definition (9.6), we see that every γi coincides with gi on [x0, b), and
in particular we have Gb(γi) = Gb(gi). This gives that Γ = 〈γ1, . . . , γr〉 is a section of Germ(G, b)
acting freely on X. Thus conditions (G1) and (G2i) are satisfied, so that the conclusion follows
from Proposition 9.7. �

A case in which the previous criterion applies is when b < ∞ and the group of germs
Germ(G, b) coincides with a group of germs of linear homeomorphisms x 7→ λ(x− b) + b. This
is for instance the case whenever G is a subgroup of the group PL(X) of finitary piecewise
linear homeomorphisms of X. This case can be generalized as follows.

Recall from Definition 5.16 that given X = (a, b) ⊂ R an interval, we denote by PDiffωloc(X)
the group of all locally piecewise analytic, orientation-preserving homeomorphisms of X, with a
countable discrete set of breakpoints in X. We also let PP0(X) be the subgroup of PDiffωloc(X)
of piecewise projective homeomorphisms of X with finitely many breakpoints, namely those
that are locally of the form x 7→ px+q

rx+s , with ps− qr = 1.

Corollary 9.10. For X = (a, b), let G ⊆ PDiffωloc(X) be a finitely generated micro-supported
group acting minimally on X. Assume that either of the following conditions is satisfied:

(a) G is contained in the group PP0(X) of piecewise projective homeomorphisms;
(b) the group of germs Germ(G, b) admits a section Γ contained in PDiffωloc(X).

Then there exists a faithful minimal action ϕ : G → Homeo0(R) which is R-focal and not
conjugate to the action of G on X.

Proof. First of all observe that (a) implies (b). To see this, assume first that X = R; then
Germ(G,+∞) is a subgroup of the group of germs of the affine group Aff(R) = {x 7→ ax+ b},
and thus admits a section inside Aff(R) ⊆ PP0(R). For general X, observe that if we fix
x0 ∈ X, we can find A,B ∈ PSL(2,R) which fix x0 and such that A maps the interval (a, x0)
to (−∞, x0) and B maps (x0, b) to (x0,+∞). Then the map H : X → R, given by

H(x) =
{
A(x) if x ≤ x0,
B(x) if x > x0,

conjugates PP(X) to PP(R), so that the we can conclude from the previous case.
Now assume that (b) holds, and choose a section Γ ⊆ PDiffω0 (X) of Germ(G, b). Then since

non-trivial analytic maps have isolated fixed points, we see that Ĝ satisfies (G2ii), thus (G2),
and we can apply Proposition 9.7. �
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Remark 9.11. The conditions in Proposition 9.7 cannot be dropped: in §12.2 we will construct
an example of a finitely generated locally moving group G ⊆ Homeo0(R) which admits no
exotic action. Moreover this example satisfies (G1) (but not (G2)), and its natural action
is by piecewise linear homeomorphisms with a countable set of singularities which admit a
finite set of accumulation points inside X. This shows the sensitivity of Corollary 9.10 to its
assumptions.

9.3. A construction of R-focal actions for groups of PL homeomorphisms. Let X =
(a, b) be an interval. Recall that we denote by G(X;A,Λ) the Bieri-Strebel group of finitary
PL-homeomorphisms associated to a non-trivial multiplicative subgroups Λ ⊂ R∗ and a Λ-
submodule A ⊂ R (see Definition 2.44). By Corollary 9.10, we already know that the group
G(X;A,Λ) always admits an (exotic) minimal R-focal action. In this subsection we present a
generalization of that construction which is specific to the groups G(X; Λ). The main interest
of this generalisation is that in Section 12 we will show that for a vast class of Bieri-Strebel
groups on X = R (including the groups G(λ) from Theorem 1.19), all exotic actions arise
through the construction presented here.

Throughout we fix (Λ, A) and set G := G(X;A,Λ). We introduce the functions j± :
G×X → Λ defined by

j+(g, x) =
∏
y≥x

D−g(y)
D+g(y) and j−(g, x) =

∏
y≤x

D+g(y)
D−g(y) ,

that we call the right (respectively, left) jump cocycles (cf. Example 4.7). Note that these
are well defined as only finitely many terms in each product are different from 1, and it is
immediate to verify the cocycle relation
(9.7) j±(g2g1, x) = j±(g2, g1(x)) j±(g1, x) for x ∈ X and g1, g2 ∈ G.
Remark 9.12. For fixed g ∈ G, the function j+(g,−) : X → Λ (respectively, j−(g,−) : X → Λ)
has the following properties:

(1) it is left (respectively, right) continuous,
(2) it is piecewise constant, with discontinuity points in A,
(3) it takes the constant value 1 on a neighborhood of b (respectively, a).

We next fix a preorder ≤Λ∈ LPO(Λ) and we denote by Λ0 = [1]≤λ its residue. We then get
a partition G = P tH t P−1, with

(9.8) H =
{
g ∈ G : j+(g, x) ∈ Λ0 ∀x ∈ X

}
and P =

{
g ∈ GrH : j+(g, xg,Λ0) ∈ P≤Λ

}
,

where for given g ∈ GrH, we are writing

(9.9) xg,Λ0 = max
{
x ∈ X : j+(g, x) /∈ Λ0

}
.

It follows from the cocycle relation (9.7) that P is a semigroup, H is a subgroup and HPH ⊆ P .
Thus, P is the positive cone of a preorder of G whose residue is H (see Remark 2.34).
Definition 9.13. For a given preorder ≤Λ on Λ, we define the right jump preorder on
G = G(X;A,Λ) as the preorder �+ whose positive cone is the semigroup P in (9.8). Similarly,
we define the left jump preorder �− as the preorder obtained from the analogue construction
considering the left jump cocycle.

(This should be compared with the construction appeared in in §5.3.3 for the group
PLQ((0, 1)).)

The aim of this subsection is to show the following.
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Proposition 9.14. Let X = (a, b) be an interval and let G = G(X;A,Λ) be a countable
Bieri–Strebel group. a preorder ≤Λ∈ LPO(Λ), let �∈ LPO(G) be either the right or left jump
preorder associated with ≤Λ. Assume in addition that one of the following conditions satisfied:

(1) a, b ∈ A ∪ {±∞}, or
(2) the residue Λ0 = [1]≤Λ is non-trivial.

Then, the dynamical realization of � is a faithful minimal R-focal action.
Moreover, for two distinct preorders on Λ, the dynamical realizations of their associated right

(respectively, left) jump preorders are not positively conjugate. In particular, when LPO(Λ) is
uncountable, then G admits uncountably many conjugacy classes of minimal R-focal actions.

In order to do this, we take a different approach to define the jump preorders. We only
discuss the case of right jump preorder, the other case being totally analogous. To start with,
we note that the right jump cocycle j+ induces a fibered action of G on the trivial bundle
X × Λ→ X. Such action descends to a fibered action on the quotient X × Λ/Λ0 → X and
we can consider the induced action Φ on the space of sections S(X,Λ/Λ0) = {t : X → Λ/Λ0}.
More explicitly, for a given function t : X → Λ/Λ0, and element g ∈ G, the action t 7→ Φ(g)(t)
is defined by the expression
(9.10) Φ(g)(t) : x 7→ j+(g, g−1(x)) t(g−1(x)) (mod Λ0).
It is routine to check from (9.7) that this is indeed an action of the group G. As usual, we will
use the shorthand notation g.t for Φ(g)(t).

After the regularity properties of the cocycles (Remark 9.12), it is more appropriate to
restrict such actions to the invariant subspace S of functions t : X → Λ/Λ0 satisfying the
analogous properties:

(1) t is left continuous,
(2) t is piecewise constant, with discontinuity points in A,
(3) t takes the constant value Λ0 on a neighborhood of b.

The preorder ≤Λ defines a total order <Λ/Λ0 on the quotient Λ/Λ0, which is invariant by
multiplication by elements of Λ. From this, we introduce a lexicographic total order ≺S on the
subspace S: for distinct sections s, t ∈ S, say that s ≺S t if

s(m) <Λ/Λ0 t(m), where m = max {x ∈ X : s(x) 6= t(x)} .

Lemma 9.15. With notation as above, the action Φ of the group G = G(X;A,Λ) on the
space of sections S preserves the total order ≺S.

Proof. The order ≺S is invariant under pointwise multiplication by elements in the subspace
S, and also by precomposition of sections by homeomorphisms of the base X. Thus, from the
expression (9.10) for the action Φ, we immediately get the result. �

In what follows, we will denote by e the trivial section (namely, e(x) = Λ0 for every x ∈ X).
Note that e belongs to S. We have the following.

Lemma 9.16. With notation as above, the pull-back of ≺S by the map g ∈ G 7→ g.e ∈ S
coincides with the right jump preorder.

Moreover, the restriction of the action Φ to the orbit of the trivial section e is faithful.

Proof. For g ∈ G, we compute from (9.10) the image of the trivial section:

(9.11) g.e(x) = j+(g, g−1(x)) (mod Λ0).
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Thus the subgroup H and the semigroup P defined at (9.8) are respectively, the residue and
the positive cone of the pull-back preorder.

In order to prove that the action is faithful, we will find an element g ∈ [Gc, Gc] and x ∈ X
for which j+(g, x) /∈ Λ0. From (9.11), this will give that g does not fix the trivial section
e, and we can conclude using Proposition 4.4. To do this, take an element g1 ∈ Gc whose
support is a interval J = (c, d) b X, with D−g1(d) /∈ Λ0. Take an element h ∈ G such that
h(d) < c, and consider the commutator g = [g1, h] ∈ [Gc, Gc]. Then j+(g, d) = D−g1(d) /∈ Λ0,
as desired. �

We need further preliminary results on the dynamics of the action Φ.

Lemma 9.17. With notation as above, for any two distinct sections s, t ∈ S with s ≺S t, there
exists g ∈ G such that s ≺S g.e ≺S t.

Proof. Write m = max {x ∈ X : s(x) 6= t(x)}, choose a point m′ < m in A such that t is locally
constant on [m′,m], and take an element g ∈ G such that

(1) t(x) = D−g−1(x)−1 (mod Λ0) for every x ∈ (m′, b),
(2) t(m′) >Λ/Λ0 D

−g−1(m′)−1 (mod Λ0),
(3) D−g(x) = 1 for every x in a sufficiently small neighborhood of b.

Such an element (or better, its inverse g−1) can be produced by integrating a representative of
the section t−1 on (m′, b) (details are left to the reader). Note that the last condition gives

g.e(x) = j+(g, g−1(x)) = D−g−1(x)−1 (mod Λ0),

so that by the first two conditions we get s ≺S g.e ≺S t. �

Lemma 9.18. With notation as above, assume in addition b ∈ A∪{+∞} or Λ0 6= {1}. Then,
for every choice of four sections s1, s2, t1, t2 ∈ S with t1 ≺S s1 ≺S s2 ≺S t2, there exists an
element g ∈ G such that g. s1 ≺S t1 ≺S t2 ≺S g. s2.

Proof. First of all, we argue that we can assume that s1 ≺S e ≺S s2. Indeed, for general
s1, s2, t1, t2 ∈ S with t1 ≺S s1 ≺S s2 ≺S t2, after Lemma 9.17 we can take an element h ∈ G
such that s1 ≺S h.e ≺S s2, or equivalently h−1. s1 ≺S e ≺S h

−1. s2. Assume there exists an
element k ∈ G such that

kh−1. s1 ≺S h
−1.t1 ≺S h

−1.t2 ≺S kh
−1. s2,

then the conjugate element g = hkh−1 will make the job for s1, s2, t1, t2 ∈ S.
Now, for general t ∈ Sr {e}, define xt = max{x ∈ X : t(x) 6= Λ0} and write

x∗ = min{xs1 , xs2}, y∗ = max{xt1 , xt2}.

Take an element g ∈ G with the following properties:
(1) g(x∗) > y∗ and
(2) j+(g, g−1(x)) = 1 for every x ∈ [g(x∗), b).

To ensure the second condition, we can either choose g ∈ G(X;A,Λ0) (when the residue Λ0 is
non-trivial) or an element g with no breakpoint in [x∗, b) (in which case we have to assume
that b ∈ A ∪ {+∞}).

Remark 9.19. We point out, for further use, that in the former case we can actually choose
g ∈ G(X;A,Λ0) ∩ [Gc, Gc].
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Then, for i ∈ {1, 2} we get from (9.10) the expression
g.si(x) = si(g−1(x)) for every x ∈ [g(x∗), b).

In particular, we have
g.si(x) = Λ0 = ti(x) for every x ∈ (g(xsi), b),

and g.si(g(xsi)) = si(xsi), while ti(g(xsi)) = Λ0. As we are assuming s2 ≺S e ≺S s2, this gives
g.s1(g(xs1)) <Λ/Λ0 Λ0 = t1(g(xs1)) and g.s2(g(xs2)) >Λ/Λ0 Λ0 = t2(g(xs2)),

so that we can conclude g. s1 ≺S t1 ≺S t2 ≺S g. s2. �

Proof of Proposition 9.14. We will focus on the right jump preorder, the case for the left jump
preorder being analogous. For given t ∈ S and x ∈ X, consider the subset

C(t, x) = {s ∈ S : s(y) = t(y) for every y > x}.
Then, we define C := {C(t, x) : t ∈ S, x ∈ X}. It is a straightforward verification that C is a
Φ(G)-invariant CF-cover of S by ≺S-convex subsets.

If we denote by ϕ the dynamical realization of the action Φ on the orbit of the trivial
section e (which is countable), and by ι its associated good embedding, we have that the
family {hull(ι(C)) : C ∈ C} is a ϕ(G)-invariant CF-cover (here hull(A) denotes the interior of
the convex hull of A ⊂ R). Considering Lemma 9.18, we get from the minimality criterion
(Lemma 2.42) that ϕ is minimal. Proposition 7.7 then implies that ϕ is an R-focal action.
Lemma 9.16 gives that ϕ is faithful.

To prove the second part of the statement we show that the preorder ≤Λ can be read from
the positive conjugacy class of ϕ. For this, given g ∈ G+, let m(g) denote the leftmost point
of the support of g (namely, m(g) = sup{x ∈ X : g(x) 6= x}). Given λ ∈ Λ we consider a
sequence (gn) ⊆ G(X;A, 〈λ〉) ∩G+ satisfying:

• D−gn(m(gn)) = λ and
• m(gn)→ b as n→ +∞.

Note that this sequence exists since G = G(X;A,Λ) is a Bieri–Strebel group. Similarly as in
the proof of Lemma 9.18, we compute that for a given section t ∈ S, for every n ∈ N we have

gn.t(x) = t(x) for every x ∈ (m(gn), b)
and

gn.t(m(gn)) = λ t(m(gn)) (mod Λ0).
Assume first that λ ∈ Λ0, so that (gn) ⊆ H = [1]�+ . Since e ∈ FixΦ(H) it holds that ι(e) is
a common fixed point of the family {ϕ(gn) : n ∈ N}. Consider now the case where λ Λ 1.
Note that in this case, for every t ∈ S and n ∈ N large enough, the above computation gives
xgn.t = m(gn) and (gn.t)(xgn.t) Λ 1. In particular we have that for every t ∈ S, gn.t→ +∞
as n → +∞ which implies that ϕ(gn)(ξ) → +∞ for every ξ ∈ R. Analogously, in the case
λ �Λ 1 it holds that ϕ(gn)(ξ)→ −∞ for every ξ ∈ R. As such qualitative properties of the
action ϕ are invariant under positive conjugacy, we deduce that the positive conjugacy class of
ϕ determines the preorder ≤Λ. �

Remark 9.20. Note that the existence of R-focal actions for Bieri–Strebel groups also follows
from Corollary 9.9. However, the examples in which ≤Λ has non-trivial residue cannot be
obtained from Corollary 9.9. Indeed, in Theorem 12.3 we show that all exotic actions of
Bieri–Strebel groups of the form G(R;A,Λ) (with some finitary assumption on A and Λ) arise
from cocyle preorders.
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Remark 9.21. Given a preorder ≤∈ LPO(Λ) we can consider its opposite preorder, namely
the preorder ≤op∈ LPO(Λ) such that P≤ = P−1

≤op . Note that in the case ≤1,≤2∈ LPO(Λ) are
one opposite of the other, their associated right (respectively, left) jump preorders are also
opposite to each other. Therefore their dynamical realizations are conjugate (although they
are not positively conjugate).

Corollary 9.22. Let G = G(X;A,Λ) be a countable Bieri–Strebel group and let ≤Λ∈ LPO(Λ)
be a preorder with non-trivial residue. Consider �∈ LPO(G) the right or left jump preorder
associated to ≤Λ and ϕ its dynamical realization. Then, the action of ϕ([Gc, Gc]) on R is
minimal.

Proof. We focus on the right jump preorder, the other case being analogous. We keep notation
as above. We write Ω = [Gc, Gc].e for the orbit of the trivial section. We argue similarly as in
the proof of Proposition 9.14. After (the proof of) Lemma 9.16, the dynamical realization of
the action of [Gc, Gc] on Ω is faithful. Also, by Lemma 9.18 and Remark 9.19 therein, we have
that the stabilizer of e in Φ([Gc, Gc]) is of homothetic type. As the action on Ω = [Gc, Gc].e
is transitive, we can apply Proposition 2.43 and get that the dynamical realization, which
coincides with the restriction of ϕ : G→ Homeo0(R) to [Gc, Gc], is minimal. �

Remark 9.23. We point out that, although Thompson’s group F does not satisfy the hypothesis
of Corollary 9.22, we show in Theorem 11.35 how to construct exotic actions of F with similar
dynamical properties.

Remark 9.24. Recal that after Proposition 8.19, every minimal R-focal action of a countable
group can be obtained as the dynamical realization of an action on a planar directed tree. The
result above show that there are cases for which such action cannot be chosen to be simplicial.
Indeed, assume that G = G(X;A,Λ) and ≤Λ∈ LPO(Λ) satisfy the assumptions of Corollary
9.22. Let ϕ denote the dynamical realization of a corresponding jump preorder. Then, by
Proposition 4.4, every non-trivial normal subgroup of G contains [Gc, Gc] and therefore, by
Corollary 9.22, the restriction of ϕ to any non-trivial normal subgroup of G is minimal. We
conclude using Proposition 8.33.

9.4. A construction of micro-supported R-focal actions. Recall from Proposition 7.14
that if G is a minimal micro-supported subgroup of Homeo0(R), then either G is locally
moving or its standard action is R-focal. In this subsection we give general construction
of minimal micro-supported subgroups of Homeo0(R) whose action is R-focal. We will use
this construction to illustrate that the class of micro-supported subgroups of Homeo0(R) is
much more flexible than the class of locally moving groups: we can find groups that admit
uncountably many pairwise non-semi-conjugate faithful micro-supported actions (in contrast
with Rubin’s theorem for locally moving groups, see Corollary 5.15). Also many of these
examples can even be chosen to be of class C1 (in contrast with Theorem 6.9). These groups
are described as groups of automorphisms of planar directed (simplicial) trees, by adapting the
classical construction of Burger and Mozes [21], and the related groups defined by Le Boudec
[58].

9.4.1. Groups with many micro-supported actions. We say that a pair (A, a0) is a marked
alphabet if A is a set and a0 ∈ A. Then, denote by S ⊆ AZ the set of sequences with values in
A which take the constant value a0 in all but finitely many terms. Following the notation as
in §9.1.2, denote by Sn the truncations to Zj≥n of the elements in S. Also, given a sequence
(tj)j≥n say that (tj)j≥n+1 is its successor. This defines a simplicial directed tree (TA, /) whose
focus is defined by the successive truncations of the constant path s with value a0. By abuse of
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notation, we will identify TA with its set of vertices
⊔
n∈Z Sn. Recall that for a vertex v ∈ TA,

we denote by E−v the set of edges below v (opposite to ω). For v = (tj)j≥n, the set E−v is
naturally identified with the alphabet A, considering the labeling

jv : E−v → A
[(tj)j≥n−1, (tj)j≥n] 7→ tn−1

.

Note also that every g ∈ Aut(T, /) induces a bijection between E−v and E−g.v. We write
σg,v := jg(v) ◦ g ◦ j−1

v for the induced permutation of A. Observe that we have the cocycle
relation
(9.12) σg,h(v) σh,v = σgh,v.

Definition 9.25. Let (A, a0) be a marked alphabet, G ⊂ Sym(A) be a group of permutations
of A, and let (TA, /) be the directed tree defined above together with the labelings jv, v ∈ TA.
We define the generalized Brin–Navas group BN(A;G) as the group of all elements g ∈ Aut(T, /)
such that σg,v ∈ G for all v ∈ T and σg,v = id for all but finitely many v ∈ T.
Remark 9.26. The name comes from the fact that the Brin–Navas group considered in
Example 4.6 is isomorphic to the group BN(Z;G) where G ⊂ Sym(Z) is the group of translations
of the integers.

We need to define a suitable generating set. For this, given a vertex v ∈ TA denote by
Gv ⊂ BN(A;G) the subgroup of all g ∈ BN(A;G) which fix v and such that σg,w = id for
w 6= v (clearly Gv ∼= G). We then consider an extra generator defined as follows. Note that
the shift map σ : S→ S, which sends a bi-infinite sequence (tj)j∈Z to (tj−1)j∈Z naturally acts
on the set of truncated sequences

⊔
n∈Z Sn preserving the successor relation. Thus it defines

an automorphism f0 ∈ Aut(TA, /). It is direct to check that f0 is a hyperbolic element in
BN(A;G) whose axis consists on the geodesic (wn)n∈Z with wn = (a0)j≥n, and that moreover
σf0,v = id for every vertex v ∈ TA. With this notation set, we have the following.
Lemma 9.27. Let (A, a0) be a marked alphabet, and assume that G ⊂ Sym(A) acts transitively
on A. Then the group BN(A;G) is generated by Gw0 and f0. In particular it is finitely generated
as soon as G is so.

Proof. Write Γ = 〈Gw0 , f0〉 for the subgroup of Aut(TA, /) generated by Gw0 and f0. We first
observe the following.
Claim. For every vertices v1, v2 ∈ TA, there exists g ∈ Γ such that g.v1 = v2 and σg,v = id
for every vertex v / v1.

Proof of claim. First notice that, by composing with powers of f0 and using the cocycle relation
(9.12), we can assume that both v1 and v2 belong to S0. Similarly, we can also assume that
v1 = w0 = (a0)n≥0; write v2 = (tn)n≥0. Since G acts transitively on A there exists a sequence
(hn)n≥0 in G such that hn(a0) = tn. Moreover, since tn = a0 for n large enough, we can take
hn to be the identity for n large enough. By abuse of notation denote by hn ∈ Gw0 the element
with σhn,w0 = hn. Thus, the product g :=

∏
n≥0(fn0 hnf−n0 ) is actually a finite product and

thus defines an element of Γ, which moreover satisfies σg,v = id for every v ∈
⊔
n<0 Sn. It

follows directly from the choices that g.w0 = v2. This proves the claim. �

Take a vertex v0 ∈ TA, by the previous claim we can take g ∈ Γ so that g.v0 = w0 and
σg,v = id for every v / v0. Then it is direct to check that g−1Gw0g = Gv0 . This shows that
Gv0 ⊆ Γ for every vertex v0 ∈ TA. Finally, given g ∈ BN(A;G) write

C(g) := |{v ∈ TA : σg,v 6= id}|.
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Notice that when C(g) = 0 then g is a power of f0, hence it belongs to Γ. Take an element
g ∈ BN(G) with C(g) > 0, and a vertex v ∈ TA so that σg,v 6= id. Then we can find h ∈ Gv
satisfying σh,v = σg,v. Then we have C(gh−1) = C(g)− 1. By repeating this procedure finitely
many times we can find h′ ∈ Γ so that C(gh′) = 0. We deduce that g belongs to the group
Γ. �

Notice that for every order < on the alphabet A there exists a unique planar order ≺ on
(TA, /) for which the maps jv are order preserving. If in addition the subgroup G ⊂ Sym(A)
preserves <, the group BN(A;G) preserves the associated planar order ≺. We call this action
the induced planar directed tree representation associated with G and <.

Proposition 9.28. Let (A, a0) be a marked alphabet, assume that G ⊂ Sym(A) acts transitively
on A and let < be an G-invariant total order on A. Then, the dynamical realization of the planar
directed tree representation associated with G and < is a minimal, faithful and micro-supported
R-focal action of BN(A;G).

Moreover, for two different G-invariant orders on A, the dynamical realizations of their
corresponding planar directed tree representations are not positively semi-conjugate.

Proof. Let ≺ be the planar order associated with <, and let Φ : BN(A;G) → Aut(TA, /,≺)
be the corresponding action. Since Φ acts transitively on the vertices of TA and BN(A;G)
contains a hyperbolic element, the focality of Φ follows.

Let ξ ∈ ∂∗TA be the end defined by the sequence (wn)n≤0, and let Oξ be its orbit under the
associated BN(A;G)-action on ∂∗TA. Since f0 is a hyperbolic element with axis (wn)n∈Z, it
acts on (Oξ,≺) as a homothety fixing ξ. This allows us to apply Lemma 2.42 to deduce that
the dynamical realization of BN(G)→ Aut(Oξ,≺) is minimal. In other words, the dynamical
realization of Φ, that we denote by ϕ, is minimal. On the other hand, since Gv is supported
on the set of points below v, its associated action on Oξ is supported on the shadow of v.
This implies that the support of ϕ(Gv) is relatively compact, and thus by Proposition 4.2 we
deduce that ϕ is micro-supported. Finally, the faithfulness of ϕ follows from that of Φ.

Given h ∈ G and vertex v ∈ TA we denote by hv the element of Gv satisfying σhv ,v = h.
Also, let p ∈ R be the fixed point of ϕ(f0). Then, given h ∈ G we have

ϕ(hw0)(p) > p if and only if h(a0) > a0.

Since the action of G on A is transitive, this implies that we can read the total order < from the
action ϕ. In particular, dynamical realizations corresponding to different G-invariant orders
on A give rise to non-positively-conjugate actions. Finally, since these dynamical realizations
are minimal and not positively conjugate, they are not positively semi-conjugate. �

Note that by the transitivity assumption in Proposition 9.28, the planar directed tree
representation is in fact determined by a choice of a left-invariant preorder on G, as an abstract
group, and the second part in the statement says that two different left-invariant preorders on
G with same residue yield non-positively-semi-conjugate actions. As a particular case, one can
consider a left-invariant order on G, in which case we can identify the marked alphabet with
(G, 1G), and the subgroup G ⊂ Sym(G) is the group of left translations. In such case, we will
simply write BN(G) for the group BN(G;G).

Recall that if G ⊂ Homeo0(R) is a locally moving group, then every faithful locally moving
action of G on R is conjugate to its standard action (by Rubin’s theorem, or by Corollary 5.15).
The groups BN(G) show that the this is far from being true for micro-supported subgroups of
Homeo0(R).
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Corollary 9.29. Let G be a finitely generated group whose space of left-invariant orders is
uncountable. Then BN(G) has uncountably many, pairwise-non-conjugate, faithful, minimal
and micro-supported actions on the line.

Proof. After the previous discussion, we can apply Proposition 9.28 to each left order in LO(G),
which gives the desired result. �

9.4.2. Groups with many differentiable micro-supported actions. Here we extend the result
given by Corollary 9.29 by showing that for some finitely generated groups G, we can actually
get many faithful micro-supported actions of class C1 of the group BN(G) (compare with
Theorem 6.9).

Theorem 9.30. There exists a finitely generated group admitting uncountably faithful minimal
micro-supported actions, which are pairwise not semi-conjugate (and not semi-conjugate to a
non-faithful action), and each of which is semi-conjugate to a C1 action. More precisely, the
generalized Brin–Navas group BN(Z2) satisfies such properties.

Remark 9.31. In fact, it seems also possible to prove that the group BN(Z2) admits minimal
faithful micro-supported actions which are conjugate to a C1 action and pairwise not semi-
conjugate, but since this is more technical we will content ourselves of the previous statement
(which suffices to disprove the analogue of Theorem 6.9 for micro-supported groups).

Theorem 9.30 will be obtained as a consequence of Proposition 9.35, which is a criterion to
recognize faithful actions of BN(G) on the line. As a preliminary result, which may also help
to follow the rather technical proof of Proposition 9.35, we work out a presentation of BN(G),
analogue to the one for BN(Z) appearing in Example 4.6. So let G be a finitely generated
group, and fix a presentation

G = 〈g1, . . . , gn | rν(g1, . . . , gn) (ν ∈ N)〉.

We will assume for simplicity that the generating set is symmetric and that for every distinct
i, j ∈ {1, . . . , n}, the generators gi and gj represent distinct non-trivial elements in G. The
free product G ∗ Z admits the presentation

G ∗ Z = 〈f, g1, . . . , gn | rν(g1, . . . , gn) (ν ∈ N)〉.

It is convenient to introduce the following more redundant presentation of G ∗ Z, which
corresponds to applying a (multiple) Tietze transformation to the previous one. For m ∈ Z,
write Gm = {gi,m : i ∈ {1, . . . , n}} and G =

⋃
m∈Z Gm. Then, we get the presentation

(9.13) G∗Z =
〈
f0,G

∣∣∣ fgi,mf−1 = gi,m+1 (i ∈ {1, . . . , n},m ∈ Z), rν(g1,0, . . . , gn,0) (ν ∈ N)
〉
.

Write R0 for the set of relators in the previous presentation. As in the proof of Lemma 9.28,
given g ∈ G ⊂ Sym(G) and v ∈ TG we denote by gv the element in BN(G) fixing v such
that σg,v = g and σg,w = id for every w 6= v. Then, we denote by Ψ0 : G ∗ Z → BN(G) the
morphism such that Ψ0(f) = f0 and Ψ0(gi,m) = fm0 (gi)w0f

−m
0 for every i ∈ {1, . . . , n}, and

m ∈ Z (as before, we write w0 = (1G)n≥0).
In order to complete the set of relations for the desired presentation of BN(G), we need to

study the support of some elements.

Lemma 9.32. With notation as above, fix m ∈ Z. Then for every g ∈ 〈Gm〉 r {1} and
g1, g2 ∈

⋃
q<m Gq we have that the commutator [g1, gg2g

−1] is in the kernel of Ψ0.
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Proof. We will show that for any such choices of elements, we have that g1 and gg2g
−1 have

disjoint support in TG and hence commute. On the one hand, for every k ∈ Z, and h ∈ Gk,
the support of Ψ0(h) is contained in TwkG , where wm = (1G)n≥k. On the other hand, for any
h ∈

⋃
q<m Gq, we have that the support of Ψ0(ghg−1) is contained in the subtree Tvg,m−1

G , where
vg,m−1 ∈ TG is the vertex corresponding to the sequence (tn)n≥m−1 such that t0 = 1G for
n ≥ m and tm−1 = g. In particular, these two remarks apply respectively to the elements g1 and
g2 from the statement, so that the images Ψ0(g1) and Ψ0(gg2g

−1) have disjoint supports. �

Write R1 for the set of all the commutation relators from Lemma 9.32 and set
(9.14) Γ = 〈f,G | R0,R1〉.
Then, we are ready to state the following:

Proposition 9.33. The map Ψ : Γ→ BN(G) induced by Ψ0 is an isomorphism.

Before proving Proposition 9.33 we need to fix some notation and state a technical lemma
that will also be used later for Proposition 9.35, and whose proof is postponed. As in the
proof of Lemma 9.32, given g ∈ G and m ∈ Z denote by vg,m ∈ TG the vertex (tn)n≥m such
that tn = 1G for n > m and tm = g; in particular wm = v1,m. Note that after the conjugation
relations in R0, the subgroup H := 〈G〉 is the normal closure of G0 in Γ, and the quotient Γ/H
is generated by the image of f . Given γ ∈ H, we denote by ‖γ‖G its word-length with respect
to the generating system G.

Lemma 9.34. Take a non-trivial element of H written as γ = γ1 · · · γk with γj ∈ Gmj for
j ∈ {1, . . . , k}, and write M = max{mj : j ∈ {1, . . . , k}}. Assume that Ψ(γ)(wm) = wm
for some m < M . Then, there exist h1, . . . , hl ∈ 〈

⋃
m<M Gm〉 and pairwise distinct elements

f1, . . . , fl ∈ 〈GM 〉, such that
(9.15) γ = (f1h1f

−1
1 ) · · · (flhlf−1

l )
and ‖hi‖G < k for every i ∈ {1, . . . , l}.

Proof of Proposition 9.33. First notice that, by Lemma 9.27, Ψ is surjective. To prove in-
jectivity of Ψ, suppose by contradiction that ker Ψ is non-trivial. Consider the focal germ
representation τ : BN(G)→ Germ(b) ∼= Z and notice that τ vanishes at Gw0 = Ψ(G0) and that
τ(f0) is non-trivial. As the quotient of Γ by the normal closure H of G0 is generated by the
image of f , we deduce that ker Ψ ⊆ H. In particular, the word-length ‖ · ‖G is defined on the
kernel of Ψ, so that we can consider a non-trivial element γ ∈ ker Ψ of minimal word-length.
We write γ = γ1 · · · γk with k = ‖γ‖G and γj ∈ Gmj for every j ∈ {1, . . . , k}. As Φ(γ) acts
trivially, in particular it fixes every vertex of the form wm, so that we can apply Lemma 9.34
to the factorization γ = γ1 · · · γk and obtain a decomposition as in (9.15) with ‖hi‖G < ‖γ‖G
for i ∈ {1, . . . , l}. Keeping the same notation as in Lemma 9.34, we observe that the support
of Ψ(fihif−1

i ) is contained in Tvfi,M−1
G for i ∈ {1, . . . , l}. Thus, since fi 6= fj for i 6= j, we get

that different factors in the factorization of γ above have disjoint support. We deduce that
every such factor must be in the kernel of Ψ, and therefore also every element hi. However,
as the word-length of every such element is less than ‖γ‖G , the minimality assumption on γ
implies that every hi is trivial, contradicting the choice of γ. �

Proof of Lemma 9.34. In order to simplify notation, from here and until the end of the proof, we
will write

∏
j∈E α(j) := α(i1) · · ·α(ik), for any function α : E → Γ, with E = {i1, . . . , ik} ⊆ N

with i1 < · · · < ik. We will also write σg instead of σΨ(g),wM , for every g ∈ Γ. Note that
σg = id for every g ∈ 〈

⋃
m<M Gm〉. For given j ∈ {1, . . . , k}, we let ij be the index such



LOCALLY MOVING GROUPS ACTING ON THE LINE AND R-FOCAL ACTIONS 101

that γj = gij ,mj . Notice that Ψ(γj)(wM ) = wM for every j ∈ {1, . . . , k}, and in particular
Ψ(γ)(wM ) = wM . Using the cocycle relation (9.12), we have

(9.16) σγ =
k∏
j=1

σγj .

On the other hand, since Ψ(γ)(ws) = ws for some s < M and the action of G ⊂ Sym(G) on
G is free, we conclude that σγ = id. Since only factors in GM give non-trivial factors in the
product (9.16), writing P = {j ∈ {1, . . . , k} : γj ∈ GM}, we get the equality

id =
∏
j∈P

σγj .

Note that for j ∈ P , the permutation σj corresponds to the left translation by gij , whence we
get

∏
j∈P gij = 1G. This implies

(9.17)
∏
j∈P

γj = 1Γ.

Next, for every j ∈ {1, . . . , k}, consider the product in 〈GM 〉 given by

fj :=
∏

l∈P, l≤j
γl.

Set Q := {1, . . . , k}r P and notice that after the relation (9.17) we can write

(9.18) γ =
∏
j∈Q

(
fjγjf

−1
j

)
.

Note that as fj ∈ 〈GM 〉 and γj ∈ 〈Gmj 〉 with mj < M for every j ∈ Q, we deduce from Lemma
9.32 that we can make commute any two factors fiγif−1

i and fjγjf−1
j in the product in (9.18),

as soon as fi 6= fj . Rearranging factors in this way, we can write

(9.19) γ =
∏
j∈Q0

fj
∏
l∈Qj0

γl

 f−1
j

 ,
where Q0 ⊆ Q is a section of the map Q → Γ given by j 7→ fj , and for j ∈ Q0 we set
Qj0 := {l ∈ Q0 : fl = fj}. We claim that the decomposition in (9.19) is the one that we are
looking for. First notice that, by the choice of Q0, fi 6= fj whenever i, j are different indices in
Q0. Secondly for every j ∈ Q0, by definition of Q0 and Qj0, the element hj :=

∏
l∈Qj0

γl belongs
to 〈

⋃
m<M Gm〉 and clearly satisfies ‖hj‖G ≤ |Qj0| < k. �

Consider now, for a left-invariant order < on a group G, the directed tree representation
Φ : BN(G) → Aut(TG, /,≺) associated with G and <; let ϕ : BN(G) → Homeo0(R) be its
corresponding dynamical realization. Pursuing the discussion from the proof of Proposition
9.28, we extract some properties of ϕ, which characterize it up to (positive) semi-conjugacy.

First recall that Gw0 ⊆ BN(G) is a subgroup supported on the subset of points below the
vertex w0. This implies that J0 := Suppϕ(Gw0) is a relatively compact interval. Since Φ(f0) is
a hyperbolic element, the homeomorphism ϕ(f0) is a homothety (see Proposition 8.26). For
n ∈ Z, write Jn := fn0 .J0; since f−1

0 .w0 /w0, we have the inclusion J−1 = f−1
0 .J0 b J0. Finally,

since the action of G on itself by left translations is free, we get that Gw0 acts freely on E−w0 ,
which implies g.J−1 ∩ J−1 = ∅ for every g ∈ Gw0 r {1}. Moreover, the total order < on G
(which coincides with the planar order ≺w0 on E−w0) can be read from the action:
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g > 1 ⇔ g.x > x for some x ∈ J−1 (equivalently ∀x ∈ J−1).
Summarizing we have the following:

(a) Suppϕ(Gw0) =: J0 consists on a relatively compact interval;
(b) ϕ(f0) is a homotethy satisfying J−1 b J0, with J−1 := f−1

0 .J0;
(c) g.J−1 ∩ J−1 = ∅ for every g ∈ Gw0 r {1};
(d) given x ∈ J−1 and g ∈ Gw0 , it holds that g.x > x if and only if g > 1.

For the next statement, recall that BN(G) is isomorphic to the group Γ which, in turn, can
be written as the quotient Γ = G ∗ Z/〈〈R1〉〉 (following the notation in (9.13) and (9.14), see
Proposition 9.33). We denote by π : G ∗ Z→ Γ the corresponding projection. We also define
the height of an element γ ∈ H = 〈G〉 as

(9.20) ht(γ) := inf

n ∈ Z : γ ∈
〈 ⋃
m≤n
Gm

〉 .
Notice that the ht(γ) > −∞ for every γ ∈ H r {1}. Indeed, if it were not the case, its image
under the isomorphism Ψ in Proposition 9.33 would be trivial, which is not the case.

Proposition 9.35. Let (G,<) be a finitely generated left-ordered group. Consider the free
product G ∗ Z, and denote by f a generator of its cyclic factor. Consider also an action
ϕ0 : G ∗Z→ Homeo0(R) and assume that it satisfies conditions (a) to (d) above with 〈G0〉 and
f instead of Gw0 and f0, respectively. Then, ϕ0 factors through the quotient π : G ∗ Z → Γ
inducing an action ϕ1 : Γ→ Homeo0(R) which is (positively) semi-conjugate to the dynamical
realization of the directed tree representation associated with G ⊂ Sym(G) and <.

Proof. After Proposition 9.33, in order to show that ϕ0 factors through the projection π we
need to check that the elements in R1 belong to the kernel of ϕ0. That is, we need to check
that the elements of the form [g1, gg2g

−1] are in the kernel of ϕ0, whenever g ∈ 〈Gm〉r {1}
and g1, g2 ∈

⋃
q<m Gq. We closely follow the proof of Lemma 9.32. On the one hand, for every

q < m and h ∈ Gq, there exists h′ ∈ G0 such that h = f qh′f−q, so that by condition (a), we
have that the support of ϕ0(h) is contained in Jq := f q0 .J0, and thus in Jm after condition (b)
(and the same argument for q = m). On the other hand, for any g ∈ 〈Gm〉r {1}, condition (c)
gives that g.Jm−1 ∩ Jm−1 = ∅. Thus, the support of ϕ0(gg2g

−1) is disjoint from Jm. Putting
this all together we get that the support of ϕ0(g1) and that of ϕ0(gg2g

−1) are disjoint, as
desired.

As in the statement, denote by ϕ1 : Γ→ Homeo0(R) the action induced by ϕ0, and let I be
the orbit of J0 under ϕ1(Γ). Let also Φ : Γ→ Aut(TG, /,≺) be the directed tree representation
associated with G and < and denote by ϕ the dynamical realization of Φ. Our goal is to
show that ϕ and ϕ1 are semi-conjugate. This will be a direct consequence of the following
statement.

Claim. The family of intervals I is a CF-cover, which determines a simplicial planar directed
tree which is order-isomorphic to (TG, /,≺), via a Γ-equivariant isomorphism.

Proof of claim. We consider the map
F : TG → I

g.w0 7→ g.J0

and then prove that it gives the desired Γ-equivariant order-isomorphism. To simplify notation,
given I1, I2 ∈ I, we write I1 < I2 if sup I1 ≤ inf I2. Also, given two vertices v1, v2 ∈ TG, we
write v1 ≺ v2 if for every points ξ1 ∈ ∂Uv1 and ξ2 ∈ ∂Uv2 in the shadows, we have ξ1 ≺ ξ2.
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We want to show that the map F is well-defined, Γ-equivariant, and satisfies the following
conditions:

(1) v1 / v2 implies F (v1) ⊂ F (v2),
(2) v1 ≺ v2 implies F (v1) < F (v2)

To see that F is well-defined, we need to check that StabΦ(w0) ⊆ Stabϕ1(J0). Given γ ∈ 〈G〉
consider its height ht(γ) defined as in (9.20). Notice that if ht(γ) ≤ 0 then the support of γ is
contained in

⋃
r≤0 Jr and therefore γ ∈ Stabϕ1(J0). In order to show the inclusion between

the stabilizers we claim that, every γ ∈ StabΦ(w0) can be written as

(9.21) γ = γ1γ2 with γ1 ∈ Stabϕ1(J0) and ht(γ2) < ht(γ).

To obtain a decomposition as in (9.21), first note that, in the case ht(γ) ≤ 0 we are done.
Suppose it is not the case, and write γ = γ1 · · · γk with

max{ht(γj) : j ∈ {1, . . . , k}} = ht(γ) > 0.

Then, since γ.w0 = w0 and 0 < ht(γ) we are in condition to apply Lemma 9.34 to the
decomposition γ = γ1 · · · γk. Thus, we can write γ = (f1h1f

−1
1 ) · · · (flhlf−1

l ) with f1, . . . , fl ∈
〈Ght(γ)〉 such that fi 6= fj for i 6= j, and ht(hi) < ht(γ) for i ∈ {1, . . . , l}. As discussed above,
for every i ∈ {1, . . . , l} such that fi 6= 1Γ, we have that the support of ϕ1(fihif−1

i ) is disjoint
from Jht(γ)−1 and, as a consequence, disjoint from J0. Thus, if fi 6= 1Γ for every i ∈ {1, . . . , l}
we are done. Suppose it is not the case, and that for some i we have fi = 1Γ. In this case,
by applying the commutation relations in R1 from Lemma 9.32, we can assume that fl = 1Γ
and we set γ1 = (f1h1f

−1
1 ) · · · (fl−1hl−1f

−1
l−1) and γ2 = hl. Notice that, as we argued in the

previous case, the element γ1 fixes J0. Finally notice that, by the choice from Lemma 9.34, we
have ht(hl) < ht(γ). This gives the desired decomposition as in (9.21).

By applying the decomposition as in (9.21) finitely many times, we get a factorization
γ = δ1 · · · δr where δi is in the stabilizer of J0 for i ∈ {1, . . . , r − 1}, and ht(δr) ≤ 0. Finally,
since ht(δr) ≤ 0, we also have that δr is in the stabilizer of J0 and therefore the inclusion
between the stabilizers follows. This gives that the map F is well-defined, as wanted. Moreover,
by definition of F , we also have that it is Γ-equivariant.

In order to prove condition (1), first recall that BN(G) acts transitively on the vertices of
TG (see the claim in the proof of Lemma 9.27). Thus, for every vertices v1 / v2 in TG, there
exists γ ∈ Γ such that γ.v1 = ws for some s ∈ Z and thus γ.v2 = wr for some r > s. Since
the partial order / is preserved by the action Φ and the inclusion relation is preserved by the
action induced by ϕ1 on I, using Γ-equivariance of F we only need to check that condition
(1) holds when we take v1, v2 in the subset {wn : n ∈ Z}. For this consider wi / wj , then
F (wi) = Ji ⊂ Jj = F (wj) as desired. To prove condition (2) first notice that, since condition
(1) holds, it is enough to check the condition taking v1 ≺ v2 adjacent to v1 ∧ v2. Notice that
the relation ≺ on TG is invariant under Φ, and the relation < on I is invariant under the
action induced by ϕ1. Following the same reasoning as for condition (1), it is enough to check
condition (2) taking v1, v2 adjacent to w0. In that case, condition (1) follows from condition
(d) in the statement. Summarizing, conditions (1) and (2) are satisfied by the map F , as
wanted. �

After the claim, we have that the directed tree representation Φ : Γ → Aut(TG, /,≺) is
conjugate to a focal action representing ϕ1 (technically speaking, its positive semi-conjugacy
class, as ϕ1 need not be minimal and we may be forced to consider a minimal action semi-
conjugate to ϕ1). This implies that ϕ and ϕ1 are positively semi-conjugate. �
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Proof of Theorem 9.30. Given any irrational α ∈ RrQ, denote by τα : Z2 → Homeo0(R) the
action by translations so that τα((1, 0))(x) = x+ 1 and τα((0, 1))(x) = x+ α. By the Pixton–
Tsuboi examples (see [107]), for each α ∈ R r Q, there exists an action ϕα : Z2 → Diff1

0(R)
such that:

• ϕα is supported on (0, 1);
• the restriction ϕα �(0,1) is semi-conjugate to τα and
• ϕα �(0,1) has an exceptional minimal set Λα ⊆ (0, 1).

Then, for any irrational α ∈ RrQ, consider an affine expanding homothety fα : R→ R with
fixed point in ((0, 1)r Λα so that f−1

α ((0, 1)) ∩ Λα = ∅. Consider the free product Z2 ∗ Z and
denote by f0 a generator of the cyclic factor. Then, we define the action ϕα0 : Z2 ∗Z→ Diff1

0(R)
so that ϕα0 coincides with ϕα on the Z2 factor and ϕα0 (f0) = fα. It is direct to check that the
action ϕα0 satisfies conditions (a) to (d) in the statement of Proposition 9.35 with G = Z2 and
with < being the left-order <α induced by τα. Then, applying Proposition 9.35 we conclude
that ϕα0 induces an action Ψα : BN(Z2)→ Diff1

0(R) which is semi-conjugate to the dynamical
realization of the planar directed tree representation associated with Z2 ⊆ Sym(Z2) and <α,
which is minimal, faithful, and micro-supported (in particular, any action sei-conjugate to
Ψα must be faithful). On the other hand, by Proposition 9.28, different orders <α1 and <α2
give rise to planar directed tree representations with non-conjugate dynamical realizations,
therefore, Ψα1 and Ψα2 are not semi-conjugate. �

10. A structure theorem for exotic actions of a class of locally moving
groups

10.1. The class F . In this section we will focus on a class of locally moving groups, and
prove a more precise structure theorem on their exotic continuous actions on the line. Such
class, named F , is defined in terms of a finite generation condition on the rigid stabilizers.

Definition 10.1. For X = (a, b), let G ⊆ Homeo0(X) be a subgroup. We say that G is in the
class F if it satisfies the following conditions:

(1) G is locally moving,
(2) for every x ∈ X the group G(a,x) is contained in a finitely generated subgroup of G+,

and the group G(x,b) is contained in a finitely generated subgroup of G−.

Various examples of groups in the class F arise as groups of piecewise linear and projective
homomorphisms: Thompson’s group F and all Thompson–Brown–Stein groups Fn1,...,nk , many
other Bieri–Strebel groups (see Section 12) and the groups of Lodha–Moore [65]. The following
proposition shows that this class goes far beyond groups of piecewise linear or projective
homeomorphisms.

Proposition 10.2. For X = (a, b), let H ⊂ Homeo0(X) be a countable subgroup. Then there
exists a finitely generated subgroup G ⊂ Homeo0(X) which contains H, has an element without
fixed points, and belongs to the class F (hence to the class F0 defined later).

Proof. We can assume without loss of generality that H is finitely generated, since every
countable subgroup of Homeo0(X) is contained in a finitely generated one [63]. Assume also
for simplicity that X = (0, 1). Let b` : (0, 1) → (0, 3/4) and br : (0, 1) → (1/4, 1) be the
homeomorphisms defined respectively by

b`(x) =
{
x x ∈ (0, 1/2),
1
2x+ 1

4 x ∈ [1/2, 1),
br(x) =

{ 1
2x+ 1

4 x ∈ (0, 1/2),
x x ∈ [1/2, 1).
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Set also b0 = b`br. That is, b0 is the homothety of slope 1/2 centered at the point 1/2, while
each of b` and br fixes half of the interval (0, 1) and coincides with b0 on the other half. See
Figure 9.

1/4

1/2

0

3/4

1

11/2

br

b`

Figure 9. The maps br (red) and b` (blue).

SetH0 = b0Hb
−1
0 , H` = b`Hb

−1
` , andHr = brHb

−1
r . Note that each of these groups is a group

of homeomorphisms of a subinterval of (0, 1), and we see them as groups of homeomorphisms
of (0, 1) by extending them to the identity outside their support. Set G = 〈H,H`, Hr, H0, F 〉,
where F is the standard copy of Thompson’s group F acting on (0, 1). As F contains elements
without fixed points, so does G. Let us prove that G is in the class F .

As F and H are finitely generated, so is G; moreover G is locally moving since F is so. Let
us show that G(0,1/2) is contained in a finitely generated subgroup of G+. To this end, consider
the group Γ = b`Gb

−1
` . Then Γ is a finitely generated subgroup of Homeo0((0, 1)) supported in

(0, 3/4) (we again extend it as the identity on (3/4, 1)). Moreover, Γ contains G(0,1/2): indeed
since b` acts trivially on (0, 1/2), for g ∈ G(0,1/2) we have g = b`gb

−1
` ∈ Γ. Thus the desired

conclusion follows if we show that Γ is contained in G (hence in G+).
For this, note that b`Fb−1

` = F(0,3/4) ⊂ F ⊂ G and b`Hb−1
` = H` ⊂ G; we also easily observe

b`Hrb
−1
` = b`brH(b`br)−1 = b0Hb

−1
0 = H0 ⊂ G.

Choose an element f ∈ F which coincides with b` in restriction to (0, 3/4). Then the
conjugation action of f on the subgroups H`, H0 coincides with the conjugation by b`, thus
b`H`b

−1
` = fH`f

−1 and b`H0b
−1
` = fH0f

−1 are also contained in G. Since

Γ = b`〈H,H0, H`, Hr, F 〉b−1
` ,

we conclude that that Γ is contained in G. Thus Γ ⊂ G+ is a finitely generated subgroup
that contains G(0,1/2). Since for every x ∈ (0, 1) the group G(0,x) is conjugate to a subgroup of
G(0,1/2), we have that G(0,x) is contained in a finitely generated subgroup of G+ for every x.
The case of the subgroups G(x,1) is analogous. �

10.2. The main theorem for the class F . The goal of this subsection is to show that all
exotic actions of a group in the class F must be tightly related to the standard action, through
the notion of horograding of R-focal actions (see §8.4).
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Theorem 10.3. For X = (a, b), let G ⊂ Homeo0(X) be a subgroup in the class F . Then
every action ϕ : G→ Homeo0(R) without fixed points is semi-conjugate to an action in one of
the following families:

(i) (Standard) the natural action on X;
(ii) ( Induced from a quotient) an action induced from the largest quotient G/[Gc, Gc]
(iii) (R-focal) a minimal R-focal action, which can be horograded by the natural action of

G on X.

Remark 10.4. In the R-focal case, Proposition 8.32 allows to determine the dynamics of
individual elements by looking at the standard action of G on X. For this, consider the
case where ϕ is increasingly horograded by the natural action of G on X (the other case is
analogous). Then, we have the following:

• if Fix(g) accumulates at b, then ϕ(g) is totally bounded;
• if g(x) > x (respectively g(x) < x) in a neighborhood of b, then ϕ is an expanding
(respectively contracting) pseudohomothety and
• if g(x) > x (respectively g(x) < x) for every x ∈ X, then ϕ(g) is an expanding
(respectively contracting) homothety.

10.2.1. Sketch of the proof and preliminary observations. We will divide the proof into steps,
which individually yield some additional information. As G is locally moving, by Theorem 5.3
it is enough to consider the case where ϕ is an exotic action. By symmetry, we will assume
that the subgroup G+ is locally dominated by commuting elements (within [Gc, Gc]). We first
observe that we can assume that the action ϕ is minimal (Lemma 10.5) and then describe the
set of fixed points for the images of the rigid stabilizers ϕ(G(a,x)) (Lemma 10.6). This allows
to introduce an invariant CF-cover, which will give that ϕ is R-focal (Proposition 10.8). To
determine the horograding action, we have to construct a focal action on a planar directed
tree representing ϕ (this is done throughout §10.2.3). We then put all of this together and
prove Theorem 10.3. Let us start.

Lemma 10.5. For X = (a, b), let G ⊂ Homeo0(X) be a subgroup in the class F . Consider a
faithful exotic action ϕ : G→ Homeo0(R). Then ϕ is semi-conjugate to a minimal action.

Proof. We will assume that G+ is locally dominated by commuting elements, the other case
being analogous. Then for every x ∈ X the image ϕ(N(x,b)) has no fixed points (see Proposition
5.12). Since G is in the class F , for every x ∈ X there exists a finitely generated subgroup
Γ ⊂ G− containing N(x,b),so that ϕ(Γ) has no fixed points. Thus, there exists a compact
interval I ⊂ R which intersects every ϕ(Γ)-closed invariant subset, and in particular every
ϕ(G)-closed invariant subset. As in the proof of Proposition 7.6, it follows that ϕ(G) has a
unique minimal invariant set, and that ϕ is semi-conjugate to a minimal action. �

Thus without loss of generality, upon replacing ϕ with a semi-conjugate action, we will
assume that ϕ is minimal. The key ingredient in the proof of Theorem 10.3 is the following
result, which follows again from the trichotomy for locally moving groups (Theorem 5.3)
together with the assumption that G is in F .

Lemma 10.6 (Key lemma). For X = (a, b), let G ⊂ Homeo0(X) be a subgroup in the class
F . Consider a minimal faithful exotic action ϕ : G → Homeo0(R) satisfying that G+ is
locally dominated by commuting elements. Then for every x ∈ X the subset Fixϕ(G(a,x)) is
non-empty, accumulates on both ±∞, and has empty interior. The family of closed subsets
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{Fixϕ(G(a,x))}x∈X is decreasing in x, and we have
lim
x→a

Fixϕ(G(a,x)) = R and lim
x→b

Fixϕ(G(a,x)) = ∅,

where the limits are taken with respect to the Fell topology on closed subsets of R.

Proof. Since G+ is locally dominated by commuting elements, all its finitely generated sub-
groups are totally bounded. Moreover, since for every x ∈ X the subgroup G(a,x) is contained in
a finitely generated subgroup of G+, it is also totally bounded, i.e. the subset Cx := Fixϕ(G(a,x))
is non-empty and accumulates on both ±∞. Let us postpone the proof that it has empty
interior. Observe that since {G(a,x) : x ∈ X} is an increasing family of subgroups, the family
of subsets {Cx : x ∈ X} is decreasing. In particular, the two limits in the statement exist and
are given by

lim
x→a

Cx =
⋃
x∈X

Cx and lim
x→b

Cx =
⋂
x∈X

Cx.

From this, since the family {Cx} satisfies the equivariant property Cg(x) = g.Cx, it is clear that
the two limits are closed G-invariant subsets, thus by minimality each of them is equal either
to R or to ∅. Since the limit on the left-hand side contains every subset Cx, it is non-empty,
thus it must be equal to R. As for the second, it is contained in each subset Cx, which is a
strict subset of R (otherwise ϕ(G(a,x)) would act trivially, contradicting faithfulness of the
action), and therefore it must be equal to ∅.

Let us now show that every subset Cx must have empty interior. Assume by contradiction
that J ⊂ Cx is a non-empty open interval. Fix also an arbitrary y ∈ X and write H = G(a,y).
Let I be a connected component of Suppϕ(H) = RrCy. Since ϕ is minimal, then it is proximal
(Lemma 5.13), hence there exists g ∈ G such that g.J ⊃ I. Thus ϕ(G(a,g(x))) acts trivially on
I, and since G(a,x) ∩H 6= {id}, we deduce that the action of H on I is not faithful. Since H is
a locally moving subgroup of Homeo0((a, y)), by Proposition 4.4 we see that the kernel of this
action must contain [Hc, Hc]. Since I was an arbitrary connected component of Suppϕ(H),
this implies that [Hc, Hc] acts trivially on all Suppϕ(H), and thus the ϕ-image of [Hc, Hc] is
trivial, contradicting the assumption that ϕ is faithful. �

10.2.2. An invariant CF-cover. Lemma 10.6 allows to identify a natural invariant CF-family
for the action ϕ, and to construct a planar directed tree. To this end, let us introduce the
following notation.

Definition 10.7. Let ϕ : G→ Homeo0(R) be as in Lemma 10.6. For every x ∈ X and ξ ∈ R,
with ξ /∈ Fixϕ(G(a,x)), we denote by Iϕ(x, ξ) the connected component of Suppϕ(G(a,x)) which
contains ξ.

Note that the family of open subsets Suppϕ(G(a,x)) = R r Fixϕ(G(a,x)) is increasing with
respect to x ∈ X. Thus if ξ ∈ Suppϕ(G(a,x)), then for every y > x we have ξ ∈ Suppϕ(G(a,y))
and Iϕ(x, ξ) ⊂ Iϕ(y, ξ) for every y > x. Note also that Lemma 10.6 implies the subset
Suppϕ(G(a,x)) is open and dense for every x ∈ X. Thus, by Baire’s theorem, the intersection

(10.1) Ξ :=
⋂
x∈X

Suppϕ(G(a,x))

is a Gδ dense subset of R, which is moreover invariant under the action of G. For ξ ∈ Ξ, the
interval Iϕ(x, ξ) is well-defined and non-empty for every x ∈ X. In the following ξ will always
denote a point in Ξ unless mentioned otherwise. With this notation, we have the following
consequence of Lemma 10.6.
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Proposition 10.8. With notation as above, the collection
S = {Iϕ(x, ξ) : x ∈ X, ξ ∈ Ξ}

defines a G-invariant CF-cover. In particular, ϕ is a minimal R-focal action.

Proof. It is clear from the definition of the intervals Iϕ(x, ξ) that they verify the equivariance
property g. Iϕ(x, ξ) = Iϕ(g(x), g.ξ). Thus the family S is invariant, and covers R by the second
limit in Lemma 10.6. Note also that Lemma 10.6 implies that every interval in S is bounded.
To see that it is cross-free, consider two intervals I1, I2 ⊂ R of the form I1 = Iϕ(x1, ξ1) and
I2 = Iϕ(x2, ξ2), with x1 ≤ x2. Observe first that if x1 = x2, then I1 and I2 are both connected
components of Suppϕ(G(a,x1)), so they are either equal or disjoint. Otherwise, assume that
I1 ∩ I2 6= ∅. Note that I1 ⊂ Iϕ(x2, ξ1), so that I2 = Iϕ(x2, ξ1). Thus I1 ⊂ I2. This shows that
S is an invariant CF-cover. As ϕ is minimal, Proposition 7.7 implies that ϕ is R-focal. �

10.2.3. A planar directed tree. We now explain how to use the invariant CF-cover S to construct
a planar directed tree with the horograding required for the conclusion of Theorem 10.3. For
this, we need to examine some further properties of this family.

As already observed, for a fixed point ξ ∈ Ξ the intervals {Iϕ(x, ξ) : x ∈ X} are a totally
order family, non-decreasing in the variable x ∈ X, but in general they do not vary continuously
with respect to x (in fact one could easily show that their endpoint cannot vary continuously
at every x ∈ X). Thus we also introduce the outer and inner limits

Iϕout(x, ξ) := Int

⋂
y>x

Iϕ(y, ξ)

 and Iϕinn(x, ξ) =
⋃
y<x

Iϕ(y, ξ).

Notice that the fact that being crossed is an open condition together with Proposition 10.8
imply that both {Iϕout(x, ξ)} and {I

ϕ
inn(x, ξ)} are also invariant CF-covers.

We define the directed tree T as the family of intervals
T := {Iϕout(x, ξ) : x ∈ X, ξ ∈ Ξ},

with the partial order / given by the inclusion of intervals. The group G acts on T, by the
expression g. Iϕout(x, ξ) = Iϕout(g(x), g.ξ), and this action clearly preserves the inclusion relations.
To show that this defines indeed a directed tree we first show the following lemma, which
analyzes how these intervals vary as functions of (x, ξ).

Lemma 10.9 (Injectivity in the variable x). With notation as above, if Iϕ(x1, ξ1) = Iϕ(x2, ξ2),
then x1 = x2. As a consequence, the same conclusion holds for the families of intervals Iϕout(x, ξ)
and Iϕinn(x, ξ).

Proof. Assume by contradiction that x1 < x2. Then, since G(a,x2) preserves the interval
Iϕ(x2, ξ2), for every g ∈ G(a,x2) we have

Iϕ(x2, ξ2) = g. Iϕ(x2, ξ2) = g. Iϕ(x1, ξ1) = Iϕ(g(x1), g.ξ1).
By definition, the last interval is a connected component of Suppϕ(G(a,g(x1))), so in particular
the image ϕ(G(a,g(x1))) has no fixed point in Iϕ(x2, ξ2) for every g ∈ G(a,x2). However since
G(a,x2) acts without fixed points on (a, x2) we can choose g such that g(x1) is arbitrarily close
to a. This contradicts the fact that limy→a Fixϕ(G(a,y)) = R, established by Lemma 10.6. �

The previous lemma implies that the function
π : T → X

Iϕout(x, ξ) 7→ x
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is well defined, and clearly G-equivariant.

Lemma 10.10. With notation as above, the set (T, /) is a directed tree and the map π : T→ X
is an increasing horograding.

Proof. Let us check that all conditions in Definition 8.1 are satisfied. Given I = Iϕout(x, ξ) ∈ T,
the set of intervals above I is {Iϕout(y, x) : y ≥ x}, which by Lemma 10.9 is order-isomorphic
to the interval [x, b), showing (T1). To check (T2) note that since intervals {Iϕ(x, ξ)} define
a CF-cover, any two elements in T have a common upper bound, and by definition of the
outer approximations Iϕout the infimum of the set of such upper bounds is again a common
upper bound (thus the smallest possible). Finally to see (T3), note that for a given x ∈ X
there are countably many intervals of the form Iϕout(x, ξ) when ξ varies (since every two such
intervals are either equal or disjoint). Thus by letting X0 ⊂ X be any countable dense set,
the collection Σ = {Iϕout(x, ξ) : x ∈ X0, ξ ∈ Ξ} satisfies (T3). The fact that π is an increasing
horograding is clear from the construction. �

Finally note that for a point v = Iϕout(x, ξ) ∈ T, the set E−v of directions below v is in
one-to-one correspondence with the set of intervals {Iϕinn(x, ξ′) : ξ′ ∈ Iϕout(x, ξ)}. Since any two
distinct intervals of this form are disjoint, this set of intervals inherits a natural order from the
ordering of R, which allows to define an order <v on E−v . The family of orders ≺= {<v : v ∈ T}
defined in this way is a planar order on T which is invariant for the action of G.

Remark 10.11. We point out that the residual set Ξ defined in (10.1) is in natural correspondence
with the π-complete boundary of (T, /) (see Definition 8.8). However, we do not elaborate on
this since is not necessary for the rest of the discussion.

Proof of Theorem 10.3. After Theorem 5.3 we can suppose that ϕ is an exotic action, and we
will assume that the subgroup G+ is locally dominated by commuting elements. Then Lemma
10.5 and Proposition 10.8 together prove the first part in point (iii) of Theorem 10.3, namely
that, up to semi-conjugacy, ϕ is R-focal.

Consider then the action Φ: G → Aut(T, /,≺) of G on the planar directed tree defined
above. Note that the fact that the action is proximal (Lemma 5.13) gives that the action is
focal. The map π : T → X is an increasing G-equivariant horograding, so we only need to
show that the action ϕ is conjugate the dynamical realization of Φ. To this end observe that
every ξ ∈ Ξ can be thought of as an end ξ ∈ ∂∗T, namely the unique infimum of the maximal
totally ordered subset {Iϕout(x, ξ) : x ∈ X}. The order on the G-orbit of ξ with respect to the
action of ϕ induced from R coincides with the order induced by the planar order on ∂∗T. This
shows that ϕ is the dynamical realization of Φ : G→ Aut(T, ω,≺), as desired. �

10.3. Non-orientation-preserving actions. Let us record here a simple consequence of
the previous results, which might be worth point out. Namely if we allow group actions on
intervals that are not necessarily orientation-preserving, then a stronger rigidity phenomenon
occurs for groups in the class F , which rules out the existence of exotic actions altogether.

Corollary 10.12. For X = (a, b), let G ⊆ Homeo(X) be a subgroup such that G * Homeo0(X)
and G ∩ Homeo0(X) is in the class F . Then every action ϕ : G→ Homeo(R), which does not
fix any point or a pair of points, is semi-conjugate either to the natural action of G on X or
to a non-faithful action.

In particular every faithful minimal action ϕ : G→ Homeo(R) is topologically conjugate to
the natural action on X.
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Note that the proof does not require Theorem 10.3, but only Lemma 10.6 (actually only
the first part of its statement).

Proof of Corollary 10.12. Set H = G ∩ Homeo0(X), and let ϕ : G→ Homeo(R) be an action
without fixed points. Note that the assumption implies that the image of H has no fixed points,
since otherwise every point in Fixϕ(H) has a G-orbit of order at most 2 = |G/H|. Assume first
that the action ϕ �H is exotic. Indeed, if this is not the case, then by Proposition 5.12 and
Lemma 10.6 we can assume that Fixϕ(H(a,x)) 6= ∅ for every x ∈ X, while Fixϕ(H(x,b)) = ∅
for every x ∈ X (or that the opposite condition holds). However, since G contains elements
that reverse the orientation of X, every subgroup of the form H(a,x) is conjugate inside G to a
subgroup of the form H(y,b), so this is not possible. Thus, ϕ �H is semi-conjugate either to
an action of H/[Hc, Hc] or to the standard action of H on X. The first case occurs if and
only if Fixϕ([Hc, Hc]) 6= ∅. Since [Hc, Hc] is normal in the whole group G, this implies that in
fact the action of the whole group G is semi-conjugate to an action of G/[Hc, Hc]. If ϕ �H
is semi-conjugate to the standard action, then there exists a unique minimal H-invariant set
Λ ⊂ R, which is invariant under the whole group G, and we can obtain a minimal action
ψ : G → Homeo(R) semi-conjugate to ϕ by collapsing all connected components of R r Λ.
Then by construction ψ �H is conjugate the standard action of H on X, so let q : R → X
be a topological conjugacy. It is therefore enough to check that the map q is equivariant
under the whole group G. This is easily done after observing that since H is locally moving,
different points in X have distinct stabilizers in H, so both actions can be reconstructed
from the conjugation action of G on the stabilizers in H. Namely, for every ξ ∈ R we have
StabϕH(ξ) = StabH(q(ξ)). Thus conjugating by g ∈ G we obtain

StabϕH(g.ξ) = g StabϕH(ξ)g−1 = g StabH(q(ξ))g−1 = StabH(g(q(ξ)))

Since on the other hand we have StabϕH(g.ξ) = StabH(q(g.ξ)), this implies that q(g.ξ) = g(q(ξ))
for every g ∈ G and ξ ∈ R, i.e. that the map q is G-equivariant, as desired. �

An example of a group satisfying the assumption of Corollary 10.12 is Thompson’s group with
flips F± ⊂ Homeo((0, 1)), which is defined similarly to Thompson group F , but by allowing
negative slopes in the definition.

10.4. An attractor in the Deroin space and local rigidity. In this subsection we consider
the following subclass F0 of the class F .

Definition 10.13. Let X = (a, b). We say that a group G ⊆ Homeo0(X) is in the class F0 if
it is finitely generated, it belongs to F (Definition 10.1) and there exists f ∈ G without fixed
points in X.

For a group G in the class F0 we prove the following theorem, which corresponds to Theorem
1.14 from the introduction.

Theorem 10.14. Let X be an open interval and let G ⊂ Homeo0(X) be a finitely generated
group in the class F0. Let U ⊂ Homirr(G,Homeo0(R)) be the set of irreducible actions that are
not semi-conjugate to any action induced from the largest quotient G/[Gc, Gc]. Then U is open
and admits a subset S ⊂ U satisfying the following.

(i) The set S is closed in U and relatively compact in Homirr(G,Homeo0(R)). In particular
it is a locally compact Polish space.

(ii) Every ϕ ∈ S is a minimal and faithful action.
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(iii) Every ϕ ∈ U is positively semi-conjugate to a unique action ϕ̄ ∈ S and the map
ϕ 7→ ϕ̄ is a continuous retraction from U to S. In particular the quotient of U by the
semi-conjugacy equivalence relation, with the quotient topology, is homeomorphic to S.

(iv) The unique action ψ ∈ S which is positively semi-conjugate to the standard action of
G on X is an isolated point in S.

In order to prove Theorem 10.14 we will proceed by analyzing the structure of the Deroin
space Derµ(G) of normalized harmonic G-actions (see §2.2).

Recall that the Deroin space carries a natural flow Φ which, given ϕ ∈ Derµ(G) and t ∈ R,
gives the action Φt(ϕ) obtained by conjugating ϕ by the translation x 7→ x+ t (whence the
name translation flow). Throughout the subsection, we work in the following setting.

Assumption 10.15. For X = (a, b), let G ⊆ Homeo0(X) be a subgroup in the class F0. We
fix f ∈ G such that f(x) > x for every x ∈ X. We also fix once and for all a symmetric
probability measure µ supported on a finite generating set of G.

10.4.1. Description of the Deroin space. Let us introduce some further notation. Given an
action ϕ ∈ Derµ(F ), we denote by ϕ̂ its reversed action (the conjugate under the reflection
x 7→ −x). Then, by Theorem 10.3 we have a decomposition of the Deroin space

(10.2) Derµ(G) = N t I t Î t P,
defined by what follows.

• We let N ⊂ Derµ(G) be the subset consisting of actions ϕ which are not faithful, or
equivalently such that ϕ([Gc, Gc]) = {id}.
• We fix a representative ι ∈ Derµ(G) positively conjugate to the standard action on X,
and let I = {Φt(ι) : t ∈ R} be its Φ-orbit and Î be the Φ-orbit of ι̂.
• We let P = P+ t P− be the subset of Derµ(G) of R-focal actions, where P+ and P−
are the subsets of those which are increasingly (respectively, decreasing) horograded
by the standard action on X.

Proposition 8.27 implies that for every ϕ ∈ P the image ϕ(f) is a homothety, which is
expanding if ϕ ∈ P+ and contracting if ϕ ∈ P−. For ϕ ∈ P, denote by ξϕ the unique fixed
point of ϕ(f) in R. We say that ϕ is f -centered if ξϕ = 0. Let us denote by P0 ⊂ P the subset
of f -centered R-focal actions, with P0

± = P0 ∩ P±.
Note that each of the subsets of Derµ(G) in (10.2) is Φ-invariant. We aim to analyze the

topology of these subsets and the dynamics of the flow Φ on them. A first obvious observation
is that the set N is closed in Derµ(G). Our main goal is to show that N is a uniform attractor
for the flow Φ, that is all Φ-orbits in the complement of N spend a uniformly bounded amount
of time away from any neighborhood of N . This is formalized in Proposition 10.17 below.
Whenever U is a Φ-invariant subset of Derµ(G) we say that K ⊂ U is a cross section of Φ
inside U if it intersects every Φ-orbit contained in U exactly once. With this notation we have
the following.

Lemma 10.16. Under Assumption 10.15, the following hold.
(i) Both subsets P± are open and Φ-invariant, and each subset P0

± is a cross section of Φ
inside P±.

(ii) The closures of the subsets P0
± in Derµ(G) satisfy P0

± ⊂ P0
± ∪N .

Proof. It is clear that P+ and P− are both Φ-invariant. To show that P+ is open, fix ϕ ∈ P+.
Since ϕ(f) is an expanding homothety centered at ξϕ, for every bounded open interval I
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containing ξϕ we have I b ϕ(f)(I). Thus ϕ has a neighborhood U in Derµ(G) such that every
ψ ∈ U satisfies I b ψ(f)(I). This gives that for ψ ∈ U , the map ψ(f) cannot be a contracting
homothety, hence U ∩P− = ∅. Similarly, this gives U ∩ (I ∪ Î) = ∅, as in the standard action
the map f has no fixed point. Moreover since N is closed, we can restrict U so that it is
contained in P+, showing that P+ is open. An analogous argument shows that P− is also
open. Moreover for every ϕ ∈ P± we have Φt(ϕ) ∈ P0

± if and only if t = −ξϕ, showing that
each P0

± is a cross section for Φ inside P±. Finally suppose that ψ ∈ P0
+. Since ϕ(f) fixes

0 for every ϕ ∈ P0
+, so does ψ(f), and in particular ψ /∈ I ∪ Î. Since P− is open, the only

possibility is that ψ ∈ P0
+ ∪N , so that P0

+ ⊂ P0
+ ∪N . Similarly P0

− ⊂ P0
− ∪N . �

In particular it follows that the restriction of the flow Φ to the complement of N in Derµ(G)
has a cross section, namely P0 ∪ {ι, ι̂}. The central point here is the following.

Proposition 10.17 (N is a uniform attractor). Under Assumption 10.15, let U be an open
neighborhood of N in Derµ(G). Then there exists t0 > 0 such that for every t ∈ R with |t| > t0
and every ϕ ∈ P0 ∪ {ι, ι̂} we have Φt(ϕ) ∈ U .

Before proving Proposition 10.17, let us observe that it implies Theorem 10.14.

Proof of Theorem 10.14. Set S = P0 ∪ {ι, ι̂}, and V = P ∪ I ∪ Î. Note also that the set U in
the statement of Theorem 10.14 is precisely the preimage of V under the harmonic retraction
r : Homirr(G,Homeo0(R)) → Derµ(G) given by Theorem 3.2. By Lemma 10.16 the set S is
closed in V (and hence in U), its closure is contained in Derµ(G) and thus is compact, and
the point ι and ι̂ are isolated in S. Now the uniform convergence in Proposition 10.17 implies
that the map σ : R× S → V , given by σ(t, ϕ) = Φt(ϕ), is a homeomorphism from R× S to V .
It follows that there is a continuous retraction of p : V → S which preserves Φ-orbits. Thus
the map p ◦ r is a continuous retraction of U to S which preserves semi-conjugacy classes as
desired. �

For the proof of Proposition 10.17 we need some preliminary lemmas. The case ϕ ∈ {ι, ι̂} is
actually straightforward and boils down to the following.

Lemma 10.18. Under Assumption 10.15, for ϕ ∈ {ι, ι̂} all limit points of Φt(ϕ) as t→ ±∞
are contained in N .

Proof. For every finite subset S ⊂ Gc the image ϕ(S) is supported in a compact interval.
Since ϕt := Φt(ϕ) is the conjugate of ϕ by a translation by t, it follows that when |t| is
sufficiently large, the image ϕt(S) acts trivially on an arbitrarily large compact interval, so
that ψ(S) = {id} for every limit action ψ of ϕt as |t| → +∞. Since S is arbitrary, we deduce
that Gc ⊆ kerψ, and thus ψ ∈ N . �.

We now turn to analyze the limit points of Φt(ϕ) for ϕ ∈ P0. In fact, a pointwise convergence
towards N for every ϕ ∈ P0 would be not difficult to obtain from the qualitative properties
of R-focal actions. To obtain a uniform convergence we will need a quantitative control on
the size of the intervals in the CF-family of intervals associated with ϕ. Recall that given
an R-focal action ϕ ∈ P+, for given x ∈ X and ξ ∈ Suppϕ(G(a,x)) we denote by Iϕ(x, ξ) the
connected component of Suppϕ(G(a,x)) containing ξ (Definition 10.7), and that the intervals of
this form allow to define an invariant CF-family for ϕ (see Proposition 10.8). In the case of
R-focal actions in P−, one can introduce the analogous notation for connected components of
Suppϕ(G(x,b)). The key point in the proof of Proposition 10.17 is the following uniform bound
on the size of these intervals in harmonic coordinates.
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Lemma 10.19 (Bound on the CF-family in harmonic coordinates). Under Assumption 10.15,
there exists a constant C = C(µ) such that the following holds. For every x ∈ X, there
exists a constant D = D(x, µ) such that for every ϕ ∈ P+ and every ξ ∈ Suppϕ(G(a,x)) with
|ξ − ξϕ| ≥ D, we have | Iϕ(x, ξ)| ≤ C.

The analogous result holds for actions ϕ ∈ P−.

Proof. For given g ∈ G, set
∆g := max {|ϕ(g)(ξ)− ξ| : ϕ ∈ Derµ(G), ξ ∈ R} .

Note that this quantity is positive and finite for every g ∈ G, by compactness of the space
Derµ(G). We will establish the lemma for actions ϕ ∈ P+, the other case ϕ ∈ P− being totally
symmetric.

Fix ϕ ∈ P+. First of all we observe that the unique fixed point ξϕ of ϕ(f) satisfies
ξϕ ∈ Suppϕ(G(a,x)) for every x ∈ X. Indeed if there exists y ∈ X such that ξϕ ∈ Fixϕ(G(a,y))
we would have ξϕ ∈ Fixϕ(G(a,fn(y))) for every n ∈ N, so that ξϕ must be fixed by the normal
subgroup G+ =

⋃
n∈NG(a,fn(y)). Since ϕ is minimal, it follows that G+ acts trivially, which is

a contradiction with the fact that ϕ ∈ P is faithful. Thus, the interval Iϕ(x, ξϕ) is well-defined
and non-empty for every x ∈ X.

Fix now x ∈ X. Since G belongs to the class F , we can fix a finite subset S ⊂ G(x,b) such
that 〈S〉 contains G(y,b) for some y ≥ x. Set D = max{∆s : s ∈ S} (note that it depends on µ
and on x).
Claim. We have sup {| Iϕ(x, ξϕ)| : ϕ ∈ P+} ≤ D.

Proof of claim. Assume by contradiction that for some ϕ ∈ P+, we have | Iϕ(x, ξϕ)| > D. Since
every s ∈ S fixes x, the interval ϕ(s)(Iϕ(x, ξϕ)) = Iϕ(x, ϕ(s)(ξϕ)) is a connected component of
Suppϕ(G(a,x)) and thus must be either equal to Iϕ(x, ξϕ) or disjoint from it. But the assumption
that | Iϕ(x, ξϕ)| > ∆s rules out the second possibility. Thus we have that ϕ(s) must preserve
Iϕ(x, ξϕ) for every s ∈ S, and hence Iϕ(x, ξϕ) is ϕ(G(y,b))-invariant. In particular, the subgroup
N(y,b) = [Gc, Gc](y,b) has fixed points, which contradicts Proposition 5.12. �

Given ϕ ∈ P+, write Iϕ(x, ξϕ) = (α0, β0) and for n ∈ N set αn = ϕ(fn)(α0) and βn =
ϕ(fn)(β0). On the one hand, note that for every n ∈ N, the points αn and βn belong to
Fixϕ(G(a,fn(x))) and hence to Fixϕ(G(a,x)). Thus for every ξ ∈ Suppϕ(G(a,x)) r (α, β), there
exists n ∈ N such that the corresponding connected component Iϕ(x, ξ) is contained in one
of the two intervals (αn+1, αn) and (βn, βn+1). In particular, after the claim, this happens
whenever |ξ − ξϕ| ≥ D. On the other hand, setting C = ∆f (note it only depends on µ only),
we must have that both lengths |αn+1 − αn| and |βn+1 − βn| are upper-bounded by C. This
gives the desired conclusion. �

Proof of Proposition 10.17. Assume by contradiction that we can find sequences (ϕn)n∈N ⊂ P0

and (tn)n∈N ⊂ R, with |tn| → ∞, such that ψn := Φtn(ϕn) converges to a limit ψ /∈ N as
n→∞. Up to extracting a subsequence we can assume that (ϕn) ⊂ P0

+ (the case (ϕn) ⊂ P0
−

being analogous). Note that since ξϕn = 0 we have ξψn = −tn. Fix x ∈ X and the corresponding
constants C = C(µ) and D = D(x, µ) given by Lemma 10.19. For n large enough we have
|tn| ≥ D, which implies that | Iϕn (x, ξψn)| = | Iψn (x, 0)| ≤ C, so that there exists ηn ∈ [−C,C]
which is fixed by ψn(G(a,x)). Since every accumulation point of (ηn) is fixed by ψ(G(a,x))
we obtain that Fixψ(G(a,x)) ∩ [−C,C] 6= ∅. Since C does not depend on x, a compactness
argument shows that Fixψ(G+) =

⋂
x∈X Fixψ(G(a,x)) 6= ∅. As ψ is minimal and G+ is normal,

we deduce that ψ is not faithful, and this contradicts the assumption that ψ /∈ N . �
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10.4.2. Application to local rigidity. Theorem 10.14 has the following immediate consequence.
Theorem 10.20. For X = (a, b), let G ⊆ Homeo0(X) be a subgroup in the class F0. Then
the set of actions in Homirr(G,Homeo0(R)) which are semi-conjgate to the standard action of
G on X is open. In particular the standard action of G on X is locally rigid.
Remark 10.21. An arbitrary locally moving group G ⊆ Homeo0(X) is not always locally rigid:
the construction of actions in §5.3.2 shows that this is never the case for any countable group
G ⊆ Homeo0(X) consisting of elements of compact support. However the assumption that G
belongs to F0 is probably not optimal. We are able to prove Theorem 10.20 rigidity under
some variants of this assumptions, all of which involve the finite generation of G and some
additional finite generation condition related to the subgroups GI for proper intervals I ⊂ X.
It would be interesting to know whether these assumptions can be completely removed, namely
whether Theorem 10.20 holds for every finitely generated locally moving group.
Remark 10.22. In the setting of Theorem 10.20, the natural action of G on X is not always the
unique locally rigid action of G: we will see in Section 12 that there are examples of groups in
F0 that admit a finite number of faithful R-focal actions up to conjugacy (i.e. for which the
subset P contains finitely many Φ-orbits), which are therefore locally rigid as well.

We point out the following consequence.
Corollary 10.23. Let H ⊆ Homeo0(R) be a countable group. Then, there exists a finitely
generated subgroup G ⊂ Homeo0(R) containing H such that the action of G on R is locally
rigid.

Proof. By Proposition 10.2 there exists a finitely generated group G ⊆ Homeo0(R) that
contains H and belongs to class F0, and by Theorem 10.20, its action is locally rigid. �

10.4.3. Smoothness of the semi-conjugacy relation. Recall from the discussion in §3.5 that the
Deroin space can be used to study when the semi-conjugacy relation on Homirr(G,Homeo0(R))
is smooth, that is when there is a Borel complete invariant that classifies actions of G up to
semi-conjugacy. When G is in F0, an obvious obstruction for this to hold is that this may fail
already for action of the largest quotient G/[Gc, Gc]. However our analysis of Derµ(G) has the
following straightforward consequence.
Corollary 10.24. For X = (a, b), let G ⊆ Homeo0(X) be a subgroup in the class F0. Let
M be the subset of Homirr(G,Homeo0(R)) consisting of actions that are minimal and faithful.
Then the following hold.

(i) The topological conjugacy relation onM is smooth.
(ii) The semi-conjugacy relation on the space Homirr(G,Homeo0(R)) is smooth if and only

if the same holds true for the space Homirr(G/[Gc, Gc],Homeo0(R)).

Proof. The first claim follows from Lemma 10.16 and from Theorem 3.2. The second is a
direct consequence of the previous analysis of Derµ(G) and of Corollary 3.22. �

11. An illustrative example: Thompson’s group F

11.1. Main results in the case of F and outline of the section. Perhaps the most basic
example of finitely generated locally moving group is Thompson’s group F (cf. Proposition
4.8), which also belongs to the class F0. It turns out that actions of the group F on R display a
rich combination of rigidity and flexibility phenomena. The goal of this section is to summarize
our results in this special case and to go more into detail.

On the one hand, Corollary 6.11 implies the following for its actions by C1 diffeomorphisms.
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Theorem 11.1 (Rigidity of actions by C1 diffeomorphisms). Thompson’s group F satisfies
the following.

• For every faithful action ϕ : F → Diff1([0, 1]) without fixed points in [0, 1], the ϕ-action
of F on (0, 1) is semi-conjugate to the standard action of F on (0, 1).
• Every faithful action ϕ : F → Diff1(R) without closed discrete orbit is semi-conjugate
to the standard action on (0, 1).

Remark 11.2. Note that the conclusion is optimal: there exist C1 actions (and even C∞

actions) of F on closed intervals which are semi-conjugate, but not conjugate to its standard
action: the existence of such actions was shown by Ghys and Sergiescu [45], or alternatively
can be shown using the “2-chain lemma” of Kim, Koberda, and Lodha [55] (see Proposition
4.8).

On the other hand this rigidity does not hold for continuous actions: there exists minimal
faithful actions of F on R which are not semi-conjugate to the standard action (see for instance
the constructions in §§9.1–9.2). Nevertheless, Theorem 10.3 implies that the dynamics of all
exotic actions of F on R is strongly reminiscent of the standard action on (0, 1), although not
via a semi-conjugacy but via the notion of horograding of an R-focal action (see §8.4). Indeed
for the group F , Theorem 10.3 reads as follows (recall that the commutator subgroup [F, F ] is
simple and coincides with the group Fc of compactly supported elements, so that the largest
quotient F/[Fc, Fc] coincides with the abelianization F ab ∼= Z2).

Theorem 11.3 (Structure theorem for actions by homeomorphisms). Every action ϕ : F →
Homeo0(R) without fixed points is semi-conjugate to one of the following.

(i) (Non-faithful) An action by translations of F ab ∼= Z2.
(ii) (Standard) The standard piecewise linear action of F on (0, 1).
(iii) (Exotic) A minimal R-focal action which can be horograded by the standard action of

F on (0, 1).

Theorem 11.3 implies serious constraints on the structure of actions of F on R. For
example, it implies that for all exotic actions, the individual elements of F satisfy a dynamical
classification, and the type of each element can be read from the standard action on (0, 1)
(see Proposition 8.32). For ease of reference let us restate the dynamical classification in this
special case. Given g ∈ F and x ∈ [0, 1] we denote by D−g(x) ∈ {2n, n ∈ Z} the left derivative
of g at x. Note that germ of g ∈ F inside Germ(F, 1) is uniquely determined by D−g(1), and 1
is an attracting fixed point for g if and only if D−g(1) < 1.

Proposition 11.4 (Dynamical classification of elements). Let ϕ : F → Homeo0(R) be a
minimal R-focal action, increasingly horograded by the standard action on (0, 1). Then the
following hold.

(i) For every x ∈ (0, 1), the image ϕ(F(0,x)) is totally bounded. In particular the ϕ-image
of every element g ∈ F with D−g(1) = 1 is totally bounded.

(ii) For every g ∈ F such that D−g(1) 6= 1 the ϕ-image of g is a pseudohomothety, which
is expanding if D−g(1) < 1 and contracting otherwise. If moreover g ∈ F has no fixed
points in (0, 1) then its image is a homothety.

As in §10.4, Theorem 11.3 can also be used to analyze the structure of the Deroin space
Derµ(F ) of normalized harmonic F -actions, a representation of which is given in Figure 10;
a detailed description of this picture is provided in §11.2 below. This description implies in
particular that a representative of the standard action in Derµ(F ) cannot be accumulated by
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exotic actions, which in turns implies the following (which is a particular instance of Theorem
10.20).

Theorem 11.5 (Local rigidity of the standard action). The standard piecewise linear action
of F on (0, 1) is locally rigid.

P0
+ τ1

τ0

τ̂1

τ̂0

ατ1 + βτ0

Nι̂

Î

ι

I

P−

P+

Figure 10. The Deroin space of Thompson’s group F . See §11.2 for a detailed explanation.

It also allows to say that the Borel complexity structure of the semi-conjugacy relation on
Homirr(F,Homeo0(R)) is the simplest possible (see the discussion in §3.5). In other words,
there exists a Borel invariant for actions of F on the real line without fixed points, which
completely determine the semi-conjugacy class.

Theorem 11.6 (Smoothness of the semi-conjugacy relation). The semi-conjugacy relation on
the space Homirr(F,Homeo0(R)) of actions of F without fixed points is smooth. In particular,
the conjugacy relation on the space of minimal actions of F on R is smooth.

Proof. Direct consequence of Corollary 3.22 and the description of the Deroin space of F in
§11.2. �

Leaving temporary aside the setting of orientation-preserving actions, we may consider
Thompson’s group with flips F±, which is defined as the subgroup of Homeo((0, 1)) defined
analogously to F but by allowing negative slopes (equivalently, the group generated by F and
by the reflection along 1/2). Then Theorem 11.3 implies the following (which is a special case
of Corollary 10.12).

Theorem 11.7 (Rigidity in the non-orientation-preserving case). Let F± denote Thompson’s
group with flips. Then every minimal action ϕ : F± → Homeo(R) is conjugate to its standard
action on (0, 1).

Remark 11.8. In Theorem 11.7, the assumption that the action be faithful is actually redundant.
In fact by analyzing the proper quotients of F±, one can check that the only ones that act
non-trivially on the line by homeomorphisms are isomorphic to Z or to the dihedral group
D∞, so that none of them can act minimally.
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While the above results can all be seen as rigidity properties for actions of F on the line,
a large part of this section will be devoted to illustrate their considerable flexibility. Indeed
within the constraints imposed by Theorem 11.3, it turns out the group F admits a wild zoo
of exotic (hence R-focal) actions. Some first examples of R-focal actions of F can be obtained
by the constructions in §§9.1–9.2, which already show that F admits an uncountable family of
non-conjugate such actions. In §§11.4–11.6 we illustrate the abundance of R-focal actions of
the group F by providing various other constructions, and describing some subtle differences in
their dynamical behavior. While we will focus more on some significant examples, the reader
will notice that these constructions admit various variants involving several choices, which
depend on the data and are not always compatible between them. Trying to take them all
into account simultaneously would result in an obscure treatment.

Along the way we will observe that many examples of minimal R-focal actions of F share an
interesting property: the image of the commutator subgroup [F, F ] does not act minimally on
the real line (equivalently it does not admit any closed minimal invariant subset, see Lemma
7.12). In §11.3 we show that this condition is particularly relevant and has many equivalent
characterizations (see Proposition 11.13). In particular it characterizes the R-focal actions
of F which can be encoded by an action on a simplicial planar directed tree (cf. Proposition
8.33). Nevertheless it turns out that not all R-focal actions of F have this property: in §11.6
we will construct a family of minimal R-focal actions of F such that [F, F ] still acts minimally.

To conclude this discussion, we would like to emphasize that the abundance of exotic actions
relies on some specific features of the group F . For instance in the next section (Section 12)
we will see that a class of finitely generated groups of piecewise linear homeomorphisms of the
whole real line (with finitely many breakpoints) defined analogously to F admit exactly two
minimal faithful exotic actions up to conjugacy, and we will also construct a finitely generated
locally moving group which does not admit any exotic action at all.

11.2. An analysis of the Deroin space of F . The goal of this subsection is to analyze the
Deroin space of F and to explain and justify Figure 10. From now on, we fix a symmetric
probability measure µ on F whose support is finite and generates F , and consider the
associated Deroin space Derµ(F ) (see §2.2), with its translation flow Φ. We will follow closely
the discussion in §10.4, and refine it when possible to obtain more precise information in this
special case.

Remark 11.9. As mentioned in the introduction, the Deroin space is a continous analogue of
the space of left-invariant orders for a finitely generated group. We point out that the space
of bi-invariant orders on F was described in [94].

We take notation analogous to Assumption 10.15. Namely we fix any element f ∈ F which
in the standard action satisfies f(x) > x for every x ∈ (0, 1). For definiteness we choose f to
be the element of the standard generating pair of F given by

(11.1) f(x) =


2x x ∈ [0, 1

4 ],
x+ 1

4 x ∈ [1
4 ,

1
2 ],

1
2x x ∈ [1

2 , 1].

By Theorem 11.3, we have a decomposition of Derµ(F ) into Φ-invariant subspaces

Derµ(F ) = N t I t Î t P,

defined as follows:
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• we let N ⊂ Derµ(F ) be the subset consisting of actions by translations of F ab;
• we fix a representative ι ∈ Derµ(F ) of the standard action on (0, 1), and let I =
{Φt(ι) : t ∈ R} denote its Φ-orbit, whilst Î denotes the Φ-orbit of the reversed action ι̂;
• we let P = P+tP− be the subset of Derµ(F ) of R-focal actions, where P+ (respectively,
P−) is the subset of R-focal actions which are increasingly (respectively, decreasingly)
horograded by the standard action on (0, 1). For ϕ ∈ P we let ξϕ be the unique fixed
point of ϕ(f). We say that ϕ ∈ P is f -centered if ξϕ = 0, and let P0 ⊂ P be the subset
of f -centered R-focal actions. Finally we set P0

± = P0 ∩ P±.
Let us now give a closer description of the topology of these subsets and of the dynamics of
the flow Φ on them.

First of all, from the elementary structure of the maximal quotient F/[Fc, Fc] ∼= Z2 we
obtain an explicit description of the subset N in this case. Indeed N is homeomorphic to
Derµ̄(Z2), where µ̄ is the projection of µ to F ab ∼= Z2. Every element of Derµ̄(Z2) corresponds
to a Z2-action by translations given by a non-trivial homomorphism ϕ : Z2 → (R,+) up to
rescaling by a positive real, so that Derµ̄(Z2) is homeomorphic to the circle S1. We deduce
that N is a closed subset of Derµ(F ) homeomorphic to a circle, and it consists of points which
are fixed by the translation flow Φ.

Let now τ0, τ1 : F → Z be the two natural homomorphisms obtained by identifying the
groups of germs Germ(F, 0) and Germ(F, 1) with Z, with the convention that τx(g) > 0 if and
only if the corresponding endpoint x ∈ {0, 1} is an attracting fixed point of g. Explicitly,
(11.2) τ0(g) = − log2D

+g(0) and τ1(g) = − log2D
−g(1).

We identify τ0 and τ1 with the elements of N given by their corresponding cyclic action. One
readily shows that the actions ι and ι̂ satisfy the following (compare with Lemma 10.18):

lim
t→+∞

Φt(ι) = τ1, lim
t→−∞

Φt(ι) = τ̂0, lim
t→+∞

Φt(ι̂) = τ0, lim
t→−∞

Φt(ι̂) = τ̂1.

Thus I is a copy of R inside Derµ(F ) which connects the points τ̂0 and τ1, while Î connects τ0
to τ1 as shown in Figure 10.

Recall that by Lemma 10.16 each subset P± is open, and P0
± is a cross section for Φ inside

P±. Moreover, in this setting we have the following more precise version of Proposition 10.17.

Proposition 11.10. The subsets P0
− and P0

+ are closed in Derµ(F ). Moreover, for every
ϕ ∈ P0

± the limits limt→±∞Φt(ϕ) exist and the following holds:
(1) if ϕ ∈ P0

+ then

lim
t→+∞

Φt(ϕ) = τ1 and lim
t→−∞

Φt(ϕ) = τ̂1,

where the convergence is uniform on ϕ ∈ P0
+;

(2) if ϕ ∈ P0
− then

lim
t→+∞

Φt(ϕ) = τ0 and lim
t→−∞

Φt(ϕ) = τ̂0,

where the convergence is uniform on ϕ ∈ P0
−.

Proof. We already know by Lemma 10.16 that P0± ⊂ P0
± ∪N . Let us show that in this case

the sets P0
± are actually closed. Assume by contradiction that (ϕn)n∈N ⊂ P0

+ is a sequence
converging to ψ ∈ N . Since ϕn(f) fixes 0 for every n ∈ N, so does ψ(f). Since ψ is an action
by translations, this is possible only if ψ(f) = id. Now fix x ∈ (0, 1) and choose any h ∈ F(0,x)
with non-trivial germ at 0. Recall the notation Iϕ(x, ξ) from Definition 10.7. After the claim in
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Lemma 10.19, there exists D = D(x, µ) > 0 such that | Iϕn (x, 0)| ≤ D for every n ∈ N. Thus,
upon extracting a subsequence we can suppose that ηn := sup Iϕn (x, 0) converges to a limit
η ∈ R as n→∞. The choice of h implies that ϕn(h) fixes ηn for every n, so that ψ(h) fixes η,
and we deduce again that ψ(h) = id. However note that in the standard action the element f
has non-trivial derivatives at both endpoints, while h has non-trivial germ only at 0. Thus
h and f project to two linearly independent elements of F ab ∼= Z2. Since ψ is an action by
translations and it vanishes on both, we have that ψ is trivial, which is a contradiction. This
shows that P0

+ is closed, and the proof for P0
− is closed is similar.

Let us now show that limt→+∞Φt(ϕ) = τ1 uniformly on ϕ ∈ P0
+. Assume that (ϕn)n∈N ⊂ P0

+
and (tn)n∈N ⊂ R are sequences such that tn increases to +∞, and let ψ be a cluster point
of ψn := Φtn(ϕn). Repeating the proof of Proposition 10.17 in this case, one sees that
Fixψ(F+) 6= ∅, hence ψ(F+) = {id}. This is only possible when ψ ∈ {τ1, τ̂1}. However
note that ψn(f) is an expanding homothety with fixed point −tn for every n ∈ N, so that
ψn(f)(0) > 0 for sufficiently large n. Passing to the limit we obtain that ψ(f)(0) ≥ 0. Thus
necessarily ψ = τ1. �

An immediate consequence of the uniform convergence in Proposition 11.10 is the following.
Given a topological space K, we define the double cone over K to be the quotient K×[−1, 1]/ ∼
where (x,−1) ∼ (y,−1) and (x, 1) ∼ (y, 1) for every x, y ∈ K.
Corollary 11.11. The closures of the subsets P+ and P− in Derµ(F ) are given by P+ =
P+ ∪ {τ1, τ̂1} and P− = P− ∪ {τ0, τ̂0}, and both are homeomorphic to the double cone over the
corresponding cross section P0

±.
With this discussion in mind, illustration of Derµ(F ) is provided by Figure 10. Note that in

particular it is visible from this description that P ∩ I = ∅, so that ι is transversely isolated.
In particular the standard action of F is locally rigid (Theorem 11.5 above).

To conclude this discussion, we observe that it is a tantalizing problem to obtain further
results on the topology of the compact cross sections P0

+ and P0
−, which is at the moment

quite mysterious. Note that these do not depend up to homeomorphism on the choice of the
generator f ∈ F made above, and by symmetry they are homeomorphic one to the other.
The constructions of R-focal actions which will appear in the rest of the section show that
the spaces P0

+ and P0
− are uncountable, and contain homeomorphic copies of a Cantor set.

However we were not able to construct a non-trivial connected subset of P0
+, and we do not

know whether they are totally disconnected. We also do not know the answer to the following
question.
Question 11.12. Do the cross sections P0

+ and P0
− admit isolated points?

By Corollary 3.4 this is equivalent to the question whether F admits minimal R-focal actions
which are locally rigid.

11.3. Simplicial R-focal actions of F and minimality of [F, F ]. Before discussing exam-
ples of minimal R-focal actions of F , we would like to single out an important question to
address about any such action: whether the commutator subgroup [F, F ] acts minimally or
not. By Lemma 7.12, the second possibility is equivalent to the fact that it does not admit any
non-empty closed minimal invariant subset of R. The R-focal actions of F with this property
turn out to be very special due to the following result, which elaborates on Proposition 8.33.
Proposition 11.13 (Simplicial R-focal actions of F ). Let ϕ : F → Homeo+(R) be a minimal
R-focal action which can be increasingly horograded by the standard action on (0, 1). Then,
the following are equivalent:
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(i) The image ϕ(F+) admits no non-empty closed minimal invariant set.
(ii) The image ϕ([F, F ]) admits no non-empty closed minimal invariant set.
(iii) ϕ is represented by a focal action on a planar directed tree (T, /,≺), such that T

is a simplicial tree of countable degree, and the action of F on T is by simplicial
automorphisms.

(iv) ϕ is represented by a focal action on a planar directed tree (T, /,≺) such that F acts
by isometries with respect to a compatible R-tree metric on T.

(v) Every pseudohomothety in the image of ϕ is a homothety.
(vi) There exist bounded open intervals I, J ⊂ R such that for every g ∈ F+ the image g.I

does not contain J .

Remark 11.14. The fact that some minimal R-focal actions of F can be encoded by a simplicial
action on a simplicial tree can seem in contradiction with the fact that they can also be
horograded by the standard action of F , which is highly not isometric. However the tree
provided by the proof Proposition 11.13 is not the same directed tree as the one provided by
the proof of Theorem 10.3 (it arises from a different CF-cover). This is an illustration of the
fact that a planar directed tree encoding an R-focal action is not unique, and identifying a tree
with good properties may be important for some purposes. We note however that the focal
germ representations associated to both trees are semi-conjugate to the germ homomorphism
F → Germ(F, 1) ' Z associated to the standard action (recall Lemma 8.25).

Proof of Proposition 11.13. Let us first show that (i) and (ii) are equivalent. If [F, F ] admits a
closed minimal invariant subset, then by Lemma 7.12 it acts minimally on R, and thus so does
F+. Conversely, assume by contradiction that [F, F ] does not act minimally on R, but F+ does.
Then we can apply Proposition 8.33 to G = F+ and N = [F, F ] and we deduce that ϕ �F+ is
R-focal and is the dynamical realization of an action of F+ on an planar directed simplicial
tree (T, /,≺). Moreover, the argument in its proof shows that the focal germ representation
of the action on (T, /,≺) coincides with the projection to F+/[F, F ] ∼= Z. Since the quotient
F+/[F, F ] is simply the group of germs Germ(F+, 0) we deduce that the ϕ-image of every
g ∈ F+ with a non-trivial germ at 0 must be a pseudohomothety. However we were assuming
that ϕ is an R-focal action of F increasingly horograded by the standard action on (0, 1), so
that the image of every element g ∈ F+ must be totally bounded. This is a contradiction.

The implication (i)⇒(iii) follows from Proposition 8.33, and (iii)⇒(iv) is obvious. Let us
prove that (iv) implies (v). Note that the image of an element g ∈ F is a pseudohomothety if
and only if g has a non-trivial germ at 1. As in the proof of Proposition 8.33 we can consider
a horofunction π : T → R given by π(v) = dT(v ∧ v0, v0) − dT(v ∧ v0, v), where v0 is some
basepoint, and we see that this provides a horograding by an action by translations on R
coming from the germ homomorphism F → Germ(F, 1) ∼= Z→ (R,+). Then from Proposition
8.27 we obtain that every element with a non-trivial germ at 1 must act as a homothety under
ϕ.

To show that (v) implies (vi), we show that (v) actually implies the following more explicit
condition, which clearly implies (vi).
(vi’) For every element h ∈ F which in the standard action satisfies h(x) > x for every

x ∈ (0, 1) (so that ϕ(h) is an expanding homothety) there exists an open bounded
interval I ⊂ R such that I ⊂ h.I and such that for every g ∈ F+, the interval h.I is
not contained in g.I.

Indeed assume that h is such that h(x) > x for every x ∈ X and let ξ ∈ R be the unique
fixed point of ϕ(h). Fix x ∈ X and let I := Iϕ(x, ξ) (note that this connected component is
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defined for every x ∈ X). As ϕ(h) is an expanding homothety, we have I ⊂ h.I. Suppose by
contradiction that there exists g ∈ F+ such that h.I ⊂ g.I. Note that we have the equalities

g.I = g. Iϕ(x, ξ) = Iϕ(g(x), g.ξ) = Iϕ(g(x), ξ)
(the last equality follows from the assumption that ξ ∈ g.I). Moreover we have that h.I =
Iϕ(h(x), ξ) and therefore we conclude that Iϕ(h(x), ξ) ⊂ Iϕ(g(x), ξ) implying that g(x) ≥ h(x).
Since g ∈ F+ this implies that for some y ≥ x it holds that g(y) = h(y). Therefore,

g. Iϕ(y, ξ) = Iϕ(g(y), ξ) = Iϕ(h(y), ξ) = h. Iϕ(y, ξ)
(the first equality follows from the fact that Iϕ(y, ξ) ⊃ I). Finally, this implies that ϕ(g−1h)
preserves Iϕ(y, ξ). Since g−1h has the same germ as h at 1, it acts as a pseudohomothety, so
that by (v) it is a homothety, and this is a contradiction with the fact that it preserves Iϕ(y, ξ).

Finally to show that (vi) implies (i), assume by contradiction (using Lemma 7.12) that
the action of F+ is minimal. As we are assuming (vi), the action cannot be proximal, so by
Theorem 2.17 the centralizer of ϕ(F+) in Homeo0(R) must be infinite cyclic generated by an
element T without fixed point. Since F+ is normal, we deduce that the whole group ϕ(F ) must
normalize 〈T 〉 and thus centralize it, contradicting that a minimal R-focal action is always
proximal (Proposition 7.7). �

Definition 11.15. We will say that a minimal R-focal action ϕ : F → Homeo0(R) is simplicial
if it satisifies one of the equivalent conditions in Proposition 11.13.

For many constructions of R-focal actions of F discussed below one can easily check
conditions (i) or (ii), and thus they turn out to be simplicial (although a simplicial tree does
not always appear naturally in the construction, and it might also be not obvious to check
directly condition (v)). It is more delicate to construct R-focal actions of F which are not
simplicial: this will be done in §11.6.

11.4. A plethora of R-focal actions I: restriction preorders. Starting from now we
will present various constructions of R-focal actions of the group F and study some of their
properties. We will focus on some examples, and indicate how they can be modified to obtain
more.

Remark 11.16. The attentive reader will notice that a common feature of all our constructions
of R-focal actions of F is the choice of a closed subset K ⊂ (0, 1), which is invariant under the
generator f given by (11.1). These sets appear quite naturally with the point of view of focal
actions. To understand this, take a minimal R-focal action ϕ : F → Homeo0(R). By Theorem
11.3 we know that it can be horograded by the standard action on (0, 1), meaning that one
can find a focal action Φ : G→ Aut(T, /,≺) on a directed planar tree which is horograded by
the standard action, and whose dynamical realization is (conjugate to) ϕ. By Proposition
11.4, the element f fixes a unique end ξ0 ∈ ∂∗T, so that it preserves the axis ]ξ0, ω[⊂ T, which
is naturally identified with the interval (0, 1) via the horograding map π : T → (0, 1). In
particular, the π-image of the closure ]ξ0, ω[∩Br(T) of the subset of branching points on this
axis defines an ϕ(f)-invariant closed subset K ⊂ (0, 1). Although for some choices of the
action Φ (as the one in the proof of Theorem 10.3) the subset K is the whole interval (0, 1), in
most examples it is not the case with correct choice of Φ.

11.4.1. A reinterpretation in terms of preorders. We start with a simple observation which is
useful to understand R-focal actions of F . Recall that we write τ1 : F → Z ∼= Germ(F, 1) for
the germ homomorphism given by (11.2), and f ∈ F for the element given by (11.1). We will
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also write 1F for the trivial element of F (and we will simply denote it by 1 when there is no
risk of confusion). Since τ1(f) is a generator of Germ(F, 1), we have a splitting

F = F+ o 〈f〉,
where as usual we write F+ = ker τ1. Then we can make F act on F+ “affinely” by letting F+
act on itself by left translations and f act on F+ by conjugation. In formula, for g = hfn ∈ F ,
with h ∈ F+ and n ∈ Z and for r ∈ F+, this action is given by g · r = hfnrf−n.

Assume that � is a left preorder on F+ which is invariant under conjugation by f . In
particular its residual subgroup H = [1]� is normalized by f , so that the action of F on F+
descends to an order-preserving action on (F+/H,≺), where ≺ is the total order induced by
�. Then, we can consider the dynamical realization ϕ : F → Homeo0(R) of this action. We
have the following equivalence.
Proposition 11.17. Let ϕ : F → Homeo+(R) be an action. The following are equivalent.

(i) ϕ is a minimal R-focal action increasingly horograded by the standard action on (0, 1).
(ii) There exists a preorder � on F+ invariant under conjugation by f , such that, writing

H = [1]�, the map f acts as a homothety on (F+/H,≺), and ϕ is conjugate to the
dynamical realization of the action of F on (F+/H,≺).

Moreover two distinct preorders as in (ii) give rise to non-conjugate minimal R-focal actions.

Proof. Let us prove that (ii) implies (i). Assume that � verifies the conditions, and let ϕ be the
dynamical realization of the action of F on (F+/H,≺). Since f is a homothety on (F+/H,≺),
Proposition 2.43 implies that ϕ is minimal, and ϕ(f) is a homothety. Since moreover ϕ must
fall into one of the cases of Theorem 11.3, the only possibility is that ϕ is R-focal, increasingly
horograded by the standard action on (0, 1).

For the converse, let ϕ be is as in (i). Then ϕ(f) is an expanding homothety (see Proposition
11.4); let ξ ∈ R be its unique fixed point, and consider the preorder � on F+ associated with
this point: g ň h if and only if g.ξ < h.ξ. Using that ξ is fixed by f , we see that � is invariant
under conjugation by f , and that the natural action of F on (F+/[1]�,≺) can be identified
with the action of F on the orbit of ξ, showing the claim.

Finally note that these two constructions are inverse to each other, and since ξ is the
unique fixed point of f , the preorder ≺ is uniquely determined by the conjugacy class of the
action. �

11.4.2. Restriction preorders on F+. We now explain a concrete construction of preorders on
F+ satisfying (ii) in Proposition 11.17. This yields a family of R-focal actions of F which
contains as special cases the constructions in §§9.1–9.2.

Let K ⊆ (0, 1) be a closed f -invariant subset. To the subset K we associate a preorder �K
on F+ which is obtained by looking at the restriction of elements of F+ to K, as follows. We
first consider the subgroup H = {g ∈ F+ : g(x) = x for every x ∈ K} of elements which fix K
pointwise, and for g ∈ F+ define

xg =
{

0 if g ∈ H,
sup{x ∈ K : g(x) 6= x} if g ∈ F+ rH.

We immediately observe that xg = xg−1 for every g ∈ F+. Moreover, we have the following
behavior when considering compositions.
Lemma 11.18. Let K ⊆ (0, 1) be a non-empty closed subset, and take g, h ∈ F+. Then we
have the inequality xgh ≤ max{xg, xh}, and when xh 6= xg the equality xgh = max{xg, xh}
holds.
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Proof. Note that if x ∈ K is such that x > max{xg, xh}, then gh(x) = g(x) = x. This gives
the inequality xgh ≤ max{xg, xh}.

Assume now xh < xg and assume first we are in the case g(xg) 6= xg. Then gh(xg) = g(xg) 6=
xg, proving that xg ≤ xgh, hence xgh = xg (using the previous inequality). When g(xg) = xg,
then xg is accumulated from the left by points of K which are moved by g; in particular for
every such point x with xh < x < xg, we have gh(x) = g(x) 6= x, giving x ≤ xgh. Taking
the supremum we obtain the desired equality xg = xgh. Note also that the same assumption
xh < xg (which is equivalent to xh−1 < xg−1) gives xg−1h−1 = xg−1 = xg. As xhg = xg−1h−1 ,
we deduce from the previous case that xhg = xg. This concludes the proof. �

We next introduce the subset
(11.3) PK =

{
g ∈ F+ rH : either g(xg) > xg, or g(xg) = xg and D−g(xg) > 1

}
and observe the following.
Lemma 11.19. For any non-empty closed subset K ⊆ (0, 1), the subset PK defines a positive
cone in F+.

Proof. We have to verify the conditions in Remark 2.34. Let us first prove that F+ =
PK tH t P−1

K . For this notice that, since xg = xg−1 , we have

P−1
K = {g ∈ F+ rH : either g(xg) < xg, or g(xg) = xg and D−g(xg) < 1}.

Thus, we automatically get that H ∩
(
PK ∪ P−1

K

)
= ∅ and P−1

K ∩ PK = ∅. It only remains
to shows that F+ ⊆ PK tH t P−1

K . For this, take g ∈ F+ rH, so that xg > 0. If xg 6= g(xg)
we are done. In the complementary case, xg must be accumulated from the left by points
that are moved by g. Since g is piecewise linear we must have D−g(xg) 6= 1 showing that
g ∈ PK t P−1

K . Next, let us check that PK is a semigroup and HPKH ⊆ PK .
Take g, h ∈ PK , and assume first xh < xg. Then Lemma 11.18 gives xgh = xg and

gh(xgh) = g(xg). If g(xg) > xg, we deduce immediately gh ∈ PK ; otherwise xg is accumulated
from the left by points of K, which must be fixed by h, so that D−h(xg) = 1. Then
D−(gh)(xgh) = D−g(xg)D−h(xg) > 1, and we conclude that gh ∈ PK .

Assume now that xg < xh, so that xgh = xh by Lemma 11.18. Consider first the case
h(xh) = xh. Then gh(xgh) = g(xh) = xh = xgh, and as in the previous case we see that
D−g(xh) = 1, so that D−(gh)(xgh) = D−h(xh) > 1. When h(xh) > xh, then gh(xgh) >
g(xh) = xh. In both cases we have gh ∈ PK .

Note that the previous argument works also when one of the two elements is in the residue
H, proving that HPKH ⊆ PK .

Finally, consider the case xg = xh. As h(xh) ≥ xh and g(xg) ≥ xg, then if any of the two
inequalities is strict we deduce gh(xg) > xg, and thus xgh = xg (by the inequality of Lemma
11.18) and gh ∈ PK . Otherwise, assume that both g and h fix xg = xh. Then we have the
relation D−(gh)(xgh) = D−g(xg)D−h(xh) > 1, showing that xgh = xg (again by Lemma
11.18) and gh ∈ PK also in this case. �

The previous lemma leads to the following definition.
Definition 11.20. Given a closed subset K ⊆ (0, 1), the preorder �K on F+ defined by the
positive cone PK in (11.3) will be called the restriction preorder associated with K. We will
always write H = [1]�K for its residue.

Let us describe some elementary properties related to the preorder �K that will be useful
in the sequel.
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Lemma 11.21. Let K ⊆ (0, 1) be a non-empty closed subset, and let �K be the corresponding
restriction preorder on F+. Then the following hold.

(i) For g, h ∈ F+ with 1 �K g �K h, we have xg ≤ xh.
(ii) For x ∈ (0, 1), the subset Lx := {g ∈ F+ : xg ≤ x} is a �K-convex subgroup.

Proof. We first prove (i). We can assume g ∈ PK otherwise xg = 0 and the result follows.
Assume for contradiction that xg > xh. Then from Lemma 11.18 we have xg−1h = xg. Consider
first the case g(xg) > xg, then g−1h(xg) = g−1(xg) < xg, so that g−1h ňK 1F , contradicting the
assumption g �K h. Consider next the case g(xg) = xg, so that D−g(xg) > 1 and D−h(xg) = 1
(as in this case xg is accumulated from the left by points of K). Then g−1h(xg) = xg and
D−(g−1h)(xg) = D−g(xg)−1 < 1, giving again the contradiction g−1h ňK 1F .

The inequality xgh ≤ max{xg, xh} from Lemma 11.18 shows that the subset Lx in (ii) is a
subgroup, whilst (i) proves that Lx is �K-convex. �

Note that the coset space F+/H can be identified with the set of restrictions {g �K : g ∈ F+},
so that two elements g, h ∈ F+ are equivalent for �K if and only if their restrictions to K
coincide.

Lemma 11.22. For every f -invariant closed set K ⊆ (0, 1), the restriction preorder �K on F+
is invariant under conjugation by f , and the conjugacy induces a homothety on (F+/H,≺K)
fixing H.

Proof. The verification that �K is invariant under conjugation follows easily from f -invariance
of K. Let us check that f acts a homothety on (F+/H,≺K). It is clear that it fixes the
point corresponding to H. We next verify that conjugation by f preserves the positive cone
PK . Take h ∈ PK , write x∗ = xh and note that f(xh) = xfhf−1 ; when h(xh) > xh, we have
fhf−1(xfhf−1) = fh(xh) > xh, otherwise we have h(xh) = xh and

D−(fhf−1)(xfhf−1) = D−h(xh) > 1.

Hence fhf−1 ∈ PK , as wanted.
More generally, for n ∈ N, consider hn = fnhf−n and observe that the point xhn = fn(xh)

tends to 1 as n → ∞. Take r ∈ PK and let y ∈ (0, 1) be such that r acts trivially on (y, 1).
If n is large enough so that hn(xhn) = fnh(xh) and xhn are greater than y, we have that
xr−1hn = xhn and r−1hn coincides with hn on a neighborhood of xhn . Since hn ∈ PK , and this
depends only on the behavior of hn on some neighborhood of xhn , we must have r−1hn ∈ PK
for n large enough, and thus hn ŋK r. Since h and r were arbitrary �K-positive elements and
we can repeat the same reasoning for arbitrary h, r ∈ P−1

K , this shows that the conjugation by
f is a homothety. �

For every f -invariant subset K ⊆ (0, 1) let us denote by ψK : F → Homeo0(R) the dynamical
realization of the action of F on (F+/H,≺K) defined above. By Proposition 11.17 this action
is R-focal and increasingly horograded by the standard action on (0, 1). Note also that since
the residue H is the fixator of K, and two distinct closed subsets of (0, 1) have different fixators,
then �K determines K completely. In particular, by the last part of Proposition 11.17, if
K1 6= K2 their associated R-focal actions ψK1 and ψK2 are not conjugate.
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11.4.3. Some properties of the actions arising from restriction preorders. Given a non-empty
f -invariant closed subset K ⊆ (0, 1), we keep denoting by ψK : F → Homeo0(R) the action
constructed above. We want to point out some dynamical properties of this family of actions.
Recall that a minimal action of a group G on a locally compact space Y is topologically free if
the set of fixed points Fix(g) has empty interior for every g ∈ G. By Baire’s theorem this is
equivalent to the requirement that a dense Gδ-set of points in Y have a trivial stabilizer in G.

Proposition 11.23 (Freeness and non-freeness). Let K ⊆ (0, 1) be a non-empty f -invariant
closed subset. Then the R-focal action ψK : F → Homeo0(R) defined above is topologically free
if and only if K = (0, 1). In particular, F admits both topologically free and non-topologically
free minimal R-focal actions.

Proof. Assume K = (0, 1). We claim that the action ψ := ψK is topologically free. Indeed in
this case the preorder �K is actually a total order on F+. Thus there is a dense subset of points
in R with a trivial stabilizer for ψ(F+), which implies that the action of F+ is topologically
free. Assume by contradiction that g ∈ F is such that Fixψ(g) has non-empty interior, and let
I be a connected component of its interior. Note that g /∈ F+ so that by Propositions 11.17
and 11.4, the image ψ(g) must be a pseudohomothety; in particular I is bounded. As the
action ψ is proximal (see for instance Lemma 5.13), there exists h ∈ F such that ψ(h)(I) b I.
Then it is not difficult to see that the commutator [g, h] = ghg−1h−1 is non-trivial, belongs to
F+ and fixes ψ(h)(I) pointwise. This is a contradiction since we have already shown that the
action of F+ is topologically free.

Now consider the case K 6= (0, 1). We can take a connected component U = (y, z) of the
complement (0, 1)rK, and consider a non-trivial element h ∈ F+ whose support is contained
in U . Fix x < y and consider the �K-convex subgroup Lx from Lemma 11.21. Take an
element g ∈ Lx, and let us prove that the conjugate g−1hg belongs to H. For this, note that
the condition xg < x implies g−1(U) = U , so that the restriction of g−1hg to the complement
(0, 1) r U is trivial. This immediately implies that g−1hg fixes every point of K, so that
g−1hg belongs to the residue H. This proves that hgH = gH for any element g ∈ Lx, so that
the element h fixes the ≺K-convex subset Lx/H pointwise. We deduce that ψK(h), which is
non-trivial as the action ψK is faithful, fixes a non-trivial interval. �

Remark 11.24. Proposition 11.23 should be compared with the fact that many groups arising via
a micro-supported action by homeomorphisms satisfy rigidity results for their non-topologically
free actions on compact spaces, as shown in [60,61,82] using results on uniformly recurrent
subgroups (URS) and confined subgroups. As an example tightly related to this setting
consider Thompson’s group F and its sibling T acting on the circle. Then every minimal
action of T on any compact space is either topologically free or factors onto its standard action
on the circle, while every faithful minimal action of F on a compact space is topologically
free [60]. Proposition 11.23 shows that actions on the line behave very differently from this
perspective, and the notion of topological freeness is much less relevant.

Another feature of this family of actions is that they are all simplicial in the sense of §11.3.

Proposition 11.25 (Simpliciality). Let K ⊂ (0, 1) be a non-empty f -invariant closed subset
and consider the corresponding action ψK : F → Homeo0(R), as constructed above. Then the
image of F+ does not act minimally on R. In particular every action ψK is simplicial.

Proof. Fix x ∈ (0, 1) and consider the �K-convex subgroup Lx = {g ∈ F+ : xg ≤ x} (Lemma
11.21). In the dynamical realization ψK of the action F → Aut

(
F+/H,≺K

)
, the cosets of Lx
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span an F+-invariant family of disjoint open intervals, showing that the ψK-action of F+ is
not minimal. In particular neither is the action of [F, F ] ⊆ F+. �

One way to analyze finer properties of R-focal actions of the group F is to apply Theorem
11.3 iteratively, by exploiting the self-similarity of F . Namely assume that ϕ : F → Homeo+(R)
is a minimal R-focal action increasingly horograded by the standard action on (0, 1). Recall
that for every dyadic x ∈ (0, 1) the group F(0,x) is isomorphic to F , and its image under ϕ is
totally bounded, that is Fixϕ(F(0,x)) accumulates on both ±∞. Thus we can apply Theorem
11.3 to the action of F(0,x) on every connected component J of Suppϕ(F(0,x)). It follows that
this action still falls into one of the three cases up to semi-conjugacy: action by translations,
the standard action, and R-focal actions. In the third case, this analysis can of course be
iterated. We will speak of “sublevels” of the action ϕ to refer to the actions of the subgroups
F(0,x) obtained in this way. From this point of view the actions ψK arising from restriction
preorder are very special: indeed they are not exotic on any sublevel (in contrast with other
R-focal actions of F ; see Proposition 11.33 below).

Proposition 11.26 (Absence of exotic sublevels). Let K ⊂ (0, 1) be a non-empty f -invariant
closed subset and consider the corresponding action ψK : F → Homeo0(R), as constructed
above. Let x ∈ X be a dyadic point, and let J be a connected component of Suppψ(F(0,x)).
Then the ψ-action of F(0,x) on J is semi-conjugate either to its standard action on (0, x), or
to a cyclic action by translations induced from group of germs Germ(F(0,x), x) ∼= Z.

Proof. Let ξ0 be the unique fixed point of ψ(f). Let us first show the claim for the action
of F(0,x) on J = Iψ(x, ξ0) (the connected component of Suppψ(F(0,x)) containing ξ0). The
semi-conjugacy type of this action is determined by the preorder �ξ0∈ LPO(F(0,x)) induced by
the point ξ0 on F(0,x), which coincides with the restriction of �K to F(0,x). Now we distinguish
two cases.

First assume that K ∩ (0, x) does not accumulate on x. Write y = sup{K ∩ (0, x)} < x and
let �y∈ LPO(F(0,x)) be its induced preorder on F(0,x). By definition of �K , it follows that �ξ0
is dominated (in the sense of Definition 3.6) by �y. Since the dynamical realization of �y is
the standard action of F(0,x), the conclusion in this case follows from Lemma 3.16.

Assume now that sup{K ∩ (0, x)} = x. In this case, by definition of �K we get that �ξ0 is
dominated by a preorder obtained as the pull-back of one of the two non-trivial preorders on
Germ(F(0,x), x) ∼= Z. This shows the conclusion for ξ = ξ0.

If now ξ ∈ Suppψ(F(0,x)) is arbitrary, then by minimality we can choose h ∈ F such that
ψ(h)(ξ0) ∈ Iψ(x, ξ). Then the conclusion follows from the previous case applied to the action
of F(0,h−1(x)) = h−1F(0,x)h on Iψ(h−1(x), ξ0). �

11.4.4. Some variations on the restriction preorder construction. The restriction preorder
construction can be modified in multiple ways to produce new families of minimal R-focal
actions, which are not conjugate to the actions ψK defined above. We indicate some of them,
without detailed exploration nor attempting to include them all in a unified family.
(1) Twisting with sign choices. In addition to the f -invariant set K ⊆ (0, 1) consider an

f -invariant choice of signs u : K → {+1,−1}. We proceed to define a preorder �(K,u) in
F+. For this, given g ∈ F+ we say that g ŋ(K,u) 1F if either u(xg) = 1 and g ŋK 1F
or u(xg) = −1 and g ňK 1F . It is direct to check (following the proof of Lemma 11.19)
that �(K,u) is an invariant preorder on F+ and that the f -invariance of u makes �(K,u)

invariant under conjugation by f . Of course, when u ≡ 1 the preorders �(K,u) and �K
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coincide. There are some straightforward variations to this twist. For instance one may
consider two different f -invariant functions u, v : K → {±1} to determine the sign in the
two different cases g(xg) 6= xg and g(xg) = xg.

(2) Twisting with derivative morphisms. In this case, in addition to the f -invariant set
K ⊆ (0, 1) consider a total left order <0 on the abelian group

A = {(2n, 2m) : n,m ∈ Z} ∼= Z2

(note that A can be though as the set of derivatives that an element of F can take at
a dyadic point). As before, we will define a preorder on F+ which is invariant under
conjugacy by f . For this, consider a different definition of xg, namely define

x′g := sup
{
x ∈ K : g(x) 6= x, or g(x) = x and (D−g(x), D+g(x)) 6= (1, 1)

}
.

Then, set �K0 ∈ LPO(F+) so that g ŋK
0 1F if either g(x′g) > x′g, or g(x′g) = x′g and

(D−g(x′g), D+g(x′g)) >0 (1, 1). Again, it is straightforward to check (following the proof of
Lemma 11.19) that the preorder �K0 is left invariant and also invariant under conjugation
by f .

To compare these preorders with the preorders of the form �(K,u), consider p ∈ (0, 1) ∩
Z[1/2] and the closed subset Kp = {fn(p) : n ∈ Z}. In this case all the twists �(Kp,u)

given by sign choices coincide with �Kp , while the preorder �Kp0 just defined does not.
The interested reader can also check that in this case, the dynamical realization of
�Kp0 has sublevels (in the sense of Proposition 11.26) semi-conjugate to ϕ ◦ πab where
πab : F(0,x) → F ab(0,x)

∼= Z2 is the abelianization of F(0,x) (i.e. x is dyadic) and ϕ is the
dynamical realization of <0.

(3) Twisting with new orderings of (0, 1). In the construction of the preorder �K one can
modify the definition of the point xg by taking the supremum with respect to an order
≺0 on K which is different from the order induced from the embedding K ⊆ (0, 1). The
whole construction will still be well-defined provided ≺0 is f -invariant and satisfies suitable
assumptions, which are not difficult to figure out but are rather technical to state. Instead
of discussing this in general, let us give an example.

Take 0 < x0 < p1 < p2 < f(x0) < 1 and define K as the union of the orbits of p1 and p2.
Then, we define the total order ≺0 on K so that fm(pi) ≺0 f

n(pj) if either m+ i < n+ j,
or m+ i = n+ j, i = 1 and j = 2. More explicitly we have

· · · ≺0 f
−2(p2) ≺0 p1 ≺0 f

−1(p2) ≺0 f(p1) ≺0 · · · .

It is clear that ≺0 is f -invariant. We can then define a preorder �K,≺0 in the same way as
the restriction preorder �K , except that we replace the point xg by the point x′′g consisting
on the ≺0-greatest element of the subset {x ∈ K : g(x) 6= x}. It is straightforward to
check that �K,≺0 is left invariant and also invariant under conjugation by f , inducing an
order-preserving action F → Aut

(
F+/[1]�K,≺0 ,≺K,≺0

)
as above. Denote by Ψ0 = ΨK,≺0

the dynamical realization of this action and assume that its associated good embedding
satisfies ι([1]�K,≺0 ) = 0. It can be shown that different choices of p1 and p2 produce
non-conjugate actions. On the other hand, the interested reader can check that the
semi-conjugacy classes of the sublevels F(0,x) y IΨ0(x, 0) only depend on the choice of p2
but not of p1. This shows that exotic actions cannot be reconstructed with the information
of the semi-conjugacy classes of its sub-levels as defined in Proposition 11.26.

Again there are some obvious variations of this, such as considering preorders on A
instead of orders, and modifying the definition of the point x′g accordingly.
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Of course one can consider appropriate combinations of the variants defined above. However
whether such combinations make sense or not depends on the choice of the parameters, and
a unified treatment would be obscure and pointless. All constructions obtained using these
methods yield simplicial actions.

11.5. A plethora of R-focal actions II: ordering the orbit of a closed subset of (0, 1).
We now describe another method to construct R-focal actions of F . The starting ingredient
of this method is again a non-empty closed subset K ⊂ (0, 1) which is invariant under the
generator f given by (11.1). We assume now K 6= (0, 1), and consider the F -orbit of K among
closed subsets of (0, 1), and denote it by

OK := {g(K) : g ∈ F}.
As K ⊂ (0, 1) is a proper subset, we clearly have that the orbit OK is infinite. It is then natural
to try to define an F -invariant order ≺ on OK , and then consider its dynamical realization.
While this may seem similar to the construction just discussed in §11.4.2, it turns out to be
quite different and to produce actions with more exotic dynamical properties. Note that we
are not aware of any general receipt to build F -invariant orders on OK which works for all K:
the way such orders arise depend subtly on the properties of the subset K. However, there is
a general strategy which is conveniently described in the language of directed trees. We will
first describe this strategy in general, and then illustrate it in practice with a concrete choice
of subset K. More examples of actions obtained using this method will appear later in §11.6.

11.5.1. A strategy to order OK . Assume that K ⊂ (0, 1) is an f -invariant closed subset. Since
the germ of f at 1 generates the group of germs Germ(F, 1) ∼= Z and K is f -invariant, it follows
that every K1 = g(K) ∈ OK must coincide with K on an interval of the form (1− ε, 1), with
ε > 0. Thus, it follows that for every pair K1,K2 ∈ OK , the subsets K1 and K2 coincide on
some interval of the form (1− ε, 1), so that we can define
(11.4) α(K1,K2) = inf{x ∈ (0, 1) : K1 ∩ [x, 1) = K2 ∩ [x, 1)}.
As K is closed, we have α(K1,K2) ∈ K1 ∩K2, unless K1 = K2 (in which case α(K1,K2) = 0).
Moreover, in light of the previous discussion, we get that α(K1,K2) < 1 for every K1,K2 ∈ OK .
It is clear from the definition that for every K1,K2,K3 ∈ OK with α(K1,K3) ≤ α(K2,K3), we
have α(K1,K2) ≤ α(K2,K3) (indeed, whenK2 6= K3, the three intersectionsKi∩[α(K2,K3), 1)
for i ∈ {1, 2, 3} coincide). This gives the ultrametric inequality

α(K1,K2) ≤ max{α(K2,K3), α(K1,K3)}.
Note also that for given g ∈ F and K1,K2 ∈ OK , we have

α(g(K1), g(K2)) = inf{x ∈ (0, 1) : K1 ∩ [g−1(x), 1) = K2 ∩ [g−1(x), 1)}
= inf{g(y) ∈ (0, 1) : K1 ∩ [y, 1) = K2 ∩ [y, 1)} = g (α(K1,K2)) .

In the terminology of §8.6, we have just verified that the map α : OK × OK → [0, 1) is an
F -equivariant ultrametric kernel with respect to the standard F -actions on OK and (0, 1)
respectively. Moreover, we have the following.
Lemma 11.27. For every closed f-invariant subset K ( (0, 1), the action of F on OK
expands α-balls.

Proof. As the action of F on OK is transitive, it is enough to check that there exists a sequence
of elements (gn) ⊂ F such that the sequence of balls gn.Bα(K,x) defines an increasing
exhaustion of OK . For this, note that by f -invariance we have fn.Bα(K,x) = Bα(K, fn(x))
and thus OK =

⋃
n≥0 f

n.Bα(K,x), as desired. �
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As a consequence of the discussion above and Corollary 8.41, for every α-convex order <
on OK we get a minimal R-focal action increasingly horograded by the standard F -action.
However, it is not clear a priori that for a given subset K such an α-convex order exists, and
this is why what we have just described is simply a strategy. We will see in §11.5.2 and §11.6,
that for some choices of K, α-convex orders actually exist, although this is false in general
(see Example 11.29 below).

Remark 11.28. In practice, α-convex orders on OK are such that the order relation between
K1 and K2 only depends on how K1,K2 behave “right before” the point α(K1,K2), in an
F -invariant manner. For a formal presentation of this correspondence see Proposition 8.40.

Example 11.29 (Non planarly orderable actions). Recall from Definition 8.36, that there is a
natural construction of directed tree associated with the ultrametric kernel α on OK . More
precisely, we obtain an action

Φ : F → Aut(TK , /)
together with a F -equivariant injective map i : OK → ∂∗TK . Roughly speaking, the directed
tree (TK , /) is obtained by taking a copy of (0, 1) for each K1 ∈ OK , and by gluing the
two copies corresponding to K1 and K2 along the interval [α(K1,K2), 1). We denote by
p : OK × (0, 1) → TK the quotient projection and [K1, x] := p(K1, x). Then, two points
v, w ∈ TK satisfy v / w (that is, v lies below w) if and only there exists K1 ∈ OK and
x, y ∈ (0, 1) so that v = [K1, x], w = [K1, y], and x < y. The diagonal action of F on
OK × (0, 1) descends to an action on (TK , /) and the projection to the second coordinate
descends to an increasing F -equivariant horograding π : TK → (0, 1). Finally, the embedding
i : OK → ∂∗TK is defined so that each K1 ∈ OK is sent to the infimum of the /-chain
{[K1, x] : x ∈ (0, 1)}, which naturally belongs to ∂∗TK .

Although non-strictly necessary for the sequel, this point of view is well-suited for under-
standing in a more conceptual way whether for given K the action Φ : F → Aut(TK , /) admits
a Φ-invariant planar order, and this is the same (after Proposition 8.40) to the condition that
OK admit an α-convex order. This turns out to depend on the local geometry of K relatively
to dilations by 2. We explain this with an example, but first we introduce some terminology
to discuss the local geometry. We say that two closed sets K1,K2 ⊆ (0, 1) have equivalent
left-germs at x if for some ε > 0 it holds K1 ∩ (x− ε, x] = K2 ∩ (x− ε, x]. We denote by K−x
the left-germ class of the subset K at x. Notice that the group Germ−(x) of left-germs of
homeomorphisms fixing x naturally acts on the set of left-germs of closed sets at x. We denote
by hx ∈ Germ−(x) the germ of the homothety that fixes x and has derivative 2.

Recall from Remark 8.16 that the existence of such invariant planar ordering boils down
to the existence, for each branching point v ∈ TK , of an ordering of the set of connected
components E−v below v, which is invariant under the action of the stabilizer StabΦ(v). An
obstruction for this is clearly given by finite orbits. With this in mind, consider an f -invariant
closed subset K ⊆ (0, 1) containing a dyadic point x ∈ K ∩ Z[1

2 ] such that hx(K−x ) 6= K−x
but hnx(K−x ) = K−x for some n > 1. Write v = [K,x] and let ev(K) be the component of
E−v corresponding to the ray {[K,x] : x ∈ (0, 1)}. Since Germ−(F, x) = 〈hx〉, it holds that
the component ev(K) has a finite orbit which is not a fixed point, so that there exists no
StabΦ(v)-invariant total order on E−v .

11.5.2. A concrete example. We now illustrate the flexibility of the method described in §11.5.1,
with an explicit example of subset K. More precisely we will construct a subset K ⊂ (0, 1)
with the following property: there is an explicit (continuous) injective map from the set O(N)
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of orders on the natural numbers N to the set of F -invariant orders on the orbit OK . This will
provide a family of R-focal actions of F which are naturally indexed by orders on N.

We start by choosing an irrational point x0 ∈ (0, 1), and consider the interval I = (f−1x0, x0],
which is a fundamental domain for f . Next we choose a sequence of open intervals (Jn)n≥1
with dyadic endpoints such that Jn b Jn+1 ⊂ I for every n ≥ 1, and such that

⋃
n≥1 Jn =

(f−1x0, x0). For every n ≥ 1, write yn = sup Jn and choose an element hn ∈ FJn with the
following properties:

• hn(x) > x for every x ∈ Jn,
• hn(Jn−1) ∩ Jn−1 = ∅ for n ≥ 2.
• D−hn(yn) = 1/2 (in other words, the germ of hn at yn generates the group of germs

Germ(F(0,yn), yn)).
Choose now a dyadic point z0 ∈ J0, and let Σ0 = {hn1 (z0) : n ∈ N} be its forward orbit
under h1. By construction we have the inclusion Σ0 ⊂ J0 and equality Σ0 = Σ0 ∪ {y1}. Set
Σ1 =

⋃
n≥0 h

n
2 (Σ0), so that Σ1 = Σ1 ∪ {y2}. Continue in this way by defining for every i ≥ 1 a

subset Σi =
⋃
n≥0 h

n
i+1(Σi−1). Set Σω =

⋃
i∈NΣi, and note that Σω = Σω ∪ {x0}. Note also

that Σω is contained in the fundamental domain I on f . Thus we obtain an f -invariant closed
subset K as

(11.5) K =
⋃
n∈Z

fn(Σω).

By construction the subset Σω is invariant under the semigroup S := 〈hn : n ≥ 1〉+, in the
sense that s(Σω) ⊂ Σω for every s ∈ S. See Figure 11
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Figure 11. Construction of the compact set K.

The subset Σω is countable and compact, and its points can be classified according to their
Cantor–Bendixson rank (see [53, §6]), as follows. Points of rank 0 are the isolated points: these
are exactly points in the orbit of z0 under the semigroup S. Points of rank 1 are those that are
not isolated, but become isolated after removing the isolated points: these are exactly points
in the S-orbit of y1. Continuing in this way, points of rank n are precisely points in the S-orbit
of yn. Finally there is a unique point whose rank is the first countable ordinal ω, namely the
point x0. This discussion can be directly extended to the subset K. We write rkK(x) for the
Cantor–Bendixson rank of a point x ∈ K. Note that for every g ∈ F and x ∈ K, we have the
relation rkg(K)(g(x)) = rkK(x).
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We next consider the F -equivariant ultrametric kernel α : OK ×OK → [0, 1) defined as in
(11.4) and the key observation is that the particular choice of the subset K allows to directly
relate α with the Cantor–Bendixson rank.

Lemma 11.30. Let K ⊂ (0, 1) be the subset defined at (11.5). For every K1,K2 ∈ OK ,
the point x = α(K1,K2) is such that rkK1(x) and rkK2(x) are both finite, and moreover
rkK1(x) 6= rkK2(x) unless rkK1(x) = rkK2(x) = 0.

Conversely, for every distinct n,m ∈ N there exist K1,K2 ∈ OK such that the point
x = α(K1,K2) satisfies rkK1(x) = n and rkK2(x) = m.

Proof. We first need some observations.

Claim 1. For every x ∈ K and every g ∈ F such that g(x) = x, there exists ε > 0 such that
g(K) ∩ (x− ε, x] = K ∩ (x− ε, x].

Proof of claim. Up to replace g by its inverse, we can assume D−g(x) ≤ 1. Also, upon
conjugating by powers of f , we can assume x ∈ Σω. If x = x0 then this follows from the fact
that we chose x0 to be irrational, so that every element of F that fixes x0 must actually fix
a neighborhood of it. If x is isolated in K the conclusion is obvious. Finally assume that
n := rkK(x) /∈ {0, ω}. Then x is in the S-orbit of the point yn, so that it is fixed by a conjugate
h of hn, which has therefore the property that D−h(x) = 1/2. Hence the restriction of g to a
left-neighborhood of x must coincide with the restriction of some non-negative power of h, so
that we can conclude from the fact that K is forward invariant under h. �

Claim 2. For every pair of points x, y ∈ K with rkk(x) = rkk(y), there exist an element h ∈ F
and ε > 0 such that h(x) = y and h(K) ∩ (y − ε, y] = K ∩ (y − ε, y].

Proof of claim. Upon replacing x, y with fm(x), fn(y) for suitable n,m we can assume that
x, y ∈ Σω. Then x and y are in the same S-orbit, and so it is enough to observe that elements
of S and their inverses have this property. �

With this in mind, let us prove the lemma. We can assume without loss of generality that
K1 = K. Take g ∈ F such that K2 = g(K) and set x = α(K,K2) and y = g−1(x) ∈ K, so
that rkK2(x) = rkK(y). Assume by contradiction that rkK(x) = rkK(y) ≥ 1. After Claim 2,
we can choose h ∈ F such that h(x) = y and ε > 0 such that h(K)∩ (y− ε, y] = K ∩ (y− ε, y].
Then the element g′ = hg is such that g(y) = y, so that upon taking a smaller ε, by Claim 1
we also have g′(K) ∩ (y − ε, y] = K ∩ (y − ε, y]. Applying h−1 we deduce that there is ε′ > 0
such that g(K) ∩ (x− ε′, x] = K ∩ (x− ε′, x], and the latter intersection is not reduced to {x}
since we assume that rkK(x) ≥ 1. This contradicts the definition of x = α(g(K),K). Thus
rkK(x) 6= rkg(K)(x) unless both ranks are 0. Finally this also implies that we cannot have
rkK(x) = ω, indeed since points of rank ω are the only non-dyadic points in K this would
imply that rkg(K)(x) = ω as well, contradicting the previous reasoning. �

Now let O(N) be the set of total orders on the natural numbers. To every order ≺ in O(N)
we associate an F -invariant order ≺∗ on OK , as follows. Given distinct K1,K2 ∈ OK , set
n1 = rkK1(α(K1,K2)) and n2 = rkK2(α(K1.K2)). If n1 6= n2, then we declare K1 ≺∗ K2 if
and only if n1 ≺ n2. Else, by Lemma 11.30 we have n1 = n2 = 0, namely the point α(K1,K2)
is isolated in both K1 and K2. In this case set
(11.6) xi = max{x ∈ Ki : x < α(K1,K2)} for i ∈ {1, 2}.
Then for i ∈ {1, 2} we must have xi < α(K1,K2) and x1 6= x2 by definition of α(K1,K2). In
this case we declare K1 ≺∗ K2 if and only if x1 < x2. It is routine to verify that this defines
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indeed a total order relation, and it is clear from the construction, and F -equivariance of the
ultrametric kernel α and the Cantor–Bendixson rank, that this order is F -invariant.

Denote by ϕ≺ : F → Homeo0(R) the dynamical realization of the action of F on (OK ,≺∗).
We want to prove that ϕ≺ is a minimal R-focal action, increasingly horograded by the standard
action of F . After the discussion in §11.5.1, this is equivalent to the property that the α-balls
are ≺∗-convex. This is what we verify next.
Lemma 11.31. With notation as above, the α-ball

Bα(L, x) =
{
L′ ∈ OK : α(L,L′) ≤ x

}
is ≺∗-convex for every L ∈ OK and x ∈ (0, 1).

Proof. First notice that the ≺∗-order relation between K1,K2 ∈ OK is determined by the
intersections K1 ∩ [x, 1) and K2 ∩ [x, 1) for any x ∈ (0, 1) such that these intersections do not
coincide.

Now take elements K1,K2 ∈ Bα(L, x) for some L ∈ OK and x ∈ (0, 1). This is equivalent
to the condition that
(11.7) K1 ∩ [x, 1) = K2 ∩ [x, 1) = L ∩ [x, 1).
Consider next an element K3 between K1 and K2 (with respect to ≺∗) and assume by
contradiction that K3 /∈ Bα(L, x). This means that K3 ∩ [x, 1) 6= L ∩ [x, 1) and therefore,
considering the equalities (11.7), the ≺∗-order relation between Ki and K3 is determined by
the intersections K3 ∩ [x, 1) and L ∩ [x, 1) for every i ∈ {1, 2}. Hence we conclude that the
≺∗-order relation between K1 and K3 coincides with that of K2 and K3. As we are assuming
that K3 lies between K1 and K2, we necessarily have K1 = K2 = K3, but this contradicts the
assumption K3 /∈ Bα(L, x). �

As a conclusion of our discussion, we have the following.
Proposition 11.32. With notation as above, for any ≺∈ O(N), the dynamical realization
ϕ≺ : F → Homeo0(R) of the action of F on (OK ,≺∗) is a minimal R-focal action increasingly
horograded by the standard action of F .

Moreover, if ≺1 and ≺2 are distinct orders on N, then the actions ϕ≺1 and ϕ≺2 are not
conjugate.

Proof. After Lemma 11.31, the α-balls are ≺∗-convex, so the first statement is a consequence
of Corollary 8.41.

For a given order ≺∈ O(N), observe that by definition of dynamical realization, the F -action
on (OK ,≺∗) can be identified with the ϕ≺-action on the orbit of the unique fixed point ξ
of ϕ≺(f) with the order induced by R, so that the order ≺∗ can be reconstructed from ϕ≺.
Finally the order ≺ on N can be reconstructed from ≺∗ by the last statement in Lemma
11.30. �

We now point out a qualitative difference which distinguishes the family of R-focal actions
constructed here from the one obtained via the restriction preorder construction as in §11.4.2.
Indeed, in this case the actions of the subgroups F(0,x) ∼= F on the components of their support
can remain exotic (compare this with Proposition 11.26).
Proposition 11.33 (Presence of exotic sublevels). Fix an order ≺ on N and let ϕ := ϕ≺ : F →
Homeo0(R) be the R-focal action constructed above. Then there exist a dyadic point x ∈ (0, 1)
and a connected component J of Suppϕ(F(0,x)) such that the action of F(0,x) on J is semi-
conjugate to a faithful R-focal action.
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Proof. Note first that for every x ∈ (0, 1) and g ∈ F such that g(K∩ [x, 1)) = K∩ [g(x), 1) then
g.Bα(K,x) = Bα(K, g(x)). In particular, the α-ball Bα(K,x) is preserved by the subgroup
F(0,x). Let ι : (OK ,≺∗) → R be an equivariant good embedding associated with ϕ (in the
terminology of Definition 2.37) and let Ix be the open interval spanned by ι(Bα(K,x)), namely
Ix is the interior of the closure of ι(Bα(K,x)) (using minimality of the action and that the
α-balls are ≺∗-convex after Lemma 11.31). Consider the element h1 from the construction
of K, and consider the points z0 ∈ J1 and y1 = sup J1 as in the construction; for n ≥ 1 set
zn = hn1 (z0), which by construction is an increasing sequence converging to y1. For every n ≥ 0
we have hn1 (K ∩ [z0, 1)) = K ∩ [zn, 1), so that hn1 .Bα(K, z0) = Bα(K, zn). The corresponding
intervals Izn satisfy Izn b Izn+1 and h1.Izn = Izn+1 . Set B :=

⋃
n≥0Bα(K,hn1 (z0)), and let

J =
⋃
n≥0 Izn be the interval spanned by ι(B). Then B is preserved by F(0,y1) and the action

of F(0,y1) on B is cofinal (with respect to the order ≺∗ restricted to B). As a consequence,
F(0,y1) preserves J and acts on it without fixed points, so that J is a connected component
of Suppϕ(F(0,y1)). Since moreover h1.Izn = Izn+1 , we deduce that ϕ(h1) acts on J as a
pseudohomothety. This cannot happen if the action of F(0,y1) on Iϕ(y1, ξ) is semi-conjugate to
an action by translations, nor if it is semi-conjugate to the standard action on (0, y1). Thus by
Theorem 11.3 the action of F(0,y1) must be semi-conjugate to an R-focal action. �

Nonetheless, this family of examples still turns out to produce simplicial R-focal actions in
the sense of §11.3.

Proposition 11.34 (Simpliciality). For an order ≺ on N, let ϕ≺ : F → Homeo0(R) be the
R-focal action constructed above. Then ϕ≺(F+) does not act minimally on R. In particular
each action ϕ≺ is simplicial

Proof. We keep the same notation as in the proof of Proposition 11.33. Let x0 ∈ K be the point
as in the construction of K. We claim that the α-ball Bα(K,x0) ⊂ OK has the property that
for every g ∈ F+ we have either g(Bα(K,x0)) = Bα(K,x0) or g(Bα(K,x0)) ∩Bα(K,x0) = ∅.
It then follows that the interval Iϕ(x0, ξ) has the same property for ϕ≺(F+), so that the union
of its translates defines a proper invariant open subset, contradicting minimality. Indeed,
suppose that g ∈ F+ and K1 ∈ Bα(K,x0) are such that g(K1) ∈ Bα(K,x0), namely we assume

K1 ∩ [x0, 1) = g(K1) ∩ [x0, 1) = K ∩ [x0, 1).

The key observation is that this implies that g must actually fix K ∩ [x0, 1). First of all observe
that g must send points of rank ω in K1 to points of rank ω in g(K1), and the set of such
points in both K1 ∩ [x0, 1) and g(K1) ∩ [x0, 1) consists precisely of the sequence xn := fn(x0)
for n ≥ 0. This is a discrete increasing sequence and g(xn) = xn for n large enough, hence
we deduce from the condition g ∈ F+ that g(xn) = xn for every n ≥ 0. As a consequence
the cyclic subgroup 〈g〉 must preserve every interval [xn, xn+1], with n ≥ 0, and thus every
intersection K ∩ [xn, xn+1] for n ≥ 0. Assume by contradiction that there exist n ≥ 0 and a
point t ∈ K ∩ [xn, xn+1] which is not fixed by g, and consider the orbit Ω = {gm(t) : m ∈ Z},
which is a subset of K. As K ∩ [xn, xn+1] is compact, the point inf Ω is in K ∩ [xn, xn+1], and
it is accumulated by points of Ω (and hence of K) from the right. This is in contradiction
with the choice of K, as by construction every point of K is isolated from the right hand side.
Hence g fixes K ∩ [x0, 1), which implies that g.Bα(K,x0) = Bα(K,x0). �

11.6. A plethora of R-focal actions III: existence of non-simplicial R-focal actions.
All the example of R-focal actions of F discussed so far are simplicial in the sense of Definition
11.15, so that it is tempting to try to prove that all R-focal actions of F must be simplicial.
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However, we build an exotic action of Thompson’s group F which fails to have this property.
With Proposition 11.13 in mind, we will prove the following.

Theorem 11.35. There exist faithful R-focal actions ϕ : F → Homeo0(R) such that ϕ([F, F ])
acts minimally (and thus are not simplicial). More precisely, there exist uncountably many
such actions which are pairwise non-conjugate, and whose restriction to [F, F ] yield pairwise
non-conjugate actions of [F, F ].

Note the following consequence of independent interest.

Corollary 11.36. The group [F, F ] admits uncountably many, pairwise non-conjugate minimal
actions ϕ : [F, F ]→ Homeo0(R).

This should be compared with the general constructions of exotic actions of groups of
compactly supported homeomorphisms described in §5.3, which provide actions without any
closed minimal invariant subset. The construction given here relies on the classical symbolic
coding of the the standard action of F by binary sequences, which is specific to Thompson’s
groups.

For the proof it will be convenient to see F as a group of homeomorphisms of X = R rather
than of the interval (0, 1). Namely we realize F ⊆ Homeo0(R) as the group of piecewise linear
maps of the line, with dyadic breakpoints, slopes in the group 〈2n : n ∈ Z〉 and which coincide
with integer translations near ±∞. It is well-known that this action is conjugate to the natural
action of F on (0, 1) (see e.g. [8, Lemma E18.4]).

From now and until the end of this subsection, the term standard action will refer to the
action of F on R described above. We will denote by f ∈ F the translation f(x) = x + 1.
(Note that the element f corresponds to the element given by (11.1) in the action on (0, 1)).

The proof of Theorem 11.35 employs the strategy described in §11.5.1, namely we will
start with a closed f -invariant subset K ⊂ R, and define an invariant order on its orbit
OK := {g(K) : g ∈ F}. The main difficulty is that we need to construct a subset K satisfying
a somewhat delicate combination of properties. We begin with a definition.

Definition 11.37. We say that a subset K ⊂ R has property (O) if it is proper, non-empty,
closed, f -invariant, and moreover g(K) ∩K is open in K for every g ∈ F .

Remark 11.38. Note that the last condition for property (O) is actually equivalent to that
K1 ∩K2 be open in K1 and K2 for every K1,K2 ∈ OK .

Example 11.39. Property (O) is clearly satisfied when K is a non-empty f -invariant discrete
subset, as for example the f -orbit of a point. However, this is not a good example for the
construction described in this subsection, as the stabilizer of such K in [F, F ] is trivial (cf.
Proposition 11.41).

Assume that K is a subset with property (O) (many examples are exhibited by Lemma
11.42). We consider the F -equivariant ultrametric kernel α : OK ×OK → R ∪ {−∞} defined
as in §11.5.1, namely

α(K1,K2) := inf {x ∈ R : [x,+∞) ∩K1 = [x,+∞) ∩K2} .

Reasoning as in the example of §11.5.2, we proceed to construct an F -invariant order on OK
and then prove that the dynamical realization of the action of F on (OK ,≺) is minimal and
R-focal. This is the content of the next result.
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Proposition 11.40. If a subset K ⊂ R has property (O), the relation ≺ on OK defined by
K1 ≺ K2 if and only if

max {x ∈ K1 : x < α(K1,K2)} < max {x ∈ K2 : x < α(K1,K2)} ,

is an F -invariant total order on OK . Moreover, the dynamical realization ϕK : F → Homeo0(R)
of the action of F on (O,≺) is a minimal R-focal action.

Proof. Recall that α(K1,K2) ∈ K1 ∩K2 whenever K1 and K2 are different elements of OK .
As K satisfies property (O), we have that K1 ∩K2 is open inside both K1 and K2 and hence
K1 ∩K2 is an open neighborhood of α(K1,K2) inside K1 and K2. Therefore α(K1,K2) is
isolated from the left hand side in both K1 and K2. As for (11.6), we deduce that the points

xi := max{x ∈ Ki : x < α(K1,K2)} for i ∈ {1, 2}

are distinct, so we can declare K1 ≺ K2 if and only if x1 < x2. As for the order ≺∗ from
§11.5.2, it is routine to check that this defines indeed an F -invariant total order on OK .

Similarly one proceeds as in §11.5.2 to check that ϕK is minimal and R-focal. Namely, one
verifies that the order ≺ is α-convex, and the proof of Lemma 11.31 can be adapted verbatim
to this case (just replacing ≺∗ with ≺ and (0, 1) with R). Then Corollary 8.41 gives the desired
conclusion. �

The main difference from the construction in §11.5.2 is the way that the commutator
subgroup [F, F ] acts in the actions ϕK .

Proposition 11.41. Given a subset K ⊂ (0, 1) with property (O), let ϕK : F → Homeo0(R)
be the corresponding minimal R-focal action from Proposition 11.40. Then the following hold.

(i) If K has property (O), then ϕK([F, F ]) acts minimally provided that the stabilizer of K
in [F, F ] (with respect to the standard action) acts on K without fixed points. Moreover
in this case the induced action of [F, F ] is minimal and R-focal.

(ii) If two distinct subsets K,K ′ ⊂ R have property (O), then the restrictions of ϕK and
ϕK′ to [F, F ] are not conjugate actions of [F, F ]. In particular ϕK and ϕK′ are not
conjugate.

Proof. To prove (i), assume that the stabilizer of K in [F, F ] acts without fixed points on
K. Fix x ∈ (0, 1) and choose a sequence of elements of [F, F ] which preserve K and such
that gn(x) tends to +∞. Then gn.Bα(K,x) = Bα(K, gn(x)), so that OK =

⋃
n≥0 gn.Bα(K,x).

Then by Proposition 7.6, the subgroup [F, F ] admits a unique minimal invariant set Λ ⊂ R,
which is preserved by F because [F, F ] is a normal subgroup. We deduce that the action of
[F, F ] is also minimal.

To prove (ii) take K 6= K ′ with property (O) and assume without loss of generality that
K ′ 6⊂ K. Write α : OK × OK → R ∪ {−∞} and β : OK′ × OK′ → R ∪ {−∞} for the
corresponding ultrametric kernels. Fix x ∈ K and let D be the subgroup of [F, F ](x,+∞)
which fixes K pointwise. Then for every g ∈ D we have g.Bα(K,x) = Bα(K,x) and actually
g fixes Bα(K,x) pointwise, so that the dynamical realization ϕK fixes a non-empty open
interval pointwise. On the contrary, for any y ≥ x with y ∈ K ′ r K, we can consider an
element h ∈ D such that h(y) /∈ K ′ and h(y) > y. Let us show that for such choices we have
h.Bβ(K ′, y) ∩Bβ(K ′, y) = ∅. Indeed, assume there exists L ∈ h.Bβ(K ′, y) ∩Bβ(K ′, y); then,
as h.Bβ(K ′, y) = Bβ(h(K ′), h(y)), we have

L ∩ [h(y),+∞) = h(K ′) ∩ [h(y),+∞)
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and in particular h(y) ∈ L. However, if L ∈ B(K ′, y), then L ∩ [y,+∞) = K ′ ∩ [y,+∞) and
thus h(y) /∈ L, which is an absurd.

By f -invariance of K ′ rK, we can find arbitrarily large points y, and thus elements h ∈ D,
satisfying such properties. As OK′ =

⋃
y Bβ(K ′, y), this implies that D acts without fixed

points, so that the actions ϕK and ϕK′ cannot be conjugate. �

After the previous proposition, in order to prove Theorem 11.35 we need to show the
existence of subsets K ⊂ R with property (O) and with the additional property that the
stabilizer of K in [F, F ] does not have fixed points. For this, we are going to use the symbolic
description of real numbers by binary expansions.

To each infinite sequence (an)n≥1 ∈ {0, 1}N we associate the real number ev((an)) :=∑
n≥1 an2−n ∈ [0, 1]. Note that this association is continuous if we endow {0, 1}N with the

product topology. If z, w1, w2 are finite binary sequences (binary words for short), we consider
the cylinder over z, defined by

Cz = {w ∈ {0, 1}N : z is a prefix of w},

and denote by K̃0(w1, w2) ⊆ {0, 1}N the subset of all infinite concatenations of w1’s and w2’s.
Clearly, both images ev(Cz) and K0(w1, w2) := ev(K̃0(w1, w2)) are closed subsets of [0, 1], and
the former is a closed interval with dyadic endpoints (a dyadic interval for short). Note that,
conversely, any closed dyadic interval is the union of (the real numbers represented by) finitely
many cylinders.

With this in mind, if z1 and z2 are binary words, the substitution map S(z1, z2) : Cz1 → Cz2
defined by S(z1, z2)(z1w) = z2w represents an affine map S(z1, z2) between dyadic intervals
of [0, 1]. Therefore, in the action of F on R, every element of F locally coincides (except
at breakpoints, which are finitely many dyadic rationals) with transformations of the form
fn ◦ S(z1, z2) ◦ fm, for some powers n,m ∈ Z and some finite sequences z1, z2.

We say that a pair of binary words w1, w2 has the cancellation property if whenever zw = w′

for w,w′ ∈ K̃0(w1, w2), it holds that z is a finite concatenation of w1’s and w2’s. As a concrete
example of a pair of words with the cancellation property, we may take w1 = 0 and w2 = 1 but
these are constant binary words (i.e. made of a single repeated bit). As a concrete example
of non-constant binary words with the cancellation property we can take w1 = 10001 and
w2 = 01110.

Lemma 11.42. Let w1 and w2 be non-constant binary words satisfying the cancellation
property and write K0 := K0(w1, w2). Then, the subset K :=

⋃
n∈Z f

n(K0) has property (O).

Proof. Since K0 is a closed subset of [0, 1], the subset K is a closed and f -invariant subset
of R. Also, since w1 and w2 are non-constant, the set K̃0(w1, w2) has no eventually constant
sequences, and so the subsetK0 contains no dyadic points. It follows that ev : K̃0(w1, w2)→ K0
is a homeomorphism onto its image, and that the set of intersections of the form (p/2n, (p+
1)/2n) ∩ K with p ∈ Z and n ∈ N, forms a basis of its topology. The restriction of every
element of F to K is locally given by maps of the form fn ◦ S(z1, z2) ◦ fm, and since K is
f -invariant, in order to check property (O) it is enough to check that S(z1, z2)(K0 ∩ ev(Cz1))
is open in K0 for every pair of finite binary words z1, z2.

For this, consider two binary finite words z1, z2 and also w ∈ K̃0(w1, w2) ∩ Cz1 so that
S(z1, z2)(w) ∈ K̃0(w1, w2). We need to check that S(z1, z2)(K̃0(w1, w2) ∩ Cz1) contains a
neighborhood of S(z1, z2)(w). Since the pair w1, w2 has the cancellation property, we can
write w = z′1w

′ with z′1 = z1z
′′
1 and w′ ∈ K̃0(w1, w2). Since S(z1, z2)(w) equals z2z

′′
1w
′ and
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belongs to K̃0(w1, w2), again by the cancellation property we conclude that z2z
′′
1 is a finite

concatenation of w1’s and w2’s. Therefore

S(z1, z2)
(
Cz′1 ∩ K̃0(w1, w2)

)
= Cz2z′′1 ∩ K̃0(w1, w2),

showing that S(z1, z2)(K̃0(w1, w2)) contains a neighborhood of S(z1, z2)(w) inside K̃0(w1, w2).
This concludes the proof. �

In order to ensure that the stabilizer of K in [F, F ] has no fixed points, we need to to impose
one last extra condition on K.

Say that a map h : I → J is a dyadic affine map between intervals if I is a dyadic interval
and h is of the form x 7→ ax + b, where a ∈ {2n : n ∈ Z}, and b ∈ Z[1/2]. Consider now a
compact subset K0 ⊆ (0, 1). We say that K0 admits a self similar decomposition if there exists
a pair of dyadic affine maps h1, h2 : I → (0, 1) such that

• h1(I) ∩ h2(I) = ∅,
• h1(K0) ∪ h2(K0) = K0.

For example, the subset K0(w1, w2) admits a self similar decomposition provided the words
w1 and w2 are such that ev(Cw1) and ev(Cw2) are disjoint. Indeed in this case we have that
for i ∈ {1, 2}, the symbolic maps w 7→ wiw correspond to dyadic affine maps hi : [0, 1]→ [0, 1]
with disjoint images and such that K0 = h1(K0) t h2(K0).

Lemma 11.43. Let K0 ⊂ (0, 1) be a closed subset admitting a self similar decomposition, and
let K =

⋃
n∈Z f

n(K0). Then, the action of H = {g ∈ [F, F ] : g(K) = K} on K has no fixed
points.

To show Lemma 11.43 we use its self-similarity to build elements in H moving points of the
real line arbitrarily far away. But before giving the formal proof, let us see how this ends the
proof of Theorem 11.35.

Proof of Theorem 11.35 given Lemma 11.43. Let K ( R be a subset satisfying property (O)
and such that K ∩ (0, 1) admits a self similar decomposition. As concrete example we may
take K =

⋃
n∈Z f

n(K0) with K0 = K0(w1, w2) for w1 = 10001 and w2 = 01110. By Lemma
11.42 we may consider the R-focal action ϕK , and by Lemma 11.43 and Proposition 11.41 we
have that ϕK([F, F ]) acts minimally. To finish the proof, we show that from the existence of
one subset K with these properties, we can deduce the existence of uncountably many. Let
K be one such subset. Clearly K is locally a Cantor set, so R rK is a countable union of
open intervals, that we call the gaps of K. Pick β ∈ (0, 1). For each gap I of K, consider
the point pI(β) where pI : (0, 1) → I is the unique order-preserving affine map. We let Kβ

be the subset resulting from adding to K all the points of the form pI(β) where I runs over
gaps of K. Clearly Kβ is still closed and f -invariant. Moreover, Kβ still admits a self similar
decomposition since the maps involved in the definition of self similar decomposition are affine
maps sending gaps of K to gaps of K, so in particular they preserve the proportion of the
subdivision we have introduced in the gaps. We claim, that for uncountably many β ∈ (0, 1),
the subset Kβ also satisfies (the last condition of) property (O), that is g.Kβ ∩Kβ is open in
Kβ for every g ∈ F .

Fix g ∈ F . The only problem that may arise is that a point of the form pI(β) (which is
an isolated point) might land inside K under the action of g. But if we fix a gap I of K, the
set of parameters β such that g(pI(β)) does not belong to K is open and dense in (0, 1) since
K has empty interior. In particular, since there are only countably many gaps and F is also
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countable, with a Baire argument we obtain that Kβ satisfies property (O) for a generic choice
of β ∈ (0, 1). �

We conclude this subsection with the proof of Lemma 11.43. For this we need the following
elementary interpolation lemma. Its proof follows from the transitivity of the action of [F, F ]
on unordered n-tuples of dyadic numbers (see for instance [8]), and details are left to reader.
To simplify the statement, given (possibly unbounded) intervals I, J , we write I < J whenever
sup I < inf J .

Lemma 11.44. Consider intervals I1 < I2 < · · · < Ik and J1 < J2 < · · · < Jk with dyadic
endpoints such that I1 = J1 = (−∞, p], Ik = Jk = [q,+∞), and such that hn : In → Jn are
dyadic affine maps for n ∈ {1, . . . , k}. Assume moreover that h1 and hk are restrictions of the
identity. Then, there exists g ∈ [F, F ] such that g �In= hn for n ∈ {1, . . . , k}.

Proof of Lemma 11.43. Consider the dyadic affine maps h1, h2 : I0 → (0, 1) given by the self
similar decomposition of K0. Since K0 is a closed subset of (0, 1), we can assume that I0 is a
closed dyadic interval inside (0, 1). For i ∈ {1, 2}, write Ki

0 = hi(K0) and Ii0 = hi(I0). Note
that I1

0 ∩ I2
0 = ∅ and K0 = K1

0 tK2
0 .

Now, for n ∈ Z and i ∈ {1, 2}, write In = fn(I0), Ki
n = fn(Ki

0), and Iin = fn(Ii0). Then
consider the following locally dyadic affine maps.

• a : I1
0 t I2

0 → I0 t I1 defined by

a(x) =
{
h−1

1 (x) if x ∈ I1
0 ,

f ◦ h−1
2 (x) if x ∈ I2

0 ,

• b : I3 t I4 → I1
4 t I2

4 defined by

b(x) =
{
f4 ◦ h1 ◦ f−3(x) if x ∈ I3,
f4 ◦ h2 ◦ f−4 if x ∈ I4,

• c : [1, 2]→ [2, 3] defined by c(x) = x+ 1.
Then, we can apply Lemma 11.44 to construct h ∈ [F, F ] which simultaneously extends a, b, c
and id �(−∞,0]∪[4,+∞). By construction h preserves K and has no fixed points in [1, 2]. Thus
the subgroup H = {h ∈ [F, F ] : h(K) = K} has no fixed points inside [1, 2]. Finally, note
that f normalizes H, so that it preserves its set of fixed points. Since

⋃
n∈Z f

n([1, 2]) = R, we
deduce that H has no fixed points on R, whence on K. �

12. Finitely generated locally moving groups with few exotic actions

12.1. Bieri–Strebel groups over the real line. In this section we study actions of Bieri–
Strebel groups G(X;A,Λ) in the case X = R (see Definition 2.44). These are close relatives
of Thompson’s group F , yet their minimal R-exotic actions turn out to be much more rigid
(and, in some cases, there are only finitely many such actions). Here we denote by 〈S〉∗ the
multiplicative group generated by a subset S ⊂ R∗+.

The results of [8, §§A–B] allow to characterize under which conditions the group G(R;A,Λ)
is in the class F . (Note that since they all contain translation, this is the same as asking
whether they belong to F0.) As for many properties of the groups G(X;A,Λ), this depends
on the Z[Λ]-submodule

IΛ ·A := 〈(λ− 1)a : λ ∈ Λ, a ∈ A〉.
Indeed, we have the following.
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Lemma 12.1. The Bieri–Strebel group G(R;A,Λ) is in the class F if and only if the following
conditions are satisfied:
(BS1) Λ is finitely generated as a group,
(BS2) A is finitely generated as Z[Λ]-module,
(BS3) the quotient A/IΛ ·A is finite.

Proof. Conditions (BS1)–(BS2) characterize when the group G(R;A,Λ) is finitely generated
[8, Theorem B7.1]. On the other hand, Bieri–Strebel groups of the form G((−∞, x];A,Λ)
and G([x,+∞);A,Λ) are finitely generated if and only if x ∈ A and all three conditions
(BS1)–(BS3) are satisfied (this is the statement of [8, Theorem B8.2]); this immediately implies
that G(R;A,Λ) is in the class F . For the converse, recall that two points p, q ∈ A ∩ (−∞, x)
are in the same orbit under the group G((−∞, x];A,Λ) if and only if p−q ∈ IΛ ·A [8, Corollary
A.5.1]. If G is in the class F there exists a finitely generated subgroup H ⊆ G((−∞, x];A,Λ)
which contains a subgroup of the form G((−∞, y];A,Λ) with y < x. Since all points of
A∩ (−∞, y) occur as breakpoints for elements in G((−∞, y];A,Λ), they must all belong to the
H-orbit of one of the finitely many breakpoints of a finite generating set of H (see [8, §B6]).
Thus condition (BS3) is also necessary. �

As an important special case, the reader can have in mind the following example.

Example 12.2. For λ > 1, we denote by G(λ) the Bieri–Strebel group G(λ) := G(R;A,Λ)
corresponding to the cyclic group Λ = 〈λ〉∗ and to A := Z[λ, λ−1]. One has IΛ · A =
(λ − 1)Z[λ, λ−1]. It is not difficult to see that the quotient A/IΛ · A is finite if and only if
λ is algebraic (see [8, Illustration A4.3]). For instance, for λ = p/q rational (with p and q
coprime), one has |A/IΛ · A| = p − q. Therefore, by Lemma 12.1, the group G(λ) is in the
class F exactly for algebraic λ.

Thus if G(R;A,Λ) satisfies conditions (BS1)–(BS3), its actions on the real line satisfy
Theorem 10.3, so that all its exotic actions are semi-conjugate to a minimal R-focal action
horograded by the standard action on R. Our goal is to give an explicit description of all
such minimal R-focal actions, thus yielding a complete classification of the faithful actions
of such groups up to semi-conjugacy. For this, recall that in §9.3 we gave a construction of
actions of Bieri–Strebel groups G(X;A,Λ) parameterized by preorders on the group Λ. In
what follows, we will denote by ϕ+,≤Λ (respectively, ϕ−,≤Λ) the dynamical realization of the
right (respectively, left) jump preorder associated with ≤Λ∈ LPO(Λ) (see Definition 9.13). The
main result is that these are the only exotic actions of G.

Theorem 12.3. Let G = G(R;A,Λ) be a Bieri–Strebel group satisfying conditions (BS1)–
(BS3). Then every action ϕ : G→ Homeo0(R) without fixed points, is semi-conjugate to an
action in one of the following families.

(1) (Non-faithful) An action induced from the quotient G/[Gc, Gc].
(2) (Standard) The standard piecewise linear action of G on R.
(3) (R-focal) An action of the form ϕ±,≤Λ , obtained as the dynamical realization of a jump

preorder (see Definition 9.13).

In particular, this provides a classification of all minimal faithful actions of G up to conjugacy.

Corollary 12.4. Under the assumptions of Theorem 12.3, every minimal faithful action
ϕ : G → Homeo0(R) is topologically conjugate either to the standard action on R or to the
dynamical realization of a jump preorder.
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The following special case gives Theorem 1.19 from the introduction.

Example 12.5. Let us consider the special case G = G(λ) as in Example 12.2, with λ > 1
algebraic. Since in this case the group Λ is infinite cyclic, it admits only two non-trivial
preorders, namely the usual order <Λ and its opposite. Thus, the jump preorder construction
gives exactly two actions ϕ+ := ϕ+,<Λ and ϕ− := ϕ−,<Λ , which are the dynamical realizations
of the right and left jump preorders associated with <Λ∈ LPO(Λ). Note indeed, that after
Remark 9.21, the dynamical realization of the jump preorder corresponding to <opΛ is conjugate
to that for <Λ. Thus in this case the group G admits finitely many (more precisely, two)
R-focal actions. Note that such actions ϕ± are both locally rigid, which shows that groups in
the class F0 may admit locally rigid actions other than the standard action.

Remark 12.6. In the setting of Theorem 12.3, let us comment on the actions coming from
the largest quotient G/[Gc, Gc]. The structure of this quotient highly depends on A and Λ.
Note that G/Gc embeds in the product Aff(A,Λ)× Aff(A,Λ) via the product G−∞ × G+∞ of
the germ homomorphisms, and thus G/[Gc, Gc] is solvable of derived length at most 3. More
precisely (see [8, Corollary A5.5]), writing τ±(f) ∈ A for the translation part of the germ
of f ∈ G at ±∞, respectively, the image (G−∞ × G+∞)(G) in Aff(A,Λ) × Aff(A,Λ) is the
subgroup

{(f, g) ∈ Aff(A,Λ): τ+(g)− τ−(f) ∈ IΛ ·A} .
The investigation of the abelianization Gc/[Gc, Gc] is much less understood; partial results are
discussed in [8, §C12]. If Gc/[Gc, Gc] is trivial, then one must have IΛ ·A = A [8, Theorem
C12.14], but the converse is not true in general.

In the case G = G(λ) for λ > 1 algebraic (Example 12.2) one can check that the image of
G/Gc under the map induced by G−∞ × G+∞ has finite index in Aff(A,Λ) × Aff(A,Λ) (see
Example 12.2). Moreover if λ = p/q is rational (with p and q coprime), the abelianization
Gc/[Gc, Gc] is free of rank p − q − 1 (see [8, Corollary C12.12]). For other algebraic values
of λ, up to our knowledge, only the case λ =

√
5+1
2 has been studied in detail: after work of

Burillo, Nucinkis, and Reeves [22], we know that Gc/[Gc, Gc] ∼= Z2 (note that in this case
IΛ ·A = A). Note also that for any algebraic λ > 1, the abelianization G/[G,G] is free of rank
|A/IΛ ·A|+ 1 (see [8, Corollary C12.2]).

The situation is particularly simple in the case λ = 2, where we have

G/[Gc, Gc] ∼= Aff(Z[1/2], 〈2〉∗)× Aff(Z[1/2], 〈2〉∗) ∼= BS(1, 2)× BS(1, 2),

where BS(1, 2) = 〈a, b | aba−1 = b2〉 is the solvable Baumslag–Solitar group (see Proposition
12.17 below).

Before getting to the proof of Theorem 12.3, we need further preliminary discussions. Recall
that the group G contains the affine subgroup Aff(A,Λ) ∼= Ao Λ of transformations of the
form x 7→ λx+ a, with λ ∈ Λ and a ∈ A. Given a ∈ A and λ ∈ Λ, we will denote by g(a, λ)
the affine transformation x 7→ λx+ (1− λ)a, which is the unique element of Aff(A,Λ) which
fixes a and has slope λ. We will also consider the elements

(12.1) g+(a, λ) : x 7→
{
x x ∈ (−∞, a],
g(a, λ)(x) x ∈ [a,+∞),

and g−(a, λ) := g(a, λ) g+(a, λ)−1. Note that g+(a, λ) ∈ G(a,+∞) and g−(a, λ) ∈ G(−∞,a). For
a ∈ A we also denote by ta the translation x 7→ x+ a.
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For every a ∈ A and λ ∈ Λ, if h ∈ G(R;A,Λ) is an element with no breakpoint on (a,+∞)
(respectively on (−∞, a)), we have

hg+(a, λ)h−1 = g+(h(a), λ) (respectively, hg−(a, λ)h−1 = g−(h(a), λ)).
In particular we have the following relations for such elements (see [8, §B7]):
(12.2) h g±(a, λ)h−1 = g±(h(a), λ) for every h ∈ Aff(A,Λ),
as well as

g+(a, λ) g+(b, µ) g+(a, λ)−1 = g+(g(a, λ)(b), µ) for every a > b,

(12.3) g−(a, λ) g−(b, µ) g−(a, λ)−1 = g−(g(a, λ)(b), µ) for every a < b.

We also remark that the subset
{ta}a∈A ∪ {g(0, λ), g+(0, λ)}λ∈Λ

is generating for G(R;A,Λ) (see [8, Theorem B7.1]).
For what follows, the reader can keep in mind the following example.

Example 12.7. For λ > 1, the Bieri–Strebel group G(λ) is generated by the finite subset
{g(0, λ), g+(0, λ), t1}.

Remark 12.8. The group 〈g(0, λ), g+(0, λ), t1〉 appears in [15] (denoted Gλ), where it was shown
that, for certain algebraic numbers λ > 1 (called Galois hyperbolic ibid.) it admits no faithful
C1 action on the closed interval. The fact that this group coincides with the Bieri–Strebel
group G(λ) was unnoticed in [15].

We also need some preliminary results, stated in the following more flexible setting.

Assumption 12.9. Fix a non-trivial multiplicative subgroup ∆ ⊆ R∗, and a ∆-submodule
A ⊆ R, and let H = G(R;A,∆) be the corresponding Bieri–Strebel group. Moreover we let
G ⊆ Homeo0(R) be a subgroup in the class F which contains H as a subgroup. Finally we
assume that L = {Lx}x∈R is a family of subgroups of G with the following properties.
(C1) For each x ∈ R we have

⋃
y<xG(−∞,y) ⊆ Lx ⊆ G(−∞,x).

(C2) For every x ∈ R and every g ∈ G we have gLxg−1 = Lg(x).
(C3) For every x ∈ A and every δ ∈ ∆ we have g−(x, δ) ∈ Lx.

We write L+ =
⋃
x∈R Lx which, by (C2), defines a normal subgroup of G. Finally we assume

that ϕ : G→ Homeo0(R) is a faithful minimal action of G which is R-focal and increasingly
horograded by its standard action on R.

Remark 12.10. For the proof of Theorem 12.3, the reader can have in mind the case where
G = G(R;A,Λ) is itself a Bieri–Strebel group, H is a subgroup corresponding to some ∆ ⊆ Λ,
and the Lx are subgroups of G(−∞,x) consisting of elements whose left-derivative at x belongs
to some intermediate group ∆ ⊆ Λ1 ⊆ Λ. However a different choice of G will be used later in
§12.2.

We will write X = R for the real line on which the standard action of G is defined. We
resume notation of §10.2.3. As introduced in Definition 10.7, for every x ∈ X and ξ ∈ R
with ξ /∈ Fixϕ

(
G(−∞,x)

)
, we write Iϕ(x, ξ) for the connected component of Suppϕ

(
G(−∞,x)

)
containing ξ. Recall that intervals of this form define a CF-cover. Moreover we will consider
the planar directed tree (T, /,≺) constructed in §10.2.3, whose dynamical realization is ϕ.
Recall that vertices of T are intervals of the form Iϕout(x, ξ) = Int

(⋂
y>x Iϕ(y, ξ)

)
and that the
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map π : T→ R given by π (Iϕout(x, ξ)) = x is an equivariant horograding. Recall also that we
write Iϕinn(y, ξ) =

⋃
x<y Iϕ(x, ξ).

Lemma 12.11. Under Assumption 12.9, the group ϕ (Aff(A,∆)) has a unique fixed point
η ∈ R. This point satisfies η ∈ Suppϕ

(
G(−∞,x)

)
for every x ∈ X.

Moreover, the map
q+ : R→ (η,+∞)

x 7→ sup Iϕ(x, η)
is monotone increasing and Aff(A,∆)-equivariant. In particular the standard affine action of
Aff(A,∆) on X = R is positively semi-conjugate to its action ϕ on (η,+∞). Similarly the
map

q− : R→ (−∞, η)
x 7→ inf Iϕ(x, η)

defines a negative semi-conjugacy.

Proof. Every translation ta, with a ∈ A, acts without fixed points, therefore by Proposition
8.32, its ϕ-image is a homothety. As the subgroup of translations is abelian, its ϕ-image has a
unique fixed point η ∈ R. Moreover, as such subgroup is normal in Aff(A,∆), this is a fixed
point for ϕ (Aff(A,∆)).

Assume first that there exists x ∈ X such that η ∈ Fixϕ
(
G(−∞,x)

)
. Then we would have

η = g.η ∈ Fixϕ
(
G(−∞,x)

)
for every g ∈ Aff(A,∆), so that by minimality of the standard

action of Aff(A,∆) on X we get η ∈ Fixϕ (G+). Since G+ is a normal subgroup of G, and ϕ is
minimal, this implies that ϕ (G+) acts trivially, contradicting faithfulness of ϕ in Assumption
12.9. Thus η ∈ Suppϕ

(
G(−∞,x)

)
, and the interval Iϕ(x, η) is well-defined for every x ∈ X.

The second statement is now a direct consequence of the properties of these two families
of intervals: the family of {Iϕ(x, η)}x∈X is increasing with respect to x ∈ X and moreover
one has the equivariance relation g. Iϕ(x, η) = Iϕ(g(x), g.η) for every x ∈ X and g ∈ G (see
§10.2.2). �

In what follows we will always denote by η the unique fixed point of ϕ (Aff(A,Λ)) provided
by Lemma 12.11. For x ∈ X and ξ ∈ Suppϕ(Lx) we will denote by Iϕ(L, x, ξ) the connected
component of Suppϕ(Lx) containing ξ. Note that condition (C1) implies that Iϕ(L, x, ξ) is
increasing with respect to x ∈ R, and moreover

Iϕinn(x, ξ) ⊂ Iϕ(L, x, ξ) ⊂ Iϕ(x, ξ).
The key point is to establish the following strict inclusion when x ∈ A.

Lemma 12.12. Under Assumption 12.9, assume that there exists g ∈ H such that g.η 6= η.
Then for every x ∈ A we have a strict inclusion Iϕinn(x, η) ( Iϕ(L, x, η).

Proof. Assume by contradiction that Iϕinn(x, η) = Iϕ(L, x, η) for some x ∈ A. Note that then
this is automatically true for every x ∈ A, since the group Aff(A,∆) acts transitively on A
(it contains all translations by elements in A) and fixes η, so that for h ∈ Aff(A,∆) we have
h. Iϕinn(x, η) = Iϕinn(h(x), η) and
(12.4) h. Iϕ(L, x, η) = Iϕ(L, h(x), η)
(after condition (C2)).

Fix a ∈ A and choose δ ∈ ∆ with δ > 1 such that the element g−(a, δ).η 6= η. Such a δ
exists because the elements g−(a, δ) together with Aff(A,∆) generate H, and we assume that
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ϕ(H) does not fix η. Note also that once such an element g−(a, δ) is found, it follows that
g−(x, δ).η 6= η for every x ∈ A, since these elements are all conjugate to each other by elements
of Aff(A,Λ).

Note that by condition (C3) the image ϕ(g−(x, δ)) must preserve Iϕ(L, x, η) for every x ∈ A.
We claim that it acts on it as an expanding homothety. To this end, we look at the action of
H on the planar directed tree (T, /,≺) constructed in §10.2.3. Consider the subset T0 of T
given by

T0 = {Iϕout(y, ξ) : y < x, ξ ∈ Iϕ(L, x, η)} .
Then the equality Iϕinn(x, η) = Iϕ(L, x, η) implies that T0 is a directed planar subtree of T
invariant under the subgroup Lx (note that T0 is equal to the direction below the vertex
v = Iϕout(x, η) corresponding to Iϕinn(x, η)). Moreover the restriction of the horograding π : T→ R
to T0 takes values in (−∞, x) and is Lx-equivariant. Finally since the intervals Iϕout(y, η) for
y < x are relatively compact inside Iϕinn(x, η) and every I ∈ T0 is contained in one such interval,
the restriction of the planar order on T0 is proper. Thus we can apply Proposition 8.26 to
the action of Lx on T0, and since the element g−(x, δ) satisfies g−(x, δ)(y) > y for every
y ∈ (−∞, x), it follows that it has no fixed points in T0 and thus acts on (∂T0,≺) as an
expanding homothety, and we conclude as in the proof of Proposition 8.32 that its ϕ-image is
an expanding homothety on Iϕ(L, x, η), as desired.

Now for x ∈ A let us denote by ξx ∈ Iϕ(L, x, η) the unique fixed point of ϕ(g−(x, δ)) �Iϕ(L,x,η).
Note that ξx 6= η, by the choice of δ. Without loss of generality, we assume that ξb > η for
some b ∈ A. Then we have the following.

Claim. For every x ∈ A we have ξx > η and the map x 7→ ξx is monotone increasing.

Proof of claim. The relations (12.2) and (12.4) give that the map x 7→ ξx is Aff(A,∆)-
equivariant. The conclusion follows using that Aff(A,∆) acts transitively on A and that, after
Lemma 12.11, we know that the action of Aff(A,∆) on (η,+∞) is positively semi-conjugate
to the standard affine action. �

Now fix x ∈ X. By the assumption that Iϕinn(x, η) = Iϕ(L, x, η) and by (C1) we can find y ∈ A
with y < x such that Iϕ(L, y, η) contains ξx. After the claim, we have η < ξy < ξx. Since ξx is
a repelling fixed point for ϕ(g−(x, δ)), we have the inclusion g−(x, δ). Iϕ(L, y, η) ⊃ Iϕ(L, y, η),
and since the latter contains η we have g−(x, δ). Iϕ(L, y, η) = Iϕ (L, g−(x, δ)(y), η). Then (12.3)
implies that g−(x, δ).ξy = ξg−(x,δ)(y). However, g−(x, δ).ξy < ξy since ξy lies to the left of ξx.
On the other hand ξg−(x,λ)(y) > ξy since g−(x, λ)(y) > y, and we know that the map y 7→ ξy is
increasing after the claim. This is a contradiction, giving end to the proof of the lemma. �

Proposition 12.13. Under the same assumptions as in Lemma 12.12, for every x ∈ A the
action of ϕ(Lx) on Iϕ(L, x, η) is semi-conjugate to a non-faithful action induced from an action
of the group of left germs Germ (Lx, x).

Proof. Lemma 12.12 implies that the normal subgroup
(
G(−∞,x)

)
+

=
⋃
y<xG(−∞,y) of Lx

has fixed points in Iϕ(L, x, η) (namely the endpoints of Iϕinn(x, η)). Thus the action of ϕ(Lx)
on Iϕ(L, x, η) is semi-conjugate to an action induced from the quotient Lx/

(
G(−∞,x)

)
+
∼=

Germ (Lx, x). �

The next result is the only place where a particular choice of the family L = {Lx} is needed.
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Corollary 12.14. Let G = G(R;A,Λ) be a Bieri–Strebel group satisfying conditions (BS1)–
(BS3). Let ϕ : G→ Homeo0(R) be a minimal faithful R-focal action, increasingly horograded
by the standard action on R. Assume there exists an element g = g−(x, λ) ∈ G such that
g.η 6= η. Then g. Iϕinn(x, η) ∩ Iϕinn(x, η) = ∅.

Proof. Take g = g−(x, λ) not fixing η and consider the Bieri–Strebel group H = G(R;A, 〈λ〉∗),
which is a subgroup of G. We consider the family L = {Lx : x ∈ X} defined by

Lx =
{
h ∈ G(−∞,x) : D−h(x) ∈ 〈λ〉∗

}
.

It is straightforward to verify that Assumption 12.9 is fulfilled by such choices. Therefore, by
Proposition 12.13, the action of Lx on Iϕ(L, x, η) is semi-conjugate to an action that factors
through the germ homomorphism Gx : Lx → Germ (Lx, x). Since in this case Germ (Lx, x) is
generated by Gx(g), we conclude that Fixϕ(g) ∩ Iϕ(L, x, η) = ∅.

On the other hand, by Lemma 12.12, we get that Iϕ(L, x, η) strictly contains Iϕinn(x, η).
Then, since {Iϕinn(x, ξ) : x, ξ ∈ R} is a CF-cover preserved by the action, we must have
g. Iϕinn(x, η) ∩ Iϕinn(x, η) = ∅ as desired. �

The next two lemmas analyse properties of the jump preorders. The first one gives
decompositions for elements in G+ =

⋃
x<∞G(−∞,x) which are well suited for our purposes.

The second one allows to identify dynamical realizations of jump preorders.

Lemma 12.15. Let G = G(R;A,Λ) be a Bieri–Strebel group and let ≤Λ be a preorder on Λ.
Let � be the corresponding right jump preorder and take g ∈ G+ with id ň g. Then, there exist
elements h, k, g−(y, λ) ∈ G+ such that

(1) g = kg−(y, λ)h,
(2) h ∈ [1]�,
(3) 1 �Λ λ, and
(4) k ∈ G(−∞,z) for some z < y.

The analogous result holds for the left jump preorder.

Proof. The condition g ∈ G+ gives the equality j+(g, y) = D−g(y) for every y ∈ X. Write
Λ0 = [1]≤Λ . Since we are assuming id ň g, we can consider x = xg,Λ0 as in (9.9). Thus
the restriction of g to (x,+∞) coincides with some element h ∈ G(R;A,Λ0)+. Consider the
product f = gh−1. The rightmost point of Supp(f) is y = g(x) = h(x), and by the chain rule
we have

D−f(y) = D−g(x)D−h−1(y) = D−g(x)D−h(x)−1.

Since D−h(x) ∈ Λ0 and D−g(x) ∈ ΛrΛ0, we get 1 �Λ D
−f(y). Write λ = D−f(y). As before,

we have that the rightmost point of the support of fg−(y, λ)−1 coincides with g−(y, λ)(z)
where z is the second largest breakpoint of f (the one before y). Then write k = fg−(y, λ)−1.
It is direct to check that the decomposition g = kg−(y, λ)h satisfies conditions (1–4) in the
statement. �

Lemma 12.16. Consider a Bieri–Strebel group G = G(R;A,Λ) and a preorder �∈ LPO(G)
containing Aff(A,Λ) in its residue subgroup. Assume further that �′∈ LPO(G) is a right
(respectively, left) jump preorder coinciding with � over G+ (respectively, G−). Then � and
�′ are the same preorder.
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Proof. Assume that �′ is the right jump preorder associated with the preorder ≤Λ∈ LPO(Λ),
the case where �′ is a left jump preorder is analogous. Denote by Λ0 the residue of ≤Λ and
recall from §9.3, that in this case the residue of �′ is the subgroup

H := {g ∈ G : j+(g, x) ∈ Λ0 ∀x ∈ R}

(see (9.8)). Since elements of Aff(A,Λ) have constant derivative it holds that j+(g, x) = 1 for
every g ∈ Aff(A,Λ) and x ∈ R. In particular we have Aff(A,Λ) ⊆ H.

Note that G decomposes as G = G+ o Aff(A,Λ). Then, for every g ∈ G we can write
g = g+ag with g+ ∈ G+ and ag ∈ Aff(A,Λ). Denote by P and P ′ the positive cones of � and
�′ respectively. Since Aff(A,Λ) is contained in the residue of both � and �′, it holds that
g ∈ P if and only if g+ ∈ G+ ∩ P and also that g ∈ P ′ if and only if g+ ∈ G+ ∩ P ′. Finally,
since by hypothesis it holds G+ ∩ P = G+ ∩ P ′, the lemma follows. �

Proof of Theorem 12.3. The assumptions on G = G(R;A,Λ) ensure that G is in the class
F (see Lemma 12.1). After Theorem 10.3, we only need to show that a minimal faithful
R-focal action ϕ : G→ Homeo0(R), increasingly (respectively, decreasingly) horograded by its
standard action on R, is conjugate to an action of the form ϕ+,≤Λ (respectively, ϕ−,≤Λ) for
some preorder ≤Λ. We will only discuss the case of increasing horograding by the standard
action, the decreasing case being totally analogous.

We write η ∈ R for the unique fixed point of ϕ (Aff(A,Λ)) given by Lemma 12.11 (applied
to the case ∆ = Λ). In what follows, let � be the preorder on G induced by η, namely by
declaring g ň h if and only if g.η < h.η. We will show that this preorder coincides with a
right jump preorder associated with some ≤Λ∈ LPO(Λ). Let us first identify such preorder.
For x ∈ A, the set of elements Tx := {g−(x, λ) : λ ∈ Λ} is a subgroup of G isomorphic to
Λ, which is a section inside G(−∞,x) of the group of germs Germ

(
G(−∞,x), x

)
. We put on

Λ the preorder ≤Λ given by restricting � to this subgroup, namely by setting λ �Λ µ if
g−(x, λ).η < g−(x, µ).η. Note that this preorder does not depend on the choice of x ∈ A, as
for x, y ∈ A the groups Tx and Ty are conjugate by an element of Aff(A,Λ) (see (12.2)), which
fixes η. Denote �′ the right jump preorder in G associated with ≤Λ. We proceed to show that
�′ and � coincide on G+ which, by Lemma 12.16 will conclude the proof.

Denote by Λ0 the residue of the preorder ≤Λ and recall that in this case the residue of
�′ equals H = {g ∈ G : j+(g, x) ∈ Λ0 ∀x ∈ R} (see (9.8)). As observed in the proof of
Lemma 12.15, for g ∈ G+ we have j+(g, x) = D−g(x) for every x ∈ X, so that we have
the equality H ∩ G+ = G(R;A,Λ0)+. Note that H ∩ G+ fixes η, since it is generated by
{g−(x, λ) : x ∈ A, λ ∈ Λ0} (this can be easily checked from [8, §8.1]). Thus, we have

(12.5) G+ ∩ [1]�′ ⊆ G+ ∩ [1]�.

Assume now that g ∈ G+ satisfies id ň′ g. We proceed to show that in this case η < g.η which
implies that id ň g. For this, consider the decomposition g = kg−(y, λ)h given by Lemma 12.15.
Then, by Lemma 12.15.(2) and (12.5), we get that h.η = η and therefore g.η = kg−(y, λ).η. On
the other hand, Lemma 12.15.(3) together with the definition of ≤Λ imply that g−(y, λ).η > η.
Then, by Corollary 12.14, we get that g−(y, λ). Iϕinn(y, η) ∩ Iϕinn(y, η) = ∅. Finally, by Lemma
12.15.(4) we have that k. Iϕinn(y, η) = Iϕinn(y, η) which, in light of what we have already done,
shows that g.η = kg−(y, λ).η > η as desired. Analogously one shows that if g ň′ id then g ň id.
This shows that the preorders �′ and � coincide over G+ and concludes the proof. �

12.2. A finitely generated group in the class F0 with no R-focal actions. Here we
construct an example of a finitely generated locally moving group in the class F0, which admits
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no faithful R-focal actions. In particular every minimal faithful action on R is conjugate to
the standard action.

The starting point of the construction is the Bieri–Strebel group G(2) = G(R;Z[1/2], 〈2〉∗)
of all finitary dyadic PL homeomorphisms of R, which we already proved to admit only two
R-focal actions (Theorem 12.3 and Example 12.5). Moreover, as discussed in Remark 12.6,
we have that its largest proper quotient is isomorphic to the direct product of two solvable
Baumslag–Solitar groups BS(1, 2). Therefore also the non-faithful case in Theorem 12.3 is
very restrictive. Indeed, we have the following result (compare with [15, Theorem 6.12]).

Proposition 12.17. Let Γ1 and Γ2 be two groups isomorphic to the Baumslag–Solitar group
BS(1, 2), and consider their direct product Γ := Γ1×Γ2. Then every action ϕ : Γ→ Homeo0(R)
without fixed points is semi-conjugate either to an action by translation of the abelianization
Γab = Z2, or to an action obtained by composing the projection to one of the factors Γi,
i ∈ {1, 2}, with the action of Γi on R by affine dyadic maps.

Proof. The following proof is based on the classification of actions of the Bausmlag–Solitar
group BS(1, 2) on the real line, without fixed points: up to semi-conjugacy, it is either an action
of the abelianization Z, or the standard affine action (see e.g. [16, 98]). Consider an action
ϕ : Γ→ Homeo0(R) without fixed points. After Proposition 5.4, without loss of generality, we
can assume that the ϕ-image [Γ1,Γ1] has fixed points. Thus the action ϕ is semi-conjugate to
an action of the quotient Γab1 ×Γ2. Assume that the factor Γab1

∼= Z has no fixed point and that
the action ϕ is not semi-conjugate to any action of the abelianization Γab = Γab1 × Γab2 . This
means that the action of Γ2 is semi-conjugate to the standard affine action. This is however
not possible, because elements in Γ2 corresponding to homotheties under the semi-conjugacy
have a compact set of fixed points, which must be fixed by Γ1, an absurd. �

As a consequence of Corollary 9.10, if we want to avoid R-focal actions, we must leave
the setting of finitary PL transformations. We will consider groups whose elements are PL
with a countably many breakpoints that accumulate at some finite subset of “higher order”
singularities (with some control on these).

Given an open interval X ⊂ R we say that a homeomorphism f ∈ Homeo0(X) is locally PL
if there is a finite subset Σ ⊂ X such that f is (finitary) PL in X r Σ. For such an f , we
denote by BP2(f) ⊂ X the minimal subset such that f is PL in XrBP2(f). The set BP2(f) is
the set of breakpoints of second order of f . Points x ∈ X r BP2(f) where f has discontinuous
derivative are called breakpoints of first order, and we denote them by BP1(f). Also, we write
BP(f) = BP1(f) ∪ BP2(f) for the set of breakpoints of f . Clearly, when BP2(f) = ∅ we have
that f is PL. We will silently use a couple of times the observation that for f and g locally PL,
we have that BP2(fg) ⊂ BP2(g) ∪ g−1 BP2(f).

Definition 12.18. Let X ⊂ R be an open interval. We write G(X) = G(X;Z[1/2], 〈2〉∗) for
the Bieri–Strebel group (see Definition 2.44). We also denote by Gω(X) the group of all locally
PL homeomorphisms of X with the following properties:

• f is locally dyadic PL, that is at each x ∈ X r BP(f) the map f is locally an affine
map of the form x 7→ 2nx+ b for n ∈ Z and b ∈ Z[1/2];
• breakpoints of f are contained in a compact subset of X: BP(f) b X;
• breakpoints of f and their images are dyadic rationals: BP(f) ∪ f(BP(f)) ⊂ Z[1/2].

The group Gω(X) is uncountable, so too big for our purposes. We will instead consider some
subgroups defined in terms of the local behaviour at the breakpoints of second order. Here
we keep the notation from the previous subsection, such as g(a, λ), g±(a, λ) (see 12.1), and
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ta : x 7→ x+ a which denote elements in PL(R). For r ∈ R, we also write hr = g(r, 1
2), which

corresponds to the homothety of ratio 1/2 centered at r, and similarly we write hr± = g±(r, 1
2)

for shorthand notation.

Definition 12.19. Let g : I → J be a homeomorphism between two open intervals. We
say that g has a 2n-scaling germ at r ∈ I, if there exists a neighborhood U of r such that
ghnr �U= hng(r)g �U .

Remark 12.20. Note that when g(r) = r this simply means that the germ of g at r commutes
with the germ of hnr . More generally, if g(r) 6= r, and if h is any PL map such that hg(r) = r,
then g has a 2n-scaling germ at r if and only if the germs of hg and hr at r commute: this does
not depend on the choice of h, since every PL map has 2n-scaling germ (and more generally
k-scaling germ for any k > 0, with the obvious extension of the definition) at every point,
including breakpoints.

Definition 12.21. Given an open interval X ⊂ R and n ≥ 1, we let G(n)
ω (X) be the subgroup

of Gω(X) consisting of elements that have 2n-scaling germs at every breakpoint of second
order (and thus at all points x ∈ X).

For every dyadic point x ∈ X, let D(n)
x be the group of germs at x of elements in G(n)

ω (X)
which fix x, that is, the group of germs of homeomorphisms that are locally dyadic PL away
from {x} and that commute with hnx. We denote by D(n)

x− and D(n)
x+ the corresponding groups

of left and right germs, respectively, so that D(n)
x
∼= D(n)

x− ×D
(n)
x+ . The groups D(n)

x− and D(n)
x+

are isomorphic to a well-known group, namely the lift T̃ ⊆ Homeo0(R) of Thompson’s group
T acting on the circle. Explicitly, T̃ is the group of all dyadic PL homeomorphisms of R
which commute with the unit translation t1 : x 7→ x + 1. The point is that for every n ≥ 1
and x ≥ 1 dyadic, the map hnx �(−∞,x) can be conjugated to the translation t1 by a dyadic PL
homeomorphism f : (−∞, x)→ R. This establishes an isomorphism of D(n)

r− with the group of
germs of T̃ at +∞, which is isomorphic to T̃ itself. Similarly one argues for D(n)

r+ . This fact
will be constantly used in what follows. A first consequence is that the groups D(n)

x− and D(n)
x+

are finitely generated, since T̃ is so. This leads to the following:

Proposition 12.22. For every dyadic open interval X = (a, b) ⊂ R and every n ≥ 1, the
group G := G

(n)
ω (X) satisfies the following.

(1) G is finitely generated, and belongs to the class F .
(2) the subgroup Gc of compactly supported elements is perfect (and thus simple). In

particular the largest proper quotient of G is G/Gc = Germ(G, a)× Germ(G, b).

Note that, as breakpoints of every element in G(n)
ω (X) are contained in a compact subset of

X, the group Germ(G, a) is infinite cyclic if a > −∞, and isomorphic to BS(1, 2) if a = −∞,
and similarly for Germ(G, b).

Proof of Proposition 12.22. Fix a dyadic point x ∈ (a, b). Since the group of germs D(n)
x =

D(n)
r− × D

(n)
r+ is finitely generated, we can find a finite subset S ⊂ G

(n)
ω (X) which fix x and

whose germs generate D(n)
x , and that have no breakpoints of second order apart from x.

Claim. We have G(n)
ω (X) = 〈G(X), S〉.
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Proof of claim. Let g ∈ G(n)
ω , and let us show that g ∈ 〈G(X), S〉 by induction on the number

k = |BP2(g)| of breakpoints of g of second order. If k = 0, then g ∈ G(X). Assume that
k ≥ 1, and let y ∈ BP2(g) be a breakpoint of second order of g. Since G(X) acts transitively
on dyadic rationals, we can choose h1 ∈ G(X) such that h1(g(x)) = x. As BP2(h1) = ∅, we
have that the element g′ = h1g satisfies |BP2(g′)| = k, and moreover x belongs to BP2(g′) and
is fixed by g′. Choose h2 ∈ 〈S〉 whose germ at x is equal to the germ of g. By the choice of S,
we have BP2(g) = {x}, so that for the element g′′ = h−1

2 g′ we have BP2(g′′) = BP2(g′)r {x},
and thus BP2(g′′) = k − 1 < k. By induction, we have g′′ ∈ 〈G(X), S〉, and it follows that
g = h−1

1 h2g
′′ ∈ 〈G(X), S〉. �

Since the Bieri–Strebel group G(X) = G(X;Z[1/2], 〈2〉∗) is finitely generated for X dyadic,
from the claim we get that G is finitely generated as well. The fact that G(n)

ω (X) belongs to
the class F follows from finite generation of the subgroups G(n)

ω (Y ) for Y ⊂ X dyadic.
Finally the same argument for the claim shows that the group G

(n)
ω (X)c of compactly

supported elements is generated by 〈G(X)c, S〉. Since D(n)
x is a perfect group we can choose

the set S consisting of commutators. And since G(X)c is perfect as well, the group G(n)
ω (X)c

is perfect. The last statement follows from Proposition 4.4. �

Here is the main result of this subsection, whose proof will need some preliminary lemmas.

Theorem 12.23. For n ≥ 2, every action ϕ : G(n)
ω (R)→ Homeo0(R) without fixed points is

semi-conjugate to one of the following.
(1) A non faithful action induced by an action of the groups of germs

Germ
(
G(n)
ω (R),−∞

)
× Germ

(
G(n)
ω (R),+∞

)
∼= BS(1, 2)× BS(1, 2)

(these are classified in Proposition 12.17).
(2) The standard action.

In particular every faithful minimal action of G(n)
ω (R) on the real line is conjugate to its

standard action.

Until the end of the subsection, for fixed n ≥ 1 we write G = G
(n)
ω (R) and H = G(R) = G(2),

so that H ⊆ G.
Lemma 12.24 (Upgrading fixed points). With the notations as above, let ϕ : G→ Homeo0(R)
be an action on the real line. Then every fixed point of ϕ(H) must be fixed by ϕ(G). In other
words, Fixϕ(H) = Fixϕ(G).

Proof. Consider the subgroups

Kl =
{
g ∈ G(−∞,0) : BP2(g) ⊂ {0}

}
and Kr =

{
g ∈ G(0,+∞) : BP2(g) ⊂ {0}

}
,

and set K = 〈Kl,Kr〉 ∼= Kl ×Kr. Note that group K realizes the group of germs D(n)
0 and

after the assumption on breakpoints of second order, the claim in the proof of Proposition
12.22 gives that G = 〈H,K〉 = 〈H,Kl,Kr〉.

Consider the subgroup Hl ⊆ Kl consisting of all elements whose germ at 0 is given by a
power of hn0−. In particular, every g ∈ Hl satisfies BP2(g) = ∅, hence Hl is a subgroup of
H. Since the germ of hn0− is central in D(n)

0− , we have that Hl is normal in Kl, with quotient
Kl/Hl

∼= D(n)
0− /〈hn0−〉 which is isomorphic to Thompson’s group T acting on the circle. The

same considerations hold for the subgroup Hr ⊆ Kr defined analogously.
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Assume now that ϕ : G→ Homeo0(R) is an action such Fixϕ(H) 6= ∅, so that Fixϕ(Hl) is
non-empty and contains Fixϕ(H). Then ϕ(Kl) preserves Fixϕ(Hl), and the ϕ-action of Kl on
Fixϕ(Hl) factors through the quotient Kl/Hl

∼= T . Since T is a simple group, and it contains
elements of finite order, every order-preserving action on a totally ordered set is trivial. Thus
the action of Kl on Fixϕ(Hl) is actually trivial, and in particular it fixes Fixϕ(H). Similarly so
does Kr. Since G = 〈H,Kl,Kr〉 this implies that every point in Fixϕ(H) is fixed by ϕ(G). �

The next lemma makes use of the assumption that n ≥ 2 in Theorem 12.23, and leverages
the fact that the group T̃ admits only one action on the real line up to semi-conjugacy. In the
statement, with abuse of notation, we identify hx− with its germ in D(n)

x−

Lemma 12.25. For every n ≥ 2, the group D(n)
x− admits no non-trivial left-invariant preorder

which is invariant under conjugation by the element hx−.

Proof. The natural isomorphism D(n)
x−
∼= T̃ maps hx− to an element h ∈ T̃ which is an nth

root of the translation t1, i.e. hn = t1. So it is enough to show that T̃ admits no non-trivial
left-invariant preorder ≺ which is invariant under conjugation by such an h. Assume by
contradiction that ≺ is such a preorder. By [81, Theorem 8.7] the dynamical realization of ≺
is semi-conjugate to the standard action of T̃ on the real line, so that the maximal ≺-convex
subgroup K must be equal to the stabilizer T̃y of some point y ∈ R for the standard action. On
the other hand K must be normalized by h, so that we must have T̃y = T̃h(y). However since
hn = t1 we have h(y) 6= y and |h(y)− y| < 1, so that y and h(y) have different projections to
the circle R/Z. But any two distinct points in the circle have different stabilizers in Thompson’s
group T , and thus y and h(y) have different stabilizers in T̃ , which is a contradiction. �

Proof of Theorem 12.23. Let ϕ : G→ Homeo0(R) be an action without fixed points. Since G
is in the class F (Proposition 12.22), we can apply Theorem 10.3. We then assume that ϕ
is faithful minimal and, by symmetry, it is enough to exclude that ϕ is R-focal, increasingly
horograded by the standard action of h on R. Note that by Lemma 12.24, we know that
ϕ(H) has no fixed point. In order to fulfill Assumption 12.9, we will consider the family
of subgroups L = {Lx}x∈R, where Lx = G(−∞,x), and with this choice we will simply have
Iϕ(L, x, ξ) = Iϕ(x, ξ). We apply Lemma 12.11: let η be the unique fixed point of ϕ (Aff(A,Λ)).
Fix a dyadic rational x ∈ R and consider the preorder ≺η on G(−∞,x) associated with the
action of G(−∞,x) on Iϕ(x, η). By Proposition 12.13, this preorder descends to a non-trivial
preorder ≺̄η on Germ

(
G(−∞,x), x

)
= Dx−. Consider now the element hx ∈ Aff(A,Λ). Since

hx fixes x, it normalizes G(−∞,x); moreover fixes η and thus ϕ(hx) preserves Iϕ(x, η). We also
see that the preorder ≺η is invariant under the automorphism induced by hx on G(−∞,x). But
this automorphism coincides with the inner automorphism defined by conjugation by hx−, so
that the preorder ≺η, and thus ≺̄η, must be invariant under conjugation by hx−. This is in
contradiction with Lemma 12.25. �

13. Uncountable groups

Locally moving groups also contain several natural “large” groups, such as the group
Homeo0(R) or Diffr0(R) or the subgroups Homeoc(R) and Diffrc(R) of compactly supported
elements. Actions of such groups on the line are well understood thanks to work of Militon
[85], and of the recent work of Chen and Mann [24]. In fact, such results fit in a program
started by Ghys [43], asking when the group of all diffeomorphisms (or homeomorphisms) of a
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manifold may act on another manifold; in the recent years, very satisfactory results have been
obtained, and we refer to the survey of Mann [72] for an overview.

In this section we provide a rigidity criterion for locally moving groups whose standard
action has uncountable orbits and satisfies an additional condition. We then explain how this
criterion recovers some of the results in [24, 85], and unifies them with the setting of the other
results of this paper. Recall from the introduction (Definition 1.21), that for a a group G and
subgroup H ⊂ G, we say that the pair (G,H) has relative Schreier property if every countable
subset of H is contained in a finitely generated subgroup of G. We have the following result,
which is a more general version of Theorem 1.22 from the introduction.

Theorem 13.1. For X = (a, b), let G ⊆ Homeo0(X) be locally moving, such that for every
open subinterval I ⊂ X, all GI-orbits in I are uncountable. Suppose that for every subinterval
I b X, the pairs (G+, [GI , GI ]) and (G−, [GI , GI ]) have the relative Schreier property. Then
every action ϕ : G→ Homeo0(R) without fixed points is either topologically conjugate to the
standard action of G on X, or semi-conjugate to an action that factors through G/[Gc, Gc].

Remark 13.2. Note that if the pair (Gc, [GI , GI ]) has the relative Schreier property, then so
do the pairs (G+, [GI , GI ]) and (G−, [GI , GI ]), since Gc is contained in G+ and G−.

For the proof we need the following lemmas.

Lemma 13.3. For X = (a, b), let G ⊆ Homeo0(X) be a subgroup such that every x ∈ X has
an uncountable G-orbit. Then every action ϕ : G→ Homeo0(R) which is semi-conjugate to the
standard action on X is topologically conjugate to it.

Proof. Note that if orbits are uncountable, then the action is minimal. Indeed if by contradiction
Λ ⊂ X is a closed invariant subset, then the set ∂Λ is countable and G-invariant, thus ∂Λ = ∅,
hence either Λ = ∅ or Λ = X. Assume that ϕ : G → Homeo0(R) is semi-conjugate to the
standard action on X, by a monotone equivariant map q : R → X. As the action on X is
minimal, the semi-conjugacy q is continuous. If it is not injective, there exists points x ∈ X
for which q−1(x) is a non-trivial interval. But the set of such points is G-invariant and at most
countable, which is a contradiction. �

Lemma 13.4. Let G be a group of homeomorphisms of a second countable Hausdorff space.
Then there exists a countable subgroup G0 ⊆ G such that Fix(G) = Fix(G0).

Proof. The statement is non-empty only when G is uncountable, and we will assume so. Let
U be a countable basis of open subsets of the space. For every z ∈ Supp(G), we can find
a neighborhood U ∈ U of z and gU ∈ G such that gU (U) ∩ U = ∅. Thus we can cover
Supp(G) with countably many subsets with this property and the subgroup G0 generated by
the corresponding gU ∈ G is countable and satisfies the desired condition. �

Proof of Theorem 13.1. Assume by contradiction that ϕ : G→ Homeo0(R) is an action which
is not topologically conjugate to the action on X and such that ϕ([Gc, Gc]) has no fixed point.
As G is locally moving, by Theorem 5.12 we can assume, say, that every finitely generated
subgroup Γ of G+ is totally bounded.

Claim. For every subinterval I b X, the subgroup [GI , GI ] is totally bounded.

Proof of claim. By Lemma 13.4, we can find a countable subgroup H ⊆ [GI , GI ] with
Fixϕ ([GI , GI ]) = Fixϕ(H). By the relative Schreier property of (G+, [GI , GI ]), the subgroup
H is contained in a finitely generated subgroup of G+, and thus is totally bounded. Hence
[GI , GI ] is also totally bounded. �
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Fix I = (c, d) b X. Let A be the collection of connected components of Suppϕ ([GI , GI ])
and fix L ∈ A. For every x ∈ (d, b) we have the inclusion [GI , GI ] ⊆ [G(c,x), G(c,x)], so that L is
contained in some connected component Lx of Suppϕ

(
[G(c,x), G(c,x)]

)
. Consider the function

FL : (d, b)→ R
x 7→ supLx

,

which is well-defined after the claim, monotone increasing, and which tends to +∞ as x tends
to b. Moreover for every x ∈ (d, b) the point FL(x) belongs to Fixϕ

(
[G(c,x), G(c,x)]

)
, thus to

Fixϕ([GI , GI ]), and thus the function FL cannot be continuous at every point. The group
G(d,b) centralizes [GI , GI ], so it permutes the intervals in A, hence for every g ∈ G(d,b), the
family of functions {FL : L ∈ A} is equivariant in the following sense:

g.FL(x) = Fg.L(g(x)).

In particular, a point x is a discontinuity point for FL if and only if g(x) is a discontinuity
points for Fg.L. But since all functions FL are monotone, and there are countably many of
them, there are at most countably many points x ∈ (d, b) which are discontinuity points of
some FL, for L ∈ A. Thus the G(d,b)-orbit of every such point must be countable, which is in
contradiction with our assumption. �

Let us now give some examples of groups that satisfy the hypotheses of Theorem 13.1.
In several situations the relative Schreier property can be established using an embedding
technique for countable groups due Neumann and Neumann [96], based on unrestricted
permutational wreath product. This method has been exploited by Le Roux and Mann [63] to
show that many homeomorphisms and diffeomorphisms groups of manifolds have the Schreier
property. In order to run this method, it is enough that the group G be closed under certain
infinitary products, in the following sense.

Definition 13.5. For X = (a, b), let G ⊆ Homeo0(X) be a subgroup. Let (In)n∈N be a
collection of disjoint open subintervals of X. For every n ∈ N, take an element gn ∈ GIn . We
denote by

∏
gn the homeomorphism of X defined by∏

gn : x 7→
{
gn(x) if x ∈ In,
x if x /∈

⋃
n In.

We say that the group G is closed under monotone infinitary products if for every monotone
sequence (In)n∈N of disjoint open subintervals (in the sense that the sequence (inf In)n∈N is
monotone), and every choice of gn ∈ GIn , we have

∏
gn ∈ G. We also say that G is closed

under discrete infinitary products if the latter holds for every sequence of intervals (In)n∈N
such that (inf In)n∈N has no accumulation point in the interior of X.

The following lemma provides a criterion for the relative Schreier property in our setting.

Lemma 13.6. For X = (a, b), let G ⊆ Homeo0(X) be locally moving. Suppose that G satisfies
one of the following conditions:

i) G is closed under monotone infinitary products;
ii) G is closed under discrete infinitary products and contains elements acting without

fixed points on a neighborhood of a and trivially on a neighborhood of b, and viceversa.
Then for every open subinterval I b X the pairs (G+, [GI , GI ]) and (G−, [GI , GI ]) have the
relative Schreier property.
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Proof. Fix I = (x, y) and let us show that the pair (G+, [GI , GI ]) has relative Schreier property
(the other case is analogous). It is enough to show that for every sequence (fn)n∈N ⊂ GI ,
there exists a finitely generated subgroup Γ ⊂ G+ such that [fn, fm] ∈ Γ for all n 6= m.
So let (fn) be such a sequence. Choose t ∈ G+ such that t(y) < x, and if we are in case
ii) suppose additionally that t has no fixed point in (a, y), so that limn→∞ t

n(y) = a. Also
choose an increasing sequence of positive integers (kn) which is parallelogram-free, that is, if
kn1 − kn2 = km1 − km2 6= 0, then n1 = m1 and n2 = m2 (for example the sequence kn = 2n
has this property). Set gn = tknfnt

−kn and note that gn ∈ GIn with In := tkn(I). By
construction, in either case i) or ii) the element h :=

∏
gn belongs to G. It is not difficult to

check that for every n ∈ N the element t−knhtkn coincides with fn on I, and the fact that (kn)
is parallelogram-free implies that for n 6= m the intersection of the supports of t−kmhtkm and
of t−knhtkn is contained in I. Thus we have [t−knhtkn , t−kmhtkm ] = [hn, hm]. It follows that
the finitely generated subgroup Γ := 〈h, t〉 ⊂ G+ satisfies the desired conclusion. �

Combining this with Theorem 13.1, one can show that various sufficiently ”large” locally
moving groups do not admit any exotic action at all. For example, we have the following
criterion.

Corollary 13.7. For X = (a, b), let G ⊆ Homeoc(X) be a locally moving, perfect subgroup
of compactly supported homeomorphisms. Assume that for every open subinterval I ⊂ X, all
GI-orbits in I are uncountable, and that G is closed under monotone infinitary products. Then
every action ϕ : G→ Homeo0(R) without fixed points is topologically conjugate to the standard
action of G on X.

This criterion is clearly satisfied by the group G = Homeoc(R) of all compactly supported
homeomorphisms of R (it is well-known that it is perfect, see for instance [44, Proposition
5.11] for a very short proof). Thus, Corollary 13.7 recovers the following result due to Militon
[85].

Corollary 13.8 (Militon). Every action ϕ : Homeoc(R)→ Homeo(R), without fixed points is
topologically conjugate to the standard action.

Let us now consider the group G = Diffrc(R) of compactly supported diffeomorphisms of R
of class Cr, with r ∈ [1,∞]. This case is more subtle since the group G is not closed under
monotone infinitary products: if gn ∈ GIn , the element

∏
gn need not be a diffeomorphism

on a neighborhood of any accumulation point of the intervals In. A way to go around this is
provided by the arguments of Le Roux and Mann in [63, §3], where they show that the group
Diffr(M) has Schreier property for every closed manifold M whenever r 6= dim(M) + 1. Note
that this result does not apply to the group Diffrc(R), which in fact does not have Schreier
property, since it can be written as countable strictly increasing union of subgroups (see [63]).
However, the same argument of their proof can be adapted to show the following.

Proposition 13.9. For every r ∈ [1,∞]r{2} and interval I b R, the pair (Diffrc(R),Diffrc(I))
has the relative Schreier property.

The reason for the assumption r 6= 2 is that in this case the group Diffrc(R) is known to be
simple, by famous results of Thurston [104] (for r = ∞) and Mather [78] (for r 6= 2 finite).
Whether this holds for r = 2 remains an open question.

Proof of Proposition 13.9. We outline the steps, and refer to [63, §3] for details. First of all,
observe that in order to prove the proposition it is enough to show find a generating set S of
Diffrc(I) with the property that every sequence (bn) of elements of S is contained in a finitely
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generated subgroup of Diffrc(R) (see Lemma 3.6 in [63]). Set I = (x, y). Following the same
strategy as in the proof of Proposition 13.6, let t ∈ Diffrc(R) be such that t(y) < x, and choose
a parallelogram-free increasing sequence (kn) ⊂ Z+, so that the intervals In := tkn(I) are
pairwise disjoint. The main difference with the proof of Proposition 13.6 is that if we choose
gn ∈ Diffrc(In) arbitrarily, the element

∏
gn does not necessarily belong to Diffrc(R). However,

if the elements (gn) are such that their Cr norms satisfy ‖gn‖r ≤ 2−n then the sequence of
truncated products

∏m
n=1 gn is a Cauchy sequence, so that the infinite product

∏∞
n=1 gn belongs

to Diffrc(R). Since conjugation by tkn is continuous in the Cr topology, this implies that there
exists a sequence (εn) such that whenever the elements fn ∈ Diffrc(I) are such that ‖fn‖r ≤ εn,
then the product

∏
(tknfnt−kn) is indeed in Diffrc(R) (compare [63, Lemma 3.7]).

With these preliminary observations in mind, the key idea of [63, §3] is to consider a
well-chosen generating set of Diffrc(I), consisting of elements belonging to suitable copies of
the affine group. By an affine group inside Diffrc(I) we mean a subgroup generated by two one-
parameter subgroups

{
at
}
t∈R and

{
bt
}
t∈R of Diffrc(R), varying continuously in the Cr topology,

which satisfy the relations asbta−s = be
st. Existence of affine subgroups in Diffrc(I) can be

obtained by applying the trick of Muller and Tsuboi described in Section 6 to the two vector
fields generating the affine group (see [63, Lemma 3.3]). Let now S ⊂ Diffrc(I) be the set of all
time-one maps b := b1 of a flow bt belonging to an affine subgroup. Since the set S is non-empty
and stable under conjugation in Diffrc(I), it is a generating set by simplicity of Diffrc(I). Now
let (bn) ⊂ S be a sequence, where each bn = b1n belongs to an affine subgroup 〈atn, btn〉. The
relations in the affine subgroups imply that for every t, s ∈ R we have [asn, btn] = b

(es−1)t
n . This

equality implies that for δ > 0 small enough, the element bδn can be written as a commutator
of elements with arbitrarily small Cr norm (see [63, Corollary 3.4]). Thus, if for every n ∈ N
we choose a sufficiently large positive integer `n > 0, we have b1/`nn = [f2n, f2n+1] for some
sequence (fn) ⊂ Diffrc(I) such that ‖fn‖r ≤ εn. By the choice of the sequence (εn) made above,
the element h :=

∏∞
n=1 t

knfnt
−kn is in Diffrc(R). The same argument in the proof of Lemma

13.6 then implies that [t−k2nhtk2n, t−k2n+1htk2n+1 ] = [f2n, f2n+1] = b
1/`n
n , so that the subgroup

Γ = 〈h, t〉 contains the sequence (bn). By the remark made at the beginning of the proof, this
proves the proposition. �

Combined with Proposition 13.9, Theorem 13.1 provides an alternative proof of the following
recent result of Chen and Mann [24].

Corollary 13.10 (Chen–Mann). For r ∈ [1,∞]r{2}, every action ϕ : Diffrc(R)→ Homeo0(R)
without fixed points is topologically conjugate to its standard action.

14. A results for actions on the circle

To conclude this paper we consider the problem of studying actions of locally moving groups
on the circle. This question turns out to be much simpler turns out to be much simpler then
the question studied so far, essentially due to the compactness of S1. In fact, we can actually
prove a result for actions on S1 of a group of homeomorphisms G ⊆ Homeo(X) where X is an
arbitrary locally compact space, provided the action of G on X satisfies suitable dynamical
conditions.

Given a group G of homeomorphisms of a space X and an open subset U ⊂ X, we let
GU be the pointwise fixator of X r U . Similarly to Definition 4.1, we say that a subgroup
G ⊆ Homeo(X) is micro-supported if for every non-empty subset U ⊂ X, the subgroup GU is
non-trivial. The action of G on X is extremely proximal if for every compact subset K ( X
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there exists y ∈ X such that for every open neighborhood V of y, there exists g ∈ G with
g(K) ⊂ V .

When G ⊂ Homeo(X) is a micro-supported group, we denote by MG ⊂ G the subgroup of
G generated by the subgroups [GU , GU ] where U varies over relatively compact non-dense
open subsets of X. Note that MG is non-trivial and normal in G. In fact, standard arguments
similar to the proof of Proposition 4.4 imply the following (see e.g. [59, Proposition 4.6]).

Proposition 14.1. Let X be a locally compact Hausdorff space, and G ⊂ Homeo(X) be a
micro-supported group acting minimally and strongly proximally on X. Then every non-trivial
normal subgroup of G contains MG. In particular if G = MG, then G is simple.

Thus when G 6= MG then the group G/MG is the largest non-trivial quotient of G.
For x ∈ X we also denote by G0

x the subgroup of elements that fix pointwise a neighborhood
of x, and call it the germ-stabilizer of x. Further we say that G has the independence property
for pairs of germs if for every distinct x1, x2 ∈ X and for every elements g1, g2 ∈ G such that
g1(x1) 6= g2(x2), there exists g ∈ G and open neighborhoods Ui 3 xi such that g coincides
with gi in restriction to Ui for i ∈ {1, 2}.

Theorem 14.2. Let X be a locally compact Hausdorff space, and let G ⊆ Homeo(X) be a
minimal micro-supported subgroup of homeomorphisms of X satisfying the following conditions:

i) the action of G on X is extremely proximal;
ii) for every x ∈ X the germ-stabilizer G0

x acts minimally on X r {x}.
Assume that ϕ : G→ Homeo+(S1) is a faithful minimal action.

Then there exists a continuous surjective map π : S1 → X which is G-equivariant with
respect to the ϕ-action on S1 and the natural action on X. Moreover, if the action of G on X
has the independence property for pairs of germs, then X is homeomorphic to S1 and the map
π : S1 → X is a covering map.

Before giving the proof we give some comment on the statement.

Remark 14.3. The condition that ϕ be minimal is not so restrictive, since every group action on
S1 either has a finite orbit (and thus is semi-conjugate to an action factoring through a finite
cyclic group), or is semi-conjugate to a minimal action. The condition that ϕ is faithful cannot
be avoided, since in this generality little can be said about actions of the largest quotient
G/MG (which could even be a non-abelian free group, see [59, Proposition 6.11]). However if
G = MG, then theorem implies that every non-trivial action ϕ : G→ Homeo(S1) factors onto
its standard action on X.

Remark 14.4. It is likely that the assumptions on G in Theorem 14.2 may be relaxed or
modified, and we did not attempt to identify the optimal ones. In particular we do not know
whether the assumption that the action of G has independent germs is needed in the last
statement. However, note that even with this assumption, the map π may be a non-trivial
self-cover of S1 (thus it is not necessarily a semi-conjugacy to the standard action). Indeed the
groups of homeomorphisms of the circle constructed by Hyde, Lodha, and the third named
author in [50, Section 3] satisfy all assumptions in Theorem 14.2 and their action lifts to an
action on the universal cover R→ S1, thus also lifts to an action under all self-coverings of S1

The proof of Theorem 14.2 follows a similar approach the proofs of its special cases that
appeared in [60, Theorem 4.17] for Thompson’s group T and in [81, Theorem D] for the
groups T(ϕ) of piecewise linear homeomorphisms of suspension flows defined there. The main
difference is that some arguments there make crucial use on specific properties of those groups,
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such as the absence of free subgroups in the group of piecewise linear homeomorphisms of an
interval, while here we get rid of these arguments using Proposition 5.4, and this allows for a
generalization to a much broader class of groups.

Proof of Theorem 14.2. Assume that ϕ : G→ Homeo0(S1) is a faithful minimal action. First
of all, note that there is no loss of generality in supposing that ϕ is extremely proximal.
Namely since G is non-abelian, then by Theorem 2.16 every minimal faithful action of
ϕ : G → Homeo0(S1) has a finite centralizer Cϕ and the action ϕ descends via the quotient
map S1 → S1/Cϕ ∼= S1 to an extremely proximal action ϕep. Thus by replacing ϕ with ϕep we
can assume that ϕ is extremely proximal to begin with.

Given x ∈ X we will denote by Kx := (G0
x)c the subgroup of all elements whose support is

a relatively compact subset of X r {x}, i.e. the union of the groups GU , where U varies over
open subsets with U b X r {x}. Note that Kx is a normal subgroup of G0

x.
By extreme proximality and minimality, for every U b X there exists g ∈ G such that

g(U) ∩ U = ∅, so that GU is conjugate to a subgroup of its centralizer. Thus by Proposition
5.4 we have Fixϕ([GU , GU ]) 6= ∅. By compactness of S1, we deduce that for every x ∈ X we
have

Fixϕ([Kx,Kx]) =
⋂

UbX,x∈U
Fixϕ([GU , GU ]) 6= ∅.

Note also that Fixϕ([Kx,Kx]) 6= S1, otherwise the subgroup [Kx,Kx] would act trivially,
contradicting that the action is faithful. Now fix x ∈ X and consider the subset C :=
Fixϕ([Kx,Kx]), which is G0

x-invariant by normality of [Kx,Kx] in G0
x. Since we are assuming

that ϕ is extremely proximal, we can find a sequence (gn) in G such that gn.C tends to a point
ξ ∈ S1 in the Hausdorff topology. Upon extracting a subnet from (gn), we can suppose that
gn(x) tends to a limit in the Alexandroff compactification X̂ := X ∪ {∞X}. Suppose that this
limit is ∞X , that is, that (gn(x)) escapes every compact subset of X. Then every element
g ∈ Gc belongs to G0

gn(x) for n large enough, so that ϕ(g) preserves gn.C for every n large
enough, and thus fixes the point ξ. Since g ∈ Gc is arbitrary, we deduce that ϕ(Gc) fixes ξ,
and by normality of Gc in G and minimality of ϕ we deduce that ϕ(Gc) = {id}, contradicting
that the action is faithful. Thus the limit of (gn(x)) is a point y ∈ X. The same argument as
above then shows that ϕ(G0

y) fixes ξ.
Once the existence of such points y ∈ X and ξ ∈ S1 has been proven, the rest of the

proof is essentially the same as in [60] or [81], but we outline a self-contained argument for
completeness. We claim that for every ζ ∈ S1 there exists a unique point π(ζ) ∈ X such that
ϕ(G0

π(ζ)) fixes ζ, and that the map π : S1 → X defined in this way is continuous.
Let us first show that if such a point exists, it must be unique. Namely assume that

x1, x2 ∈ X are distinct points such that ϕ(G0
xi) fixes ζ for i ∈ {1, 2}, so that the ϕ-image of

H := 〈G0
x1 , G

0
x2〉 fixes y. Let U ⊂ X be any non-dense open subset of X. After the assumption

of minimality of the action of G0
x1 on X r {x1}, we can find g ∈ G0

x1 such that g(x2) /∈ U ,
so that g−1GUg = Gg−1(U) ⊂ G0

x2 ⊂ H. Since we also have g ∈ H, we obtain that GU ⊂ H.
Thus H contains the non-trivial normal subgroup N of G generated by GU where U varies
over all non-dense open subsets of X. Then ϕ(N) fixes ζ, which is a contradiction using again
minimality and normality of N .

To show existence and continuity, one first checks the following fact (∗): if (zi) is a net of
points in X converging to a limit z ∈ X̂ := X ∪ {∞X}, and if (ζi) is a net of points in S1

converging to some limit ζ ∈ S1 such that ϕ(G0
zi) fixes ζi for every i, then z ∈ X and ϕ(G0

z)
fixes ζ. The proof of (∗) follows similar arguments as above; more precisely, the fact that z
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belongs to X is shown by arguing as above, to prove that otherwise the group ϕ(Gc) would fix
ζ, and the same argument also shows that ϕ(G0

z) fixes ζ.
Now let ζ ∈ S1 be arbitrary, and choose y ∈ X and ξ ∈ S1 such that ϕ(G0

y) fixes ξ (whose
existence has already been proven). By minimality of ϕ we can find a net (gi) in G such
that ζi := gi.ζ converges to ζ, and upon extracting a subnet we can suppose that yi := gi(y)
converges to some z ∈ X̂. Then by (∗) we have z ∈ X and ϕ(G0

z) fixes ζ. This shows the
existence of a point π(ζ) := z as desired, and (∗) also implies the continuity of the map
π : S1 → X defined in this way. The map is clearly G-equivariant, so its image π(S1) is a
compact G-invariant subset of X, so by minimality of the standard action of G on X, the map
π must be surjective.

Suppose now that G has the independence property for pairs of germs and let us show that
the map π must be injective (and thus a homeomorphism). As a preliminary observation,
note that for every x ∈ X the fiber π−1(x) must have empty interior, since otherwise by
G-equivariance, the open subset Int(π−1(x)) would be a wandering domain in S1, contradicting
minimality. Assume by contradiction that there exist ξ1 6= ξ2 in S1 such that π(ξ1) = π(ξ2) =: x,
and let I := (ξ1, ξ2) be the arc between them (with respect to the clockwise orientation of S1).
Since I 6⊂ π−1(x), we can choose ζ ∈ I with z := π(ζ) 6= x. By minimality of ϕ, there exists
g ∈ G such that g.ζ /∈ I.

Assume first that g(x) 6= z. Using the independence property for pairs of germs, we can find
h ∈ G which coincides with the identity on some neighborhood of z, and with g−1 on some
neighborhood of x. Then h−1 ∈ G0

z, so h−1.ζ = ζ. On the other hand gh ∈ G0
x, so that ϕ(gh)

fixes ξ1 and ξ2 and preserves the arc I. Writing g = (gh)h−1, we see that g.ζ = gh.ζ ∈ I,
contradicting the choice of g.

Assume now that g(x) = z. In this case choose an open subarc J ⊂ I containing ζ such
that g.J ∩ I = ∅. Since π−1(z) has empty interior, we can find a point ζ ′ ∈ J such that the
point z′ := π(ζ ′) is different from z. Then we have g(y) 6= z′, so we can repeat the previous
reasoning using the points ζ ′, z′ instead of ζ, z. This provides the desired contradiction and
shows that the map π is injective. �

This implies a rigidity result for groups that are given by a locally moving action on the
circle (in the sense that for every proper interval I ⊂ S1, the rigid stabilizer acts on I without
fixed points).

Corollary 14.5. For X = S1, let G ⊆ Homeo0(X) be locally moving. Then for every faithful
minimal action ϕ : G → Homeo0(S1), there exists a continuous surjective equivariant map
π : S1 → X. Moreover, if the standard action of G on X has the independence property for
pairs of germs, then π is a covering map.

Example 14.6. Let us explain how Corollary 14.5 recovers the result of Matsumoto that every
non-trivial action of G = Homeo0(S1) on S1 is conjugate to its standard action. Note that
G clearly satisfies all assumptions of Corollary 14.5 and has the independence property for
pairs of germs. Since G has elements of finite order, it cannot act non-trivially on the circle
with a fixed point, and since moreover it is simple it cannot act with a finite orbit, so that
every non-trivial action ϕ : G→ Homeo0(S1) must be semi-conjugate to the minimal action
ϕmin (which is automatically faithful). Corollary 14.5 then shows that ϕmin is the lift of its
natural action via a self-cover, and again it is not difficult to see (using elements conjugate
to rotations) that this is possible only if ϕmin is conjugate to the standard action, and in
particular all its orbits are uncountable. If ϕ had an exceptional minimal set Λ ( S1, then
every connected component of the complement would be mapped to a point with a countable
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orbit, so that this is not possible. We deduce that ϕ is minimal, thus conjugate to ϕmin and
thus to the standard action.

Example 14.7. In a similar fashion, Corollary 14.5 recovers the result of Ghys [44] that every
action of Thompson’s group T on the circle is semi-conjugate to its standard action. Indeed T
satisfies all assumptions in Corollary 14.5. As above, one uses its simplicity to show that every
action ϕ : T → Homeo0(S1) is semi-conjugate to a faithful minimal action, and thus by the
corollary, to the lift of the standard action through a self-cover π : S1 → S1, and then argue
that this is possible only if π is a homeomorphism.

By considering other kind of spaces, Theorem 14.2 can be used to construct groups that
cannot admit interesting actions on the circle.

Corollary 14.8. Let X be a locally compact Hausdorff space which is not a continuous image
of S1 (e.g. if X is not compact, or not path-connected), and let G ⊆ Homeo(X) be a subgroup
as in Theorem 14.2. Then G has no faithful minimal action on S1. In particular, if G is
simple, every action ϕ : G→ Homeo0(S1) has a fixed point.

Example 14.9. Examples of groups to which Corollary 14.8 are the groups of piecewise linear
homeomorphisms of flows T(ϕ) from [81]. For every homeomorphism ϕ of the Cantor set X,
the group T(ϕ) is a group of homeomorphisms of the mapping torus Y ϕ of (X,ϕ) defined
analogously to Thompson’s group T (see [81] for details). When ϕ is a minimal homeomorphism,
the group T(ϕ) is simple [81, Theorem B] and its action on Y ϕ satisfies all assumptions in
Theorem 14.2. Since however the space Y ϕ is not path-connected, Corollary 14.8 recovers
the fact proven in [81, Theorem D] that every action of the group T(ϕ) on the circle has a
fixed point. Moreover, it allows to extend the conclusion to many groups defined similarly but
not by PL homeomorphisms, for instance any simple overgroup of T(ϕ) in Homeo(Y ϕ) (see
Darbinyan and Steenbock [29] for a vast family of such groups).
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