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Abstract 

Diels Alder (DA) reaction is regarded as a quite useful strategy in organic and 

macromolecular syntheses. The reversibility of this reaction and the advent of self-repair 

technology, as well as other applications in controlled macromolecular architectures and 

crosslinking, have strongly boosted that research activity, that is still undergoing a huge 

interest for both academic and industrial research. DA reaction is a simple and scalable 

toolbox. Though it is well-established that the furan/maleimide is the most studied 

diene/dienophile couple, this perspective article reports strategies using other reversible 

systems with deeper features on other types of diene/dienophile pairs being either petro-

sourced (cyclopentadiene, anthracene) or bio-sourced (muconic and sorbic acids, myrcene and 

farnesene derivatives, eugenol, cardanol). That Perspective is composed of four sections. The 

first one briefly recalls the background on the DA reactions involving cyclodimerizations, 

dienes and dienophiles, parameters affecting the reaction while the second part deals with the 

Furan/Maleimide reaction. Third, petro-sourced and bio-sourced (or products becoming bio-

sourced) involved in DA reactions are also listed and criticized. Finally, the authors’ opinion 

is given on potential future of the crosslinking-decrosslinking reaction, especially regarding 

the process (e.g., key temperatures of decrosslinking) or possibly monocomponents. It 

presents both fundamental and applied research on DA reaction and their applications.  
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1. Preamble 

 

Although the Diels Alder reaction has been known for many decades, the literature has 

become more and more abundant from the 90ies. Deeper studies based on weak bonds  

describe original strategies to synthesize new molecules or macromolecules. One of the 

unexpected examples deals with reversible deactivation radical polymerizations (RDRP) 

Durmaz, Colakoglu, Tunca and Hizal [1], [2] which offer the design of macromolecules 

with controlled architectures (as block, graft and star copolymers). 

Such reactions arise from various challenges developed in both academia and industry with 

either environmental or economic concerns. 

Specific topics involving Health (case of drug delivery), packaging (case of recycling), 

coatings (case of self-repairing) and electronic packaging where cracking occurs due to 

differences in thermal expansion index need a better control of the chemical reactions, 

especially on their reversibility. 

However, the domains of applications require various reaction temperatures and eventually 

these of reversed reactions. For example, in Health, the temperatures can range from room 

temperature to ca. 50 °C while for paints and varnishes, they can reach up to 120 °C and, for 

industrial post-crosslinking (oven painting, coatings, composites and 3D materials) [3], they 

may be raised up to 200 °C. 

In the last few years, Health (2.4.10 DA in health) has more attracted the researchers’ interest 

rather than conventional paints, coatings, hybrids [4], and adhesives. In addition, and more 

recently, the topic related to self-healing has been even more attractive in the scientific 

community and many strategies of synthesis have been reported (2.4.5 DA for self-healing.  

As summarized in this preamble, Diels Alder (DA), is one of the most used methodology, 

well-developed and scaled up in industry thanks to the thermal stimuli which can be suitably 

applied in many applications. 

Mainly, Gandini’s team [5-7] has been the pioneer in that area and has comprehensively 

reviewed the maleimide-furan couple in 2013. 
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Due to our specific interest in many topics involving DA reaction: self-curing on 

demand technology (SCOD) to cure elastomers [8], repairing coatings [9, 10] and adhesives 

[11] , The growing importance of the use of bio-based and low-toxic molecules, and a 

massive bibliographic search, we decided to update the actual trends and knowledge of DA 

reaction. 

 

This present review does not aim at updating Gandini’s reviews [5-7] or the literature on that 

topic by reporting many articles and patents, but it plans to revisit the Diels Alder reaction 

globally in the organic and polymer field. This manuscript supplies an overview on the use of 

new molecules (such as dienes or dienophiles) involved in such a reaction, with a specific part 

devoted to bio-sourced molecules. Another objective aims at updating the knowledge of the 

reaction temperatures whatever the DA or retro DA (rDA) reactions, when reported. 

However, the rDA has not been so comprehensively investigated [12]. Finally, several 

applications will be proposed, highlighting their advantages and limitations. Hence, a critical 

balance appraisal of the overall situation of such a reaction will be given, with the 

perspectives of new couples able to bring new insight on the temperature range in DA and 

retro DA reactions.  

2. Generalities 

2.1 Introduction 

 

The Diels Alder (DA) reaction is a cycloaddition between a diene and a dienophile and has 

been known for a long time [13-17] .The purpose of this reaction, which was initially used in 

organic synthesis, i.e. to get new cyclic molecules, has evolved over time. In addition, the 

Diels-Alder reaction has then been required to prepare thermostable polymers, and 

polyimides, using the addition of bismaleimides on furans, followed by aromatization reaction 

to stabilize the molecules [18, 19]. The application of the DA reaction into polymer synthesis 

constitutes a recent research topic, and the number of studies on DA reaction is still growing 

constantly (Figure 1).  
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Figure 1: number of publications on Diels Alder per year, taking all subjects into account from 1930 up to now. 

Source from SCI Finder. 

More recently, these reactions have been looked not for molecules stabilization but for their 

ability of heat reversion with the aim at preparing smart polymers [20]. Ideally, the idea is to 

enable that the first reaction could be achieved at room temperature and then, could be undone 

by a moderate temperature heating. The temperature, here, acts as a stimulus in the 

construction/deconstruction process. Lastly, along the same line, many applications appear 

based on the concept of self-repairing, recycling materials and the control of the cross-linking. 

Thus, it completely makes sense to note the concept of reversibility being nowadays 

developed in polymer chemistry. In this topic, the DA reaction is probably the most known 

and studied pathway. Especially, the furan-maleimide reaction (F-M) has almost been 

comprehensively investigated. In the specific F-M field, though particularly well-documented, 

updating Gandini’s reviews [5-7] would be of interest. However, in order to use the thermal 

reversibility behavior of the DA reaction into the polymer industry, it is worth controlling and 

adapting the building block and the stimuli with regard to the need of the user. 

The purposes of this present review aim at i) showing that the DA reaction is omnipresent in 

the field of polymer and ii) proposing new diene/dienophile couples other than 
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furan/maleimide, thus being able to enlarge the range of heat reversion and its application in 

polymer industry. First, after a brief recall of DA background, the F/M couple will be 

presented and used as an example for the application of DA reaction in the area of  Polymer 

Science. Many different strategies will be highlighted, developed and recent use of FM 

reaction for high performance polymers will be described. In a second part, to underline some 

possible and recent alternatives ofF/M couple, other dienes and dienophiles, which can be 

either petro- or bio-sourced, will be developed and criticized in order to try to complete 

Gandini’s reviews [5-7] and articles, and to broaden the scope to all systems of cycloaddition. 

A special attention will be paid on the availability of these building blocks and examples of 

their uses in DA polymer chemistry will be added if they exist. Then, a discussion will open 

toward the future of DA reactions in self-healing, crosslinking-decrosslinking and further 

applications, especially regarding the process and the industry expectations. In addition, our 

contribution will not deal with the Huisgen  “click” chemistry [21], in contrast to many 

reviews.  

2.2 Cycloaddition 

 

The cycloadditions represent a powerful strategy in organic chemistry, and it implements 

many products classified according to two digits [x + y]. x and y identify both the number of 

π electron involved in the electronic rearrangement and the number of atoms originating the 

unsaturated six-membered ring. The cycloaddition of two molecules by π orbital can be [2 + 

2], [2 + 4], and [4 + 4] (Figure 2).  These reactions are broadly irreversible but can sometimes 

be reversible through thermal or photochemical treatment. By far, the most used method is the 

[4+2], diene-dienophile, of Diels-Alder reaction. 
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Figure 2 : Example of cycloaddition reactions [2+2] and [4+2] 

 

However, the other less-known cycloadditions are more and more frequently used to complete 

the range of temperature or of the wavelengths applied to reverse the system, such as the case 

of anthracene [4+4] that occurs at 366 nm and dismantles to 254 nm [22, 23].  The 

cycloaddition reaction can be intramolecular or extramolecular. The most classic ones remain 

the [4+2], called Diels Alder, that has been the subject of many publications and a 

comprehensive book written by Fringuelli and Taticchi [24-30]. However, the Gandini’s 

update [5] on both the selective furan/maleimide couple and the resulting applications on 

polymers is currently the reference in this area. A first step briefly recalls the basic 

knowledges, as reported in the Fringuelli and Taticchi’s book [24-30]. 

2.3 Electronic effects of the Diene/Dienophile in Diels-Alder Reactions 

 

As reported in the Fringuelli and Taticchi’s book [24-30], the electronic effects of the 

Diene/Dienophile induce a huge influence on the cycloaddition rate. Most of the time, during 

the Diels-Alder (DA) reaction, the electron-donating substituted diene accelerates the 

cycloaddition with an electron-withdrawing substituted dienophile. This reaction is called a 

"normal electron-demand DA reaction”  [31] (Scheme 1). 
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Scheme 1 : Normal electron-demand Diels-Alder reaction between a diene and a dienophile 

Another case exists in which the electron-withdrawing  group of the diene enhanced the D-A 

reaction with an electron-donating dienophile [32] (Scheme 2). This reaction is called 

"inverse electron-demand DA reaction”.  

 

Scheme 2 : Inverse electron-demand Diels-Alder reaction [32] 

This reverse reaction has changed the overall thinking of the D-A reaction and leads to reflect 

on the different possible diene/dienophile couples for the synthesis of the polymers. The 

diene/dienophile couple is essential to promote the DA reaction and the nature of the couple 

affects the experimental condition of its success. Some of well-known dienes (Figure 3) and 

dienophiles (Figure 4) have been already involved in the cycloadditions of DA, well-

described by Fringuelli and Taticchi [24-30]. 
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Figure 3 : List of well-known representative diene structures involved in DA reactions  
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Figure 4 : List of well-known representative dienophile structures ranked between a) acyclic and b) cyclic molecules 

The lists supplied in Figure 3 and Figure 4 are quite relevant.  However, they deserve to be 

updated with, for example, the addition of biomass products which have been increasingly 

popular nowadays. Indeed, recently, thanks to the gain of growing interest for bio-based 

building-blocks, new dienes and dienophiles, even if they existed before for other 
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applications, are now started to be involved in the Diels-Alder reaction such as cyclopenta-

1,3-diene [33] (Figure 5a) which was already used before [34, 35] or like anthracene [36, 37] 

(Figure 5b). Sorbic acid, bio-based, [38, 39] (Figure 5c), myrcene [40, 41] (Figure 5d) its 

homologue farnesene [42] (Figure 5e) or 3-hydroxy-2-pyrone [43, 44]( Figure 5f), just to cite 

some of them, have gained more interest in the DA community. 

 

Figure 5 : Examples of diene structures nowadays used 

As for dienophiles, maleimides [5] (Figure 6a) as still leaders in this field. However, new 

challengers emerge like citraconic acid and derivatives [45, 46]  (Figure 6b), itaconic acid 

and derivatives [47, 48] (Figure 6c) or vinyl ketones [49, 50] (Figure 6d). A special section 

will be dedicated to these new or reused dienes/dienophiles building blocks and their 

applications. 

 

Figure 6 :  Example of structures of dienophiles used nowadays 
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2.4 Furan/Maleimide (F/M) couple. 

2.4.1 Generalities about furan and maleimide 

 

One of the most commonly and largely described diene/dienophile couples is the combination 

of furan and maleimide [8].  

Furan is a pseudo aromatic heterocycle containing four carbon atoms and one oxygen. In 

1870, Limpricht [51] pioneered its synthesis. Furan is mainly obtained from furfural, a bio-

based aldehyde resulting from the distillation of cereals. In the middle of the 20
th

 century, the 

Du Pont de Nemours Company developed industrial ways (Scheme 3) to produce furan from 

the reaction between furfural and water steam catalyzed by Zn-Fe or Mg-Fe chromite [52, 

53]. Later, that company proposed to synthesize furan from the oxidation of butadiene [54]. 

They also improve the furfural process by using a palladium catalyst which permits to avoid 

the use of steam in the reaction. Therefore, furfural decomposes into furan and carbon 

monoxide at 200 °C under pressure. [55]. Furan and its derivatives [56, 57] (Scheme 4) can 

be involved in metalation and can react as an aromatic molecule in electrophilic substitutions, 

as an ether for ring opening reactions, as well as in DA reaction as a diene [58].  

 

Scheme 3 : Industrial pathways from furfural or butadiene to produce furan [52, 53] [54] 

 

Several other furan derivatives produced from biomass have also been quite used. Cho et al. 

[57] supplied a comprehensive and interesting overall scheme for the production of various 

functional furans from biomass (cellulose and hemicellulose) (Scheme 4). Both types of 

furans, monosubstituted (in 2-position) and disubstituted (in 2-5 positions) have been used. 

The former ones are mainly involved in polyadditions between -bis(furan)s and telechelic 

bismaleimides. The latter ones enable to crosslink polymers bearing furanic groups located in 

the main chain. That case requires bis(maleimide)s to favour that crosslinking. In addition for 

further details on this matter, a complete overview on furan and its derivatives was published 

in 2020 [59]. 
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Scheme 4: Synthetic pathways of furanic compounds prepared from biomass-based polymeric carbohydrates [57] 

(reproduced from ref [57] with permission from ACS, copyright 2013) 

The term “maleimide” can concern an unsaturated imide and all the associated derivatives, 

commonly used as building blocks for many organic reactions. Maleimides can be mainly 

obtained in a two-step synthesis from the reaction of maleic anhydride with amines followed 

by a dehydration step (Scheme 5). Actually, in contrast to aliphatic ones, aromatic 

maleimides have already reached the industrial scale obtained by dehydration from acetyl 

anhydride and sodium acetate [60]. The former ones have been prepared by academic teams 

only, one example being from ZnBr2 and silanes [8] (Figure 7) or from isocyanates [61-64] 

(Scheme 6). 

 

 

Scheme 5 : Synthetic way for the preparation of maleimides from maleic anhydride [61, 62] 

 

 

 

Scheme 6 : Synthesis of maleimide from maleic anhydride and isocyanate compound [61-64] 
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Figure 7 : Various structures of telechelic and grafted maleimide structures based on PPG and PEG [8] 

 

The desired maleimide derivatives can be targeted by selecting the amine involved in the 

reaction [60, 65] (Scheme 5 and Scheme 7). Another advantage deals with the easy synthesis 

of  bis-maleimides [66]. 

 

 

Scheme 7 : Various synthetic routes for the preparation of maleimides derivatives [67-75] 
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It is also possible to find natural maleimides with complex structures produced by fungi, as in 

the case of antrodia camphorata [76, 77]  able to produce several maleimides and maleic 

anhydrides or for Paecilomyces farinosus yielding farinomalein [78] (Scheme 8). 

 

 

Scheme 8 : Examples of natural maleimide compounds 

 

This keen interest of this specific diene/dienophile couple is due to the fact that the pair 

furan/maleimide (F/M) DA reaction occurs commonly at room temperature and this couple 

displays a moderately low temperature for its retro-DA reaction (around 110 °C). This smooth 

thermal reversibility, applied in polymer synthesis, opens an attractive way for recycling, self-

healing, and internal crosslinking processes. It should be noted that the value of the 

temperature of the retro-DA depends on the diene/dienophile couple used, here F/M, but is 

also influenced by the structure and the possible substituents born by these molecules. Such a 

retro-DA happens at an average temperature of around 100-110 °C. However, there are many 

examples in the literature when the retro-DA of the F/M couple occurs from ca. 80-90 °C [5, 

79, 80] to 150-160 °C [81, 82]. DA reaction is also subjected to kinetic and thermodynamic 

controls. Indeed, the reaction between two cyclic compounds leads to two diastereoisomers: 

one called “endo” dominates (as the kinetic product that is faster formed) while the other one, 

named “exo”, is thermodynamically favourited at higher temperature. The formation and 

quantification of these both diastereoisomer can be evidenced by NMR spectroscopy. The 

endo adduct is always unblocked (unprotected) at lower temperature than the exo one [83, 

84], which is thermodynamically more stable. For example the retro-DA, monitored by DSC, 

could start from 60 °C for some endo adducts or 100 °C for the exo adducts [8] Therefore, it 

is coherent to think that these phenomena are commonly applicable at some other 
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diene/dienophile couples and enlarge the range of DA/retro-DA temperatures achievable for a 

wider field of application[85].  

In the case of maleic anhydride, Eggelte et al. [86] studied the reaction involving furan onto 

this anhydride and its derivatives. These authors showed that the endo isomer was quite 

difficult to be produced because of the very low temperature of rDA. 

The versatility of the use of furan and maleimide moieties in polymer synthesis is also a major 

advantage. Indeed, as very well-described in Gandini's review [5], the F/M couple takes 

action in different ways to the development of polymer materials by polycondensation 

strategies. More recently, some pertinent reviews [87, 88] have reported the wide variety of 

polymer architectures  obtained from DA and other stimuli-responsive polymers.  

2.4.2 Polyaddition of furan-maleimide 

 

It is possible to synthesize telechelic diene and dienophile monomers in the purpose to 

produce polymers by thermally reversible linear polyaddition. (Scheme 9). In 1961, Stille 

pioneered the first DA polyaddition that did not involve any bisfurans but telechelic 

bis(cyclopentadiene)s and various bis(dienophile)s as di(maleimide)s [89].  

 

Scheme 9: Polyaddition of telechelic bis(furan) onto bis(maleimide) 

It took 25 years before DA polyaddition involved the F/M pair. In his article, Tesoro and 

Sastri [90] functionalizes a siloxane with two furan functions and then initiates polyaddition 

using a bis(maleimide) (Scheme 10). 
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Scheme 10 : Functionalization and DA polyaddition containing siloxane moities [90] 

 

That pioneered strategy has inspired many authors for the synthesis of well-known polymers 

[91-93]. This route consists in functionalizing one or more units of a polymer by a member of 

the F/M couple to obtain an A-A monomer. The polyaddition is then initiated using another 

B-B monomer (Scheme 11). For example, in order to produce polyurethanes, Gaina et al. 

synthesized original compounds in which the furan moieties are surrounding a urethane bond 

[80] while Shibata succeeded in the production of high performance hybrid polyesters [94]. 

Plenty of different A-A and B-B monomers such as poly-L-lactide [95], non-isocyanate 

hydroxyurethane [96] or epoxy [97] can be designed from this way and some of them do not 

necessary involve the functionalization of an existent monomer [68]. Then, it is possible to 

undo and redo the desired hybrid polymer, facilitating its recycling or increasing its lifespan 

thanks to a self-healing behavior.  
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Scheme 11 : DA polyaddition of bismaleimides containing urethane moities and bisfuran 

Another technique consists in developing polyfunctional polymers using the DA reaction 

between a first moieties of monomer comprising a furan and another one containing a 

maleimide group (Scheme 12). Once the monomer has been synthesized by DA reaction, 

polymerization can then take place like is the case of telechelic bis(cyclocarbonate)s and 

bis(amine)s for non-isocyanate polyurethane (NIPU) synthesis [79].  

 

Scheme 12: Polymerization of telechelic bis(cyclocarbonate)s with bisamines to yield non-isocyanate polyurethane 

(NIPU) from F/M DA adduct [79]. 

Furthermore, it is possible to directly functionalize a DA adduct to obtain the monomer of 

interest such as a polyol for the synthesis of polyester [98, 99] or some epoxy prepolymer 

[100]. As with the first strategy, the reversibility of the DA reaction makes it possible to plan 

recycling or self-healing applications. In addition, this technique is versatile and allows to 

design the monomer involved in the synthesis of the polymer of interest with more 

possibilities. The same strategies can also be applied by functionalizing a monomer bearing 

both furan and maleimide functions (types A-B). During the preparation of these monomers, it 

is therefore necessary to go through protection-deprotection steps to avoid early side-

polymerization. (Scheme 13) [101, 102]. 

Scheme 13 : Synthesis and DA polyaddition of an AB furan/maleimide monomer [102]. 
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2.4.3 Networks 

 

By increasing the number of furan [103, 104] and maleimide [8, 105] functions born by the 

monomers, it is also possible to synthesize non-linear polymers leading to more or less 

densely crosslinked networks (Scheme 14). 

 

Scheme 14: Example of a crosslinked F/M network pathway  

The F/M pair can also be used in the polymer field as a crosslinking agent in order to 

crosslink polymers. The thermally reversible faculty of the DA reaction associated with 

crosslinking is widely studied and exploited in industry. As a model, Chen et al. obtained 

crosslinked hard and transparent monoliths from tetrafurane and tris(2-maleimidoethyl) amine 

[106] , monitoring the DA reaction by UV and solid state NMR spectroscopies at various 

temperatures. At 24 °C, a DA portion up to 60-70 % required 5 days while at 75 °C, only 3 

hrs were enough to reach completion. Solid state reversibility was tested via a series of 

heating cycles at different temperatures and then quenching in liquid nitrogen. Figure 8 

illustrates fives cycles and the sample was noted to be irreversible below 120 °C while at 130 

and 150 °C, ca. 12% and 25% of the DA adduct disconnected. 

 

Figure 8 : Thermal reversibility of polymer resulting from DA of a tetrafurane with a tris(2-maleimidoethyl) amine. 

(A) to (B), 130 °C for 25 min, followed by quenching in liquid nitrogen. (B) to (C), (D) to (E), (F) to (G), and (H) to (I), 

80 °C for 1 hour. (C) ) to (D), (E) to (F), (G) to (H), and (I) to (J), 150 °C for 15 min, followed by quenching in liquid 

nitrogen. (reproduced from [106] with permission from Sciencemag, copyright 2002). 
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It is also possible to modify any polymer chains with a diene or a dienophile and to use the 

appropriate maleimide [107-116] or furan [117-119] as a crosslinking agent (Scheme 15a). In 

addition, the polymer chains can also be functionalized with both dienes and dienophiles 

functions which by DA reaction, will favor the crosslinking [82, 119-123] (Scheme 15b). It is 

also worth noting that a polymer with pendant moieties, instead of being crosslinked with a 

polyfunctional agent, can simply be grafted [124, 125]. Thus, many possibilities are easily 

anticipated for potential reversible grafting for coatings, electronics, aerospace, 

decontamination, or medical applications. 

 

 

Scheme 15 : Examples of reversible DA crosslinked material a) with a bis(maleimide) crosslinking agent b) thanks to 

an internal reaction between furan and maleimide-containing polymers.) 

 

2.4.4 Miscellaneous and different uses of furan-maleimide couple and DA 

reaction 
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Sometimes, during the synthesis of these polymers, the reversibility of the DA reaction is not 

desired. If necessary, it is possible to stabilize the DA F/M adduct by an aromatization with 

acetic anhydride [90], with H2SO4 [126] (Scheme 16) or a thiol-ene reaction step [127] ( 

Scheme 17, vi)).Thus, they prevent (without the double bond) the retro-DA from occurring. 

As expected, polymer materials which have undergone an aromatization step demonstrate 

better thermal stability [19, 90, 128]. 

 

Scheme 16 : DA reaction followed by further aromatization of the furan/maleimide adducts [90].  

 

Thanks to the researcher’s imagination, functionalizing polymer chains with diene/dienophile 

moieties is a powerful tool for molecular design. For example, located at the end-group of a 

polymer, different polymer blocks can be linked with reversible DA adduct, allowing an easy 

path to do and undo the structure obtained. [1, 2](Figure 9). 

 

 

Figure 9 : Reversible diblock and grafted polymer strategies with anthracene in presence of a dienophile 

 

Li et al. [127] showed that if the DA adduct is a part of a cyclic polymer backbone, its retro-

DA allows a facile modification from cyclic to linear topology. (Scheme 17)  
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Scheme 17 : Schematic illustration for the preparation of a reversible cyclic PMMA containing a F/M DA adduct (i) 

AO-Br:MMA:CuBr:CuBr2:PMDETA = 1:100:0.1:0.01:0.25, acetone as solvent, 50 °C, 2.5 h; (ii) l-alkyne-PMMA-

Br:NaN3 = 1:30, DMF as solvent, 30 °C, 24 h; (iii) CuBr:PMDETA = 1:2, toluene as solvent, dilute condition, 50 °C; 

(iv) toluene as solvent, concentrated condition, 110 °C for 24 h and then 60 °C for 5 days; (v) toluene as solvent, dilute 

condition, 110 °C, 24 h; (vi) c-PMMA:1-dodecanethiol:TPO = 1:5:0.4, 1, 4-dioxane as solvent, 365-nm UV irradiation, 

5h. [127] (reproduced from ref [127] with permission from Elsevier, copyright 2017)  

 

Lastly, in order to synthesize sequence-controlled copolymer, Han et al. [129] smartly used a 

F/M cycloadduct-based protected form to perform latent monomer for RAFT polymerization. 

For instance, maleimide is frequently introduced into polymers prepared via a radical 

mechanism under its furan-cycloadduct form, and easily deprotected by thermal and/or 

pressure treatment [21]. Monomers reported by Han et al. [129] were DA adducts obtained 

from furan and different functionalized maleimides. The difference of the retro-DA 

temperature of each different endo-exo F/M couples was monitored between 40 °C and 110 

°C to unprotect, one at the time, each monomer involved in the reaction. (Scheme 18).  



23 

 

 

Scheme 18 : Sequence-controlled RAFT quaternary polymerization of styrene and functionalized maleimide 

monomers using the F/M DA adduct as latent monomer [129] 

  

Finally, each polymer or molecular block attached to a F/M moieties can begin a larger 

elementary building block able to design more complicated structures such as reversible star-

like polymers or dendrimers [5] (Scheme 19), [130, 131] (Scheme 20). 

 

Scheme 19: Example of the structure of a dendrimer based on furan/maleimide reversible DA reaction [5]. 
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Scheme 20 : Structure of furan–maleimide core containing 32-arm dendritic initiators synthetized by Munkhbat et al. 

[131]. (reproduced from ref [131] with permission from Wiley, copyright 2017) 

Another pertinent use of DA was achieved by Hawker’s team. They used a norbornadiene, 

DA adduct of cyclopentadiene and acetylene, which is also a dienophile, as chain-end 

functional polymers [132]  and then ii) the coupling of two polymers (being synthesized by 

RDRP or ROMP, via a cascade click strategy at room temperature yielding block copolymers 

(BCPs) [133]. Then, a selective and rapid deprotection in the presence of tetrazine enabled to 

introduce, into synthetic polymers, highly reactive “masked” cyclopentadiene (Cp) 

functionalities as chain-end groups in an efficient manner. However, and surprisingly, no retro 

DA was investigated, possibly the BCP being quite stable or from the presence of the C5H11 

group. 

 

2.4.5 DA for self-healing 

 

Self-healing materials have the ability to auto-repair suffered damages themselves or thank to 

an external stimulus. A lot of methods to induce self-healing properties have been proposed, 

using non-covalent bonds [134] and covalent bonds of low bond energy [135] and [136], as 

summarized by Figure 10. 
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Figure 10 : Wide variety of strategies to prepare Self-Healing Materials 

 

The DA reaction, thanks to its ability to do or undo covalent bonds of playing by the 

temperature, is an effective way to design self-healing or self-repairing materials. Many 

studies and reviews about self-healing [20, 137-141] have already considerably described the 

subject and it is still considered as a hot topic in polymer chemistry. Reversible covalent 

chemistries have been harnessed to create covalent adaptable networks (CANs), enabling new 

applications and insights [142]. It is a recent methodology based on efficient associative 

exchange mechanisms which involve the topologic reconfiguration of networks without the 

loss of network integrity [143]. The field of CANs has become a chemical playground where 

molecular reactivity and mechanistic principles meet polymer properties. Dynamic covalent 

linkages within and between polymer chains brings new properties to classical thermosetting 

polymer formulations, in particular in terms of thermal responses, processing options and 

intrinsic recycling abilities.[144]   

 

 

2.4.6 Shape-memory strategies 

 

One of the usefulness getting crosslinked networks from DA adducts is the ability to tune the 

temperature of the DA and retro DA to recycle the materials. Another way to take advantage 
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of this special behaviour is to use it for the development of shape memory materials. The 

concept of shape memory consists of the possibility for a material to be stably deformed 

within a certain temperature range and its capacity to turn back to its original shape after 

heating.   Very recently, Li et al. [145] developed a polyurethane telechelic bis(acrylate) of 

high mechanical performances, excellent recyclability, and shape memory properties with the 

objective to process deformable and recyclable objects for 3D printing. Polyurethane acrylate 

was synthesised from isophorone diisocyanate, hydroxyethyl acrylate and a DA adduct 

(Scheme 21). 

 

 

  

 

Scheme 21 : The synthetic strategy of polyurethane acrylate based on DA dynamic reversible bonding (PUDA) [145] 

(reproduced from ref [145] with permission from Elsevier, copyright 2020)]) 

 

Due to the rigidity of DA adduct in the polyurethane acrylate and the flexibility of 

hydroxyethyl acrylate, the photopolymer resin forms a two phase-morphology after curing, 

which makes it an ideal structure to get shape memory property. 

The shape memory performance of the obtained materials was investigated through fold-

deploy tests (Figure 11) [145] and shape memory cycles measurements (Figure 12) [145]. 
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Figure 11 : Fold-deploy experiment results for the printed samples with polyurethane acrylate (PUDA)-40: (a) 

recovery angle of the printed sample with time in a water bath at different (b) the recovery process of the sample in an 

80 °C water bath; (c, d, e) visual demonstration of shape recovery processes of the printed petal, lamp-chimney and 

gripper in a water bath or with a dryer.  [145] (reproduced from [145] with permission from Elsevier, copyright 

20202). 
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Figure 12 :  Stress-strain-temperature diagram from SMC test of the printed samples with the photopolymer resin 

PUDA-40 [145] (reproduced from [145] with permission from Elsevier, copyright 2020). 

 

In addition to this example, more and more studies have reported the use of DA adducts for 

the fabrication of shape memory materials, either from polyurethane [110], PLA[146], 

polyester [147], polycaprolactone[148]or epoxy resin [149-151]. 

Self-Healing and Shape memory can be combined. Rodriguez et al.[152] introduced the 

Shape Memory Assisted Self-Healing (SMASH) concept on -caprolactone, while a 

comprehensive review was reported by Raquez-Dubois’ team in 2016 [153] 

 

2.4.7 H-Bonding strategy 

 

Furthermore, hydrogen bonding is also useful for DA reactions. As an example, from trifurans 

and 3-maleimide-propanol, Nguyen et al. [154] reviewed the importance of these bonds and 

synthesized polyurethanes (PUs) in which such bonds are preserved during the heating and 

are still inducing some structuration (Figure 13). Indeed, after a first decrosslinking around 

95 °C, these polymers display mobility enough to enable a new crosslinking at 75-85 °C 

whereas the next decrosslinking starts at higher temperature than the first one (around 110-

115 °C). 
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Figure 13 : Schematic representation of a thermoreversible network based on polydimethylsiloxane [154]. 

 

In 2014, Zhang et al. [155] also studied the thermally reversible cross-linked PUs endowed 

with comprehensive remarkable mechanical properties as reported in their previous survey 

[156]. The microphase-separated structure and heterogeneous segmental dynamics were 

highlighted by T2 relaxometry experiments, also used to in situ monitor the reversible cross-

linking associated with DA and rDA reactions. Based on the T2 relaxometry results, these 

authors determined the actual temperature of (r)DA reaction as well as the corresponding 

activation energies of the motion of soft segments.  

2.4.8 DA reversible thermoset (DART) for 3D 

 

Smaldone’s group [157] suggested a DA reversible thermoset (DART) process for a first 

generation of printable DART resins. These resins displayed thermoset properties at use 

temperatures, ultralow melt viscosity at print temperatures, smooth part surface finish, and as-

printed isotropic mechanical properties, hence enabling further erasable surface decoration on 

micron-scale on the printed parts in a post processing setup. 

 

2.4.9. Sealant cured on demand 
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Sealant cured on demand (SCOD) concept deals with the reaction monitoring at a given 

temperature to solve a technical issue which is often applied [158] . The post-crosslinking 

consists in processing a polymer and then to launch the crosslinking when this macromolecule 

is processed. The desired applications encompass the coatings, adhesives, hybrids, 

composites, etc...  

A major application of SCOD concerns materials called “monocomponents” for which the 

action of a thermal or photochemical stimulus [158] favors the curing and one reversibility 

occurs, only. Among them, a classical example deals with masked polyurethanes which can 

be illustrated as follows: when heated, these polymers release an isocyanato function that 

reacts with moisture. Delebecq et al. [159] comprehensively reviewed how to choose 

appropriate blocking agents to regulate the deblocking temperature.  

Actually, that concept was used for DA reaction by our team to block maleimides by various 

furans (acetoxy furans and other furoic esters bearing long chain in order to avoid any bubbles 

in the final material) in the presence of various mercaptans [160]. Increasing the temperature 

(up to 80 °C) enables to unlock the endo compound and spontaneously reacts onto polythiols 

via a conventional thiol-ene reaction. Moreover, we also observed the presence of the exo 

isomer that needed to reach 110 °C to be unlocked. Further, aromatic and aliphatic 

bismaleimides were compared to optimize the retro DA reaction (Figure 14)[161]. Aromatic 

maleimides led to the best compromise to reach a good conversion and easy process. 

 

Figure 14 : aromatic telechelic bis(maleimide) poly(ether) [161] 

All possible uses of the F/M couple in the synthesis of polymers is not only applied to this 

couple. Indeed, they are all transposable to other combinations of dienes and dienophiles. By 

tuning the reactivity of the diene/dienophile couples toward the property of the resulting 

product and on their DA and retro DA temperatures, a wide variety of materials can be 

offered as well as applications. Therefore, it is important, before describing about the current 

application trends of such a reaction, not to be limited to the simple F/M couple but to suggest 

a non-exhaustive list of other potential diene/dienophile candidates involved in the DA 

reaction. 
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2.4.10 DA in health 

 

As demonstrated,  DA reaction plays a massive role in the future of synthetic organic and 

polymer chemistry. Accordingly, its importance for pharmaceutical or biomedical 

applications is steadily increasing. DA is present in the synthesis of biomolecules[162], for 

drug delivery [163, 164], fluorescent sensor [165] and vaccines [166]. it is easy to quickly 

find excellent recent reviews describing the use of the DA tool in the field of drug delivery 

[167] and more generally in chemical biology [168, 169] confirming the interest of this 

reaction in this specific field. 

 

3. Other diene/dienophile couples 

 

Even if F/M couple has been widely described for the DA reaction through the years, it would 

be a mistake to limit ourselves to only this one couple. Indeed, as stated in the introduction, 

many dienes and dienophiles have already been reported for a long time in the DA 

community. In addition, because of the nowadays renewed and growing interest for renewable 

building-blocks, new dienes, and dienophiles, although they were involved in other 

applications several decades ago, are starting to be more and more used in DA reaction. Thus, 

these molecules, able to perform the DA reaction, increase the possibilities drastically and 

may permit to consider the potential limits of F/M couple. It is therefore necessary to present 

these potential candidates before getting involved with the significant applicative fields of DA 

features. 

3.1. Petro-based dienes 

 

At the beginning of the 20
th

 century, the industrialization of oil led to a massive generation of 

molecules. These new petro-based products have influenced and improved the chemical 

industry. At the same time, the DA reaction was also discovered. Among all dienes, 

cyclodienes, cyclopentadiene and anthracene have been quite used in DA reaction and are 

described hereafter. 
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3.1.1 Cyclodienes and cyclopentadienes 

 

Cyclodienes also play an active role in DA reaction. Indeed, furan and its derivatives are 

commonly employed as dienes. However, other cyclodienes are worthy of interest such as 

cyclopentadiene (CPD) which is the second most famous cyclodiene in the DA community. 

CPD is obtained from coal tar, by steam cracking of naphtha or from other hydrocarbon 

products [170, 171]. CPD dimerizes via DA reaction into dicyclopentadiene [172]. This 

dimerization is still studied [173] and it is possible to re-obtain CPD via retro-DA above 170 

°C (Scheme 22). Indeed, pure CPD must be stored at low temperature (-20 °C) to prevent 

from a spontaneous and highly exothermic dimerization. Thanks to the dimer adduct and its 

retro-DA, it is suitable to generate CPD in situ to avoid safety issues linked to the use of free 

CPD [174].  

 

Scheme 22 : Dimerization of cyclopentadiene [173] 

Since the beginning of the 20
th

 century, many DA reactions involving CPD have been 

reported with a lot of dienophiles [175], such as quinones [176], unsaturated trihalosilanes 

[177], acrylate derivatives [178], vinyl ketones [179] or fullerenes [180]. DA reaction with 

CPD is well-documented and many articles focus on the ab initio calculations with plenty of 

dienophiles and solvents for a better understanding of the reactivity of CPD and to anticipate 

some possible reactions [181-183]. Other studies have been devoted to the elaboration of 

original catalysts [184, 185] or on the impact of the possible function borne by CPD on the 

reactivity of the resulting diene [186]. Very recently, reactions of CPD with hexadienone 

[187] and benzoquinone have been reported [188, 189] (Scheme 23), enhancing the major 

role of CPD in the DA field. 

 

Scheme 23 : Synthesis of “cage” from DA reaction between benzoquinone and cyclopentadiene [189] 
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Other cyclodienes, such as cyclohexadiene [190, 191] or cycloheptadiene [192] have also 

been involved in DA reactions. They have a lower reactivity than those of furan or CPD. 

However, a recent study has shown an improvement in the reactivity of some cyclodienes 

with hetero-dienophiles, which is a hopeful perspective for further use of these dienes. [193]. 

Besides the furan described above as a diene or cyclopentadiene reactive in hetero Diels Alder 

[194], some hetero-cyclopentadiene can be  involved in DA reactions such as thiophene or 

pyrrole (Figure 15). Thiophene can be used as a diene or dienophile, but it is not very reactive 

[195]. In order to overcome this lack of reactivity, it is possible to substitute it [196] or to 

oxidize the sulfur atom of the molecule [197] (Figure 15). Pyrrole, a nitrogenous 

cyclopentadiene, also suffers from a lack of reactivity for DA reactions acting as a dienophile 

[198, 199]. It can be noted that pyrrole can also behave as diene in [4+3] cycloaddition 

reactions. [200] 

 

Figure 15 : Structure of cyclopentadiene and hetero-cyclopentadiene 

Less studies have been developed utilizing pyrrole as the diene. Hwang’s group [201] 

reported self-healing ladder-like structured polysilsesquioxane copolymers and terpolymers 

from a DA reaction between pyrrole and cyclohexenyl-containing silicon moieties. First, the 

functionalization of both diene and dienophile were achieved on the double-stranded siloxane 

backbone bearing n-alkyl soft groups inducing some chain mobility (Scheme 24).  
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Scheme 24: DA and rDA reactions involving pyrrole and cyclohexenyl-containing polysilsesquioxane copolymers 

[201]. 

 

The DA curing time was optimized to be 90 °C. Then, these authors studied the effect of 

chain mobility and the chemical structure on self-healing and mechanical properties. All such 

self-repaired hybrid materials exhibited fast healing times (ca. 5 min) and their decrosslinked 

adducts displayed remarkably high retention of solubility in conventional organic solvents for 

good reusability. They also exhibit high thermostability and optical transparency.  

 

Inglis and Barner-Kowollik [202] provided a critical review on recent developments in the 

area of ultra-rapid and mild conjugation chemistries used in polymer chemistry, as an 

interesting guide to help the formulation of design strategy for novel functional materials. For 

example, the DA conjugation between cyclopentadiene-functional polymers and those 

prepared by RAFT polymerization [203] can be simply achieved under ambient conditions of 

atmosphere and temperature within a few minutes hence yielding block copolymers (Figure 

16). 

 

 

Figure 16 : Ultra-rapid RAFT-HDA click chemistry [202] (reproduced from [202] with permission from Wiley, 

copyright 2010)  
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The same authors also proposed the inverse electron demand Diels–Alder (IVED-DA) 

reaction between electron-deficient tetrazine derivatives and various alkenes (trans-

cyclooctene). Although non-regioselective, these reactions are quite efficient, rapid and occur 

under mild chemical transformation [203]. One example, supplied from Figure 17 involves 

tetrazines and strained alkenes, as more recently reported by Hawker’s group from a similar 

strategy [132, 133].  

 

 

Figure 17 : Inverse electron-demand Diels–Alder reaction between tetrazines and strained alkenes 

 

 

3.1.2 Acyclic dienes 

 

Acyclic dienes take an active part in the DA area. Butadiene, which is the simplified model of 

a diene, can react readily with maleic anhydride, acrolein, quinone and many other 

dienophiles [175]. In addition, the Huntsman (formerly Viking) company uses that strategy to 

produce telechelic bis(epoxycycloaliphatic) monomers by addition of butadiene onto acrylic 

acid as UV cationic resins. 

It is possible to represent the other acyclic dienes as substituted butadiene with a wide variety 

of Ri groups (Figure 18) and a lot of acyclic dienes can perform DA reactions [204-206].  

 

Figure 18 : Model of dienes structure from butadiene. 

In addition, many articles have reported the use of acyclic dienes in hetero-DA [207] such as 

Aza [208], or Oxo. [209] (Scheme 25)  
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Scheme 25 : a) Oxo [209] and b) Aza [208] DA involving acyclic dienes. 

 

In general, acyclic dienes have a lower reactivity than those of cyclodienes. However, some of 

acyclic dienes with a specific structure, can be more reactive than the others.  This is the case 

of an electron-rich diene so-called “Danishefsky’s diene”, reported in 1974 [210](Figure 

19a).These reactants can be used to synthesize molecules of interest such as Xestocylamine 

[211] or involved in hetero-DA as oxo-DA [212, 213](Figure 19b) or aza-DA [214](Figure 

19c). 

 

Figure 19 : a) Structure of a Danishefsky’s diene (where TMS stands for trimethylsilyl; [210]. b) Example of an oxo-

DA involving a Danishefsky’s diene [213]. c) Example of an aza-DA involving a Danishefsky’s diene. [214] 

 

3.1.3 Anthracene 

Anthracene is a solid polycyclic aromatic hydrocarbon consisting on three benzene rings 

(Scheme 26) which was first isolated in 1832 by Dumas and Laurent [215]. It is worth 

mentioning that anthracene tends to dimerize under photo-irradiation as shown in Scheme 

26a [216, 217]. The use of anthracene for industrial aromatic chemistry started with the 
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synthesis of the dyestuff alizarin by Graebe and Liebermann as well as by Perkin in 1868 

[218]. This product can be extracted from coal [219] and specific syntheses for functionalized 

anthracenes have been developed over the years [220, 221].  

 

Scheme 26 : a) Photo-dimerization of anthracene [216], b) Diels-alder reaction between anthracene and maleimide 

 

In 1942, anthracene was quickly used in DA reaction [175] Scheme 26b. This compound and 

its derivatives can react with many dienophiles such as maleic anhydride and derivatives 

[222], carbonyls [23] or fumarates [33] and are often used in the production of polyester 

[223], polyethylene [220, 224], or new DA adduct polymers [225]. Its ability to perform retro-

DA and the impact of the substituent of the cycloadduct were well-studied by Chung et al. 

[226] while Snyder’s group used this behavior to develop chiral anthracene template as 

recyclable stereocontrolling elements [227, 228]. In addition, several teams reported the use 

of anthracene to replace furans as highlighted by Liu and Chuo in an interesting review 

mainly devoted to AD [20]. Simionescu et al. [229] pioneered the reaction between 

unsaturated monomers bearing anthracenic moieties and electron deficient-monomers (e.g. 

acrylates, methacrylates and maleimides). In 1985, these authors highlighted the formation of 

a charge transfer complex, K, between maleimides and anthracenic group (K=0.05 as a high 

value compared to those of conventional acceptor-donor systems). Two examples of 

copolymerization have been reported: i) from 9-anthrylmethyl methacrylate and N-phenyl 

maleimide [229] and ii) from methacrylate anthracene and the corresponding acrylate. [230]  

Indeed, from the acrylate, only DA occurred while with the methacrylate, both radical 

polymerization and DA were concomitantly observed. In another study, the same authors 

[231] showed that N-(1-anthryl) maleimide in a thermal reaction led to AD while by anionic 

initiation, homopolymerization only was noted. From these initial features, Schiraldi’s group 
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[220] revisited these reactions and evaluated the retroDA and evidenced that this occurred at 

high temperature (250-300 °C). In 2001, Grigoras and Colotin [225] synthesised polyimines 

from the DA reaction between anthracene-based dienes and four telechelic dienophiles 

containing bismaleimide functions (Scheme 27). The polycondensation reaction was 

performed in N,N‐ dimethylacetamide at 120 °C yielding polymers, soluble in polar solvents, 

with molar masses ranging between 3500 and 5600 g mol−1. From TGA analysis, these authors 

observed a two-step decomposition: i) the first one at 250-300 °C (rDA) while the second one, 

starting from 450 °C, corresponds to the decomposition of the imine function.  

 

Scheme 27 : Synthesis of Diels–Alder polymers from the addition of dienes containing anthracene groups and 

telechelic bismaleimides [225] 

 

A further interesting survey achieved from Schiraldi’s team [223] deals with the 

polytransesterification of bis(2-hydroxyethyl) terephthalate with 2-hydroxyethyl 2-

anthracenecarboxylate (in a small amount) leading to low molar mass anthracene-terminated 

macromonomers (Scheme 28). Their anthracene end-group functionality ranged between 1.66 

and 1.85. These macromonomers underwent a rapid chain extension with di(4-

maleimidophenyl)methane via Diels-Alder cycloadditions resulting in consumption of the 

anthracene and maleimide end groups to generate polymers with Mn >2.0*10
4
 g .mol

-1
. 
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Scheme 28 : Polytransesterification of bis(2-hydroxyethyl) terephthalate with 2-hydroxyethyl 2-

anthracenecarboxylate yielding telechelic macromonomers bearing anthracene end-group followed by chain extension 

with di(4-maleimidophenyl)methane [223] 

Interestingly, these authors also reported a model study from anthracene methyl carboxylate 

and phenyl maleimide and the reversibility was monitored by 
1
H NMR spectroscopy at 260 

°C. Thus, they determined a constant of reversibility but with the polymers, even at 350 °C, 

they could only conclude that partial degradations occurred even if reversion also happened. 

Hence, for self-healing, the reversion temperature, is too high, especially for this polymer.  

In an interesting article, Haddleton’s team studied and compared the efficiency of AD furan-

maleimide and anthracene [74] by synthesizing well-defined linear and star PMMA polymers 

bearing DA adducts in their macromolecular backbone. They also reported a preliminary 

evaluation of their ability to cleave and reform it under external thermal stimuli (Scheme 29). 
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Scheme 29 : Synthesis of telechelic bis(acrylate) and original ATRP initiators from furan/maleimide and 

anthracene/maleimide adducts [74] 

 

From the furanic derivative, 100% reversion was obtained in THF reflux for 24 hr and 50% at 

60 °C for 24 hr. From the anthracene compound, this is not as easy and the authors, within the 

reversion at 200 °C in DMSO, used rhodamine to block the reaction. They noted a 20%-

decrease of the molar mass that suggested some Diels Alder reactions.  

Some other articles describe that anthracene was brightly involved in the synthesis of 

aromatic polyamides containing anthracene units by tuning with its aptitude for retro DA 

[232], or in the synthesis of foldamer [233] (Scheme 30). Another smart use of anthracene 

was also reported by Durmaz, Hizal, Tunca et al. These authors pioneered the use of 

anthracene and maleimide functional polymers to generate well-controlled architectures 

encompassing block copolymers, [1, 234] (Scheme 31), star copolymers, [235, 236] graft 

copolymers [2, 237] and even more complex structures. [238] Although making use of readily 

available materials without any catalyst, elevated temperatures (>110 °C) and extended 

reaction times (36–120 hr) appear as severe limitations. 

Sun et al. demonstrates the versatility of anthracene in DA reaction for the synthesis of 

amphiphilic or hydrophobic block, comb copolymers, segmented hyperbranched polymers 
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and star polymers [239] (Figure 20). All these examples show that anthracene plays a 

significant role in the DA area and may still have hidden potential for future applications. 

 

Scheme 30 : Formation of a foldamer from anthracene adducts [233] 

 

Scheme 31 : Reversible diblock PS-b-PEG or PS-b-PMMA block copolymers linked with anthracene maleimide DA 

adduct [1] (reproduced from [1] with permission from Wiley, copyright 2006)) 
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Figure 20 : Transformation of an amphiphilic block copolymer and a segmented hyperbranched polymer into various 

macromolecular architectures via diene (furan or anthracene) displacement reactions [239] (reproduced from [239] 

with permission from Nature Publishing Group, copyright 2017) 

Schubert et al. [240] synthesized terpolymers based on original (meth)acrylates containing 

anthracene side groups which were further used in DA cycloaddition with fullerene C60.  

(Scheme 32) The copolymer bearing methacrylate was identified as the most reactive 

combination. The self-healing efficiency, assessed by 3D microscopy, interestingly showed 

that these new fullerene-containing copolymers feature a peculiar low healing temperature 

(40-80 °C and in 15 min only, at that upper temperature) when compared to other DA-based 

self-healing polymers. Additionally, in other studies, the concept could be particularly useful 

self-healing studies of DA-based semiconductors achieved for low temperature. These 

unexpected results are quite interesting since previous authors reported that healing polymers 

bearing anthracene occurred at rather high temperatures (250 °C). 
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Scheme 32 : Schematic representation of the DA reaction of poly(methacrylate) copolymers bearing anthracene 

functions with C60-fullerene resulting in CP1F and CP2Fmaterials (only one possible fullerene anthracene adduct is 

depicted, crosslinks are also possible) [240] (reproduced from [240] with permission from Wiley, copyright 2018) 

 

3.2 Bio-sourced dienes 

 

Currently, the use of sustainable raw materials and eco-responsible processes is 

becoming more and more frequent and increasingly searched in the world of the polymer 

industry. Therefore, in this context, it is relevant to list and show a growing interest in the bio-

sourced dienes which can be used in the DA reaction. Several candidates have already 

demonstrated their efficiency, such as sorbic acid and its derivatives, muconic acid, myrcene, 

farnesene, eugenol and cardanol (Figure 21). Vegetable oils will be not mentioned in this part 

even if they are currently described when related to bio-based molecule. Indeed, despite the 

abundance of unsaturation in the alkyl chain of common oil, the lack of conjugated double 

bond does not allow to use them as dienes but as dienophiles. However, it is worth noting that 

some conjugated vegetable oil exceptions exist such as conjugated linoleic acid. [241]  
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Figure 21 : Structures of different bio-based dienes used for the DA reactions in polymer fields 

 

3.2.1 Sorbic acid and derivatives 

 

Sorbic acid was isolated in 1859 by distillation of rowanberry oil by Von Hofmann. Once the 

oil distilled, the lactone of sorbic acid, parasorbic acid, is obtained. It is then necessary to go 

through a hydrolysis step to yield the desired acid. Sorbic acid and its salts are antimicrobial 

agents often used as preserves in food and drinks to prevent the growth of mold, yeast, and 

fungi [242]. Since the 1950s, sorbic acid, its aldehyde and ester derivatives have demonstrated 

their ability to react with styrenic compounds via the DA reaction [243, 244]. In the 1980s, 

sorbic acid was used with maleimide compounds [245, 246] or with benzoquinones [247]. 

More recently, numerous articles have reported a renewed interest in sorbic derivatives being 

able to react with any type of dienophiles, from O2 to 4-phenyl-1, 2, 4-triazoline-3, 5-dione 

(PTAD) [248], or other triazolines [249], acrylonitrile [250], aryne [251], acrylate [252] and 

benzophenone [253]. Reinecke and Ritter [254] used sorbic acid in the forms of mono, bi and 

tetra amide for crosslinking unsaturated polyesters modified with maleic anhydride. More 

recently, diacids were obtained by DA reaction of sorbic acid with fatty acids for the synthesis 

of polyamide [255](Scheme 33). In that reaction, the high temperature (200 °C) may induce 

some aldolization of the oil in addition to the DA on that diene.  
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Scheme 33: Synthesis of diacid adduct from unsaturated fatty acids and sorbic acid [255]. 

 

3.2.2 Muconic acid 

 

Muconic acid is a telechelic bis(carboxylic acid) with two conjugated double bonds. Muconic 

acid exists in the form of three isomers (Figure 22) and is of growing interest both its 

synthesis process and for its numerous applications. [256] 

 

Figure 22 : Structures of the three isomers of muconic acid (MA) 

Muconic acid can be obtained from a transformation step of catechol using biotechnology. 

The sourcing can arise from aromatic compounds such as toluene, benzoates, [257-260] or 

from glucose [261]. 

Isomers of muconic acid are of real interest as a chemical platform for the synthesis of 

molecules or bio-based monomers [262]. For example, it is involved in the synthesis of adipic 

acid [261, 263]. By intramolecular cyclization of muconic acid, it is possible to obtain 

lactones [264] or -caprolactam after steps of hydrogenation and amidation [265] (Figure 23). 

 

Figure 23 : Structures of lactones and -caprolactam obtained from muconic acid 

This acid is also well-known in the field of polymers as a bio-sourced precursor agent of 

Nylon 6,6 [258]. It can be used as a monomer in the synthesis of polyester by 

polycondensation with succinic acid [266, 267]( Scheme 34) or for the production of 

(co)polymers under radical polymerization. [268] 
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Scheme 34 : Polycondensation of MA with succinic acid in excess of diol [266] 

Thanks to its two conjugated double bonds, muconic acid has been used for the DA reaction 

as a diene since the 1950s [269]. The steric effect of cis,cis muconic acid and cis,trans 

muconic acid prohibits the DA reaction reacting these isomers. The use of trans, trans 

muconic acid under DA reaction is mainly focused on the production of terephthalic acid 

[270] (Scheme 35).  

 

Scheme 35 :  Trans,trans muconic acid (or esters) transformation into terephthalic acid (or esters) via Diels-Alder and 

subsequent dehydrogenation reactions [270]. 

 

Monomers from DA reaction between muconic acid and maleic anhydride, butene or 

acrylonitrile [271], or phosphonate-based flame retardant reactant [272] has also been  

synthesized (Scheme 36). 

 

Scheme 36 : Two-step synthesis of flame retardant compounds from MA and phosphate derivatives [272] 

 

3.2.3 Myrcene and Farnesene 
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The naturally -myrcene is a colourless oil available in several plants. It can be found in 

essential oils of wild thyme, ylang-ylang, bay leaf, juniper berries, lemongrass, carrot leaf and 

jambu flower [273]. However, myrcene is mostly industrially produced from turpentine, the 

distillate of pine resin [273]. Myrcene is an acyclic monoterpene (Figure 21) that has been 

currently used in pharmaceutical and cosmetic industries in formulation of flavouring 

substances and fragrances [274]. Since the first reaction between myrcene and maleic 

anhydride in 1929 [14], numerous DA reactions of myrcene have been reported with acrolein 

[275], quinone [276, 277], acrylic acid and other various dienophiles  [278]. In 2013, the 

Stepan Company [279] claimed the synthesis of solvent and surfactant from DA reaction of 

myrcene and farnesene with a variety of dienophiles (Scheme 37). 

 

Scheme 37: Example of the use of myrcene adduct for solvent and surfactant applications [279] 

As myrcene, farnesene, cited above, can be found in the list of essential oils, in particular in 

alpina galanga oil as much as 18% of the total source [280]. In Nature, farnesene is used by 

numerous species as an alarm pheromone against insect attack. Thus, is it not surprising that a 

1982 patent describes the synthesis of crop protections from DA reaction of farnesene with 

some various dienophiles [281]. Other patents claim farnesene DA adducts used as high 

boiling point-solvents [282], plasticizers for PVC [283] or in the synthesis of polyester 

polyols as polyurethane reactants [284] (Scheme 38). Recently, farnesene has also been used 

in the synthesis of bio renewable amphiphilic polysaccharides [42]. 
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Scheme 38 : Example of the use of -farnesene-maleic anhydride DA adduct for the synthesis of aromatic polyester 

polyols [284] 

 

3.2.4 Eugenol and Cardanol 

 

Eugenol is a natural allylic phenol (Figure 21) which can be found in bay leaves, Jamaican 

pepper, in certain varieties of cinnamon and in cloves. It is mainly extracted from essential oil 

of cloves as the aroma molecule. More interestingly, the depolymerization of lignin is a very 

promising strategy for the production of eugenol [285]. In addition, its depolymerization by 

ionic liquids is widely studied [286, 287]. 

Furthermore, Eugenol is currently used in the pharmaceutical industry for its antiseptic and 

analgesic properties [288], and is also a precursor for vanillin synthesis [289].  

Very versatile, it is well-known in the field of polymer for the preparation of phenolic resins 

[290], epoxy resins [291, 292] or as crosslinking agents [293]. Eugenol can act as both a diene 

and a dienophile. Recently, the synthesis of fluorinated norbornene monomer from eugenol as 

a dienophile with cyclopentadiene has been reported [294]. The reaction of a dienophile onto 

allyl phenol has been studied [295-297].  
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To succeed the DA reaction between allylphenol and dienophile, a first ene-reaction between 

both these reactants occurs allowing the formation of a diene moiety on the molecule 

(Scheme 39).  

 

Scheme 39 : Two-step DA reaction of dienophiles with allyl phenol. 

 

Then, another dienophile can react onto the formed diene and enables the DA reaction. The 

same type of reaction of eugenol with maleimide compounds has been described for the 

syntheses of new polyesters [298] and phenolic thermosets [299-303] (Scheme 40).  

 

 

Scheme 40: Synthetic pathway for the formation of the Eugenol derivative/Bismaleimide thermosets [302]. 

(reproduced reproduced from [302] with permission from Elsevier, copyright 2019)) 
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As eugenol, cardanol is also a phenol naturally available. Cardanol is obtained from cashew 

nutshell liquid (CNSL), directly extracted from the shell of the cashew nut,  Anacardium 

occidental growing in China, India, Viet-Nam, Nigeria and Brazil. [304]. Cardanol is 

composed of a mixture of at least four constituents diff ering in the unsaturated side chain, 

namely saturated (5–8%), monoene (48–49%), diene (l6–17%) and triene (29–30%) as 

illustrated in Figure 21. Cardanol and its derivatives can be found in many area of materials 

[305] such as additives (antioxidants [306], surfactants [307, 308], plasticizers [309, 310]) or 

as building blocks for polymers [311], epoxy curing agents [312], coatings [313], composites 

[314] or phenolic thermosets [315, 316]. Thanks to the same mechanism involving eugenol, 

some DA reactions on cardanol as a diene have been reported for the synthesis of novolac 

thermosets with maleimides [317], and the synthesis of coating binders [318], epoxy resins 

[319], or reactive amides [320] with anhydride maleic. Recently, Biswas et al. [321] have 

shown that cardanol can also have a dienophile role in DA reaction. Indeed, after a first ene-

reaction with diethyl azodicarboxylate (DEAD), the double bonds of cardanol are conjugated. 

Then, the cardanol-DEAD adduct allows a self-condensation with the free cardanol (Scheme 

41). In this particular case, cardanol acts as both a diene and a dienophile.  

 

Scheme 41 : An example of a Diels-Alder self-condensation reaction from cardanol-DEAD adduct [321]. 

 

Of course, this enumeration of other dienes involved in DA reaction is not exhaustive. For 

example, as explained in the introduction of this section, also some vegetable oils or 

levopomaric acid have demonstrated a real potential in DA application. Levopomaric acid is 

specially used with acrylic acid and is described in section 3.3.2. Acrylic acid and derivatives 

3.3 Dienophiles. 

3.3.1 Maleic anhydride and derivatives. 
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Maleimide and its derivatives are the most common dienophiles for the DA reaction. 

However, other dienophiles have also widely been used. Maleimides are prepared from 

maleic anhydride which is a quite useful dienophile too. Maleic anhydride and its two diacid 

isomers, maleic and fumaric acids (Scheme 42), were first prepared in 1830 [322] and 

industrially produced one hundred years later. Initially manufactured from benzene, the 

increasing price and the recognition of benzene as a hazardous molecule have led to its 

production from butane in 1974 [322].  

 

Scheme 42 : Chemical structures of maleic anhydride and its two diacid isomers 

Many examples of DA reactions involving maleic anhydride and its derivatives as dienophiles 

have been described with piperylene [323], furan [324], some vegetable oils [325, 326], 

cyclopentadiene, acrolein, oxazole [327], and numerous other dienes [328]. Nowadays, 

finding a sustainable and eco-friendly production has been more and more attractive. Maleic 

anhydride and its derivatives, as important raw materials in the polymer field, do not escape 

the rule [329]. With the aim to substitute hazardous and petro-based products from the 

synthesis of these dienophiles, several studies have been implemented on maleic anhydride 

and derivatives. An interesting review summarizes the current work on the bio-based 

synthesis of maleic acid and anhydride from furfural, furan and 5-hydroxymethylfurfural 

(HMF) [330]. (Scheme 43). Fumaric acid is already present in many plants; for example 

Fumaria officinalis, as the plant from which it was first isolated, while it could also be 

produced by sugar fermentation from fungi [331]. 

 

Scheme 43 : Petro-based1 [322] and bio-based2 [330] pathways to obtain maleic anhydride 
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3.3.2. Acrylic acid and derivatives 

 

Acrylic acid is industrially synthesized from the oxidation of propane (or propene) or 

acrolein, its aldehyde derivatives [332]. Acrylic acid and its derivatives (Figure 24) are 

greatly widespread for the synthesis of polymers such as poly(acrylic acid) [333], 

poly(acrylate)s [334], poly(methacrylate)s [335, 336]. 

 

Figure 24 : Structures of (meth)acrylic acid and its derivatives 

The presence of the double bond on these molecules allows the opportunity to react with some 

dienes via the DA reaction. Indeed, acrylic derivatives can react with cyclopentadiene, 

hexadiene [337, 338] or with conjugated fatty acid [339]. Another example deals with the 

synthesis of benzoic acid from the DA reaction between acrylic acid and furan [340]. More 

recently, several studies have described adduct (Figure 25) from a DA reaction between 

acrylic acid and levopimaric acid (LPAA) [341] for the synthesis of polyketones [342], 

polyesters [343], a bio-based pressure-sensitive adhesives [344] and as a crosslinking agent 

for poly(epoxide) [345], showing the renewed interest of acrylic acid and its derivatives in the 

DA field.  
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Figure 25 : Structure of Diels-Alder adduct of levopimaric acid with acrylic acid (LPAA) 

Moreover, these monomers could be synthesized from renewable raw materials as lactic acid 

[346], glycerol via the 3-hydroxypropionic acid (3-HP) [347], via dehydration into acrolein 

[348], or from direct fermentation of sugar [349], strengthening its position in the industry 

during the current conjectures. The different pathways to obtain acrylic acid are detailed in 

Scheme 44. 

 

Scheme 44: Different bio-based and petro-based pathways to produce acrylic acid and acrolein 

 

3.3.3 Vinyl ketones 

 

Vinyl ketone compounds (Figure 26) are ketones bearing double bonds which enable DA 

reaction. The most famous and used is the methyl vinyl ketone. Several ways have been 

reported to obtain methyl vinyl ketone from i) methyl ketone [350], ii) thermal elimination of 
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-keto sulfoxide [351], iii)  addition of vinyl lithium onto carboxylic acid [352] or iv) 

pyrolysis of propargyl esters [353]. However, the most common strategy is the cross 

aldolization condensation of acetone with formaldehyde [354] or with methanol [355], that is 

less dangerous that the previous one. 

 

Figure 26 : Structure of vinyl ketones 

 

Methyl vinyl ketone can react with plenty of dienes as cyclodienes (Scheme 45) [356, 357], 

furan [358] and anthracene [359]. Recently, the reaction of methyl isopropenyl ketone with 

myrcene has been reported [360] while some alkyl and aryl vinyl ketones in DA reactions are 

well studied [361, 362]. 

 

Scheme 45: Examples of DA reaction involving a vinyl ketone and aryl or alkyl dienes [361, 362] 
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3.3.4. Itaconic acid, citraconic acid and their derivatives 

 

Itaconic acid is largely produced from citric acid [363] but can also be obtained by the 

fermentation of glucose with fungi Aspergillus itaconicus [364]. Itaconic acid and its 

derivatives (Figure 27) have been lately used for DA purposes.  

 

Figure 27 : Structures of itaconic acid and citraconic acid, and their derivatives 

Some articles describe the dienophile behaviour of itaconimides present in the formulation of 

PVC plasticizers [365, 366]. Thanks to these compounds, a DA reaction occurs during the 

degradation of the plasticized PVC and the resulting product stabilises the polymer from a 

further degradation. Since this finding, the DA reaction between itaconic acid and 

cyclopentadiene [367] has been reported for the synthesis of polyols for polyesters [368]. 

Other itaconic derivatives in DA reactions have been suggested as itaconimides with 

benzofuran for the synthesis of benzoisoquinoline [369], or with oxazolones [370], itaconic 

anhydride with furfuryl alcohol [48], or, more recently, with isopropene [371] or furan [372] 

for bio-thermoset synthesis (Scheme 46). 

 

Scheme 46 : Diels-Alder reaction between isopropene and itaconic methylester [371] 

Citraconic acid could also be synthesized from citric acid as itaconic acid by thermal 

isomerization of this previous acid or anhydride and vice versa [373, 374]. DA reactions 

between citraconic acid or anhydride is possible with furan, and with enough reactivity for an 

intra DA reaction [46]. However, most articles about DA reactions with citraconic derivatives 
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(Figure 3) are devoted to citraconimide molecules. In the 90s, the crosslinking reaction of 

citraconimides with rubber during the reversion process was described and revealed its role as 

an anti-reversion agent [375] and comparative studies about such a crosslinking with squalene 

as a model system were investigated by Datta [365, 376]. The synthesis of azasteroides was 

reported [377], involving maleimides and citraconimides on dihydronapht alene while 

Gaina described the preparation and polymerization via DA reaction of monomers containing 

citraconimide or maleimide groups with allyphenyl group [298]. Wang and Welker [378] 

achieved the DA reaction between boron diene and some dienophiles, including 

citraconimides. Recently, a patent has claimed the syntheses of polyfunctional 

hydrophthalimide monomers from DA citraconimide adducts for polyester resins [379], 

underlining the real interest for DA reaction with citraconimides (Scheme 47).  

 

Scheme 47 : Synthetic way to obtain polyfunctional hydrophthalimide monomers from Diels-Alder adduct of 

citraconimide [379] 

Of course, this enumeration of other dienophiles involved in DA reaction is not exhaustive. 

Other studies report quinones [247, 277], cycloalkenones [380] and triazolines [249] as 

potential dienophiles. Some vegetable oils and saturated fatty acids can also be used as 

dienophiles [255, 381] or as diene [382]. This abundance of possible dienes and dienophiles 

and the current growing interest for DA reaction in the polymer area permits to open up a 

wide range of possibilities for further applications. 

4. Discussion and outlooks 

 

Through this review, we aimed to highlight the wide variety of reagents involved in the Diels-

Alder reaction. The Furan/Maleimide pair is mostly described in the literature [5-7]  and is 

used here as a reference for the other diene/dienophile pairs presented in the section 3. Other 

diene/dienophile couples  (insertion). The emergence and success of increasingly specialized 

fields of application such as health drug delivery (p31), smart or self-repairing materials (p24) 

and 3D printing (p29), and an increasingly growing environment is a fertile ground for DA's 
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reaction and its versatility. These different activities bring with them their share of constraints 

that the F/M couple, alone, cannot fully meet. 

The Self-Healing aspect or the recyclability of materials enabled by the reversibility of the 

diene/dienophile system via the retro-DA maintains this reaction as a hot topic and a relevant 

solution to the locks of tomorrow. However, special attention should be paid to the origin of 

dienes and dienophiles. They must be bio-sourced, as less toxic as possible and the synthetic 

route in which they are used must be sustainable [383]. As described in the section 3. Other 

diene/dienophile couples, today, many molecules are studied through the reaction of DA. This 

is the case of sorbic acid, muconic acid, myrcene, farnesene, eugenol and cardanol as diene 

and maleic acid, itaconic and citraconic as dienophile to name just some of them. Of course, 

this is without counting on vegetable oils and other natural raw materials which will, 

tomorrow, be a source of new compounds of interest for DA reaction. 

Despite this increased interest in bio-based compounds, a great deal of information is still 

lacking on the reactivity and DA and retro-DA temperatures of these compounds. Indeed, 

even with the couple F/M, certain article omits to specify the temperatures of retro-DA. As 

discussed in the section 2.4.1 Generalities about furan and maleimide, the temperature of DA 

and retro-DA depends both on the compounds, on the functionalization of these compounds, 

on their associations between them and on the kinetic or thermodynamic forms of DA adducts 

obtained.  

The subject is complex and sorely lacking in data. In addition, various studies use DA strategy 

to allow the coupling without claiming on possible reversible reaction which causes a hole in 

the data because the reaction of retro-DA does not interest these authors and therefore does 

not appear in these articles. Especially since these DA and retro-DA temperatures are 

particularly important to know depending on the intended application.  

For example, all studies achieved on F-M couple that displays a reparation temperature close 

to 110 °C while the exo structure is mainly obtained. However, that temperature leads to 

controversies for desired applications since it is too high for biomedicine and too low for 

materials. Thus, revisiting other couples mentioned above should open news trends and 

opportunities.  

In the case of anthracene, a molecule well-known since a lot of time, the results obtained are 

not always in agreement between different papers, and in various cases, led to controversies 
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because of different values of retro-DA temperature (50 to 200 °C). As mentioned above, it is 

requested to adapt the temperatures of DA and retro-DA to the desired application, and this is 

not the only F-M couple which able to achieve this. Hence, deeper research on various dienes-

dienophiles couples to establish a real temperature scale of retro-DA (when available) 

between room temperature and ca. 200 °C will be pertinent and useful.  

Besides the temperature values of DA and retro-DA, one of the added values of DA is the fact 

that it is much more than a simple reaction. DA, thanks to its reversibility, is revealed as a real 

toolbox for the organic and polymeric field. 

In the last few years, “reparation” of materials and recycling have been of growing interest. In 

addition, “self-healing” is a quite fashionable trends especially for coatings, car industries, 

composites, adhesives, and biomedical applications.  

In case of reparation, huge efforts have been made to find out solutions to limitations, by 

varying the structure of the polymers as well as the DA groups either well-dispersed in the 

matrix or within the polymer backbone or for both. The chain length and the nature of 

reactants between DA groups have also been studied to optimize the properties of the 

resulting materials. Sometimes, other concepts have also been included such as shape 

memory, intramolecular bonds, etc.. All these strategies have been used to obtain a material 

that recovers its initial properties after damage. Furthermore, many authors have investigated 

successive degradations-reparations to get an everlasting healed material. The resulting 

materials were able to be reprocessed multiple times still retaining similar properties (Tg, 

thermal stability, mechanical responses) as those of the pristine material. For this, a great 

work has been accomplished on the technical part by using several methods to tune the 

properties and to improve the quality of the materials after several reparation-degradation 

cycles. These contributions have led to huge progress whereas none of these systems is 

adaptable to all materials and many approaches and studies required to be investigated. 

By leaving space for the creativity of researchers, this ability to make and break on demand 

has enabled, in addition to its use in self-healing and shape memory materials, the 

development of certain technologies such as DART (section 2.4.8 DA reversible thermoset 

(DART) for 3D) or SCOD (section 2.4.9. Sealant cured on demand), in particular, one of 

interest to use DA reactions with SCOD concept deals on the possibility in obtaining one K 

component formulation. This permits to protect a reactive starting material with another 

reactive component in one composition. It also allows the development of a whole bunch of 



59 

 

new applications described in the section (section 2.4.4 Miscellaneous and different uses of 

furan-maleimide couple and DA reaction) as Sequence-controlled RAFT quaternary 

polymerization [129]. 

Hence, aspects of reparation and recycling, as well as DART or SCOD to some extent, are 

real targets for applications from DA reactions in materials. In these fields, many articles for 

furan/maleimide couple are encompassing the whole area of polymers including elastomers, 

thermoplastics, and thermosets, that it is not possible to be exhaustive in citing all of them. 

We can therefore imagine in the near future that with a more in-depth study of biobased 

dienes and dienophiles, a scale of known DA and retro-DA temperatures and the growth of 

applications linked to reversibility behaviours, the interest of researchers and industrialists for 

DA's reaction will only increases and be the source of new innovative technologies of 

tomorrow. 

 

5. Conclusion 

 

Though discovered in 1928, DA reaction has been studied for several decades by many of 

academic and industrial researchers and is still of growing interest. This review summarizes 

non-exhaustive strategies in DA ranging from basic and fundamental methodologies to 

industrial applications. Beside conventional and well-known Furan/Maleimide couple, a wide 

variety of dienes and dienophiles reactants have been studied whatever they are petro-sourced 

or bio-sourced. A huge resurgence of articles for F-M involve main variety as elastomers, 

thermoplastics and thermosets. For the diene family, first petro-sourced were cyclopentadiene 

and furan but also not so well studied as pyrrole, thiophene or oxidized thiophene, as well as 

acyclic dienes and anthracene, whereas emerging bio-sourced dienes have recently been 

involved in DA reactions: sorbic and muconic acids and derivatives, myrcene, eugenol and 

cardanol to cite a few. Regarding the dienophile series, maleimides, maleic anhydride and 

derivatives, acrylic acid and derivatives, and vinyl ketones as petro-sourced have led to many 

surveys while itaconic and citraconic acids and their derivatives, as well as levopimaric acid 

as bio-sourced reactants, have also been approached a few times. This list of possible diene 

and dienophile reactants opens up and enlarges the possibilities about DA reaction. 
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Furthermore, many efforts must be done on bio-based derivatives and sustainable process due 

to the actual environmental crisis we are facing. 

However, from a fundamental aspect, many articles do not report the presence of both exo and 

endo isomers which are usually produced. In addition, for most new products obtained, 

temperatures of DA and retroDA (rDA) reactions are not well-known or even controversies 

have been reported.  

By tuning the reactivities of the diene/dienophile couples toward the properties of the 

searched product and on the DA and retro DA temperatures, a wide variety of possible uses 

can be offered as well as applications. However, for most of these new products, temperatures 

of DA and rDa are not known or not yet reported. 

In addition, and more and more noted in the literature, that DA reaction has also played a 

crucial role to offer self-healing materials via crosslinking/decrosslinking strategies. To use 

the thermal reversibility behavior of such DA reaction in the polymer industry, it is essential 

to control and adapt both the building blocks and the stimuli towards the needs of the 

applications. For example, biomedical applications require low temperature (ca. 40 °C) for 

rDA, while many efforts still deserve to be made to find out suitable higher temperatures for 

high performance materials involved in specific applications (car and aerospace industries). 

Furthermore, these reactions also enable to design well-architectured polymers (block and 

graft copolymers, including amphiphilic block copolymers, dendrimers and networks as well 

as shape memory polymers). Moreover, the smart choice of the diene or dienophile allowed 

researchers to tune the searched applications (e.g., incorporating PDMS for low Tg elastomers 

or non-isocyanate polyurethanes for green coatings and adhesives). Finally, SCOD concept as 

a possibility to obtain one K component formulation appears as a relevant strategy. 

It is expected that the design of DA reaction has the potential to be a promising growing 

pathway to generate new materials with unique properties and will certainly play a significant 

role in the future of polymer science in the coming years, hence attracting the interest of 

academic and industrial scientists and engineers, as well as end users. 
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Figure 28 : Graphic overview of the DA reaction 
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