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Initially intended for nutrient uptake, phagocytosis represents a central mechanism

of debris removal and host defense against invading pathogens through the entire

animal kingdom. In vertebrates and also many invertebrates, macrophages (MFs) and

MF-like cells (e.g., coelomocytes and hemocytes) are professional phagocytic cells that

seed tissues to maintain homeostasis through pathogen killing, efferocytosis and tissue

shaping, repair, and remodeling. Some MF functions are common to all species and

tissues, whereas others are specific to their homing tissue. Indeed, shaped by their

microenvironment, MFs become adapted to perform particular functions, highlighting

their great plasticity and giving rise to high population diversity. Interestingly, the gut

displays several anatomic and functional compartments with large pools of strikingly

diversified MF populations. This review focuses on recent advances on intestinal MFs

in several species, which have allowed to infer their specificity and functions.

Keywords: intestinal immunity, macrophages, microbiota, phagocytosis, stromal microenvironment, dietary

antigens, metabolites, antigen sampling

INTRODUCTION

The innate immune system encompasses different defense mechanisms selected over evolutionary
time and encoded in the germline, hence passed to offspring with only minor refinements. Genome
sequencing has established that much of these defense systems are conserved across animal
phyla, reflecting their remarkable effectiveness and versatility (Litman and Cooper, 2007). These
conserved defense mechanisms include the complement system, pattern recognition receptors
(PRRs), and phagocytosis. The complement system is an ancient component of immunity that
likely evolved from protection of the unicellular protists to essential defense functions in the
blood of vertebrates (Elvington et al., 2016). Classical PRRs, such as Toll-like receptors (TLRs),
C-type lectins, NOD-like receptors (NLRs), and perforin-2/MPEG-1, are already identified in
non-bilaterian animals (Traylor-Knowles et al., 2019). Phagocytosis, from ancient Greek meaning
“cell eating,” is typically an eukaryote-specific process that consists in the ingestion of particulate
matters larger than 0.4µm by a cell through invagination of its membrane (Mills, 2020). Inside the
Eukaryota domain, plant cells are not able to phagocyte due to their rigid cell wall. In addition,
no phagocytosis has been reported in fungi, with the exception of the parasitic fungus Rozella
allomycis (Yutin et al., 2009). By contrast, protists use phagocytosis for the intake of nutrients
from the environment where these unicellular organisms reside. In parasitic infections, such as
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trichomoniasis, the protozoan Trichomonas vaginalis uses
phagocytosis to ingest Saccharomyces cerevisiae cells, vaginal
epithelial cells, leucocytes, and erythrocytes (Pereira-Neves
and Benchimol, 2007). Phagocytosis involves cell membrane
receptors for target recognition. Thus, the scavenger receptor
cysteine-rich (SRCR) domain family of receptors is encoded
in the genomes from the most primitive sponges to mammals
(Dzik, 2010). Receptors for phagocytosis bind the particles
either directly or via opsonins (antibodies or complement
components) that enhance phagocytosis (Richards and Endres,
2017). The specialized compartment resulting from membrane
invagination around the targeted material is termed phagosome
(Niedergang and Grinstein, 2018). Interestingly, the soil-living
amoeba Dictyostelium discoideum uses molecular mechanisms
of phagosome maturation very similar to higher eukaryotic
cells, such as macrophages (MFs) (Gotthardt et al., 2002).
This efficient “digestive” system of ingested material defines
the primary function around which phagocytosis extends its
functional ability throughout evolution (Desjardins et al., 2005).
However, despite that phagocytosis is often proposed as an
evolutionarily conservedmechanism, the diversity and variability
of proteins associated with phagosomes across the different
eukaryotic species suggest that phagocytosis may have evolved
independently several times (Yutin et al., 2009; Mills, 2020).

The kingdom Animalia is composed of multicellular
eukaryotic organisms. This cellular scaling has required the
acquisition of cell–cell adhesion, communication, cooperation,
and specialization (Niklas, 2014). Organism size has always
been considered an important factor for the evolution of
multicellularity. The advantages of increased size include
predator evasion, increased motility, and an increased capacity
to store nutrients. Interestingly, the organism size has an
impact in cellular specialization, which may evolve more
easily in larger organisms (Willensdorfer, 2008). In animals,
phagocytosis has extended from the nutritional function to
key roles in homeostasis, such as apoptotic cell removal, tissue
remodeling, and immune defense (Desjardins et al., 2005).
Hartenstein and Martinez have recently reviewed the role of
phagocytosis in nutrition and have compared this function of
invertebrate enteric phagocytes/enterocytes with MF ability
to eliminate pathogens and damaged cells (Hartenstein and
Martinez, 2019). Endodermal-derived enterocytes play indeed
a prominent role in the invertebrate digestive system by taking
up the extracellularly pre-digested material and completing
the digestive process intracellularly. By contrast, MFs are
mesodermally derived motile cells that engulf and digest foreign
materials and cellular detritus that threaten the integrity of the
organism. Thus, phagocytosis is an ancient process that likely
evolved from the feeding of phagotrophic unicellular organisms
to the defense against pathogens in complex organisms. Non-
nutritional-related phagocytic cells observed in invertebrate
species bear different names (e.g., amoebocytes, coelomocytes,
or hemocytes) depending on the hosting species, but basically
they have a MF-like appearance and have, to a certain extent,
comparable functions as part of the innate immune system
(Table 1) (Buchmann, 2014). The hypothesis of a common
origin for immunity and digestion is mainly based on the

existence of shared components such as enzymes, receptors,
signaling pathways, and cellular processes (Broderick, 2015).
Thus, many of the enzymes involved in immunity play also a
role in digestion (e.g., lysozymes and proteases), with specific
contexts for which these functions cannot be distinguished,
e.g., for animals that capture and feed on bacteria. However, an
extensive transcriptomic analysis done in different phagocytic
cell types across widely divergent clades was inconclusive
for homology assessments (Hartenstein and Martinez, 2019).
Anyhow, in immunity, bacteria internalized via phagocytosis
are typically sequestered within phagolysosomes where several
antibacterial strategies are used to kill and degrade them, such as
compartment acidification, enzyme production and activation,
and generation of reactive oxygen species (ROS). Many types
of eukaryotes produce ROS, which likely represent an ancient
antimicrobial strategy for targeting intracellular bacteria (Richter
and Levin, 2019).

Interestingly, phagocytosis shares molecular mechanisms with
autophagy, a degradative cellular process in which eukaryotic
cells digest their own components (Birgisdottir and Johansen,
2020). Like phagocytosis, autophagy is an ancient highly
conserved process likely to date back to the common ancestor
of all eukaryotes (Duszenko et al., 2011). Like phagocytosis,
autophagy likely evolved from a cellular nutrition mechanism
to become a key player in cellular homeostasis and defense
against pathogens. Although autophagy and phagocytosis are
activated by different mechanisms, they converge on similar
pathways that are regulated by shared molecules. Thus, LC3-
associated phagocytosis (LAP) involves engulfment of large
extracellular particles through the engagement of components
of the autophagy machinery among which Beclin 1, the
phosphatidylinositol 3-kinase Vps34, ATG (autophagy) family
proteins, and finally LC3 (Sanjuan et al., 2007; Martinez
et al., 2011, 2015). LC3 recruitment to the phagosome
favors phagosome fusion with lysosomes, acidification, and
ingested material degradation. LAP is involved in several
phagocyte functions, such as pathogen clearance, antigen
presentation by major histocompatibility complex (MHC) class
II molecules, regulation of proinflammatory cytokine production
and efferocytosis (Martinez, 2018).

From its earliest beginnings, the study of innate immunity has
greatly benefited from works carried out on simple organisms,
starting from the discovery of phagocytosis significance in
starfish larva by Elie Metchnikoff to the more recent discovery
of PRRs in the fruit fly by Jules Hoffman (Lemaitre et al., 1996;
Hoffmann and Reichhart, 2002; Buchmann, 2014; Gordon, 2016).
Indeed, these organisms combine easy genetic manipulations and
phenotypic analyses with fast generation renewal and simplified
cell diversity and signaling pathways including key elements
conserved across species. It is therefore important to appreciate
the diversity of MFs across species to have a complete picture
of them. With the tissue organization of complex organisms,
MFs have acquired new functions within their residence niche
where they maintain strong relationships with their neighboring
cells, allowing their resident tissue to function properly. In this
review, we describe the nature of MFs and MF-like cells across
the animal kingdomwith a special focus on the intestinal tissue of
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each species when data are available. We consider more precisely
the local and regional specialization of MFs in the mammalian
intestine and discuss recent findings highlighting their great
diversity of functions from one location to another.

MACROPHAGE-LIKE CELLS OF THE
DIPLOBLASTS

Living cells depend on a constant supply of energy-rich organic
molecules from the environment, making the emergence of a
specialized system for food digestion and nutrient absorption a
crucial innovation for multicellular organisms. The most ancient
division within the animal kingdom is between diploblasts
and triploblasts (Figure 1). Diploblasts are radially symmetrical
animals with two distinct germ layers: an inner layer or
endoderm/gut and an outer layer or ectoderm/skin. In between
these two layers, triploblasts have an additional layer: the
mesoderm (Telford et al., 2015). Because of the lack of this
intermediate layer, mesodermal MFs per se are not found in
diploblasts. Instead, the gelatinous matrix (mesoglea) between
both layers contains large numbers of motile amoebocytes
that carry out multiple functions, the most primitive being
digestion (Table 1). Amoebocytes ingest and digest food caught
by enterocytes and transport nutrients to the other cells.
Amoebocytes have been reported in the different diploblastic
phyla: Cnidaria (Menzel et al., 2015), Ctenophora (Traylor-
Knowles et al., 2019), and Porifera (Adamska, 2016). However,
in Placozoa, a sister phylum of Cnidaria, amoebocytes have
not been described, probably because these animals are mostly
composed of epithelial cells (Mayorova et al., 2019). The ability
to phagocyte and move in the mesoglea makes the amoebocytes
very similar to mesodermal MFs. Additionally, the presence in
these animals of conserved innate defense mechanisms, such as
PRRs and pore-forming proteins (e.g., the MF-expressed gene 1
protein, Mpeg1), supports the participation of these amoebocytes
in innate immunity (Brennan and Gilmore, 2018; Walters et al.,
2020).

MACROPHAGE-LIKE CELLS IN
ACOELOMATE AND PSEUDOCOELOMATE
PROTOSTOMES

The triploblasts have two major branches, the Protostomia and
Deuterostomia (Figure 1). Their names reflect the fundamentally
different fates of the blastopore, the primary embryonic gut
opening (Nielsen et al., 2018). In protostomes, the blastopore
forms the mouth with the anus forming secondarily (protostomy
= mouth first); in the deuterostomes, it is the other way
around (deuterostomy = mouth second). The presence of a
mouth creates an asymmetry with an anterior–posterior axis
making the triploblastic condition a synonym of Bilateria.
The gastrointestinal tract (GIT) displays diversified levels of
complexity according to species, with the endoderm-derived
one-way gut of most bilaterians being the prevailing and more
specialized form (Annunziata et al., 2019).
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FIGURE 1 | Intestinal macrophage-like cell types across animal species. The main kingdoms (bold black) of the Eukaryota domain are listed. In animals, the

representative phyla are named and ordered according to currently used phylogenetic trees (Peterson and Eernisse, 2016; Giribet and Edgecombe, 2017; Kocot et al.,

2017). Additional information is added in gray (taxonomical or morphological) in green (host defense mechanisms; nutritional phagocytosis not taken into account) and

by the colored lines (embryological development). For each phylum, colored icons on the right symbolize the macrophage-like cell type; the question marks indicate a

lack of literature for the phylum. In Rotifera, amoebocytes have been described, but their function is more related to their motility, and there are no reports related to

their immunological role (Baumann et al., 2000). MHC, Major Histocompatibility complex; PRR, pattern recognition receptors; RAG, recombination-activating gene.

The majority of invertebrates belong to Protostomia, whereas
all vertebrates and few invertebrates belong to Deuterostomia
(Figure 1). During embryonic development, if a split in the
mesoderm forms a fluid-filled body cavity termed coelom, the
animal is referred to as coelomate. When the space between
the ectoderm and endoderm tissue layers is filled with a
meshwork of mesodermal cells (or parenchyma), the animal
is referred to as acoelomate. When the mesoderm has fluid-
filled clefts in this meshwork, the animal is then termed
pseudocoelomate (Monahan-Earley et al., 2013). Acoelomates
and pseudocoelomates are found only in Protostomia (Figure 1).
By contrast, coelomates are found in both lineages. In several
invertebrate phyla, motile MF-like cells in the parenchyma or
coelom take up cellular debris resulting from dying cells and
actively distribute digested foodstuffs, receiving this material
from enteric phagocytes lining the gut (Hartenstein and
Martinez, 2019).

The acoelomate protostomes obtain their oxygen and food
by simple diffusion across the skin and gut and throughout the
intercellular medium. Freely moving reticular cells have been
observed in the parenchyma of the platyhelminths (flatworms)
(Morita, 1995). These reticular cells are mesenchymal cells
that play an important role in nutrient transportation and
phagocytosis of foreign material, acting as an immune
surveillance system (Table 1). Planarian platyhelminth
antimicrobial activities involve an orthologous protein for
MORN2, which has been associated with LAP and resistance
to bacterial infection in human MFs (Abnave et al., 2014). In
Nemertea, amebocytes arising from the intestinal segment were
reported to play a central role in graft rejection (Langlet and
Bierne, 1984). To our knowledge, there are no reports on the
presence of MF-like cells in gnathostomulids.

In pseudocoelomates, the pseudocoelomic fluid serves as the
circulatory system for nutrients that are taken up, ingested,
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degraded, and secreted into the pseudocoelom by the intestinal
cells. We did not find any report of MF-like cells in the
phyla Gastrotricha, Nematomorpha, and Loricifera. However, in
Rotifera, the pseudocoelom of several taxa contains free motile
amoeboid cells, but so far, no immune function has been reported
for these cells (Baumann et al., 2000). By contrast, phagocytically
active amoebocytes have been observed in Priapulida (Mattisson
and Fänge, 1973) andKinorhyncha (Neuhaus andHiggins, 2002).
For Nematoda, the cells contained in the pseudocoelomic fluid
are termed coelomocytes. Caenorhabditis elegans is a simple
and genetically tractable nematode model that has enabled key
advances in immunity (Willis et al., 2020). However, there is
no evidence that their coelomocytes provide a potent defense
against bacterial infection (Table 1). These six oblong MF-
like scavenger cells located in the C. elegans body cavity
are indeed dispensable to the viability and survival of the
worm (Fares and Greenwald, 2001). Nevertheless, studies of
C. elegans coelomocytes identified novel components of the
endocytic machinery that are conserved in mammals (Fares
and Greenwald, 2001; Sato et al., 2014). Moreover, C. elegans
coelomocytes have been shown to regulate fat consumption
and life span extension upon starvation (Buis et al., 2019).
Finally, they participate in metal detoxification (Tang et al.,
2020). Interestingly, old studies performed in another nematode,
Ascaris suum, have documented the encapsulation of bacteria by
coelomocytes (Bolla et al., 1972).

MACROPHAGE-LIKE CELLS IN
COELOMATE PROTOSTOMES WITH AN
OPEN CIRCULATORY SYSTEM

The advantage of a true coelom is the ability of the inner
mesenteric layer to suspend the central gut in the middle of
the animals, allowing them to increase their body size. In
addition, a circulatory system helps size increase by reducing the
functional diffusion distance of nutrients, gases, and metabolic
waste products. In animals that have evolved coelom along
with a vascular system, cells with the characteristics of MFs
are prominent among the circulating cells, commonly referred
to as coelomocytes or hemocytes (Hartenstein, 2006). During
development, they represent the professional MFs that eliminate
apoptotic cells. In addition, they cooperate with humoral factors
to battle invading parasites and microbes, many of which enter
through the digestive tract.

Blood vascular systems follow one of two principal designs:
open or closed. In open circulatory system, the blood, referred
to as hemolymph, empties from a contractile heart and major
supply vessels into the body cavity termed hemocoel, where
it directly bathes the organs. This occurs in arthropods and
non-cephalopod molluscs.

In Arthropoda, the fruit fly Drosophila melanogaster has
been widely used as a suitable model to study innate immunity
and has provided invaluable contributions to the knowledge
of innate immune system signaling pathways (Hoffmann and
Reichhart, 2002). In D. melanogaster, hematopoiesis does not
occur in adult but only during development through two
waves (Wood and Martin, 2017; Banerjee et al., 2019; Sanchez

Bosch et al., 2019). The first wave occurs in the embryo
and gives rise to hemocytes that proliferate during the larval
stages. The second wave of hematopoiesis occurs at the larval
stage in an organ called the larval lymph gland. MF-like
cells termed plasmatocytes represent about 95% of the total
hemocyte population in adult. A single-cell transcriptome of
hemocytes made it possible to characterize different subsets of
plasmatocytes (ranging from 4 to 12 depending on the study),
showing an interesting parallel with the great diversity of MFs
in mammals (Cattenoz et al., 2020; Cho et al., 2020; Fu et al.,
2020; Tattikota et al., 2020). Although the precise functions of
each of these subsets remain to be established, plasmatocytes
globally serve essential roles in immune response to infection
and wound healing (Table 1). While lack of plasmatocytes
does not impair fruit fly development, it indeed induces a
strong susceptibility to infections by various microorganisms,
due notably to an absence of phagocytosis in deficient fruit
flies (Charroux and Royet, 2009). Plasmatocytes do not only
patrol the body in the circulation but also associate with specific
tissues, such as the intestinal epithelium. In the D. melanogaster
model, the intestine is composed of three main parts: the
foregut, the midgut, and the hindgut. The fore- and hindgut
have an ectodermal origin, whereas the midgut, which is the
functional equivalent of the mammalian small intestine (SI),
has an endodermal origin. Plasmatocytes of embryonic origin
specifically colonize a region at the foregut/midgut junction
known as the proventriculus, where they form a discrete group
of functional MFs able to phagocytose both apoptotic bodies
and bacterial intruders (Charroux and Royet, 2009; Zaidman-
Rémy et al., 2012). Plasmatocytes circulating in the hemolymph
can also infiltrate the midgut when necessary (Ayyaz et al.,
2015). In addition to their phagocytic activity, plasmatocytes
relay intestinal infection-induced oxidative stress signal and
nitric oxide production to the fat body, an organ equivalent to
the vertebrate liver, which produces an antimicrobial peptide
response (Wu et al., 2012). Like mammal MFs, plasmatocytes
switch their metabolic program to aerobic glycolysis in order to
mount an efficient antibacterial response (Krejčová et al., 2019).
Upon injury, circulating plasmatocytes release the cytokines
of the unpaired (Upd) family Upd2 and Upd3, which by
retrospective alignments of type I cytokines and functional
analogies are most closely related to the vertebrate leptins (Rajan
and Perrimon, 2012; Beshel et al., 2017). These cytokines bind
to the receptor Domeless that activates the JAK-STAT pathway in
the fat body and in the gut, where it stimulates intestinal stem cell
proliferation, thereby contributing to fly survival (Chakrabarti
et al., 2016).

In bivalve molluscs, the distribution of blast-like cells suggests
that hematopoiesis may be widespread in connective tissue,
with further development of hemocytes in the hemolymph
(Hine, 1999). Twomain sub-populations of hemocytes have been
identified: granulocytes containing many cytoplasmic granules
and hyalinocytes containing few or no granules (Girón-Pérez,
2010). Granulocytes are the main cell type involved in the cellular
immune defense of bivalves (Rolton et al., 2020). They are also
involved in other physiological functions, such as wound healing
and shell repair, digestion, and transport of nutrients. Indeed, in
the gut lumen, hemocytes ingest and digest foreign materials and
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transport the digested materials to the gut lining or other tissues.
In addition to this digestive function, hemocytes can engulf and
phagocytize foreign pathogens present on the mucosal surfaces
of oysters as part of their innate immune functions. Hemocytes
routinely traffic between the hemolymph and the outer surfaces
of oysters (Provost et al., 2011).

MACROPHAGE-LIKE CELLS IN
COELOMATE PROTOSTOMES WITH A
CLOSED CIRCULATORY SYSTEM

Closed circulatory systems occur in a wide variety of
invertebrates including annelids, cephalopods, and non-
vertebrate chordates. Earthworms, which are the best known of
all annelids, belong to the class Oligochaeta. Their gut surface is
in permanent contact with ingested soil. Moreover, the nephridia
and dorsal pores enable microorganisms to enter the coelomic
cavity. Hence, both coelom and gut interact with naturally
occurring soil microorganisms and have to face strong antigenic
environment (Prochazkova et al., 2020). The free circulating
immune cells of the coelomic cavity, termed coelomocytes,
can be subdivided into two subpopulations, the eleocytes
and the amoebocytes (Engelmann et al., 2016). Eleocytes are
highly autofluorescent cells due to their large granules termed
chloragosomes that contain riboflavin. Eleocytes originate
from the chloragogen tissue surrounding the gut and are
considered as the terminal differentiation stage of sessile
chloragocytes released from this tissue. They have mainly
accessory functions such as maintenance of pH and storage of
glycogen and lipids. By contrast, amoebocytes are MF-like cells
with a broad range of defense functions, including phagocytosis
(Engelmann et al., 2016). Two types of amoebocytes have been
described, hyaline and granular amoebocytes, without clear
separate functions. PRRs [coelomic cytolytic factor (CCF)
and lipopolysaccharide (LPS)-binding protein (LBP)] and the
TLR signaling pathway molecule Myd88 genes are typically
expressed by amoebocytes but not eleocytes, supporting the role
of amoebocytes in pathogen detection and neutralization (Bodó
et al., 2018). Moreover, amoebocytes express higher levels of the
oxidative stress-related super oxide dismutase and antimicrobial
lysozyme and lumbricin genes (Bodó et al., 2018). Dermal
contact with immunostimulants decreases coelomocyte total
number but increases the proportion of granular amoebocytes
among them and induces ROS production (Homa et al., 2013,
2016). Experimental microbial challenge triggers the release of
phagocytic coelomocytes from the mesenchymal lining of the
coelom and thus increases the defense reaction in the coelomic
cavity of earthworms (Dvorák et al., 2016).

MACROPHAGE-LIKE CELLS IN
INVERTEBRATE DEUTEROSTOMES

Deuterostomes include two main phyla: Echinodermata and
Chordata (Figure 1). In echinoderms, the circulating immune
cells, i.e., the coelomocytes, are heterogeneous in morphology,
size, relative abundance, and functions. This makes a single

standard classification for all echinoderms a difficult task.
The distribution of these cell types is also highly variable
among species and even at the individual level (Smith et al.,
2018). Nevertheless, phagocytes are present in all echinoderm
classes and are the main effectors of the echinoderm immune
system. These phagocytes respond to immune challenges through
phagocytosis, encapsulation, syncytia formation, and expression
of complement components (Golconda et al., 2019).

The sea urchin larva has five major types of immune cells that
populate the body cavity (blastocoel), including two phagocytic
cell types termed filopodial and ovoid cells (Table 1) (Ho et al.,
2017). Filopodial cells extend long filopodia that form a reticular
network in the blastocoel (Buckley and Rast, 2019). They are
likely the MF-like cells observed by Elie Metchnikoff in his
seminal works on phagocytosis. Ovoid cells are rarely present at
steady state but rapidly appear upon immune challenge and could
therefore represent an activation state of some of the filopodial
cells. Upon sea urchin larva gut disturbance through the presence
of pathogenic bacteria in the seawater, a coordinated immune
response takes place (Ho et al., 2017). A subset of immune cells
termed pigment cells rapidly migrates from the ectoderm to
the gut epithelium where they secrete their antibacterial iron
chelator pigment echinochrome A (Ho et al., 2017; Coates et al.,
2018). Then, the number and duration of cell–cell interactions
among immune cells and with the gut epithelium increase (Ho
et al., 2017). Finally, filopodial cells quickly phagocytose bacteria
that penetrate the blastocoel of larvae. This coordinated immune
response is at least in part launched by secretion of IL-17 family
members by gut epithelial cells (Buckley et al., 2017).

VERTEBRATE MACROPHAGES

The phylum Chordata consists of three subphyla: Urochordata,
Cephalochordata, and Vertebrata. Vertebrates possess non-
phagocytic enterocytes, and a clear dichotomy is made at this
level between the digestive and immune function of phagocytosis
(Hartenstein and Martinez, 2019). Moreover, vertebrates have
evolved adaptive immunity that can recognize and respond
to specific antigen determinants thanks to the somatic DNA
rearrangement of segmental elements encoding the antigen
binding regions of their T and B cell receptors (Cooper and
Alder, 2006). Together with adaptive immunity appears a new
type of mononuclear phagocytes termed dendritic cells (DCs).
DCs make the link between innate and adaptive immunity by
initiating and controlling antigen-specific immunity through
presentation of antigenic epitopes on MHC class I and class
II molecules (Banchereau and Steinman, 1998). Therefore, the
vertebrate mononuclear phagocyte system comprises monocytes,
MFs, and DCs, as well as their lineage-committed progenitors
(Guilliams et al., 2014). The intestinal immune system of
vertebrates comprises a unique array of innate and adaptive
immune cells. Along the intestinal tract, immune cells are
either disseminated throughout the mucosa forming a diffuse
distribution or clustered in organized lymphoid tissues. The
latter, termed organized gut-associated lymphoid tissues (GALT),
initiate the intestinal immune response. Organized GALT have
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been reported in their simplest forms in all classes of vertebrates
but are especially well-developed in the endotherms, mainly
mammals and birds.

The bone marrow is the hematopoietic organ in all vertebrates
except some amphibians in which hematopoiesis can also occur
in the liver and fishes in which hematopoiesis occurs only in
the kidney. Fishes are the most primitive animals in which an
adaptive immunity is present. In zebrafish, the first embryonic
MFs originate from the mesoderm and migrate over the yolk
ball before colonizing other tissues, whereas in adults, myeloid-
lineage progenitors arise from the kidney (Stachura and Traver,
2011). MFs and DCs are especially abundant in the spleen
and gut (Wittamer et al., 2011). In the adult zebrafish, the gut
can be divided following the anterior–posterior axis into seven
segments, from the proximal S1 to the most distal S7 (Wang
et al., 2010). Each segment exhibits functional differences and
also similarities to the mammalian GIT; e.g., the S7 represents
the colon-like region (Wang et al., 2010; Lickwar et al., 2017).
Distribution ofMFs andDCs along these segments and the ability
of these phagocytes to sample luminal antigens depending on
their location have not been determined so far. Interestingly,
Interferon Regulatory Factor 8 (IRF8) depletion leads to a
lack of MFs during embryonic development with only partial
recovery in adults (Li et al., 2011; Shiau et al., 2015; Ferrero
et al., 2020). Thus, brain and gut resident MFs remain strongly
impacted by IRF8 deficiency (Earley et al., 2018). Importantly,
like in mammals, intestinal MFs are required for shaping the
gut microbiota, and dysbiosis occurs in MF-deficient zebrafish
(Table 1) (Earley et al., 2018). In addition, IRF8-dependent MFs
are the main producers of the complement C1q genes in the
intestine (Earley et al., 2018). Zebrafish intestinal MFs show other
similarities with their mammal counterparts. Thus, like in mouse
and human, CD4+ MFs and regulatory T (Treg) cells reside in
the zebrafish gut mucosa (Dee et al., 2016). Moreover, microbiota
and inflammation promote G-protein-coupled receptor 35
expression in mouse and zebrafish intestinal MFs, which have
a protective role during intestinal inflammation by inducing
TNF synthesis upon lysophosphatidic acid binding (Kaya et al.,
2020). Finally, like in mammals, intestinal inflammation entails
infiltration into the gut mucosa of inflammatory MFs, which
elicit a Th17 cell response together with a decrease of Treg cells
(Coronado et al., 2019). Moreover, in a zebrafish colitis model,
MFs promote intestinal inflammatory lymphangiogenesis via
their vascular endothelial growth factor gene expression (vegfa,
vegfc, and vegfd), highlighting the potential of the zebrafish
model to investigate the mechanism of lymphangiogenesis in
inflammatory bowel diseases (IBDs) (Okuda et al., 2015).

Amphibians rely heavily onMFs not only for immune defense
but also for homeostasis and tissue remodeling/resorption. Most
of the literature on amphibian MFs is related to programmed cell
death and tissue remodeling during metamorphosis (Grayfer and
Robert, 2016). Hematopoiesis of primitive and mainly aquatic
amphibian species occurs in the liver, whereas hematopoiesis of
more terrestrial amphibian species occurs in the bone marrow
(Grayfer and Robert, 2016). In the frog Xenopus laevis, the
principal site of hematopoiesis is still the liver subcapsular region,
but myelopoiesis, i.e., the differentiation of the granulocyte MF

precursor (GMP) into granulocytes and MFs, occurs in the
bone marrow (Grayfer and Robert, 2013; Yaparla et al., 2016).
Precursors with GMP potential migrate from the liver to the
bone marrow under the influence of chemokines enriched in
the bone marrow, such as CXCL12 (Yaparla et al., 2019). MF
differentiation is controlled through binding of the main MF
growth factor, colony-stimulating factor-1 (CSF1) to its CSF1
receptor (CSF1R), which is almost exclusively expressed on
committed MF precursors (Grayfer and Robert, 2016). IL-34 is as
an alternative CSF1R ligand, giving rise to morphologically and
functionally distinct MFs (Yaparla et al., 2020). Unfortunately,
to our knowledge, the literature on amphibian intestinal MFs
consists mainly of old descriptive studies. Lymphoid aggregates
resembling mammalian isolated lymphoid follicles (ILFs) have
been observed in the urodele amphibians (Ardavín et al.,
1982). In these structures, the number of goblet cells decreases,
and lymphoid cells, including MFs, penetrate the intestinal
epithelium. In the gut lamina propria of toads, MFs tend to
cluster and interact with lymphocytes and plasma cells (Chin and
Wong, 1977).

Most studies on reptile immune function have focused on
systemic immune responses, leaving an important knowledge
gap in the mucosal immune responses. Indeed, literature on
reptile intestinal immunity consists mainly of descriptive studies
(Borysenko and Cooper, 1972; Zapata and Solas, 1979; Solas
and Zapata, 1980; Ashford et al., 2019). Reptiles possess primary
lymphoid organs such as bone marrow and thymus but lack
secondary lymphoid tissues such as Peyer’s patches (PPs) or
mesenteric lymph nodes (MLNs). Instead, numerous ILF-like
lymphoid aggregates are located throughout the small and large
intestines. These aggregates are enriched in small lymphocytes
and MFs (Borysenko and Cooper, 1972; Zapata and Solas,
1979; Solas and Zapata, 1980; Ashford et al., 2019). MFs are
dispersed in the lamina propria but can migrate to the intestinal
epithelium in these lymphoid aggregates (Solas and Zapata,
1980). Interestingly, the number of lymphoid aggregates in the
SI of poikilothermic snakes depends on the season, diminishing
in spring and summer (Solomon et al., 1981). Moreover,
temperature can affect functions of lizard MFs, which have an
optimal phagocytic activity at 25◦C (Mondal and Rai, 2001).
In reptiles, the enteropathogenic bacteria Salmonella enterica
colonize the intestinal tract without any signs of disease, but MFs
seem not to be involved in this protection since S. enterica is able
to kill turtle MFs (Pasmans et al., 2002).

Like mammals, birds have a well-developed mucosal immune
system, with several organized GALT. They include the primary
lymphoid organ termed bursa of Fabricius and several secondary
lymphoid organs, namely, PPs, cecal tonsils, and Meckel’s
diverticulum (Casteleyn et al., 2010). The chicken gut lamina
propria contains various innate immune cells such as heterophils
(the avian polymorphonuclear cells), natural killer cells, DCs
and MFs, although the differences between the latter two have
not been carefully assessed (Broom and Kogut, 2018). Chicken
MFs/DCs display a range of PRRs, expression of MHC class II,
and phagocytic and antimicrobial activities. Like in mammals,
early-life microbial colonization is critical for the immunological
maturation of the avian gut, and short early-life antibiotic
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treatment induces alteration of mucosal gene expression and a
decrease of MF number in the gut lamina propria for at least 2
weeks (Schokker et al., 2017). In chicken duodenum, jejunum,
and ileum, MFs/DCs are involved in antigen uptake and provide
protection against invading pathogens (Table 1) (Taha-Abdelaziz
et al., 2020). During coccidiosis, MFs are the principal cell type
involved in the clearance of the sporozoites by phagocytosis
(de Geus and Vervelde, 2013). During Salmonella infection,
resistance depends on a genetic locus SAL1 and has been linked
toMFs with better oxidative killing activity and greater and faster
expression of proinflammatory cytokines (Wigley, 2014). During
dextran sulfate sodium (DSS)-induced intestinal inflammation,
increased monocyte/MF infiltration occurs in all segments of
laying hen intestine (Nii et al., 2020).

In mammals, embryonic MFs initially originate from yolk
sac erythro-myeloid progenitors (Hoeffel and Ginhoux, 2018).
Subsequently, early hematopoietic stem cells (HSCs) settle first
in the fetal liver and later in bone marrow to form a permanent,
self-renewing source of monocytes. Monocytes infiltrate tissues
and can replace and differentiate into tissue-resident MFs to
varying degrees depending on the organs and the encountered
immune challenges, with most MFs keeping an embryonic origin
and self-renewal (Hoeffel and Ginhoux, 2018; Liu et al., 2019).
Importantly, MF renewal by monocytes is especially prevalent
in the intestine, which is always subject to antigenic stimulation
whether through food, drink, or microbiota (Bain et al., 2014).
In rodents and in human, the GIT is complex and divided
longitudinally from the duodenum to the rectum, with functional
and morphological distinctions between the small (duodenum,
jejunum, and ileum) and large (cecum and proximal and distal
colon) intestines (Mowat and Agace, 2014). The SI is specialized
in the absorption of nutrients, whereas the primary function of
colon is the absorption of water and electrolytes. The SI has
villi that increase its surface of exposure to the intestinal lumen
content, a thinner and less well-organized mucus layer, and
reducedmicrobial communities than the colon.MammalianMFs
can fulfill the auxiliary functions necessary for the homeostasis
of each tissue of residence, such as peristaltic movements
and tolerance induction toward dietary and microbiota-derived
antigens in the intestine. In the recent years, single-cell RNA
sequencing associated with high-resolution confocal microscopy,
multiparameter flow cytometry, and functional assay analyses
have allowed to reveal unsuspected aspects of the local and
regional specialization of MFs in mouse and human intestine as
discussed below and shown in Table 2.

TELL ME WHERE YOU LIVE AND I WILL
TELL YOU WHAT KIND OF MACROPHAGE
YOU ARE

We have seen that across species, specialized cells assume at least
one of the main activities of what we call MF in vertebrates:
phagocytosis. These cells show a remarkable plasticity according
to their local microenvironment, i.e., the network of factors and
cells with which they interact. With the increasing complexity of
tissue functions occurring during the metazoan evolution, these

cells have diversified even more and have acquired dedicated
functions to offer protection and to sustain activity of their tissue
of residence.

The specific stromal microenvironment that surrounds HSCs
in the bone marrow has been identified decades ago as niches
indispensable for the maintenance and differentiation of HSCs
(Morrison and Scadden, 2014). However, it is only very recently
that this concept of niche has been fully appreciated for
peripheral tissues, especially forMF identity imprinting (Gosselin
et al., 2014; Lavin et al., 2014; van de Laar et al., 2016). Two
recent reviews have described how this local microenvironment
is now crucial to be considered in order to better characterize and
understand the functions of tissue-resident MFs (Blériot et al.,
2020; Guilliams et al., 2020). Nowadays, studies dedicated to
the conditioning of MFs by their local microenvironment are
mainly developed in human and mouse in which a unique MF
transcriptional program seems to correspond to each specific
niche of the intestine (Bujko et al., 2018; De Schepper et al., 2018;
Kang et al., 2020). Since phagocytic cells interact with and react
to external factors and neighboring stromal and immune cells
whatever the species considered, we however assume that this
concept can be widely extended to other species.

In the following parts, we detail how intestinal MF identity
and functions are impacted by their niche of residence.
We particularly focus on the (re)categorization of the MFs
according to their anatomical location within the intestinal
mucosa (Table 2). We also consider the strong influence of two
exogenous factors inseparable from the intestine, the intestinal
microbiota and the dietary antigens.

A (Re)Categorization of Intestinal
Macrophages by Their Radial Distribution
and Local Compartmentalization:
Protecting and Supporting Your Immediate
Neighbors
Most intestinal MFs along the GIT share some common
functions, such as the phagocytosis of microorganisms and
dead cells. They also share some common specific markers,
such as CX3CR1 and F4/80 in mouse and CD14 and CD16 in
human (Bain et al., 2013; Bujko et al., 2018). In addition, in
both species, intestinal MFs express CD64, CD163, and MerTK.
At the exception of immune inductive sites such as PPs as
discussed later, gut MFs display anti-inflammatory properties
at steady state. They indeed weakly respond to many different
innate stimulations, constitutively express IL-10 and its receptor,
participate in Treg cell expansion, and protect from colitis
(Hadis et al., 2011; Bain et al., 2013; Shouval et al., 2014;
Zigmond et al., 2014). According to their anatomical location,
intestinal MFs interact with specific cells and detect and respond
to specific factors that make them crucial support units of
their microenvironment. In turn, the latter is decisive for
MF recruitment and differentiation in relation to the different
anatomic layers of the intestine. Therefore, from the serosa to
the epithelium, MFs are territorialized to accomplish specific
functions (Table 2).
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TABLE 2 | Local and regional specialization of intestinal macrophages in human and mouse.
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Two main categories of MFs are present in the small and
large intestines of mammals: lamina propria MFs (LPM) and
muscularis MFs (MM) (Hume et al., 1984; Mikkelsen, 1995).
LPM can be further subdivided into mucosal and submucosal
LPM with different life span, transcriptional program, and
functions (De Schepper et al., 2018). Mucosal LPM from the
SI to the colon line the intestinal epithelium on the one hand
and the vasculature on the other hand (Niess et al., 2005;
Chieppa et al., 2006; Chikina et al., 2020; Honda et al., 2020).
Mucosal subepithelial LPM are thus strategically positioned
to sample luminal antigens and to protect the mucosa from
enteropathogens that can penetrate the epithelial barrier. In
the mouse SI, the pathogenic bacteria Salmonella Typhimurium
induce the formation of paracellular transepithelial dendrites
by subepithelial LPM, allowing them to capture bacteria
directly from the lumen (Niess et al., 2005; Chieppa et al.,
2006). In accordance with their bacteria-inducible nature, LPM
transepithelial dendrites occur more frequently where bacteria
are abundant, i.e., at the tip of villi of the terminal ileum
rather than in other parts of the SI (Niess et al., 2005; Chieppa
et al., 2006). Whether LPM transepithelial dendrites represent an
important mechanism of antigen sampling that could occur in
absence of pathogenic bacteria remains under debate (McDole
et al., 2012). Salmonella Typhimurium induce also the migration
of mouse subepithelial LPM into the gut lumen to participate
in the immune exclusion of the bacteria from the gut (Arques
et al., 2009; Man et al., 2017). Importantly, both transepithelial
dendrites and luminal migration are dependent on CX3CR1
expression by subepithelial LPM and on MyD88-dependent TLR
signaling by intestinal epithelial cells (Chieppa et al., 2006;
Arques et al., 2009; Man et al., 2017). Whether these partial
(dendrites) or complete (luminal migration) transepithelial
passages occur in human has yet to be established, especially
since CX3CR1 expression by human intestinal LPM is reduced
as compared with that in mice (Bujko et al., 2018). Nevertheless,
a missense mutation in the CX3CR1 gene has been identified
in Crohn’s disease patients and was linked to an inefficient
antifungal response (Leonardi et al., 2018). This suggests that
CX3CR1 is at least important in human for the control of the
fungi gut community. Unlike conventional DC, mucosal LPM
are unable to migrate into the gut-draining MLNs to present
pathogen-derived antigens and prime naïve T cells (Schulz et al.,
2009; Bravo-Blas et al., 2019). Nevertheless, they can transfer
antigens via gap junctions to neighboring conventional DC that
can in turn express CCR7, migrate to the MLNs, and prime naïve
T cells (Mazzini et al., 2014). Mucosal conventional DC can also
acquire soluble and particulate antigens directly from the lumen
through several mechanisms (McDole et al., 2012; Farache et al.,
2013), raising the question of the real contribution of MFs to the
provision of antigens for antigenic presentation.

Another subpopulation of CX3CR1+ mucosal and also
submucosal LPM is closely associated to the intestinal
vasculature in mice (De Schepper et al., 2018; Honda
et al., 2020). Perivascular LPM are either self-maintaining
throughout adulthood, especially submucosal ones, or replaced
by monocytes on a regular basis, especially mucosal ones (De
Schepper et al., 2018). The full maturation of the latter from

Ly6hi monocytes is ensured by the microbiota and by the
transcription factor NR4A1, a master regulator of the conversion
of CCR2hiCX3CR1intLy6Chi into CCR2loCX3CR1hiLy6Clo

monocytes (Honda et al., 2020). Mucosal perivascular LPM form
tight interdigitating connections around all of the vasculature of
both SI and colon by which they prevent bacteria translocation
into the blood circulation (Honda et al., 2020). Therefore, both
subepithelial and perivascular mucosal LPM are fully equipped
to prevent penetration of pathogens through epithelial and
vascular barriers, offering thus a double defensive line. By
contrast, submucosal perivascular LPM are distant from the
lumen, the microbiota, and potential pathogens. They acquire
a transcriptional profile in relation to their niche, including
angiogenesis-related genes, and are necessary for the repair
and strengthening of the vasculature since lack of perivascular
LPM disturbs the vasculature morphology and induces particle
leakage from the blood (De Schepper et al., 2018).

At the base of SI and colonic crypts, a specific subset of
submucosal LPM expressing CD169 is tightly associated with
the epithelial stem cell niche (Pull et al., 2005; Hiemstra et al.,
2014; Asano et al., 2015; Sehgal et al., 2018) (Table 2). In the
SI, depletion of these stem cell niche-associated LPM following
CSF1R blockade induces a defect in Paneth cell differentiation
and a reduction in LGR5+ intestinal stem cell numbers (Sehgal
et al., 2018). This leads to reduced epithelial proliferation and
imbalanced intestinal epithelial cell ratio, notably favoring goblet
cells. Therefore, stem cell niche-associated LPM are crucial in
the appropriate differentiation of SI epithelial cells. Surprisingly,
in the colon, Csf1-deficient op/op mice with strong LPM
depletion show normal colonic crypt morphology, suggesting
that unlike SI, colon stem cell niche-associated LPM are not
essential to maintain the colonic stem cell niche (Cecchini
et al., 1994). Nevertheless, during injury, the colonic stem cell
niche-associated LPM are essential to promote the regenerative
response, i.e., the proliferation and the survival of colonic
epithelial progenitors (Pull et al., 2005). Similarly, in fruit fly,
plasmatocytes induce stem cell proliferation in the intestine in
response to wounding via their secretion of Upd2 and Upd3
(Chakrabarti et al., 2016). Therefore, as for mouse stem cell
niche-associated LPM, fruit fly plasmatocytes can be tightly
associated with the intestinal epithelium and can play a major
role in tissue repair, highlighting a highly conserved mechanism
of cooperation between phagocytes and gut epithelial stem cells.

In mammals, MM display either bipolar (circular muscle and
deep muscular plexus MM) or stellate (serosal and myenteric
MM) shapes and are closely associated with smooth muscles
and enteric neurons of the muscularis externa, distant from
any luminal stimulation (Mikkelsen, 1995; Phillips and Powley,
2012). Accordingly, MM display a gene expression profile
associated with tissue protection and neuronal development
(Gabanyi et al., 2016; De Schepper et al., 2018). MM play a
major role in regulating intestinal peristalsis by producing BMP2
and PGE2, which act on enteric neurons and smooth muscles,
respectively (Muller et al., 2014; Luo et al., 2018). In addition,
MM play a neuroprotective role by limiting infection-induced
neuronal loss through an adrenergic/arginase 1/polyamines axis
(Matheis et al., 2020). The development of MM is ensured
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by CSF1 produced by their associated enteric neurons (Muller
et al., 2014). However, other cells (e.g., endothelial cells or
interstitial cells of Cajal) can replace enteric neurons since MM
are not impacted in mice lacking enteric neurons, as well as in
humans in whom the enteric nervous system is absent from the
colon (Hirschsprung disease) (Avetisyan et al., 2018). Neuron-
associated MFs are also present in the submucosal LP, where
they could play a role in the regulation of the intestinal secretion
induced by neurons (De Schepper et al., 2018).

From the SI to the colon, from rodents to humans, most
mucosal LPM are continuously renewed by blood monocytes
(Tamoutounour et al., 2012; Bain et al., 2013, 2014; Bujko et al.,
2018). In mice, LPM differentiation from Ly6Chi monocytes
is phenotypically characterized by four developmental stages
termed monocyte waterfall (Tamoutounour et al., 2012; Bain
et al., 2013). Nonetheless, a large part of MM and of the
submucosal LPM, especially those associated with neurons and
vasculature, appears to be long-lived self-maintained cells and
are barely replaced by circulating monocytes (De Schepper et al.,
2018; Shaw et al., 2018). These MFs are indeed distant from the
gut lumen and thus from microbiota and dietary antigens, the
well-known drivers of intestinal MF replacement by circulating
monocytes (Bain et al., 2014; Ochi et al., 2016). This may explain
their self-maintaining property, which is very similar to that of
MFs residing in other tissues (Hashimoto et al., 2013; Yona et al.,
2013; Liu et al., 2019). In humans, a recent study went through
the characterization ofMFs within the upper part of the SI (Bujko
et al., 2018). They encompass four well-defined subsets based
on marker expression, transcriptional profiles, maturation stage,
life span, and location. LPM and MM represent two of these
subsets, whereas the other two are related to the monocyte to
MF conversion.

(RE)CATEGORIZATION OF INTESTINAL
MACROPHAGES BY THEIR GUT SEGMENT
LOCATION: INFLUENCE OF DIETARY
ANTIGENS AND OF MICROBIOTA

Local compartmentalization of intestinal MFs is broadly similar
between the SI and the colon. However, MF numbers are
generally higher in the colon than in the SI. Moreover, despite
similar differentiation programs and markers, MFs of the SI and
of the colon are clearly distinct. Thus, monocytes infiltrating the
gut acquire intestinal segment-specific gene expression profiles
(Gross-Vered et al., 2020). Their differences are mainly due to
the specific functions of each segment of the GIT and to the
different exogenous antigens they are exposed to. Thus, ileal MFs
display higher expression of genes related to immune reaction
and response to challenge than colonic MFs (Gross-Vered et al.,
2020). In the following part, we will describe how phenotypically
similar MFs can act differently according to their gut segment
location.

As mentioned above, the main function of the SI is to
absorb nutrients, and its large surface area is continually exposed
to important amounts of dietary-derived products. Microbiota
density increases drastically from the duodenum to the colon

according to gut physico-chemical environment variations (e.g.,
oxygen and pH levels). Therefore, the colon faces a huge amount
of diverse microorganisms (commensal bacteria, archaea, virus,
and fungi) and their derived metabolites. The number of
goblet cells also increases significantly from the SI to the
colon. Consistent with this increased goblet cell frequency, the
mammalian colon is protected by thicker and more organized
mucus layers than the SI, keeping microorganisms at bay from
the epithelium (Johansson et al., 2008; Bergstrom et al., 2020).

Whereas in the colon the microbiota promotes LPM renewal
by circulating monocytes and contributes to their functional
diversification (Bain et al., 2014; Kang et al., 2020), in the SI,
intestinal microbiota is a major factor neither for the control of
MF replenishment nor for their IL-10 production (Ochi et al.,
2016). Consistently, there is no difference in the number of SI
LPM populations between antibiotic-treated and untreated mice.
However, dietary factors can directly regulate homeostasis of
SI LPM, and a total deficiency in dietary amino acids or the
inhibition of the mTOR-mediated amino acid sensing leads to
a reduction of IL-10-producing MF number (Ochi et al., 2016).
Actually, many other molecules resulting from the degradation of
the food, such as vitamins and aryl hydrocarbon receptor (AHR)
ligands, are susceptible either directly or indirectly to influence
intestinal MF functions in the SI (Mowat and Agace, 2014).

Drosophila melanogaster is a good model to study the impact
in the gut of imbalanced diets, such as the high-fat and
Western diets, or of potential toxic products, such as fried
food-derivatives. In the fruit fly, lipid peroxidation products of
fried food induce an increase of ROS production and DNA
damages in plasmatocytes (Demir and Marcos, 2017). A similar
study was recently performed in mouse and confirmed that
dietary peroxidized fats induce proinflammatory responses by
peritoneal MFs and resident immune cells in PPs (Keewan et al.,
2020). With regard to high-fat diet, Woodcock et al. showed
that lipid-rich diets reduce the life span of D. melanogaster
and impair its glucose metabolism (Woodcock et al., 2015).
This is due to the activation of the JAK-STAT pathway in
response to the Upd3 secreted by the plasmatocytes that become
foamy, accumulating neutral triglycerides and other lipids in
lipid vacuoles. In mouse, Kawano et al. highlighted that high-fat
diet induces CCL2 expression by colonic IEC leading to CCR2-
dependent proinflammatory MF infiltration in the colon, which
results in inflammasome activation in these newly recruited
MF, increased intestinal permeability, and glucose metabolism
and insulin resistance impairment (Kawano et al., 2016). The
western diet includes a high intake of proteins (mainly from
animal-derived sources), saturated fatty acids (SFAs), sugar,
processed food, and salt, together with a reduced consumption
of vegetables, fruits, vitamins, minerals, andω-3 polyunsaturated
fatty acids (PUFAs). SFAs activate proinflammatory response
in MFs through the TLR4-NF-κB pathway (Lee et al., 2003).
By contrast, specialized proresolving mediators (SPMs) are a
large class of signaling molecules that counteract the effect
of proinflammatory dietary antigens on intestinal MFs. SPMs
are derived from the metabolism of ω-3 PUFA supplied in
the diet, giving rise to protectins, resolvins, and maresins.
Alternatively, they are produced as eicosanoids (prostaglandin
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D2 and E2 and lipoxin A4) by immune (including MFs)
and non-immune cells (Na et al., 2019). SPMs influence MF
differentiation toward a proresolving phenotype. Proresolving
MFs dampen Th1 and Th17 responses, re-establish breached
epithelial barrier, limit entry of neutrophils to the site of injury,
and promote monocyte migration (Na et al., 2019). Thus,
protectins and resolving D1 promote resolution of inflammation
by increasing MF phagocytosis and suppressing inflammatory
MFs in inflammatory diseases (Buckley et al., 2014). In summary,
diet is a key element to take into account when studying
variations in LPM functions. However, it is important to keep in
mind that most of the research studying the interplay between
the dietary antigens and the intestinal MFs have been performed
in vitro. Therefore, more in vivo studies will be required to
fully address the impact of diet on the different populations of
intestinal MFs.

The main function of the colon is to absorb electrolytes
and water and also to manage undigested foodstuffs. Through
saccharolytic and proteolytic fermentations, the colonmicrobiota
is involved in the catabolism of remaining indigestible food and
produces a variety of metabolites in the colon including short-
chain fatty acids (SCFAs), which are involved in colonic LPM
conditioning. Thus, antibiotic treatments cause colonic LPM to
express increased levels of proinflammatory cytokines following
microbiota recolonization and to become responsive to LPS
stimulation (Scott et al., 2018). Interestingly, supplementation of
antibiotics with the SCFA butyrate, whose production is reduced
under antibiotic treatment, restores the anti-inflammatory
profile and hypo-responsiveness of colonic MFs (Scott et al.,
2018). Administration of butyrate also promotes colonic LPM
antimicrobial activities, such as lysozyme, calprotectin, and ROS
production (Schulthess et al., 2019). Anti-inflammatory and
anti-microbial effects of butyrate are mediated via inhibition
of histone deacetylase 3, thus regulating MF transcriptional
and metabolic program (Chang et al., 2014; Schulthess et al.,
2019). More generally, microbiota contributes to the functional
diversification of colon MFs (Kang et al., 2020). It supports in
particular colonic LPM production of IL-10 and limits Th1 cell
response while promoting Treg cell expansion (Kim et al., 2018).

Colonic LPM conditioning depends not only on microbiota
but also on TGFβ and, above all, IL-10 signaling (Schridde
et al., 2017; Biswas et al., 2018). Indeed, IL-10 signaling pathway
promotes WASP and DOCK8 interaction leading to STAT3
phosphorylation and anti-inflammatoryMF polarization (Biswas
et al., 2018). By contrast, lack of IL-10 signaling induces a
proinflammatory profile on colonic MFs highlighted by IL-23
and IL-1β production, leading to recruitment of Th17 cells
and promoting colitis (Shouval et al., 2016; Bernshtein et al.,
2019). Loss of IL-10 receptor signaling in mouse and human
MFs indeed induces spontaneous colitis and severe infant-onset
IBD, respectively (Shouval et al., 2014; Zigmond et al., 2014).
Surprisingly, though more inflammatory, these MFs show defect
in Salmonella Typhimurium killing due to prostaglandin E2
overproduction (Mukhopadhyay et al., 2020).

Depending on the location of encountered microorganisms,
CX3CR1+ LPM induce regionalized antigen-specific Th17
responses (Table 2). Thus, CX3CR1+ LPM are involved in the

induction in the SI of a specific and robust Th17 response
against segmented filamentous bacteria (SFB) that colonize
specifically the ileum (Panea et al., 2015). Unlike pathogen-
elicited Th17 cells that are highly glycolytic inflammatory
effector cells producing IFNγ, SFB-induced Th17 cells are non-
inflammatory homeostatic tissue resident cells (Omenetti et al.,
2019). By contrast, colonization with the fungusCandida albicans
induces a strong Th17 response in the colon where it resides
but not in the SI (Leonardi et al., 2018). Actually, colonic LPM
are fully equipped to efficiently recognize and respond to the
important fungal communities (mycobiota) found in the distal
colon, notably via the C-type lectin receptors dectin-1, dectin-
2, and mincle (Iliev et al., 2012; Leonardi et al., 2018). Dectin-1
promotes a proinflammatory program in colonic MFs, resulting
in inflammasome-dependent IL-1β secretion and inflammatory
monocyte recruitment to the inflamed colon (Rahabi et al., 2020).
In contrast, Treg cells regulate the inflammatory properties of
colonic MFs by inhibiting their IL-1β and IL-23 production
(Bauché et al., 2018). This inhibition involves MHC class II
engagement by latent activation gene-3 (LAG-3) expressed on
Treg cells. Interestingly, the way by which LPM from the distal
colon sense their microenvironment is completely different from
that performed by SI and proximal colon LPM (Table 2). Indeed,
distal colon LPM form balloon-like protrusions that insert
between colonic epithelial cells but do not extend into the lumen
like in the SI (Chikina et al., 2020). They remain instead confined
in the intercellular space of the epithelium. These balloon-like
protrusions, which are induced by the presence of fungi in the
lumen, sample the fluids absorbed by epithelial cells to detect
toxins among fungi metabolites. By instructing them to stop
absorption, MFs with balloon-like protrusions protect colonic
epithelial cells from dying of absorbing too much fungal toxins
(Chikina et al., 2020).

SPECIFICITY OF INTESTINAL IMMUNE
INDUCTIVE SITE MACROPHAGES

As mentioned above, the gastrointestinal mucosa of vertebrates
has specialized sites dedicated to the detection of pathogens in
contaminated food and water. Indeed, in reptiles, amphibians,
and lungfishes, the gut contains lymphoid aggregates resembling
the ILFs found in mammals (Borysenko and Cooper, 1972;
Zapata and Solas, 1979; Solas and Zapata, 1980; Tacchi
et al., 2015; Ashford et al., 2019). Like mammal ILFs, the
number and size of these aggregates increase with microbial
challenges (Tacchi et al., 2015; Ashford et al., 2019). Based on
recent observations made on lungfish, it seems however that
these lymphoid aggregates lack a well-structured organization,
showing no segregation between B and T cells, no germinal
center, no AID expression, and no somatic hypermutation
(Tacchi et al., 2015). The cellular composition of these primitive
aggregates is otherwise poorly described; and MFs, although
observed by electron microscopy (Ardavín et al., 1982), have not
been well-characterized.

In addition to ILFs, mammals and also birds have PPs that
are distributed along the SI, especially in the last part of the
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ileum (Jung et al., 2010). PPs consist of clustered B cell follicles
forming domes on the surface of the mucosa. These domes are
separated from each other by dome-associated villi (DAV) over
interfollicular regions (IFRs) enriched in T cells. A specialized
follicle-associated epithelium (FAE) separates the subepithelial
dome (SED) above the follicle from the gut lumen. This FAE
provides a permissive environment for pathogen entry. Indeed,
it secretes no or few IgA and antimicrobial proteins and is
covered by a reduced mucus layer. This is due to lack of
polymeric Ig receptor expression, inhibition of IL-22 signaling,
and diminished number of goblet cells (Bhalla and Owen, 1982;
Pappo and Owen, 1988; Jinnohara et al., 2017). Moreover, the
glycocalyx is attenuated over the FAE favoring interaction of
luminal antigens with the mucosal surface (Frey et al., 1996;
Mantis et al., 2000). Finally, the specialized FAE cell termed
M cell efficiently binds and transports all kind of antigens
from the lumen to the SED (Ohno, 2016; Kobayashi et al.,
2019). Therefore, PP MFs are continually exposed to much
more threatening elements than other intestinal MFs. They are
accordingly equipped with a whole arsenal against pathogens
and prone to promote an inflammatory response (Bonnardel
et al., 2015; Wagner et al., 2018). Until now, these MFs have
been mainly characterized in mice and to a much lesser extent
in humans (Table 2). At the exception of DAV MFs that closely
resemble LPM of standard villi, other PP MFs are profoundly
different from all other MF populations (Wagner et al., 2018).
This is exemplified by their lack of F4/80 and CD64 expression in
mice and of CD163 in humans (Bonnardel et al., 2015; Wagner
et al., 2018, 2020). Nevertheless, they share with most, if not all,
mouse MFs the expression of the apoptotic receptor MerTK and
high levels of the chemokine receptor CX3CR1, both markers
enabling their distinction from conventional DC (Bonnardel
et al., 2015, 2017; Wagner et al., 2020). In relation to their
important role in innate defense, PP MFs express very large
amounts of the antibacterial protein lysozyme, which was the
first reliable marker to identify monocyte-derived cells in PPs of
mice, rats, and humans (Lelouard et al., 2010). This has given
rise to their LysoMac nickname for lysozyme-expressing MFs
(Bonnardel et al., 2015). Interestingly, monocytes give also rise
in PPs to the unique lysozyme-expressing DC termed LysoDC.
LysoDC have a transcriptional program close but not identical to
that of PP MFs as they display additional functions, notably in
terms of antigen presentation (Bonnardel et al., 2015; Martinez-
Lopez et al., 2019; Wagner et al., 2020). Like conventional DC,
mature LysoDC are indeed able to prime naïve T cells at least
in vitro for IFNγ and IL-17 production (Bonnardel et al., 2015;
Martinez-Lopez et al., 2019). This ability is strengthened by
stimulation with a TLR7 ligand. In addition, TLR7 stimulation
induces expression of CCR7 by subepithelial LysoDC and
promotes their migration to the periphery of the IFR where they
encounter naïve T cells and where they interact tightly with newly
activated proliferative T cells (Wagner et al., 2020). At steady
state, very few if any LysoDC are in the IFR, and only few of them
are located in the follicle, with most of them being in the SED
where they excel in antigen capture. Conversely, MFs have been
observed in all regions of PPs (Bonnardel et al., 2015). In addition

to LysoMac, mainly located in the SED, the follicle, and the IFR,
there are indeedmuscularis and serosalMFs, and germinal center
tingible body MFs (TBM). Interestingly, these different anatomic
locations are tightly linked to phenotypic distinctions between
PP MFs (Table 2). Thus, muscularis and serosal MFs below the
IFR express CD169, whereas other PP MFs do not. As well,
TBM and interfollicular and lower follicular LysoMac express the
phosphatidylserine receptor TIM-4, whereas subepithelial and
upper follicular LysoMac do not. This suggests that an important
regional specialization of MF functions exists inside the PPs itself
(Wagner et al., 2018). Thus, TIM-4 mainly expressed by MFs
in the regions of T cell priming and B cell selection belongs
to the family of apoptotic cell receptors and is known to be
involved in the regulation of the adaptive immune response
and prevention of autoimmunity through removal of both B
and T cells (Albacker et al., 2010, 2013; Rodriguez-Manzanet
et al., 2010). Therefore, TIM-4+ MFs could protect PPs from an
exaggerated inflammatory reaction by regulating both T and B
cell numbers.

As mentioned above, TIM-4− LysoMac as well as LysoDC
are close to the FAE, and they play key role in the uptake of
particulate antigens and pathogenic bacteria (Lelouard et al.,
2010, 2012; Disson et al., 2018). The mechanisms by which
LysoDC and TIM-4− LysoMac sample luminal antigens are
different from either SI or colonic LPM. Indeed, phagocytosis of
antigens by LysoDC and TIM-4− LysoMac either follows M cell
transcytosis or occurs through LysoDC dendrite extension into
the lumen through M cell-specific transcellular pores (Lelouard
et al., 2012; Bonnardel et al., 2015). Therefore, M cells tightly
control both mechanisms. Accordingly, absence of M cells is
associated with a strong downregulation of antigen uptake in PPs
and of IgA production in villi (Rios et al., 2016). Unlike villus
paracellular transepithelial dendrites, these LysoDC trans-M cell
dendrites do not depend on CX3CR1 expression (Bonnardel
et al., 2015). LysoDC and TIM-4− LysoMac also influence FAE
properties to favor contact with exogenous antigens. Thus, they
express Il22ra2, which encodes IL-22BP, an inhibitor of Il-22
(Da Silva et al., 2017). IL-22BP promotes microbial sampling
by influencing the FAE transcriptional program, notably by
inhibiting genes encoding antimicrobial proteins and also
genes involved in surface glycosylation and mucus production
(Jinnohara et al., 2017). PP MFs are also likely involved in M
cell differentiation as long-term blockade of CSF1R, which is
known to deplete MFs, impairs M cell differentiation (Sehgal
et al., 2018). Finally, together with other immune cells, they could
be involved in M cell maturation via the expression of the S100
family member S100a4 (Kunimura et al., 2019).

More globally, in relation to the fact that PPs are a permissive
entry site for a large number of pathogens, PP MFs display
a strong antiviral and antibacterial transcriptional program
(Bonnardel et al., 2015). Moreover, PP MFs lack the typical anti-
inflammatory properties of other intestinal MFs (Wagner et al.,
2018). Thus, they do not produce IL-10 or express its receptor but
instead secrete TNF and IL-6 upon stimulation (Bonnardel et al.,
2015;Wagner et al., 2018). Therefore, unlike most intestinal MFs,
they retain a strong ability to promote inflammation.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 13 February 2021 | Volume 8 | Article 624213

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Arroyo Portilla et al. Intestinal Macrophage Specialization

CONCLUSIONS AND PERSPECTIVES

There has been incredible progress in recent years in the
appreciation of intestinal MF heterogeneity (Table 2). This
obviously raises great hope for targeted therapies that would
render possible to alter a defective population without disturbing
the others or to promote one population over the others
and thus restore homeostasis. However, much more work
is needed to understand the signaling between MFs and
their direct neighbors and how this can be used to remodel
MF properties. As suggested by Guilliams et al. (2020),
manipulation of the neighboring cells that imprint the MF
with its functional properties instead of the MF itself could
represent alternative and interesting strategies for deciphering
the mechanisms that dictate the fate of intestinal MFs on the
one hand and modifying key instructing factors according to
pathologies on the other hand. Nutritional- and microbial-based
intervention strategies to modulate intestinal MF properties
have also become a promising therapeutic approach to
treat and prevent intestinal diseases. A great challenge for
all these approaches will be to deal with the complexity
of the structure and diversity of potentially simultaneous

signals (food, microbiota, pathogen, stromal, and immune cell-
derived factors) that make the intestine such a special and
diversified organ.
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