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Abstract: Stack emissions from the industrial sector are a subject of concern for air quality. However,
the characterization of the stack emission plume properties from in situ observations remains a
challenging task. This paper focuses on the characterization of the aerosol properties of a steel plant
stack plume through the use of hyperspectral (HS) airborne remote sensing imagery. We propose a
new method, based on the combination of HS airborne acquisition and surface reflectance imagery
derived from the Sentinel-2 Multi-Spectral Instrument (MSI). The proposed method detects the
plume footprint and estimates the surface reflectance under the plume, the aerosol optical thickness
(AOT), and the modal radius of the plume. Hyperspectral surface reflectances are estimated using the
coupled non-negative matrix factorization (CNMF) method combining HS and MSI data. The CNMF
reduces the error associated with estimating the surface reflectance below the plume, particularly
for heterogeneous classes. The AOT and modal radius are retrieved using an optimal estimation
method (OEM), based on the forward model and allowing for uncertainties in the observations and
in the model parameters. The a priori state vector is provided by a sequential method using the root
mean square error (RMSE) metric, which outperforms the previously used cluster tuned matched
filter (CTMF). The OEM degrees of freedom are then analysed, in order to refine the mask plume
and to enhance the quality of the retrieval. The retrieved mean radii of aerosol particles in the plume
is 0.125 µm, with an uncertainty of 0.05 µm. These results are close to the ultra-fine mode (modal
radius around 0.1 µm) observed from in situ measurements within metallurgical plant plumes from
previous studies. The retrieved AOT values vary between 0.07 (near the source point) and 0.01, with
uncertainties of 0.005 for the darkest surfaces and above 0.010 for the brightest surfaces.

Keywords: aerosol; plume; hyperspectral; multi-spectral; stack emissions

1. Introduction

Human activities are responsible for significant emissions of particulate matter (PM).
Atmospheric PM (also known as aerosols) is responsible for air quality degradation and
the exposure of populations to ambient fine aerosols (PM2.5), thus posing a global health
concern [1,2]. The industrial sector was the second largest source of primary coarse
aerosol (PM10) emissions and the fourth largest source of PM2.5 in Europe between 2013
and 2018. According to the emissions inventory of the national emissions reported at
the Convention on Long-range Transboundary Air Pollution [3], PM10 and PM2.5 from
the industrial sector represented 15% and 6.5% of the total emissions in Europe over
the period 2003–2018, respectively. Emission inventories can be generated from on-site
measurements, modelling, and reporting by the industry sector. Industrial emissions
depend on manufacturing processes, fuel, emission factors, and technological abatement.
Industrial emission inventories are updated each year according to specific guidelines [4,5].
However, the temporal variability of instantaneous emission fluxes remains a challenge
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to assess; in particular, in the case of unexpected atmospheric emissions due to industrial
accidents or uncontrolled releases.

Ground-level sensor networks, including remote sensing-based techniques, have been
commonly used for fine particle monitoring [6]. Since the signing of the Convention of
Long-range Transboundary Air Pollution in 1979, several monitoring programs have been
deployed in Europe, such as the European Monitoring and Evaluation Programme (EMEP).
However, such ground-based networks are not always able to appropriately capture the
spatial dispersion of the plume from the emission source. Airborne and satellite remote
sensing imagery may, therefore, be considered as complementary to ground-based systems.

The dilution of a stack plume in the ambient air depends on the wind field, the atmo-
spheric stability [7], the effluent buoyancy, and momentum [8]. With dilution, the optical
signature of the plume reduces in amplitude. Industrial plumes from an industrial stack
generally have a rather limited visible spatial extent, only about a few hundred meters. De-
tecting a plume in a remote sensing image remains a challenge, and it is even more difficult
to quantify the aerosol properties inside the plume. Hyperspectral visible/short-wave
infrared (VIS-SWIR) imagery with a high spatial resolution (of about 1–10 m) is well-suited
for the plume detection task and the study of aerosol properties [9–11]. Moreover, re-
cent and planned high spectral and spatial resolution space missions have offered new
opportunities for the study of stack emissions on a global scale.

Remote sensing of atmospheric aerosols has benefited from space missions dedicated
to Earth observation (e.g., the NASA EOS program). First considered as a corrective pa-
rameter for estimating surface reflectances, aerosols have become an important focus of
research, due to their important role in climate change. Kaufman and Sendra [12] and
Kaufman et al. [13] have used the atmospheric correction approach for aerosol character-
ization over dark, densely vegetated pixels. This method is based on dedicated spectral
channels or channel ratios of multi-spectral sensors and, since then, has been improved and
successfully applied to multi-spectral images [14,15]. Variants of this method use channels
with wavelengths below 500 nm over bright soils [16–18].

Inverse model analysis applied to aerosol satellite remote sensing is an ill-posed
problem, for which statistical frameworks, such as optimal inversion [19–23], have been
proposed. Thompson et al. [24,25] and Hou et al. [26,27] have presented a method based
on the formalism of Rodgers [28], in order to simultaneously retrieve the atmospheric
properties and the surface reflectance from VIS-SWIR images. Several studies have used
the formalism of Rodgers to retrieve gas, aerosol, or surface properties from space mis-
sions such as SAGE II [21], IASI [29–31], and GOSAT [32]. Sequential algorithms, such
as MAJA [33] or GRASP [34], allow for the retrieval of atmospheric properties with a
multi-temporal comparison and a combination of several images. Sequential atmospheric
correction algorithms have been used on hyperspectral data [35–40].

The retrieval of the aerosol optical properties of an industrial stack plume requires
both surface and atmospheric correction. The plume properties can be estimated by using
the difference between a reference image without the plume and the actual image with the
plume. However, while atmospheric correction is usually homogeneous over the scene, the
surface properties can be highly heterogeneous. Therefore, an adequate method is needed
to infer the surface reflectance under the plume. The reference signal can be estimated from
pixels out of the plume, through using a mean spectrum considering the class of surface
reflectance [10] or by using multi-temporal data [11]. The method using the mean spectrum
by class is appropriate for rather homogeneous classes. The reference can also be estimated
from ancillary radiometric observations coming from other sensors, such as multi-spectral
images, as is presented in this study.

In this paper, a method to improve the estimation of plume aerosol properties from
hyperspectral image is described. The proposed framework is applied to a plume observed
in February 2016 over a steel plant in France. The method is based on multi-temporal
and multi-resolution observations, as well as an optimal estimation method (OEM). We
first describe how the surface reflectance under the plume is determined, using either
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a single hyperspectral image or a combination of the hyperspectral and multi-spectral
Sentinel-2 observations. The plume aerosol optical properties are first estimated using a
sequential method and, then, an iterative optimal estimation method, taking into account
the observations and forward model uncertainties.

2. Methods
2.1. Theory

A radiance signal measured by an airborne or satellite sensor on a flat, homogeneous,
and Lambertian surface can be expressed [41] as:

L = Latm + ρ
(Ed + Es)Td
π(1− ρeS)

+ ρe
(Ed + Es)Ts

π(1− ρeS)
, (1)

where
L = at-sensor radiance in W·m−2·sr−1 ·µm−1

Latm = atmospheric radiance, without interactions with the ground
Ed = direct part of the solar irradiance
Es = scattering part of the solar irradiance
Td = direct part of the atmospheric transmittance
Ts = scattering part of the atmospheric transmittance
S = atmospheric spherical albedo
ρ = surface reflectance of the studied pixel
ρe = surface reflectance from the environment.

In the presence of a homogeneous semi-transparent plume between the sensor and
the soil, Latm, Es, Ed, Ts, and Td are modified. The total solar irradiance is given by
Etot = Ed + Es, and the total atmospheric transmittance is given by Ttot = Td + Ts. The
pixel environment is assumed to be homogeneous, which means that ρe is equivalent to ρ.
The surface reflectance, ρ, is estimated by applying homogeneous atmospheric correction
to the radiance image. The variational radiance signal due to the plume aerosols ∆Lp is
modelled by:

∆Lp = Lp − L

= ∆Latm + ρ
∆(EtotTtot)

π(1− ρS)
,

(2)

where Lp is the radiance signal measured for a single pixel in the same conditions as L, but
with the presence of a plume, ∆Latm is the atmospheric radiance variation due to the plume
aerosol, and ∆(EtotTtot) is the variation of the product of the total irradiance with the total
atmospheric transmittance. Philippets et al. [10] and Alakian et al. [42] have considered
the plume as an infinite horizontal homogeneous layer. The plume is assumed to be here a
finite horizontal homogeneous layer; this means that the direct part of the solar irradiance
seen by a pixel under the plume may or may not pass through the plume. The variation of
the scattering part of the solar irradiance seen by a pixel under the plume is a fraction of
that seen in the case of an infinite plume layer. The total variation of the solar irradiance
due to the plume and seen by a pixel can be expressed as follows:

∆Etot = α∆Ed + β∆Es, (3)

where α is equal to 0 or 1, β is a scalar between 0 and 1, ∆Ed is the direct part of the total
irradiance variation, and ∆Es is the scattering part of the total irradiance variation in the
case of an infinite plume layer. In the same way, the surface reflectance variation, ∆ρp, due
to the plume aerosol is:
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∆ρp = ρp − ρ

=
Lp − Latm

EtotTtot + πS(Lp − Latm)
− L− Latm

EtotTtot + πS(L− Latm)
,

(4)

where ρp is the surface reflectance impacted by the plume.

2.2. Definition of the Optimal Estimation Method

The retrieval method is based on the optimal estimation method defined by Rodgers [28].
The OEM problem can be straightforwardly represented by Equation (5). The measure y is
explained through the forward model function, F, associated with the state vector x and a
random noise ε. In this study, the state vector x corresponds to atmospheric and surface
properties, while the forward model is a radiative transfer model.

y = F(x) + ε. (5)

In the linear case, the forward model can be expressed as F = Kx, where K is the
Jacobian matrix containing the partial derivatives corresponding to the sensitivities of the
direct model to the state parameters. In this form, the problem is ill-posed, as there are more
unknowns than observations. To reduce the number of unknowns, prior knowledge of the
state vector is used. The optimization method consists of minimizing the cost function to a
global minimum. According to Rodgers [28], the cost function is expressed by Equation (6):

χ2 =
1
2
(x− xa)

TS−1
a (x− xa) +

1
2
(y− F(x))TS−1

ε (y− F(x)), (6)

where the first term of the equation represents the difference between the state vector x
and the a priori state vector, given the a priori variance-covariance matrix Sa; while the
second term represents the error between the forward model F(x) and the observations
y, given the variance–covariance matrix of the observations Sε. The variance–covariance
matrices Sε and Sa represent the uncertainties of the observation and the a priori state
vector, respectively. According to the formalism of Rodgers, Sε can be decomposed into:

Sε = Sy + KbSbKT
b , (7)

where Sy is the variance–covariance matrix representing the uncertainties due to the sensor
and Sb represents the effects of unknowns; that is, parameters that have an impact on
retrieval uncertainties but were not retrieved during the OEM processing. Kb is the Jacobian
matrix associated with the unknown parameters. Rodgers [28] theoretically defined an
estimator of the state vector of the retrievals, as follows:

x̂ = xa + (KTSεK + S−1
a )−1KTS−1

ε (y− Kxa), (8)

The Jacobian matrix is also defined as the pseudo-inverse of the gain matrix, G, which
represents the sensitivity of the estimated state vector x̂ to the observations y. The gain
matrix G is computed by the following expression:

G = (KTS−1
ε K + S−1

a )−1KTS−1
ε . (9)

The elements of G correspond to the partial derivatives of the estimated state vector
x̂, with respect to the observation y. The gain matrix gives access to the averaging kernel
matrix A = GK. The diagonal elements of A represent the degrees of freedom (DOF)
associated with the state parameters. The trace of A gives the total DOF of the problem
(i.e., the number of independent parameters). Finally, the rows of A give the sensitivity of
the retrieved parameters to the true state. In the case of a perfect estimate of x, the matrix
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A would be the identity matrix. The true error corresponding to a random measurement
noise is defined by:

x̂− x = (GK− I)(x− xa) + Gε, (10)

and the posterior distribution of the estimated parameters has a covariance matrix given by:

Ŝ = (KTS−1
ε K + S−1

a )−1. (11)

The uncertainty given by Ŝ depends on the resolving error caused by the lack of
resolution in the inverse process and measurement errors due to the measurement noise.
The measurement error and resolving error covariance matrices are Sm and Ss, respectively,
which are defined by:

Ŝ = GSεGT + (A− I)Sa(A− I)T (12)

= Sm + Ss. (13)

2.3. Forward Model Definition and State Vectors

The forward radiance model, ŷ, is defined by the following equation:

ŷ = L + ∆Lp(τ550), (14)

where L (see Equation (1)) is the estimated radiance without the plume and ∆Lp (see
Equation (2)) is the radiance differential due to the aerosol plume. The forward radiance
model ŷ is estimated using the radiative transfer model with the following input parameters:
Atmospheric background properties (water vapor, background aerosol properties), the
finite plume geometry parameters (i.e., the direct and scattering parts of the irradiance
differential, defined as α and β in Section 2.1), the aerosol plume refractive index Rindex,
the plume modal radius r, the log-normal size distribution standard deviation σ, and the
plume aerosol optical thickness (AOT) at 550 nm τ550. We assume that ∆Lp is linear, with
AOT in the range of [0, 0.5] [10].

∆Lp(τ550) = γ(τ550)∆Lp(τ550
re f ), (15)

where γ(τ550) represents the AOT ratio between a reference AOT τ550
re f at 550 nm and

the observed AOT τ550 at 550 nm. The atmosphere modelling was performed with the
COMANCHE software [43], a frontend of MODTRAN model version 5.2 [44]. The plume
was modelled by a homogeneous layer with a defined vertical extent, a height above
the ground level, and an aerosol optical thickness τ550

re f at 550 nm, defined by the user.
The aerosol plume optical properties were simulated using Mie theory, considering a
mono-modal size distribution for a given modal radius r, with an associated standard
deviation σ set to 1.5. The simulations were performed for 3 different refractive indices
Rindex, corresponding to sulphate, brown carbon, and soot particles (Table 1).

The plume reference AOT was set to 0.1 at 550 nm (optically thin plume). The plume
had a vertical extent of 100 m and was located 10 m above ground level. The vertical
extent of the plume was within the common range of industrial stack plume extension [8].
Moreover, the plume reference AOT and vertical extent values have no impact on the
retrieved plume properties, as long as the AOT value is less than 0.5 [10].

The state vector x is associated with the OEM retrieved parameters, with a prior
distribution xa, and with a prior variance–covariance matrix Sa. The state vector x includes:
(i) The surface reflectance vector ρ, (ii) the plume AOT at 550 nm τ550, and (iii) the aerosol
plume modal radius r. The prior distribution of the retrieved parameters and their variance–
covariance matrix are given by:
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xa =

 ρa
τ550

a
ra

 Sa =

Sρ 0 0
0 Sτ 0
0 0 Sr

. (16)

Pixel-by-pixel estimation of the prior value is defined in the next section. The covari-
ance matrix, Sρ, of the surface reflectance ρa was computed class-by-class. The covariance
matrix Sτ and Sr were estimated from the standard deviation of the prior values τ550

a and
ra, respectively, and from the forward model sensitivity analysis (see Section 2.5).

The state vector b corresponds to the forward model inputs that are not retrieved by the
OEM. The associated variance–covariance matrix, Sb, represents the variance of the error
of those unknown parameters. The state vector b includes the atmospheric water vapor
content, background aerosol Ångström coefficient, and background atmospheric visibility.
Visibility is related to ground surface aerosol extinction at 550 nm by the Koschmeider
equation, and was used to scale the MODTRAN aerosol extinction profile.

2.4. Forward Model Initialization: First Guess

This step aims to initialize b and x and their associated uncertainties. Atmospheric
background properties were estimated using MSI surface reflectances and the MODTRAN
aerosol database. The MODTRAN background aerosol models were of three types: “mar-
itime”, “rural”, or “urban”. The rural aerosol model was composed of a mixture of 70%
water soluble substances and 30% dust-like aerosols. The urban aerosol model was a
mixture of rural aerosol particles and soot-like aerosols produced by industrial activities.
The proportions of rural aerosols and soot-like aerosols in the urban aerosol model were
80% and 20%, respectively. The maritime aerosol model was composed of sea-salt particles
created by the evaporation of sea-spray droplets and of continental aerosols, which were
almost identical to those of the rural model. The exception was that the largest particles in
the rural aerosol model were removed. Each aerosol model was defined by the normalized
extinction and absorption coefficients at 550 nm. Figure 1a,b presents the normalized
extinction and absorption coefficients for each model.
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Figure 1. Normalized (a) extinction and (b) absorption coefficients of MODTRAN background
aerosol model.

The state vector b and the associated Sb matrix were initialized at this stage. The
water vapor uncertainty (see Section 4.1) was set to 10% of the initial concentration of
the mid-latitude winter profile defined by MODTRAN. Channels above 920 nm that
were strongly affected by water vapour were not considered. The visibility error was
fixed at 15%, corresponding to an absolute error of 5 km (see Section 4.1). The error in
the background aerosol model was defined using the Ångström coefficient Å [45]. The
Ångström coefficients were 0.48, 1.32, and 1.15 for the “maritime”, “rural”, and “urban”
aerosol models, respectively. The standard deviation of the error associated with the
Ångström coefficients was set to 10%.
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Surface reflectances were estimated by compensating for the atmospheric effects in
the same way for the whole image, including the plume area. An extra step was needed to
estimate the “off plume” surface reflectance in the plume area. In the case of a hyperspectral
image alone, the “off plume” surface reflectance was assumed to be the estimated average
spectrum, class-by-class. The images were classified with a random forest algorithm. The
classification was performed with six user-defined classes: “water”, “sparse vegetation”,
“dense vegetation”, “concrete soils”, “dark soils”, and “bright soils”. The training data sets
were polygons drawn by the user using the open source geographical information system
QGIS [46].

In the case of a single hyperspectral image associated with a multi-spectral image,
different surface reflectance estimation methods may be considered. Different fusion
algorithms exist, such as MAP-SMM [47] or FUSE [48], which are based on Bayesian
approaches, or methods like Hysure [49], ICCV’15 [50], or CNMF [51], which are based
on unmixing analyses. The coupled non-negative matrix factorization (CNMF) algorithm
of Yokoya et al. [51] does not depend on image classification and the prior unmixing is
unsupervised. CNMF merges a hyperspectral image with a multi-spectral image to obtain
a final image, where each pixel is computed as a linear combination of the end members of
the hyperspectral image. Vertex components analysis (VCA) [52] is used to obtain an initial
set of endmembers for the hyperspectral image. The extracted hyperspectral endmembers
and their weights are refined by alternating unmixing of hyperspectral and multi-spectral
images by non-negative matrix factorization (NMF) [53,54]. Then, CNMF calculates the
abundance matrix of hyperspectral endmember spectra using the multi-spectral image. The
ground reflectance, ρa (see Equation (16)), is then estimated, by combining the abundance
matrix and the hyperspectral endmembers. The associated covariance matrix, Sρ, is then
computed class-by-class.

First guesses of the AOTs and mean radii were estimated with a sequential approach
based on the hyperspectral image corrected for the atmosphere. Atmospheres contain-
ing different types of plumes were simulated using the forward model. Three types of
aerosol were considered (see Table 1). The standard deviation of the log-normal size
distribution was equal to 1.5 and the modal radius varied from 0.025 µm to 1 µm. The
sequential approach was performed using the surface reflectance differential defined in
Equation (4), where ρ is the prior reflectance estimated with the CNMF method and ρp

is the hyperspectral data corrected for the atmosphere. The reflectance differential was
compared to the simulations ∆ρ

p
simu(τ

550
re f ), using the cluster-tuned matched filter (CTMF)

or the root-mean-square error (RMSE) as a metric. The analysis of the metric scores led to a
first pixel-by-pixel estimation of the optical thickness, aerosol type, and modal radius of
plume particles.

Table 1. Complex aerosol refractive index at 550 nm used in the plume simulations.

Type Real Part Imag. Part

Brown carbon 1.55 1.2× 10−2

Sulphate 1.52 5× 10−4

Soot 1.83 0.74

CTMF was developed by Funk et al. [55] and is used to retrieve gas thermal signatures
(CO2, SO2, N2O, and O3) in the thermal infrared. It was later adapted by Thorpe et al. [56,57]
and Dennison et al. [58], in order to detect other gases in the reflective domain. Most
recently, Philippets et al. [10] used CTMF to detect and characterize the aerosol signature
of industrial plumes. The CTMF model can be described as a combination of the surface
reflectance ρ with the spectral reflectance signature of the plume aerosols ∆ρp. Both vectors
ρ and ∆ρp have the same dimension (i.e., the number of channels m in the hyperspectral
image). After the classification of a hyperspectral image, an optimal filter qj for a soil class
j can be defined as:
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qj =
C−1

j bj√
bT

j C−1
j bj

, (17)

where C−1
j represents the inverse of the correlation matrix of the soil class j and bj rep-

resents the mean aerosol spectral signature equivalent to ∆ρ
p
simu(τ

550
re f ). From the optimal

filter qj associated to a modal radius and an aerosol type, the CTMF score, fi,j, describes
the correlation between the simulated and the measured aerosol signal, which can be
expressed as:

fi,j = γ(τ550)qT
j ∆ρp, (18)

where γ(τ550) is the optical thickness ratio between the true optical thickness τ550 and the
reference optical thickness at 550 nm τ550

re f , which was fixed to 0.1 in the direct model. A
CTMF score map was computed for each aerosol radius and type. As the aerosol type
was assumed to be homogeneous inside the plume, the aerosol type associated to the
most frequent best score inside the plume was chosen for the entire plume. Once the
aerosol type was selected, a second application of the CTMF was performed. The radius
map was computed by selecting the best CTMF score in the set of CTMF maps for each
pixel. The AOT was then deduced, by comparing the estimated surface reflectance differ-
ential map ∆ρp(τ550) with the simulated variation of the surface reflectance ∆ρ

p
simu(τ

550
re f )

corresponding to the selected modal radius r pixel-by-pixel:

τ550 = γ(τ550)τ550
re f

=
||∆ρp(τ550)||
||∆ρ

p
simu(τ

550
re f )||

× τ550
re f .

(19)

The RMSE defined by Equation (20) was used as an alternative metric to estimate the
aerosol type, radius, and AOT.

RMSE =
1
n

λn

∑
λ=λ1

(
∆ρp(λ, τ550)− γ(τ550).∆ρ

p
simu(r, λ, τ550

re f )
)2

, (20)

where n is the number of channels λ of the spectrum and r is the modal radius. ∆ρ
p
simu was

computed, by Equation (4), for each pixel and for the different aerosol properties. Aerosol
properties were set pixel-by-pixel to the minimum RMSE value.

2.5. Sensitivity Analysis

Retrieval uncertainties, in terms of modal radius and AOT, were due to: (i) The
signal-to-noise ratio (SNR); (ii) the ground reflectance error (retrieved by the OEM); and
(iii) parameters not retrieved by the OEM (forward model assumptions). The OEM non-
retrieved parameters were the atmospheric background properties (b state vector), the
finite plume geometry parameters (i.e., the direct and scattering parts of the irradiance
differential, defined as α and β in Section 2.1), the aerosol plume refractive index Rindex,
and the aerosol plume size distribution standard deviation σ.

The instrument noise Sy is a diagonal matrix with diagonal elements σ2
l , representing

the square of the noise equivalent delta radiance (NEDL). The NEDL σl was computed
by σl =

√
a1 + a2L, where a1 represents the residual noise and a2 represents the photonic

noise. The coefficients a1 and a2 were given by the noise model of the HYSPEX sensor.
Figure 2 represents the modelled SNR of the HYSPEX sensor for the mean radiance of
water pixels.
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Figure 2. Water pixel: (a) Mean radiance spectrum; and (b) associated signal-to-noise ratio.

The reference simulation state corresponded to seawater reflectance, a background
aerosol model set to the MODTRAN rural mode with a visibility of 15 km. The scattering
aerosol plume modal radius was set to 0.15 µm and the AOT to 0.1, respectively. The
coefficients α and β were set to 0.0 and 0.3, respectively. The reference state was closed
to the observation case. From the reference state, we estimated the retrieval uncertainties
due to a nominal variation (or uncertainty) of the forward model inputs or assumptions.
Estimated retrieval uncertainties corresponding to the HYSPEX noise were around 0.0024
for AOT and 0.001 µm for the modal radius.

Table 2 shows the modal radius and AOT retrieval uncertainties due to forward model
input uncertainties. Parameter uncertainties were defined consistently with the data and
the initialisation step (Section 2.4). The surface reflectance uncertainty was set to 10%
and uncertainties corresponding to the water vapor, the background aerosol Ångström
coefficient, and the visibility used in the forward model were set to 10%, 10%, and 15%,
respectively. An uncertainty of 10% was set for the standard deviation of the plume aerosol
size distribution. Then, an uncertainty of 10% was set for the value of the real part of its
refractive index. The finite plume geometry parameter uncertainties were set to 0.2 for β
and to 1 for α.

We observed that most of the uncertainties due to the model assumption were higher
than the measurement noise for both the AOT and modal radius. The maximum AOT
error of 0.012 (i.e., a relative error of 12%) was due to a reflectance offset error: An error of
0.01 corresponds to more than 20% of water mean reflectance in the VIS spectral domain.
As expected, the maximum modal radius error of 0.045 (i.e., a relative error of 30%) was
due to σ uncertainty, as the retrieved modal radius is closely linked with the input size
distribution standard deviation. The least sensitive parameters (errors with the same
range of magnitude as noise error) were water vapor, β for AOT, and β and visibility for
modal radius. In the case of other parameter uncertainties, retrieval error due to model
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uncertainties were quite similar, with a mean value around 0.005 (10%) for AOT and around
0.015 (10%) for modal radius. The forward model assumption uncertainties defined in this
analysis led to acceptable uncertainties, in terms of the modal radius and AOT.

Table 2. AOT and modal radius uncertainties corresponding to the uncertainties on the background aerosol model with the
visibility vis and Ångström coefficient, the water vapor, the plume geometry α and β, the real part of the refractive index
Rindex, the standard deviation of the plume aerosol size distribution, the surface reflectance relative error δρ, and the surface
reflectance offset.

vis Å H2O α β Rindex σ δρ ρof f set
5 km 10% 5% 1.0 0.2 5% 10% 10% 0.01

δτ550 0.0035 0.0044 0.0003 0.0066 0.0012 0.0082 0.0036 0.0038 0.012
δr 0.0011 0.0122 0.0226 0.0114 0.0008 0.0147 0.0450 0.0070 0.014

3. Data
3.1. Airborne Hyperspectral Data

A plume emitted by the stack of the sinter plant at the ArcelorMittal site was imaged
by the HYSPEX hyperspectral camera aboard the SAFIRE ATR-42 research aircraft on the
17th of February at 11:00 LT. The ArcelorMittal site is located in the Fos-sur-Mer district
area and is the second largest steel plant in France, which produces steel, coils, and tubes.
According to the IREP database (Registre français des rejets et des transferts de polluants),
the Fos-sur-Mer ArcelorMittal industrial site was, respectively, the first and the second
emitter of PM10 (1230 t/year) and CO2 (7,460,000 t/year) for France in 2018. The HYSPEX
camera has a spectral range between 0.41 and 2.5 µm with 160 spectral channels in the
visible/near-infrared (VNIR) range (410–996 nm) and 262 in the short-wave infrared (SWIR)
range (970–2500 nm). The HYSPEX spatial resolution is 0.5 m × 1 m in the VNIR and
2 m × 2 m in the SWIR.

The georeferencing of the hyperspectral VNIR and SWIR images in UTM zone 31N
was performed with QGIS, using a 50 cm spatial resolution ortho-rectified picture of the
scene given by the Institut Géographique National (IGN) [59]. The georeferencing was
performed with wedge points positioned manually on the IGN ortho-image. The VNIR
image resolution was set to the SWIR resolution by using a spatial matching algorithm
based on pixel matching through an optical flow calculation called GEFOLKI [60,61].

3.2. Sentinel-2 Products

Sentinel-2 (S2) was first launched in June 2015 (first platform), and a second platform
was launched in March 2017. Sentinel-2 is equipped with the multispectral instrument
(MSI), which acquires Earth atmosphere-reflected radiances in 13 spectral bands ranging
from 442 nm to 2202 nm. The spatial resolution of MSI ranges from 10 m to 60 m, depending
on the spectral channel. We selected an MSI image acquired on the 5th of February, 2016,
being the closest S2 acquisition date to our airborne acquisition. The MSI image was
processed using the MAJA algorithm [33]. The MAJA algorithm performs a masking
procedure to detect and remove clouds and their shadows from the Level 1C image. The
surface reflectance was derived following the algorithm proposed by Hagolle et al. [62].
Hereinafter, we used the level 2A surface reflectance product delivered by the processing
chain of the THEAI center [63]. We used the channels B2 to B12, except for B9 and B10. The
spatial resolution was set to 10 m for the selected bands. A first atmospheric correction
was performed on the HYSPEX image, in order to apply a spatial matching algorithm
(GEFOLKI) between MSI and HYSPEX surface reflectances to produce geolocalized images
at a spatial resolution of 10 m. The transformation matrix, computed by GEFOLKI spatial
matching, was then applied to the HYSPEX radiance image. Figure 3 shows a superposition
of an RGB composite image of the HYSPEX image on S2 over the studied area. The stack
and associated plume are located in the center of the image. The plume moves south-east
over a water channel, crosses a ground arm with wharves, and then moves over the sea.
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The scene is complex, with varying surface reflectances due to the presence of industries,
water bodies, vegetation, and communication networks.

Figure 3. HYSPEX hyperspectral image (opaque) superposed on the Sentinel-2 image (transparent).
Points A and B, respectively, represent areas of interest for the spectra used in Figure 7.

4. Results
4.1. Atmospheric Correction

The optimal estimation procedure was applied to the off-plume pixels in the HYSPEX
image, in order to estimate the atmospheric radiative terms. MSI surface reflectances were
used to constrain the retrievals. However, MSI reflectances in the SWIR for water and dark
vegetation were overcorrected, consequently leading to an overestimation of the visibility.
SWIR channels had an influence on the OEM within the plume, as the uncertainty on
the surface reflectance was very large. SWIR channels were, therefore, only used for the
surface classification (see below), and not for plume retrieval. The most likely background
aerosol models were the “maritime” and “rural” models, with a visibility of 18 ± 5 km and
15 ± 4 km, respectively. We selected the rural aerosol model for atmospheric correction.
As mentioned in the method section, an error term on the aerosol model selection was
introduced through use of the Ångstrom coefficient. The algorithm did not converge when
using the urban background model, due to its much higher absorption coefficient (see
Figure 1b).

4.2. Image Classification

Figure 4 shows the surface reflectance classification results using the random forest
procedure applied to the HYSPEX and MSI images. One can notice that a large part
of the plume remained visible over water when using a single hyperspectral datum,
while it disappeared when using the combination of HYSPEX and MSI. Moreover, the
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hyperspectral classification was more heterogeneous and misclassified “bright soils” or
“sparse vegetation”. As expected, the footprint of the plume was missing in the MSI
classification. The classification of the MSI image was more homogeneous than that
of HYSPEX; however, it over-classified spectra in the “concrete soils” class. This over-
classification mainly concerns spectra that should have been classified as “bright soils”.

Figure 4. Snapshots of Surface reflectances obtained from radiances acquired by HYSPEX cam-
era; (A) surface classification using HYSPEX image alone; and (B) surface classification using a
combination of HYSPEX and MSI surface reflectances.

4.3. Surface Reflectance

When considering the HYSPEX image alone, the spectra were averaged to provide
a mean value for each class of soil. For the combination of the MSI and HYSPEX images,
the surface reflectances were estimated using the CNMF method. In each case, the root-
mean-square error (RMSE) and the spectral angle mapper (SAM) [64] were computed
class-by-class (Table 3). The data were selected outside the plume area. For all the defined
classes, the CNMF method reduced the heterogeneity of the classes and, thus, reduced
the RMSE and the SAM. The scores of the combination or the single image were slightly
similar for the water category, thus indicating that the averaged spectra can provide an
estimate of the surface reflectance.

Table 3. Root-mean-square error (RMSE) and spectral angle mapper (SAM) for surface reflectances
outside the plume for HYSPEX image alone and the combination of HYSPEX and MSI images.

Classes
HYSPEX Alone HYSPEX + MSI

RMSE SAM RMSE SAM

Water 0.0054 6.68 0.0057 6.10
Sparse vegetation 0.0426 14.06 0.0304 9.13
Dense vegetation 0.0414 7.55 0.0393 7.79

Concrete soils 0.0711 10.94 0.0473 7.60
Dark soils 0.0337 19.51 0.0267 14.28

Bright soils 0.1139 9.93 0.1040 7.53

4.4. Plume Segmentation Using CTMF

The CTMF was used to identify the plume structure in the image. A mask was applied
to the CTMF score corresponding to an aerosol modal radius of 0.2 µm. The 0.2 µm modal
radius was chosen, in order to be of the same order of magnitude as the modal radius
retrieved by Philippets et al. [10]. The objective was to have a first estimation of the plume
footprint, in order to reduce the number of spectra to be inverted. Two masks were built:
they corresponded, respectively, to the 5% and 30% of pixels with the best CTMF score.
The thresholds were empirical. The pixels were then aggregated by region for each mask.
Regions in the mask with the lowest threshold that did not intersect with the regions in the
mask with the highest threshold were removed. The resulting mask was smoothed out with
a 3 × 3 pixels median filter. Figure 5 shows the plume mask footprint obtained from the
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HYSPEX image alone and from the combination of HYSPEX and MSI. The identification of
the plume structure was improved by using the combined HYSPEX/MSI product. Indeed,
the number of false alarms was significantly reduced upstream of the source point and
the plume was better defined downstream of the source point, compared to the plume
segmentation from the HYSPEX image alone. The plume footprint was also visible over
vegetation and over part of the artificial soils.

Figure 5. Plume mask estimated from (A) HYSPEX image and (B) HYSPEX + MSI. The green dot is the location of the
source point.

4.5. Plume Properties’ Initialisation

In this stage, we applied the CTMF and RMSE sequential approaches to initialise
the plume AOT, modal aerosol radius, and aerosol type pixel-by-pixel. Figure 6 shows
maps associated with each metric, and Table 4 corresponds to the mean retrieved values
class-by-class. The aerosol type most frequently obtained by the CTMF and the RMSE was
a “scattering aerosol”, as is expected from a sinter plant emitter [65,66]. Over the whole
image, 70% of the pixels were classified as scattering aerosols for the RMSE method and
45% for the CMTF method. The retrieved modal radii differed between CTMF and RMSE.
Over water bodies, the RMSE retrieved modal radii varying from 0.1 to 0.25 µm, being
close to that found in previous studies over the same area Philippets et al. [10]. However,
these values seemed to overestimate in situ measurement over metallurgic plants [65,67].
The CTMF provided higher aerosol radii (higher than 0.5 µm) over water bodies, where the
AOTs of the plume were below 0.02, but provided similar radii as the RMSE method for
larger AOTs in the densest part of the plume. Over artificial soils, the mean retrieved radius
was about 0.4 µm for the CTMF and 0.25 µm for RMSE; additionally, 33% and 38% of the
retrieved radii were higher than 0.5 µm for the RMSE and CMTF methods, respectively.
As mentioned in Section 4.3, the surface reflectance correction was less consistent over
artificial and bright soils. For the surface reflectances of the artificial and bright soils, both
methods tended to overestimate the radius and AOT, compared to that for water surfaces,
where the error of the estimated surface reflectance was low.

The retrieved mean AOTs were about 0.02 for both the CTMF and RMSE. The mean
difference between AOTs retrieved was lower than 0.01 for all surface reflectance classes,
except for the bright soil class (Table 4). For the bright soil class, the mean difference
was 0.23.

Table 4. Mean AOT and radius by class of soil, retrieved with the CTMF and RMSE methods.

Classes
AOT Radius (µm)

CTMF RMSE CTMF RMSE

Water 0.012 0.011 0.488 0.112
Dense vegetation 0.028 0.027 0.296 0.268
Sparse vegetation 0.029 0.026 0.346 0.357

Concrete soils 0.046 0.039 0.354 0.285
Dark soils 0.023 0.021 0.217 0.182

Bright soils 0.095 0.072 0.510 0.286
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(a) Aerosol type (b) AOT (c) Modal radius

Figure 6. Retrieved plume aerosol parameters: (a) model, (b) AOT, and (c) modal radius, using the CTMF compared with
the RMSE.

Figure 7 represents the difference between spectra acquired inside and outside the
plume (point B and point A in Figure 3, respectively). The point B spectrum corresponds to
a mean of 3× 3 pixels, having a mean AOT of 0.06. The spectra A and B were localised over
the water surface and their differential was compared to the differential simulated using
aerosol properties from the CTMF or RMSE methods. Mean radii retrieved using CTMF
and RMSE were 0.13 µm and 0.16 µm, respectively. The normalized RMSE of the differential
were 9.2% for the CTMF and 6.5% for the RMSE methods, and the corresponding SAM
were 5.1◦ and 3.6◦ , respectively.
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Figure 7. Example of difference between spectra acquired inside and outside the plume over water surface (red), compared
to the best differential model from the CTMF (orange) and RMSE (green) approaches.
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In general, the differential calculated with the radius obtained by the RMSE method
better corresponded to the observations for all the soil classes, although there were still
high radius values for artificial soils. The CTMF formulation is well-adapted for gases with
a signature defined by local absorption bands; however, due to the correlations between
the spectral signatures of aerosols and their influence on the slope of the entire spectrum,
the CTMF results led to a high error rate on the type of aerosol. The RMSE, therefore, seems
to best provide a first estimate of the modal radius and the AOT. In addition, the RMSE
provides an estimate of the α and β parameters. Minimization of RMSE in the densest part
(i.e., at the center) of the plume corresponded to values of 0 for α and 0.3 for β.

4.6. Results of the Optimal Estimation Method

OEM (see framework in Section 2.2) accounted for the errors associated with the prior
parameters, the observations, and the atmospheric correction. The OEM was initialized
with the AOT and modal radius retrieved from RMSE sequential approach and with the
surface reflectances under the plume estimated by the CNMF. AOT, modal radius, and
surface reflectance maps, with their associated posteriori uncertainties and their DOF, were
then retrieved. Figure 8a illustrates these results. Low DOF values indicate a retrieval
being dependent on a priori information, meaning that, due to the large initial error
(reflectance and/or aerosol properties), the residual was too high when compared to a
priori uncertainties. Only pixels with a retrieved radius with DOF > 0.5 were used to
post-process the retrieved maps of AOT and modal radius (see Figure 8). Pixels for which
the OEM failed to converge were included in the rejection mask. This rejection mask was
associated with pixels where prior information were not consistent with the measurement
and the model. It corresponded, in particular, to pixels over artificial soils near the source
point, where the prior radius from RMSE initialization seemed to be overestimated (values
larger than 0.5 µm). Table 5 shows the mean radius retrieved by the OEM class-by-class.
The mean retrieved radius in the entire plume was 0.125 µm, with a standard deviation of
0.05 µm. In comparison, inside the final plume mask, the initial mean radius was around
0.15 µm, with a standard deviation of 0.1 µm. This decrease in the mean radius led to a
slight decrease in the AOT—in particular, for bright surfaces. Near the source, the mean
retrieved radii were between 0.1 and 0.2 µm and the AOT was above 0.05. Downwind of
the source point over water bodies, the mean retrieved radius was 0.12 µm, with a standard
deviation of about 0.04 µm, while the retrieved AOT varied from 0.01 to 0.07. Over sparse
vegetation soils, the DOF were lower than over water bodies, with values varying from
0.2 to 0.7; furthermore, the mean retrieved radius was around 0.15 µm, with a standard
deviation of about 0.07 µm. Table 5 shows that the variation of the mean modal radius
from one class to another was reduced from the initial guess. OEM-retrieved values were
more homogeneous spatially than in the a priori. These results show that, over the whole
plume, the size distribution was fairly stable—corresponding to an ultra-fine mode.

Table 5. Mean radius (µm) by class of soil, retrieved with the OEM methods and from the initial
guess inside the final plume mask.

Classes
Radius (µm)

OEM Initial Guess

Water 0.118 0.137
Dense vegetation 0.151 0.197
Sparse vegetation 0.231 0.285

Concrete soils 0.184 0.341
Dark soils 0.158 0.208

Bright soils 0.263 0.423
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(a) AOT (left image) and modal radius maps (right image) (b) DOF of retrieved radii

Figure 8. OEM-retrieved: (a) AOT and modal radius; and (b) radius DOF map.

The residual errors associated with the retrieval for different surface categories are
presented in Table 6. Figure 9 illustrates the mean standard deviations by class of soil of
posterior uncertainties on the retrieved surface reflectances.

Table 6. Mean standard deviations of the posterior uncertainties σ̂ in AOT and modal radius by
surface categories. The uncertainty from the measurement σm and from the resolving error component
σs are associated with this standard deviation.

Classes
AOT Radius (µm)

σ̂ σm σs σ̂ σm σs

Water 0.003 0.003 0.001 0.049 0.038 0.031
Dense vegetation 0.004 0.003 0.003 0.064 0.037 0.052
Sparse vegetation 0.005 0.003 0.004 0.051 0.030 0.042

Concrete soils 0.007 0.003 0.006 0.048 0.019 0.044
Dark soils 0.005 0.002 0.004 0.053 0.030 0.041

Bright soils 0.013 0.006 0.011 0.057 0.022 0.054

The main part of the error came from the resolving error σs (see Table 6), except
for the water surface, where the error was driven by the measurement noise. Radius
uncertainties from Table 6 were not really dependent on the class, with a mean value
around 0.05; this value was coherent with the standard deviation estimated from the OEM
radius map. However, radius prior uncertainties remained larger for bright surfaces and
vegetation surfaces.

AOT posterior uncertainties depended on the type of surface, with values varying
from 0.003 for water to 0.013 for bright soils. This means that the OEM surface reflectance
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retrieval did not compensate completely for the initial error in the surface reflectance
estimation computed with the CNMF. As shown in Figure 9, the reflectance posterior
uncertainty for bright surfaces, vegetation, and concrete soil were higher than for water
reflectance spectra. For water surfaces, the mean posterior reflectance uncertainties were
less than 0.01, which led to less uncertainty in the retrieved AOT. For bright surfaces,
the mean reflectance uncertainties increased up to 0.045, leading to larger uncertainties
(Table 6).
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Figure 9. Mean standard deviation of posteriori uncertainties on surface reflectance as a function of wavelength and by
surface category.

Finally, the OEM-retrieved plume parameters were less sensitive to ground hetero-
geneity than the initial sequential approach. The estimated mean modal radius was about
0.125 µm, with a standard deviation of about 0.05 µm. Moreover, the OEM helped to
enhance the quality of the retrieval, by rejecting pixels where the prior information was not
consistent with model uncertainties.

5. Discussion
5.1. Retrieved Modal Radius

The size distribution retrieved in the plume corresponded to an ultra-fine log-normal
mode, having a modal radius of 0.125 µm and a standard deviation of 1.5. The retrieved size
distribution was in agreement with previous work based on airborne hyperspectral data on
the same plant, which gave a modal radius around 0.2 µm [10,66]. In situ observations over
two metallurgic sites in Europe [65,67] have shown that the particle size distribution inside
the plume and near the source corresponds to an ultra-fine mode with a modal radius that
is (most of the time) less than 0.1 µm, with a standard deviation around 1.5. Aerosols in the
ultra-fine fraction are formed by secondary aerosols in the Aitken mode, which coagulate
downwind the plume [65] and contain metal-bearing nanoparticles [67]. The contribution
of fine particles (PM1) can be up to 60% for metallurgy, although the PM1 fraction depends
on the industrial process [68]. A similar result has been obtained for a refinery plume using
hyperspectral airborne imagery [11], which showed a retrieved particle size distribution
corresponding to the ultra-fine mode (modal radius around 100 nm). An absorbing fraction
of around 10% has been found in the refinery plume, while only a scattering aerosol was
retrieved in the metallurgy plume.
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Although the hyperspectral retrievals indicate the presence of ultra-fine particles, it is
expected to have a contribution of larger particles (PM10) inside the plume [68]. However,
the sensitivity of VNIR radiances to the aerosol coarse mode with a modal radius higher
than 1 µm is weak. Increasing the standard deviation of the size distribution (e.g., from
1.5 to 2.0) lowered the retrieved radius (by 0.05 µm, respectively) in areas with DOF > 0.5,
indicating a competitive impact of the modal radius and the standard deviation on the
retrieval. This confirms that, in the VNIR spectral domain, the observed plume signature
has a very weak contribution of coarse aerosols. The addition of a coarse mode in the
aerosol forward model, as associated with an extension of the retrieval spectral range to
the SWIR domain, may help to infer the contribution of the different aerosol modes.

5.2. Ground Reflectance Estimation and OEM

The surface reflectance estimation accuracy in the initialization step has a major impact
on the retrieval uncertainties. Particularly in the case of bright surfaces, any bias or offset on
the estimated reflectances must be avoided. Using a single hyperspectral image to estimate
the ground reflectance can lead to large errors, as was seen in Sections 4.2 and 4.3. The use
of MSI data in the classification allows for a removal of the radiative impact of the plume
(see Figure 4) from the background image and reduction of the intra-class surface reflectance
variability, compared to a single hyperspectral acquisition (see Table 3). Moreover, adding
the ground reflectance as a retrieved parameter in the OEM process decreases the reflectance
uncertainties, compared to the initial stage. Consequently, the reflectance uncertainty can
be reduced by a factor of 2 (see Figure 9) for bright and concrete soils. Considering a further
application to hyperspectral space missions, such as PRISMA [69], the reflectance error
estimation could be reduced, as: (i) the spatial heterogeneity will decrease, due to the lower
spatial resolution (30 m instead 10 m); (ii) the signal-to-noise ratio is similar to HYSPEX
noise (see Figure 2b); and (iii) the fusion algorithms will not have to deal with a change
of spectral resolution. Additionally, we notice that the OEM also helps to reject the pixels
which have an estimated ground reflectance error too high and/or with a false positive
plume detection, thanks to the DOF and the algorithm convergence.

5.3. Model Assumptions and Uncertainties

From sensitivity and posteriori uncertainty analyses, we saw that the modal radius
uncertainty of 0.05 µm was quite independent of the reflectance value, whereas the AOT
error increased with the reflectance value (from 0.003 to 0.01). Moreover, the non-retrieved
b state vector used in the results section did not include all the forward model assumption
uncertainties or errors described in the method section. In particular, the aerosol plume
refractive index uncertainty and size distribution standard deviation are important sources
of error for the AOT (0.008) and modal radius (0.045 µm), respectively. This means that the
a posteriori uncertainties estimated in the results section were underestimated, particularly
for low reflectance values. We assumed that the real uncertainties were around 0.01 for
AOT and around 0.06 µm for the modal radius. Some forward model assumptions are still
missing in the total budget error, such as the environmental effects and the uncertainty in
the imaginary part of the refractive index.

6. Conclusions

Stack plume detection and characterization over a metallurgic plant were performed
with the use of airborne hyperspectral data. The proposed method relies on the combination
of hyperspectral acquisition with additional Sentinel-2/MSI surface reflectances. The spatial
resolution of the product was 10 m, matching the satellite data. The MSI data provided
an off-plume background image of the scene and, so, reduced the error in both plume
segmentation and the estimation of aerosol optical properties.

A first guess of the plume aerosol optical properties, in terms of modal radius and
AOT, was performed using a sequential method. The previously proposed CTMF method
was outperformed by the RMSE metric in the sequential approach. The OEM improved the
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consistency of the retrieval and provided an estimation of the error balance, by simultane-
ously retrieving the plume properties and the surface reflectances under the plume. OEM
provides the opportunity to analyse uncertainties through an analytical equation system.
It can provide information (gain matrix) and criteria (degree of freedom) on the retrieval
sensitivity of plume properties above several ground types, with respect to the observation
noise. The observed plume was optically thin, with AOT lower than 0.1 and a detection
threshold around 0.01. The retrieved size distribution mode corresponded to a fine (i.e.,
ultra-fine) mode with a modal radius of 0.125 µm and a log-normal distribution standard
deviation of 1.5. All of the detected pixels had a DOF higher than 0.5 and the average a
posteriori uncertainties of the estimates were 0.01 for the AOT and 0.06 µm for the modal
radius. These results were close to the ultra-fine mode (modal radius around 0.1 µm)
observed from in situ measurements within the plumes of metallurgical plants [65,67].

Knowledge of PM atmospheric concentrations from industrial stack plumes and
associated emission fluxes from satellite observations could allow for a better assessment of
the impact of industrial emissions on air quality at a high spatial resolution. The proposed
method to retrieve aerosol optical properties and evaluate the associated uncertainties
serves as a first step toward this objective. We also showed the potential and feasibility of
combining hyperspectral data with other satellite data with different spectral and spatial
resolutions, but higher temporal frequency. The proposed framework can be applied
to current hyperspectral satellite missions, in combination with the available Sentinel-
2 products.
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